详细版第七章微生物的代谢.ppt
合集下载
微生物的营养代谢PPT课件
基本营养物质的培养基。
例如:牛肉膏蛋白胨培养基(细菌)
牛肉膏 蛋白胨 NaCl 琼脂 水 PH
3g 10g 5g 18--20g 1000ml 7.0----7.2
培养基
(2)加富培养基(enrichment medium)
又叫营养培养基
定义:在基础培养基中加入某些特殊营养物 质制成的营养丰富的培养基。
[CH2O] + O2 ↑
如以还:绿 原硫 态细 无菌 机、硫紫化硫物细作菌氢或还电原子C供O体2 时。,
光能
CO2 + 2H2S 细→菌 [CH2O] + H2O + 2S
叶绿素
微生物的营养类型
(2)光能有机营养型(photorganotroph)
又叫异养微生物。又称光能异养型微生物。 红螺菌属.
脂肪酶
脂肪
甘油 +O2 CO2+H2O
脂肪酸 -O2 简单酸+CO2+CH4
应用:屠宰场;生活污水。
3 果胶物质的分解
原果胶酶
原果胶+H2O
可溶性果胶+多缩戊糖
可溶性果胶+H2O 果胶甲基酯酶 果胶酸+甲醇
果胶酸+H2O 多缩半乳糖酶 半乳糖醛酸
应用:麻类物质的脱胶处理
水浸——厌氧性细菌 露浸——好氧性细菌、放线菌、真菌
定义:以小分子有机物为最终电子受体的生物 氧化过程。有机物为呼吸基质的中间产物。
最终电子受体——有机物 参与的微生物——厌氧菌和兼性厌氧菌。 不经过电子传递体。 常见的发酵有
§乙醇发酵 §乳酸发酵
§丁酸发酵
乙醇发酵(生产酒精)
葡萄糖
3-磷酸甘油醛
2NAD
乙醇
1,3-二磷酸甘油酸
2NADH2
例如:牛肉膏蛋白胨培养基(细菌)
牛肉膏 蛋白胨 NaCl 琼脂 水 PH
3g 10g 5g 18--20g 1000ml 7.0----7.2
培养基
(2)加富培养基(enrichment medium)
又叫营养培养基
定义:在基础培养基中加入某些特殊营养物 质制成的营养丰富的培养基。
[CH2O] + O2 ↑
如以还:绿 原硫 态细 无菌 机、硫紫化硫物细作菌氢或还电原子C供O体2 时。,
光能
CO2 + 2H2S 细→菌 [CH2O] + H2O + 2S
叶绿素
微生物的营养类型
(2)光能有机营养型(photorganotroph)
又叫异养微生物。又称光能异养型微生物。 红螺菌属.
脂肪酶
脂肪
甘油 +O2 CO2+H2O
脂肪酸 -O2 简单酸+CO2+CH4
应用:屠宰场;生活污水。
3 果胶物质的分解
原果胶酶
原果胶+H2O
可溶性果胶+多缩戊糖
可溶性果胶+H2O 果胶甲基酯酶 果胶酸+甲醇
果胶酸+H2O 多缩半乳糖酶 半乳糖醛酸
应用:麻类物质的脱胶处理
水浸——厌氧性细菌 露浸——好氧性细菌、放线菌、真菌
定义:以小分子有机物为最终电子受体的生物 氧化过程。有机物为呼吸基质的中间产物。
最终电子受体——有机物 参与的微生物——厌氧菌和兼性厌氧菌。 不经过电子传递体。 常见的发酵有
§乙醇发酵 §乳酸发酵
§丁酸发酵
乙醇发酵(生产酒精)
葡萄糖
3-磷酸甘油醛
2NAD
乙醇
1,3-二磷酸甘油酸
2NADH2
第七章 第二节、微生物代谢与生长
苏氨酸脱氨酶 苏氨酸 α-酮丁酸 异亮氨酸
反馈抑制
其它实例:谷氨酸棒杆菌的精氨酸合成
2.分支代谢途径中的反馈抑制:
在分支代谢途径中,反馈抑制的情况较为复杂,为了避免在 一个分支上的产物过多时不致同时影响另一分支上产物的供 应,微生物发展出多种调节方式。主要有: 同功酶的调节, 顺序反馈,协同反馈,积累反馈调节等。
五、微生物的代谢调控
• 微生物代谢过程中的自我调节 • 酶活性的调节 • 酶合成的调节
☆微生物自我调节代谢的方式
1.控制营养物质透过细胞膜进入细胞
如:只有当速效碳源或氮源耗尽时,微生物才合 成迟效碳源或氮源的运输系统与分解该物质的酶 系统。
2.通过酶的定位控制酶与底物的接触 3.控制代谢物流向:
1、有氧呼吸
