电力系统分析基础(第八章)
电力系统分析基础第八章第四节
3 2
[(2 X 2
X0 )]
j
3X 0 ]Ia1
Uc j[(a a2 ) X 2 (a 1) X 0 ]Ia1
3 2
[(2
X
2
X0 )]
j
3
X
0
]Ia1
与不对称短路时一样,也可以用正序增广网络计算 正序分量。
手算复杂,用计算机算法比较方便。
三.应用叠加原理的分析方法
• Uqk|0|开断q-k支路后的断口电压,它不能由正常潮流计算 求得。
• 一般断线前的正常运行方式已知,线路电流也是已知的, 若把断线看作是突然叠加一个负电流源,将断线分解成正 常运行方式和具有一个不对称电流源的故障分量,故障分 量的计算将较为简单。
(一) 一相断线
• 边界条件为:
Ia Ia 0 ;Ub Uc 0
Ia1 Ia2 Ia0 Ia 0
U1 U2 U0
• 非全相断线
•纵向故障:这种情况直接引起三相线路电流(从断口一 侧流到另一侧)和三相断口间电压不对称,而系统其它 各处的参数仍是对称的,所以把非全相运行称为纵向故 障。 •横向故障:在不对称短路时,故障引起短路点三相电流 (从短路点流出的)和短路点对地的三相电压不对称。 因此通常称短路故障为横向故障。
U 1 U 2 U 0 Ia 0 1
1 1
1
z1 z2 z0
(二)两相断线
边界条件: Ua 0; Ib Ib 0 ; Ic Ic 0
U1 U2 U0 0; I1 Ia 0 I2 I0
I1 Ia 0
1
1
1 1
z1
z1 z2 z0
Ia0
z2 z0
z1
z2
z0
电力系统分析基础(第八章)
2) 模型 a) 正常运行时 b) 故障时
c) 故障切除后
•XT1
•XL
•XL
•XT2
•XT1
•XL
•XL
•X
ᅀ
•XT2
•XT1
•XL •XL
•XT2
3) 解释
• 加速面积 abcdk
•
大与
• 减速面积 dgfe时
• 是暂态稳定 的
• 最大故障切 除角
• δc<δmax<δ
h
• 是暂态稳定 的
• 2、等面积定则
•短路试 验
•空载试 验 •归算问题——三绕组容量不同时
•4、熟练制作电力系统的等值电路
•计算RT时归算 •计算XT时不归算
•多级电压网的归算问题——确定基准级,按变压器变比归算
•标幺值电路的制 定
•归算有名值 •归算基准值
•端部完全等值的变压器模型的作用及推导
•5、了解电力设备运行的基本知识
•发电 机
•8、掌握中性点的接地方式
•有哪几种 •适应范围
•中性点直接接地 •不接地
•中性点不直接接地 •经消弧线圈接 地•经电阻接地
•中性点不接地系统的优缺点
•第二章 电力系统元件的电气参数及等值电路
•1、了解电力线路的结构-型号的表示 •2、熟悉电力线路的电气参数及等值电路-扩径、分裂、换位 •3、掌握变压器的电气参数及等值电路
•
受干扰减少Δδ时,由b点回到a点,但在b点不能建立稳定的平
衡,故是不稳定的
2) 稳定判据
•时
• 极限功
稳 • 稳定储备系定
数:
率:
• 正常运行:KP > • 1故5障%状态:KP >
电力系统分析基础第八章第三节
U f 1 U f 2 U f 0 3I f 0 z f
以下按一般求故障电流和电压的顺序求解。
(四)正序增广网络(正序等效定则)的应用
(1)正序分量的计算
单相接地f
(1):I f
1
Z 1
U f 0 Z2
Z 0
两相短路f
(2):If 1
U f 0 z1 z2
两相接地f(1,1):I f 1
j
3
U f 0
z1 z2
z1
z2
,
I
( f
2)
3 2
I
(3) f
I
(3) f
即电力系统两相短路电流小于三相短路电流
非故障相电压:
z1 z2时
U
f
1
U
f
2
1 U 2
fa
0
U fa U f 1 U f 2 U fa 0
U fb
U fc
2
U f 1
1 2
U
fa
0
即非故障相电压等于故障前电压。 故障相电压幅值比故障前降低一半。
z1
3U fa 0 z2
z0
• 如果Z∑(0)< Z∑(1) ,则 • 如果Z∑(0)>Z∑(1) ,则
I
1
f
I
3
f
U fa|0| Z (1)
I
1
f
I
3
f
思考题:系统三相短路电流一定大于单相接地短路电流吗?为什么?
关于非故障相电压:
U
fa
U f (1)
U f (2)
U f (0)
0
(5)分析
I I
fa fb
电力系统分析第8章
1 p
Iq
(
p)
[
pX
d(
X d ( p)ud (0) p) r][ pX
[ pX d ( p) q( p) r] X
r ]uq(0) d ( p)X
q
(
p)
1 p
ud (0) puq(0) ( p2 1) xq
1 p
拉普拉斯反变换后,得到时域解:
id
u q (0) xd '
u q (0) xd '
cos t
ud (0) xd '
sin t
u q (0) xd '
u (0) xd '
cos(t
0)
i3;
u d (0) xq
cos t
u q(0) xq
sin
t
ud (0) xq
u (0) xq
sin(t
0)
iqn
iq
△id与△iq含有两个分量:直流分量与同步频率的交
• 无限大功率电源是个相对概念。 • 若电源的内阻抗小于短路回路总阻抗的10%,
即可以认为电源为无限大电源。 • 例如,多台发电机并联运行或短路点远离电
源等情况,都可以看作无限大功率电源供电 的系统。
8.2.2 暂态过程分析
一无限大功率电源供电的三相对称系统,短路发生前,电 路处于稳定状态,三相电流对称,用下标(0)、0表示短 路发生前后:
量、强制分量或周期分量 i pa ,与所在相的电源电压有
相同的变化规律,即:
ipa i aIm si n t ( )
Im
Um
R2 2L2
arctanL
R
• 短路点左侧暂态电路的时间常数为Ta,其值由电路参数
电力系统分析第8章课件
▪ 与转子d轴重合时,气隙最小,则电感系数L大,需i小; ▪ 与转子q轴重合时,气隙最大,则电感系数L小,需i大; ▪ 磁阻的变化周期是180°,所以非周期分量包含2倍频分量
和直流分量: ia = iω + i2ω + iα
Exit 第25页
电力系统暂态分析
电力系统暂态分析
第8章 电力系统三相短路的暂态过程
8.1 短路的基本概念 8.2 无限大功率电源供电系统的三相短路分析 8.3 无阻尼绕组同步发电机突然三相短路的分析 8.4 计及阻尼绕组的同步电机突然三相短路分析
Exit
第1页
8.1 短路的基本概念
电力系统暂态分析
• 故障:一般指短路(横向故障)和断线(纵向故 障),分为简单故障和复杂故障
Ria
+ L dia dt
= U m sin(ωt + θ )
其解就是短路的全电流,由两部分组成:
稳态分量 i∞a (强制分量、交流分量或周期分量 ipa )和暂态
分量(自由分量、直流分量或非周期分量)。
i∞a = ipa = Im sin(ωt + θ − ϕ )
Im =
Um
R 2 + (ωL)2
• 简单故障:电力系统中的单一故障 • 复杂故障:同时发生两个或两个以上故障 • 短路:一切不正常的相与相之间或相与地之
间(对中性点接地系统)发生连接的情况。
Exit
第2页
电力系统暂态分析
8.1.1 短路的类型
各种短路的示意图和代表符号
短路种类
示意图
代表符号
三相短路
f(3)
两相短路接地
电力系统分析第八章习题(栗然)
第八章习题8-1: 图(a )所示输电系统,在f点发生接地短路,试绘出各序网络,并计算电源的组合电势∑E 和各序组合电抗∑1X 、∑2X 和∑0X 。
已知系统各元件参数如下:发电机G :50MW ,8.0cos =ϕ,15.0=''dX ,18.02=X ,08.11=E 变压器T-1、T-2:60MVA ,V s %=10.5,中性点接地阻抗Ω=22n x负荷:X LD1=1.2, X LD2=0.35 线路L :50km ,km x /4.01Ω=,103x x =解 (1)各元件参数标幺值计算。
选取基准功率B S =100MVA 和基准电压av B V V =,计算各元件的各序电抗的标幺值,计算结果标于各序网络图中。
发电机:24.08.0/5010015.01=⨯=G X 288.08.0/5010018.02=⨯=G X 变压器T-1、T-2:175.0601001005.1021=⨯==T T X X 中性点接地阻抗:607.137100222=⨯=n x 负荷LD :8151002.11=⨯=LD X 333.21510035.02=⨯=LD X 输电线路L :461.1371004.05021=⨯⨯=L X 383.4416.130=⨯=L X(2)制订各序网络正序和负序网络不包括中性点接地电抗和空载变压器T-2,因此,正序和负序网络中包括发电机G 、变压器T-1、负荷LD 以及输电线路L ,如图(b )和(c )所示。
由于零序电流不流经发电机和负荷,因此,零序网络中只包括变压器T-1、T-2和输电线路L ,如图(d )所示。
(3)网络化简,求组合电势和各序组合电抗。
由图(b )可得05.1824.0808.1=+⨯=∑E869.1461.1175.0)8//24.0(1=++=∑X由图(b )和图(c )可得892.1461.1175.0)333.2//288.0(2=++=∑X172.0175.0//)383.4821.4175.0(0=++=∑X8-2:如图(a )所示电力系统,各元件参数如下:发电机G-1:100MW ,cos ϕ=0.85,223.0,183.02==''X X d;G-2:50MW ,cos ϕ=0.8,141.0=''d X ,172.02=X ;变压器T-1:120MVA ,V s %=14.2;T-2:63MVA ,V s %=14.5;输电线路L :每回120km ,1015,/432.0x x km x =Ω=。
《电力系统分析》第8章习题答案
−
j
900
⎥ ⎥
=
⎢ ⎢0.494e
j 2550
⎥ ⎥
1 ⎥⎦⎢⎣2e j1350 ⎥⎦
⎢⎣0.195e
j1350
⎥ ⎦
8-13 试画出图 8-62 所示电力系统 k 点发生接地短路时的正序、负序和零序等值网络。
图 8-62 习题 8-13 附图
解:正序、负序、零序等值网络见下图 a)、b)、c)。
(3)k 点发生 a、c 两相接地短路时
Ib1
=
j( X 1∑
E1Σ
=
+ X 2∑ // X 0∑ )
j1 j(0.202 + 0.214 // 0.104)
= 3.677
Ib2
=
−
X 0∑ X2∑ + X0∑
Ib1
=
−
0.104 0.214 + 0.104
× 3.677
=
−1.203
Ib0
=
−
X 2∑ X2∑ + X0∑
Ib1
=
− 0.214 × 3.677 0.214 + 0.104
=
−2.474
U b1 = U b2 = U b0 = − jX 2∑ Ib2 = − j0.214 × (−1.203) = j0.257
Ib = 0
Ic = a 2 Ib1 + aIb2 + Ib0 = e j240° × 3.677 − e j120° ×1.203 − 2.474 = 5.624e− j131.29° Ia = aIb1 + a2 Ib2 + Ib0 = e j120° × 3.677 − e j240° ×1.203 − 2.474 = 5.624e j131.29° Ub = 3Ub1 = 3× j0.257 = j0.771 U a = U c = 0
第八章电力系统不对称故障的分析
•
U
fc (1)
•
U
fc ( 2 )
•
U
fc ( 0 )
1
•
U
fc
3
同一类型短路故障发生在不同相上时,基准相的序分量 故障边界条件的形式不会改变,于是复合序网的形式不 会改变,计算公式、结论均不会改变,只是表达式中下 脚符号改变而已。
j a2 a X ff (2) a2 1 X ff (0) I&fa(1)
U&fc aU&fa(1) a2U&fa(2) U&fa(0)
j a a2 X ff (2) a 1 X ff (0) I&fa(1)
(四)向量图:
Ifc(2) Ifb(1)
Ifc(1) Ifb(2)
•
I fa(2)
X ff (0)
•
I fa(1)
X ff (2) X ff (0)
•
I fa(2)
X ff (2)
•
I fa(1)
X ff (2) X ff (0)
U&fa(1) U&fa(1) U&fa(1)
j
X X ff (2) ff (0)
•
I fa(1)
X ff (2) X ff (0)
(2)两故障相中的短路电流的绝对值相等,方向相反, 数值上为正序电流的 3 倍;
(3)当在远离发电机的地方发生两相短路时,可通过对序网 进行三相短路计算来近似求两相短路的电流;
(4)两相短路时的正序电流在数值上与在短路点加一个附加阻
抗
Z (2)
构成一个增广正序网而发生三相短路时的电流相等。即
•
•
•
电力系统分析部分习题答案
-0.454 + j1.891 -0.588 + j2.353 1.042-j7.543
j3.333
0⎤
0
⎥ ⎥
j3.333 ⎥
-j3.333⎥⎦
习题 3.6 Y33=1.042-j8.2430 Y34=Y43=j3.667
习题 3.7
− j9
1
− j8
2
j3
3
− j7 4
j2
j4
j1
习题 3.8
S12 = −9 − j7.6MVA 。
(2)U1 = 105.61KV ,U2 = 106.56KV 。 (3) k = 1.031。
习题 3.5
⎡ 0.935-j4.262
⎢⎢-0.481+ j2.404
⎢-0.454 + j1.891
⎢ ⎣
0
-0.481+ j2.404 1.069-j4.728 -0.588 + j2.353
Z 22
=
K
2 1
Z
20
(Z10
+
Z12 )
K12 (Z10 + Z12 ) + Z 20
Z 33
=
1
K
2 2
[ K12 Z 20 (Z10 + Z12 ) K12 (Z10 + Z12 ) + Z 20
+ Z 23 ]
Z12
=
k1z10 z20 k12 (z12 + z10 ) +
z20
Z13
=
+ C3
=
54044.65(¥ /h)
⎪⎩PG1 = 318.18(MW )
电力系统分析习题和答案解析
电力系统分析目录第一部分电力系统稳态分析第一章电力系统的基本概念第二章电力系统的元件参数及等值电路第三章简单电力系统的计算和分析第四章电力系统潮流的计算机算法第五章电力系统的有功功率和频率调整第六章电力系统的无功功率和电压调整第二部分电力系统暂态分析第七章电力系统故障分析的基本知识第八章同步发电机突然三相短路分析第九章电力系统三相短路的实用计算第十章对称分量法及元件的各序参数和等值电路第十一章不对称故障的分析、计算第十二章电力系统各元件的机电特性第十三章电力系统静态稳定第十四章电力系统暂态稳定第十五章研究生入学考试试题附录第一部分电力系统稳态分析电力系统稳态分析,研究的内容分为两类,一类是电力系统稳态运行状况下的分析与潮流分布计算,另一类是电力系统稳态运行状况的优化和调整。
第一章电力系统的基本概念1—1 什么叫电力系统、电力网及动力系统?电力系统为什么要采用高压输电?1-2 为什么要规定额定电压?电力线、发电机、变压器和用电设备的额定电压是如何确定的?1—3 我国电网的电压等级有哪些?1—4 标出图1—4电力系统中各元件的额定电压。
1—5 请回答如图1-5所示电力系统中的二个问题:⑴ 发电机G 、变压器1T 2T 3T 4T 、三相电动机D 、单相电灯L 等各元件的额定电压。
⑵ 当变压器1T 在+2。
5%抽头处工作,2T 在主抽头处工作,3T 在-2。
5%抽头处工作时,求这些变压器的实际变比。
1-6 图1—6中已标明各级电网的电压等级.试标出图中发电机和电动机的额定电压及变压器的额定变比。
1-7 电力系统结线如图1—7所示,电网各级电压示于图中.试求:⑴发电机G 和变压器1T 、2T 、3T 高低压侧的额定电压。
⑵设变压器1T 工作于+2。
5%抽头, 2T 工作于主抽头,3T 工作于—5%抽头,求这些变压器的实际变比。
习题1-4图1-8 比较两种接地方式的优缺点,分析其适用范围.1-9 什么叫三相系统中性点位移?它在什么情况下发生?中性点不接地系统发生单相接地时,非故障相电压为什么增加3倍?1—10 若在变压器中性点经消弧线圈接地,消弧线圈的作用是什么? 1—11 什么叫分裂导线、扩径导线?为什么要用这种导线?1-12 架空线为什么要换位?规程规定,架空线长于多少公里就应进行换位?1—13 架空线的电压在35kV 以上应该用悬式绝缘子,如采用X —4。
电力系统分析第八章试题
100110. 电力系统中发生概率最多的短路故障是( )A.三相短路B.两相短路C.两相短路接地D 单相短路接地三相短路是对称的,其他短路都是不对称的,其中单 相短路接地故障发生的概率最高,可达65%,两相短 路约占10%,两相短路接地约占20%,三相短路约为 占5%,但它对电力系统的影响最严重。
11. 根据对称分量法, 系是()p236A.a 相超前b 相 C.c 相超前b 相13•中性点直接接地系统中,发生单相接地故障时,零 序回路中不包含( A.零序电流 C 零序阻抗20.中性点接地系统中发生不对称短路后,越靠近短路 点,零序电压变化趋势为()p263a 、b 、c 三相的零序分量相位关B.b 相超前a 相 D 相位相同)p251 B.零序电压 D 电源电势A.越高B.越低C.不变D无法判断39•下图所示网络中,线路L长为lOOkm,正序电抗xi=0.4Q / km,零序电抗 xo=3xi ;发电机 Gi 、G2 相同,S 、=15MVA, x"尸0.125,正序电抗等于负序 电抗;变压器 T1、T2、T3相同,S N =15MVA, U K % = 10o(1) 计算当K 点发生两相短路接地时,短路点的短路 电流。
(2) 求T2中性点电压。
Tiq ©4*(3^T20910系统发生短路故障后,越靠近短路点,正序电压 )p263越低 B.越高 不变 D.无穷大中性点不接地系统中,发生单相接地时,非故障相 电压将升高至相电压的()p254A. 1倍B.运倍C.丿^倍D. 3倍15.中性点接地电力系统发生短IIM LMT3K …7. A. C. 8.路后没有零序电流的不对称短路类型是( )p255A.单相接地短路B.两相短路C.三相短路D.两相短路接地16. 在下列各种故障类型中,属于纵向故障的是o P236 28.电力系统中发生两相短路时,故障点的短路电流 的大小为其正序电流分量的 _________ 倍。
电力系统分析第八章课件
第八章电力系统不对称故障的分析和计算8-1 简单不对称短路的分析8-2 电压和电流对称分量经变压器后的相位变换8-3 非全相断线的分析8-4 应用节点阻抗矩阵计算不对称故障8-5 复杂故障的计算方法第八章电力系统不对称故障的分析和计算本章主要内容各种简单不对称故障的序分量边界条件复合序网的概念和正序等效定则电压电流对称分量经过变压器后的相位变换利用阻抗矩阵计算不对称故障的原理和方法序网方程(1)(1)(1)fa eq ff fa V E Z I =− (2)(2)(2)fa ff fa V Z I =− (0)(0)(0)fa ff fa V Z I =− (2)fa I (2)ff jX (2)fa V (0)fa I (0)ff jX (0)fa V (1)fa I (1)ff jX (1)fa V (0)fV8-1 简单不对称短路的分析1. 单相(a 相)接地短路—序分量边界条件0, 0(1), 0fa fb fcV I I === 相量表示的边界条件:(1)(2)(0)(1)(2)(0)(1)(2)(0)0002fafa fa fa fb fb fb fb fc fc fc fc V V V V I I I I I I I I =++==++==++= ()对称分量表示的边界条件0faV = fbV fcV faI 0fbI = 0fcI = a bc (1)(2)(0)2(1)(2)(0)2(1)(2)(0)0030fafa fa fa fb fa fa fa fc fa fa fa a V V V VI I I I I I I I αααα=++==++==++= ()以相为参考相(1)(2)(0)(1)(2)(0)0(8-42)fa fa fa fa fa fa V V V I I I ⎫++=⎪⎬==⎪⎭()序分量边界条件:8-1 简单不对称短路的分析1. 单相(a 相)接地短路—联立方程求解0faV = fbV fcV faI 0fbI = 0fcI = a bc (1)(2)(0)(1)(2)(0)0(82)fa fa fa fa fa fa V V V I I I ⎫++=⎪−⎬==⎪⎭ (0)(1)(1)(1)(2)(2)(2)(0)(0)(0) (81) fa f ff fa fa ff fa fa ff fa V V jX I V jX I V jX I ⎫=−⎪⎪=−−⎬⎪=−⎪⎭ (0)(1)(1)(2)(0)(83)()ffa ff ff ff V I j X X X =−++ ()(0)(1)(1)(1)(2)(0)(1)(2)(2)(2)(0)(0)(0) (84)fa f ff fa ff ff fa fa ff fa fa ff fa V V jX I j X X I V jX I V jX I ⎫=−⎪⎪=+⎪−⎬=−⎪⎪=−⎪⎭8-1 简单不对称短路的分析1. 单相(a 相)接地短路—复合序网0faV = fbV fcV faI 0fbI = 0fcI = a bc (1)(2)(0)(1)(2)(0)0(82)fa fa fa fa fa fa V V V I I I ⎫++=⎪−⎬==⎪⎭ (0)(1)(1)(2)(0)(83)()ffa ff ff ff V I j X X X =−++ ()(0)(1)(1)(1)(2)(0)(1)(2)(2)(2)(0)(0)(0) fa f ff fa ff ff fa fa ff fa fa ff fa V V jX I j X X I V jX I V jX I ⎫=−⎪⎪=+⎪⎬=−⎪⎪=−⎪⎭ ——将各序网络在故障端口连接起来所构成的网络(1)fa I (1)ff jX (1)fa V (2)fa I (2)ff jX (2)fa V (0)fa I (0)ff jX (0)fa V (0)fV 8-1 简单不对称短路的分析1. 单相(a 相)接地短路—故障点各相电流电压222(1)(2)(0)(2)(0)(1)22(1)(2)(0)(2)(0)(1)0()(1)()(1)fafb fa fa fa ff ff fa fc fa fa fa ff ff fa V V V V V j X X I V V V V j X X I αααααααααα=⎡⎤=++=−+−⎣⎦⎡⎤=++=−+−⎣⎦ (1)(2)(0)2(1)(2)(0)2(1)(2)(0)fa fa fa fa fb fa fa fa fc fa fa fa I I I I I I I I I I I I αααα=++=++=++ (0)(1)(1)(2)(0)3()0, 0ff faff ff ff fb fcV I I j X X X I I ==++== ()(1)(2)(0)(1)(2)(2)(1)(0)(0)(1), , fa ff ff fa fa ff fa fa ff fa V j X X I V jX I V jX I =+=−=− 8-1 简单不对称短路的分析1. 单相(a 相)接地短路—相量图(1)fa I (1)fb I (1)fc I (2)fa I (2)fc I(2)fb I (0)fa I faI (0)fb I(0)fa I (0)fc I (2)fa I (2)fb I (2)fc I (1)fa I(1)fc I (1)fb I (1)fa I 以为参考相量(1)fa V (1)fb V (1)fc V (2)fa V (2)fc V (1)fa V (2)fa V (0)fa VfcV fbV (2)fb V (0)fa V 0fa V = ()(1)(2)(0)(1)(2)(2)(1)(0)(0)(1)fa ff ff fa fa ff fa fa ff fa V j X X I V jX I V jX I =+=−=− 8-1 简单不对称短路的分析1. 单相(a 相)接地短路—特例分析(I&II)(0)(0(1)(1)(2)(0)(1))(()3)0)1(3Case I >()ff faff ff ff f f f f ff f f V V I j X X X I X jX I X ==⇒=+>+ :(1)(2)(0),ff ff ff X X X ≈:与系统中性点接地情况有关(1)fa V (1)fb V (1)fc V (2)fa V (2)fc V (2)fb V fbV fcV 0fa V = (0)Case II ff X →:短路点靠近中性点直0,接接地点()(1)(2)(0)(1)(2)(2)(1)(1(0)(01)))(0fa ff ff fa f fa a ff fa fa ff fa V j X X I V jX I V V jX I ≈−=−≈=+=− (0)0, 32fa fb fc f V V V V ===(1)(2)(0)2fa ffa V VV ≈≈8-1 简单不对称短路的分析1. 单相(a 相)接地短路—特例分析(III)(1)(2)(0),ff ff ff X X X ≈:与系统中性点接地情况有关(0)faV (0)fbV (0)fcV 0fa V = fbV f cV (0)(0)fa faV V =− 60D(1)fb V(1)fc V (0)Case III ff X →∞:中性点,不接地系统()(1)(2)(0)(1)(2)(2)(1)(0)(0)(1)fa ff ff fa fa ff fa fa ff fa V j X X I V jX I V jX I =+=−=− (0)(0)0, 3fa fb fc f abV V V V V ====(0)(0)(1)(2)(0), 0, fa f fa fa f V V V V V ===− (1)(2)(0)22(1)(2)(0)(1)2(1)(2)(0)(1)=0(1)(1)fa fa fa fa fb fa fa fa fa fc fa fa fa fa V V V V V V V V V V V V V V αααααα=++=++=−=++=− 8-1 简单不对称短路的分析1. 单相(a 相)接地短路—特例分析(IV)(1)(2)(0),ff ff ff X X X ≈:与系统中性点接地情况有关(2)(0)(2)(0)(1)Case IV 12ff ff fa fa fa X X V V V =⇒==− :()(1)(2)(0)(1)(2)(2)(1)(0)(0)(1)fa ff ff fa fa ff fa fa ff fa V j X X I V jX I V jX I =+=−=− (1)fb V (1)fc V (2)fc V (1)fa V (2)fa V (0)fa V fcV fbV (2)fb V 0faV = 120D(0)(1)(1(2)(0))()fff ff ff fa V j X X X I =++ ()(1)(2)(0)(1)(2)(2)(1)(0)(0)(1)(0)(0)(0)231313fa ff ff fa fa ff fa fa ff f fffa V j X X I V jX I V jX I V V V −=+==−==−=− (0)(1)32fb fc fa f V V V V ===8-1 简单不对称短路的分析2. 两相(b 相和c 相)短路—序分量边界条件, 0(1), 0fb fc fa fb fcV V I I I ==+= 相量表示的边界条件:(1)(2)(0)(1)(2)(0)(1)(2)(0)(1)(2)(0)(1)(2)(0)002fb fb fb fc fc fc fa fa fa fb fb fb fc fc fc V V V VV V I I I I I I I I I ++=++++=+++++= ()对称分量表示的边界条件fa V fb fcV V = 0faI = fbI fcI a bc(1)(2)(1)(2)(0)40(8-7)0fa fa fa fa fa V V I I I ⎫=⎪⎪+=⎬⎪=⎪⎭()序分量边界条件:22(1)(2)(1)(2)(0)22(1)(2)(0)()()0()()203fa fa fa fa fa fa fa fa VV I I I I I a I αααααααα−+−=++=++++= ()以相为参考相8-1 简单不对称短路的分析2. 两相(b 相和c 相)短路—联立方程求解(0)(1)(1)(1)(2)(2)(2)(0)(0)(0) (81) fa f ff fa fa ff fa fa ff fa V V jX I V jX I V jX I ⎫=−⎪⎪=−−⎬⎪=−⎪⎭(0)(1)(1)(2)(88)()ffa ff ff V I j X X =−+ (2)(1)(1)(2)(2)(2)(2)(1)(0)(0)(0)(89)0fa fa fa fa ff fa ff fa fa ff fa I I V V jX I jX I V jX I ⎫=−⎪⎪==−=−⎬⎪=−=⎪⎭(1)(2)(1)(2)(0),0(87)0fa fa fa fa fa V V I I I ⎫=⎪⎪+=−⎬⎪=⎪⎭ fa V fb fcV V = 0faI = fbI fcI a bc8-1 简单不对称短路的分析2. 两相(b 相和c 相)短路—复合序网(0)(1)(1)(2)(88)()ffa ff ff V I j X X =−+ fa V fb fcV V = 0faI = fbI fcI a bc(1)(2)(1)(2)(0),0(87)0fa fa fa fa fa V V I I I ⎫=⎪⎪+=−⎬⎪=⎪⎭ (2)(1)(1)(2)(2)(1)(0)(0)(0)(89)0fa fa fa fa ff fa fa ff fa I I V V jX I V jX I ⎫=−⎪⎪==−⎬⎪=−=⎪⎭(1)fa I (1)ff jX (1)fa V (2)fa I (2)ff jX (2)fa V (0)fa I (0)ff jX (0)fa V (0)fV 8-1 简单不对称短路的分析2. 两相(b 相和c 相)短路—故障点各相电流电压(1)(2)(0)(1)(2)(1)2(1)(2)(0)(1)2(1)(2)(0)(1)2222fa fa fa fa fa ff fa fb fa fa fa fa fa fc fa fa fa fa faV V V V V j X I V V V V V V V V V V V V αααα=++===++=−=−=++=−=− (1)(2)(0)22(1)(2)(0)(1)(1)(1)+ 0+ ()33fa fa fa fa fb fa fa fa fa fa fc fb fa I I I I I I I I I j I I I j I αααα=+==+=−=−=−= (2)(1)(0)(1)(2)(2)(1)(0), 0, , 0fa fa fa fa fa ff fa fa I I I V V jX I V =−==== fa V fb fcV V = 0faI = fbI fcI a bc8-1 简单不对称短路的分析2. 两相(b 相和c 相)短路—相量图(1)fa I(1)fb I (1)fc I (2)fa I(2)f c I(2)fb I f bI (1)f a V (1)fc V (1)fb Vfc I(2)f b V(2)fc Vf bV f c V f a V(1)fa I以为参考相量(2)fa V (2)(1)(0)(1)(2)(2)(1)(0), 0, , 0fa fa fa fa fa ff fa fa I I I V V jX I V =−==== 8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—序分量边界条件(1)0, 0fb fc faV V I === 相量表示的边界条件:(1)(2)(0)(1)(2)(0)(1)(2)(0)0002fb fb fb fc fc fc fa fa fa V V V V V V I I I ++=++=++= ()对称分量表示的边界条件faV 0fb fc V V == 0faI = fbI fcI a bc(1)(2)(0)(1)(2)(0)(8-13)04fa fa fa fa fa fa V V V I I I ⎫==⎪⎬++=⎪⎭()序分量边界条件:2(1)(2)(0)2(1)(2)(0)(1)(2)(0)0003fa fa fa fa fa fa fa fa fa V V VV V V I I a I αααα++=++=++= ()以相为参考相8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—联立方程求解(0)(1)(1)(1)(2)(2)(2)(0)(0)(0) (81) fa f ff fa fa ff fa fa ff fa V V jX I V jX I V jX I ⎫=−⎪⎪=−−⎬⎪=−⎪⎭(0)(1)(1)(2)(0)(814)(//)ffa ff ff ff V I j X X X =−+ (0)(2)(1)(2)(0)(2)(0)(1)(2)(0)(815)ff fa fa ff ff ff fa fa ff ff X I I X X X I I X X ⎫=−⎪+⎪−⎬⎪=−⎪+⎭faV 0fb fc V V == 0faI = fbI fcI a bc(1)(2)(0)(1)(2)(0)(8-13)0fa fa fa fa fa fa V V V I I I ⎫==⎪⎬++=⎪⎭(2)(0)(1)(2)(0)(1)(2)(0)ff ff fa fa fa fa ff ff X X V V V j I X X ===+ 8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—复合序网(1)(2)(0)(1)(2)(0)(8-13)0fa fa fa fa fa fa V V V I I I ⎫==⎪⎬++=⎪⎭(0)(1)(1)(2)(0)(//)ffa ff ff ff V I j X X X =+ (2)(0)(1)(2)(0)(1)(2)(0)ff ff fa fa fa fa ff ff X X V V V j I X X ===+ (0)(2)(1)(2)(0)(2)(0)(1)(2)(0)ff fa fa ff ff ff fa fa ff ff X I I X X X I I X X ⎫=−⎪+⎪⎬⎪=−⎪+⎭faV 0fb fc V V == 0faI = fbI fcI a bc(1)fa I (1)ff jX (1)fa V (2)fa I (2)ff jX (2)fa V (0)fa I (0)ff jX (0)fa V (0)fV 8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—故障点各相电流电压(2)(0)(1)(2)(0)(1)(1)(2)(0)30ff ff fa fa fa fa fa fa ff ff fb fcX X V V V V V j I X X V V =++==+== (1)(2)(0)(2)(0)22(1)(2)(0)(1)(2)(0)2(2)(0)2(1)(2)(0)(1)(2)(0)+ 0+ + fa fa fa fa ff ff fb fa fa fa fa ff ff ff ff fc fa fa fa fa ff ff I I I I X X I I I I I X X X X I I I I I X X αααααααα=+=⎛⎞+=+=−⎜⎟⎜⎟+⎝⎠⎛⎞+=+=−⎜⎟⎜⎟+⎝⎠(2)(0)(1)(2)(0)(1)(2)(0)ff ff fa fa fa fa ff ff X X V V V j I X X ===+(0)(1)(1)(2)(0)(//)ffa ff ff ff V I j X X X =+ (0)(2)(1)(2)(0)(2)(0)(1)(2)(0)ff fa fa ff ff ff fa fa ff ff X I I X X X I I X X ⎫=−⎪+⎪⎬⎪=−⎪+⎭8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—相量图(1)fa V (1)fb V (1)fc V (2)fa V (2)fc V (2)fb V (0)fa V faV (1)fa I (2)fa I (0)fa IfcIfbI 0faI = (1)fc I (1)fb I (2)fc I (2)fb I 8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—故障点入地电流(2)(0)(1)(2)(0)(1)(2)(0)ff ff fa fa fa fa ff ff X X V V V j I X X ===+(0)(1)(1)(2)(0)(//)ffa ff ff ff V I j X X X =+ faV 0fb fc V V == 0faI = fbI fcI abceI (2)(0)(1)(2)(0)33ff e fb fc fa fb fc fa fa ff ff X I I I I I I I I X X =+=++==−+ (0)(0)(1)(0)(1)(0)(2)33fe fa ff ff ff ff ff VI I jX X X X X ==++ (0)(2)(1)(2)(0)(2)(0)(1)(2)(0)ff fa fa ff ff ff fa fa ff ff X I I X X X I I X X ⎫=−⎪+⎪⎬⎪=−⎪+⎭8-1 简单不对称短路的分析8-1 简单不对称短路的分析—小结简单不对称短路的分析方法小结¾制定各序网络;根据系统运行方式确定故障口正常电压、各序输入阻抗,建立序网方程;(Chapter 7)¾根据故障情况选取参考相,确定用序分量表示的边界条件;¾由序网方程和序分量边界条件求解故障口电流电压各序分量(复合序网、方程求解等);¾对电流电压各序分量进行综合即可得到故障口的电流和电压相量。
华电《电力系统分析基础》 PPT
SCADA-数据采集与监视控制系统 (Supervisory Control And Data Acquisition )
电气设备在线监测与故障诊断(计划检修→状态检修) 负荷分级(一级、二级、三级),故障时,按负荷等级
限电。
➢负荷(一级 二级 三级)
一级负荷:对这一级负荷中断供电,将造成人 身事故,经济严重损失,人民生活发生混乱。
一、电力系统的形成与发展 二、电力系统的基本概念 三、电力系统的基本参量和接线图
电的产生
1831年 法拉第发现 电磁感应定律
交流发电机 直流发电机 直流电动机
= 直流发电机
100~400V
电弧灯
M 直流电动机
特点:输电电压低,输送距离短,输送功率小。
高压输电
1882年,法国人M ·德波列茨将位于弥斯巴赫煤矿的蒸汽 机发出的电能输送到 57km外的慕巴黑,并用以驱动水泵。
二级负荷:对这一级负荷中断供电,将造成大 量减产,人民生活受影响。
三级负荷:所有不属于一、二级的负荷。
2.保证良好的电能质量
衡量电能质量的基本指标:
电压质量 35kV及以上:±5% 10kV及以上:±7% 频率质量 ±0.2 ~ 0.5Hz
主要指标:
电压偏差、频率偏差、谐波畸变率、三相不平衡度、 电压波动和闪变。
电气接线图:主要显示系统中某发电厂(变电所) 内的发电机、变压器、母线、断路器、电力线路等主 微观
要电机、电器、线路之间的电气接线。
1.2 电力系统运行的特点和要求
1. 可以很方便地转换成其他形式的能,如光能、热 能、机械能、化学能等。
2. 便于生产、输送、分配、使用,易于控制。
3. 可以方便地将自然界的一次能源转化为电能,如 煤、石油、天然气、水能、核能、风能和太阳能 等。
电力系统基础第8章
ff ( 1 )
V X
ff ( 0 )
(0) f
ff ( 2 )
X
ff ( 0 )
)
fA ( 2 )
V
X
ff ( 2 )
X
ff ( 2 )
I
ff ( 0 )
fA ( 1 )
X
ff ( 2 )
fA ( 0 )
X
I
ff ( 0 )
fA ( 1 )
fA ( 1 )
fA ( 2 )
第8章 电力系统不对称故障的分析和计算
内容:应用对称分量法对简单不对称短路进行分析和计算; 复合序网的制定;用复合序网和正序等效定则对简单不 对称短路的计算;了解经变压器相位变换问题;了解非 全相断线的分析计算方法。 重点: 应用对称分量法对简单不对称短路进行分析和计算; 复合序网的制定; 用复合序网和正序等效定则对简单不对称短路的计算 难点: 复合序网的制定; 简单不对称短路的计算;
2013-4-1 《电力系统基础》 15
例如1:Y/Δ-11 第二绕组的正序相电压或相电流超前第一绕组的正序相 电压或相电流1*300 = 300 (也就是说,如果在第一绕组施以正序相电压或相电 流,第二绕组感应的正序相电压或相电流将超前第一绕组正序 相电压或相电流300 ) 第二绕组的负序相电压或相电流落后第一绕组的负序相 电压或相电流1*300 = 300 绕组Y接或是Δ接,没有零序通路。
(a 1) X
ff ( 0 )
I I
fA ( 1 )
fA ( 1 )
2013-4-1
《电力系统基础》
5
8.1 .2 两相(b、c相)短路 f ( 2 )
电力系统分析第8章
Fem
K
I
2 K
N
2 K
Rm2
当电磁力Fem大于弹簧的反 作用力Fsp和摩擦力Ffr时,继电 器便产生动作。
2020/9/28
图6-3 电磁式电流继电器结构图
1-线圈 2-电磁铁 3-钢舌片 4-静触点 5-动触点 6-起动电流调节转杆 7-标度盘(铭牌) 8-轴承 9-反作用弹簧 10-转轴
电气工程基础2010
电气工程基础
第八章 电力系统继电保护基础
南京理工大学动力工程学院
电气工程基础2010
第八章 电力系统继电保护
8.1 继电保护的基本知识 8.2 单侧电源线路相间短路的电流电压保
护 8.3 电网的方向电流保护 8.4 距离保护简介 8.5 输电线路的接地保护 8.6 电力变压器的保护 8.7 电动机保护 8.8 备用电源自投装置和自动重合闸装置 8.9 数字式继电保护简介
图6-18 瞬时电流速断保护 的单相原理接线图
电气工程基础2010
二、电流电压联锁速断保护
当系统运行方式变化很大时, 电流速断保护的灵敏度有可 能不满足要求,这时可采用 低电压保护与电流速断保护 相配合的电流电压连锁速断 保护。它兼用短路时电流增 大和电压下降两种特征,以 取得本线路故障时有较高的 灵敏度,同时还可防止下一 级线路故障时保护的误动作。
Kre表示,即
Kre
I re.K I op.K
✓ 对于过电流继电器,Kre<1,一般要求 Kre =0.8~0.9; ✓ 对于欠电流继电器,Kre >1,一般要求 Kre =1.06~1.2。
2020/9/28
电气工程基础2010
四.常用保护继电器及操作电源
(2)电磁型电压继电器 其结构和原理与电磁型电流继电器相似,在供配电系统
电力系统分析基础(第八章).pptx
U XT2
.
XL
3) 解释
加速面积abcdk 大与
减速面积dgfe 时
是暂态稳定的
最大故障切除角 δc<δmax<δh 是暂态稳定的
2、等面积定则
C
0
(P0
PI Im ax
sin
)d
P(h
0 C
PII Im ax
sin
)d
0
P PP P P cos clim
0( C
0)
cos IIImax
第一章 电力系统的基本概念
1、电力系统的概念和组成—电力网、电力系统、动力系统及之间关 系2、电力系统为什么要互联运行—经济、可靠、互补、备用
5、提高静态稳定的措施
1) 采用自动励磁调节装置
采用分裂导线
2) 减少元件的电抗
采用串联电容器 提高线路的额定电压等级 增加回路数
3) 改善电网结构和采用中间补偿设备
四、简单电力系统的暂态稳定 1、分析
1) 假设
a) PT不变(因为1秒左右原动机调速器还不能有明显变 化)
b) 对不对称短路,不计零序及负序电流对转子的影响
)
P*
P0
Pmax sin (
0
)
TJ
d2 d t2
P0
Pmax sin (
0)
d PE
d
1 2!
d2 PE d 2
2
d PE
d
TJ
d2 d t2
d PE
d
0
TJ (P2 Seq) 0
P1
S eq TJ
两个根:
P2
Seq TJ
C ep1t 1
第八章电力系统暂态稳定分析
3、等面积定则和极限切除角
转子由δc到δmax运动时过剩转矩所作的功为
Wb
max c
Md
max c
( PT PIII )d
面积 edfge
此面积称为减速面积,为动 能增量的负值,转子动能减 少,转速下降。
3、等面积定则和极限切除角
等面积定则:功角达到δmax时,加速过程中转子动能的 增量在加速过程中全部耗尽,转速恢复到同步转速,即 加速面积等于减速面积, 系统能够稳定。
四、数值方法---分段计算法
递推公式
P( k 1) P0 PmII sin ( k 1) ( k ) ( k 1) KP( k 1) ( k ) ( k 1) ( k )
四、数值方法---分段计算法
d 3600 ( 1)0 w wN dt d 1 P dt TJ
四、数值方法---分段计算法
假设1:从一个时间 段的中点至下一个时 间段中点的一段时间 内,过剩功率P 保持 不变。
假设2:每个时间段内的 相对角速度 不变,等 于这个时间段中点的相对 角速度。
ij 180。
第二节、简单电力系统暂态稳定性分析
分析对象为单机无穷大系统(隐极机): 故障条件:双回线路中一回线发生不对称故障时, 在t秒后切除(跳一回线路)[这里考虑单相接地故 障 ]。 分析时取经典模型,即:
E' C
P T C
第二节、简单电力系统暂态稳定性分析
简单电力系统故障示意图:
E 0V0 PI sin PmI sin XI
X d X II X I
1 X T 1 X L X T 2 2 X
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PPT文档演模板
2020/11/27
电力系统分析基础(第八章)
•第八章 电力系统的稳定性
•一、基本概念
•稳态:运行参数变化很小
•电力系统 的运行状态
•暂 态:
•受到突然的扰 动,运行参数 变化很大
•电磁暂态过程——故障分析 •(只考虑电磁变化,几十ms)
•机电暂态过程——稳定问题 •(同时考虑电磁与机械参
PPT文档演模板
电力系统分析基础(第八章)
• 5、提高静态稳定的措施
1) 采用自动励磁调节装置
• 采用分裂导线
2) 减少元件的电抗
• 采用串联电容器 • 提高线路的额定电压 • 等增级加回路数
3) 改善电网结构和采用中间补偿设备
PPT文档演模板
电力系统分析基础(第八章)
• 四、简单电力系统的暂态稳定 • 1、分析
PPT文档演模板
电力系统分析基础(第八章)
•二、同步电机的转子运动方 程
•机械角加速度 •电磁转矩 •转动惯量 •原动机转矩 •转子储存的动能: •转矩基准值:
PPT文档演模板
•机械角速度
•E •ω q
•U •ω0
•δ
•δ0
•ω
=0
电力系统分析基础(第八章)
•三、简单电力系统的静态稳
定 • 1、功角特性曲
5% •变压
•一次侧:用电设 备
器
•二次侧:发电设备
•标称电压等
•升压变:=发电机额定电压 •降压变:=电网额定电压UN •额定电压为空载电压 •内部损耗约5% •二次电压高出10%
级
电力系统分析基础(第八章)
•7、了解电力网接线 •无备用—从一条线获得电源 •有备用—从两条及以上线获得电源
•8、掌握中性点的接地方式
•3、电能变换和电源构成—水20%、火70%、核10%,了解新能源
•4、电力系统的负荷—了解负荷曲线、负荷率Kp、最大负荷利用小时 T•m5a、x 电力系统运行的特点及要求—电能质量、运行特点、运行要求
•6、电力系统的电压等
级
•用电设备允许偏差5%、首末端10%
PPT文档演模板
•发电机额定电压高于电网
3) 解释
• 加速面积 abcdk
•
大与
• 减速面积 dgfe时
• 是暂态稳定 的
•
• •
PPT文档演模板
最大故障切 除角
δc<δmax<δ
h
是暂态稳定 的
电力系统分析基础(第八章)
• 2、等面积定则
• 3、用分段计算法求解转子运动方程 • 不能线性化,只能迭代,一步一步计 算
PPT文档演模板
电力系统分析基础(第八章)
•有哪几种 •适应范围
•中性点直接接地 •不接地
•中性点不直接接地 •经消弧线圈接 地•经电阻接地
•中性点不接地系统的优缺点
PPT文档演模板
电力系统分析基础(第八章)
• 三相 短路
•X0 •X2
Σ
Σ
PPT文档演模板
• 短路点并入一个等效附加阻抗ZΔ
电力系统分析基础(第八章)
2) 模型 a) 正常运行时 b) 故障时
c) 故障切除后
PPT文档演模板
•XT1
•XL
•XL
•XT2
•XT1
•XL
•ห้องสมุดไป่ตู้L
•X
ᅀ
•XT2
•XT1
•XL •XL
•XT2
电力系统分析基础(第八章)
b点时:受干扰增加Δδ→PE ↘ ,ΔM >0,故δ继续↗ ,不能回到b 点。
受干扰减少Δδ时,由b点回到a点,但在b点不能建立稳定的平
衡,故是不稳定的
电力系统分析基础(第八章)
2) 稳定判据
•时
• 极限功
稳 • 稳定储备系定
数:
率:
• 正常运行:KP > • 1故5障%状态:KP >
• 3、利用小干扰法分析简单电力系统的静稳10定%
线
•jXd
•jXT1
•jXL1
•jXT2
•jXL2
•
•
凸 极 机 隐 极 机
PPT文档演模板
•jXdΣ
电力系统分析基础(第八章)
• 2、静态稳定的 概念
1) 分析
•
• •
PPT文档演模板
a点时:受干扰δa获得正Δδ→PE获ΔP,P0不变→ ΔM为负制动转 矩,发电机减速, δ↘回到δa, ΔM=0,但惯性作用δ继续↘到 a’’点停止减少,在a’’点ΔM>0故须加速, δ ↗ ,但由于阻 尼达不到a’点,经过几次振荡后回到a点,是静态稳定的。
1) 假设
a) PT不变(因为1秒左右原动机调速器还不能有明显变 化)
b) 对不对称短路,不计零序及负序电流对转子的影响
• (零序:Δ接法,无;负序:平均值为零的转矩,惯性大来不及反
c) 只考映虑)正序分量的影响(用复合序网及等效等则)
• 单相 接地
•X0
Σ
•X2
Σ
• 两相 短路
•X2
Σ
• 两相接地 短路
• 4、提高暂态稳定的措施
1) 采用自动励磁调节装置
• •
提高静稳有明显作用 增大阻尼,改善暂稳
2) 快速切除故障和自动重合闸
• •
减少加速面积,增大减速 面重积合闸进一步增大减速面
• 采用分裂导积线
3) 减少元件的电抗
• 采用串联电容器 • 提高线路的额定电压等级
4) 快速汽门控制、电气制动、变压器经小电阻接地
PPT文档演模板
电力系统分析基础(第八章)
• 两个 根:
• 分析: 1) 当Seq>0时,P1,2=jβ
• 考虑到阻尼时,衰减振荡,稳 定
2) 当Seq<0时,P1=μ, P1=-μ
• 不稳定
PPT文档演模板
电力系统分析基础(第八章)
• 4、调节励磁对电力系统静态稳定的影响
• 励磁维持端电 压UG不变时,对 应的功率特性曲 线——外功率特性 曲线在δ>900时仍 然是稳定的,但由 于的滞后调节,在 δ<900范围内,对 于装有调节器的系 统,不能用dP/dδ 判断,而应用小干 扰法分析。
• 汽轮机——快关汽 • 门水轮机——电气制动,发生故障时迅速投入一个附加电 • 阻变压器经小电阻接地——单相故障的电气制动
• 联锁切机
5) 改善电网结构和采用中间补偿设备
6) 系统解列,异步运行,再同步
PPT文档演模板
电力系统分析基础(第八章)
• 总复 •第一章 电力系统的基本习概念
•1、电力系统的概念和组成—电力网、电力系统、动力系统及之间关 系•2、电力系统为什么要互联运行—经济、可靠、互补、备用
量)
•概念:受到扰动后,能否回到原来的状态或过渡到新的状
态
•静态稳定:受小干扰,偏离原状态,干扰消失后又恢复平衡
•稳态 性
•(特点:变化量小,可线性化分析) •暂态稳定:受大干扰,偏离有限,干扰消失后又恢复平衡
•(特点:变化量大,不允许线性化处理)
•
动态稳定:受大干扰较长一段时间的过程,考虑
调节与控 制装置作用,时间较长