概念:是以分子氧作为最终电子(或氢)受体的氧化 过程;是最普遍、最重要的生物氧化方式。 途径:EMP,TCA循环 特点:必须指出,在有氧呼吸作用中,底物的氧化 作用不与氧的还原作用直接偶联,而是底物在氧化 过程中释放的电子先通过电子传递链(由各种电子 传递体,如NAD,FAD,辅酶Q和各种细胞色素组成) 最后才传递到氧。
在工业发酵和科研中通常采取一定的措施缩短延滞期:
①通过遗传学方法改变种的遗传特性使迟缓期缩短; ②利用对数生长期的细胞作为“种子”;
③尽量使接种前后所使用的培养基组成不要相差太 大;
④适当扩大接种量等方式缩短迟缓期,克服不良的 影响。
2.对数期
特点:细菌数量呈对数增加;生长速度常数R最大;酶系活跃, 细菌代谢旺盛;群体中的细胞化学组成及形态、生理特征一 致,且细菌的形态、大小、染色性均典型,对外界环境因素 的作用比较敏感。
影响指数期微生物增代时间的因素 菌种;营养成分;营养物的浓度 发酵工业上尽量延长该期,以达到较高的菌体密度; 实验室研究细菌生物学性状和做药敏试验选取用对数期细菌 为佳(多数为8~18h培养的培养物)
反馈抑制
其它实例:谷氨酸棒杆菌的精氨酸合成
2.分支代谢途径中的反馈抑制:
在分支代谢途径中,反馈抑制的情况较为复杂,为了避免在 一个分支上的产物过多时不致同时影响另一分支上产物的供 应,微生物发展出多种调节方式。主要有: 同功酶的调节, 顺序反馈,协同反馈,积累反馈调节等。
五、微生物的代谢调控
• 微生物代谢过程中的自我调节 • 酶活性的调节 • 酶合成的调节
☆微生物自我调节代谢的方式
1.控制营养物质透过细胞膜进入细胞
如:只有当速效碳源或氮源耗尽时,微生物才合 成迟效碳源或氮源的运输系统与分解该物质的酶 系统。
2.通过酶的定位控制酶与底物的接触 3.控制代谢物流向:
1、有氧呼吸
概念:是以分子氧作为最终电子(或氢)受体的氧化 过程;是最普遍、最重要的生物氧化方式。 途径:EMP,TCA循环 特点:必须指出,在有氧呼吸作用中,底物的氧化 作用不与氧的还原作用直接偶联,而是底物在氧化 过程中释放的电子先通过电子传递链(由各种电子 传递体,如NAD,FAD,辅酶Q和各种细胞色素组成) 最后才传递到氧。
在工业发酵和科研中通常采取一定的措施缩短延滞期:
①通过遗传学方法改变种的遗传特性使迟缓期缩短; ②利用对数生长期的细胞作为“种子”;
③尽量使接种前后所使用的培养基组成不要相差太 大;
④适当扩大接种量等方式缩短迟缓期,克服不良的 影响。
2.对数期
特点:细菌数量呈对数增加;生长速度常数R最大;酶系活跃, 细菌代谢旺盛;群体中的细胞化学组成及形态、生理特征一 致,且细菌的形态、大小、染色性均典型,对外界环境因素 的作用比较敏感。
影响指数期微生物增代时间的因素 菌种;营养成分;营养物的浓度 发酵工业上尽量延长该期,以达到较高的菌体密度; 实验室研究细菌生物学性状和做药敏试验选取用对数期细菌 为佳(多数为8~18h培养的培养物)
微生物的代谢
• 微生物对氨基酸的分解主要是脱氨 作用和脱羧作用。
• 1.脱氨作用: 脱氨作用因微生物的种类不同、分解条件不 同以及氨基酸的不同,会有不同的分解方式 与产物。通常情况下,脱氨作用可分为氧化 脱氨、还原脱氨、直接脱氨、水解脱氨和氧 化-还原偶联脱氨(Stickland史提克兰得反 应)等脱氨方式。
(1)氧化脱氨
(六)蛋白质的分解代谢
蛋白质 蛋白酶
肽酶
相应AA酶
肽 氨基酸氧Βιβλιοθήκη 脱氨 还原脱氨 水解脱氨 直接脱氨
土壤中含有的蛋白质物质,主要靠蛋白质分解菌分解,生成简 单的含氮化合物,再供植物与微生物利用。在食品工业中,传 统的酱制品,如酱油、豆豉、腐乳等的制作也都是利用了微生 物对蛋白质的分解作用。
(七)氨基酸的分解代谢
生成反丁烯二酸(延胡索酸)
• COOHCH2CHNH2COOH---→HOOCCH=CHCOOH
(3)水解脱氨
• 氨基酸经水解脱氨生成羟酸。其通式为:
• RCHNH2COOH + H2O ---→ RCHOHCOOH
+ NH3 • CH3CHNH2COOH(丙氨酸) + H2O ----→
CH3CHOHCOOH(乳酸) + NH3 • 有的氨基酸在水解脱氨的同时又脱羧,结果生成少
α-酮2R酸C一OC般O不O积H累+,2N而H继3续被微生物转化成羟酸或醇; 所脱下的氨具有高度的还原势,伴随着氨基酸的脱氨反 应,发生电子传递磷酸化,生成ATP,可供微生物生长 所需的能量,另一方面也可为微生物生长提供氮源。
如:CH3CHNH2COOH+丙1氨/2酸O脱2氢酶------→ CH3COCOOH + NH3
维素分子内部作用于β-1.4-糖苷键,生成纤维糊精与 纤维二糖;
• 1.脱氨作用: 脱氨作用因微生物的种类不同、分解条件不 同以及氨基酸的不同,会有不同的分解方式 与产物。通常情况下,脱氨作用可分为氧化 脱氨、还原脱氨、直接脱氨、水解脱氨和氧 化-还原偶联脱氨(Stickland史提克兰得反 应)等脱氨方式。
(1)氧化脱氨
(六)蛋白质的分解代谢
蛋白质 蛋白酶
肽酶
相应AA酶
肽 氨基酸氧Βιβλιοθήκη 脱氨 还原脱氨 水解脱氨 直接脱氨
土壤中含有的蛋白质物质,主要靠蛋白质分解菌分解,生成简 单的含氮化合物,再供植物与微生物利用。在食品工业中,传 统的酱制品,如酱油、豆豉、腐乳等的制作也都是利用了微生 物对蛋白质的分解作用。
(七)氨基酸的分解代谢
生成反丁烯二酸(延胡索酸)
• COOHCH2CHNH2COOH---→HOOCCH=CHCOOH
(3)水解脱氨
• 氨基酸经水解脱氨生成羟酸。其通式为:
• RCHNH2COOH + H2O ---→ RCHOHCOOH
+ NH3 • CH3CHNH2COOH(丙氨酸) + H2O ----→
CH3CHOHCOOH(乳酸) + NH3 • 有的氨基酸在水解脱氨的同时又脱羧,结果生成少
α-酮2R酸C一OC般O不O积H累+,2N而H继3续被微生物转化成羟酸或醇; 所脱下的氨具有高度的还原势,伴随着氨基酸的脱氨反 应,发生电子传递磷酸化,生成ATP,可供微生物生长 所需的能量,另一方面也可为微生物生长提供氮源。
如:CH3CHNH2COOH+丙1氨/2酸O脱2氢酶------→ CH3COCOOH + NH3
维素分子内部作用于β-1.4-糖苷键,生成纤维糊精与 纤维二糖;
《微生物次级代谢》课件
通过调节转录起始和转录 效率来控制次级代谢基因 的表达。
转录后水平调控
通过控制mRNA的稳定性 、翻译效率和翻译后修饰 来影响次级代谢基因的表 达。
表观遗传调控
通过DNA甲基化、组蛋白 乙酰化等修饰来影响次级 代谢基因的表达。
酶活性调控
酶的合成与降解
通过调节酶的合成和降解来控制次级代谢产物的生成。
次级代谢产物的生物利用与开发
次级代谢产物在医药领域的应 用:如抗生素、激素、抗肿瘤
药物等。
次级代谢产物在工业领域的应 用:如生物塑料、生物燃料、 生物催化剂等。
次级代谢产物在农业领域的应 用:如植物生长调节剂、杀虫
剂、除草剂等。
次级代谢产物的开发前景:随 着生物技术的不断发展,次级 代谢产物在未来的应用前景将 更加广泛。
细胞密度与次级代谢
在达到一定细胞密度后,次级代谢产物开始生成,并 随着细胞密度的增加而增加。
04
次级代谢在生物工程中的应用
次级代谢产物的分离纯化
分离纯化方法
利用物理、化学和生物学方法,从微生物发酵液 中分离纯化次级代谢产物。
技术手段
采用色谱技术、沉淀法、结晶法等手段进行分离 纯化。
注意事项
需注意避免产物的降解和损失,提高产物的纯度 和收率。
05
次级代谢的研究进展与展望
次级代谢产物的发现与鉴定
次级代谢产物的发现
通过基因组学、转录组学和代谢组学技术,发现新的次级代 谢产物。
次级代谢产物的鉴定
利用色谱技术、光谱技术和质谱技术等手段,对次级代谢产 物进行分离、纯化和鉴定。
次级代谢的生物合成机制研究
生物合成途径
研究次级代谢产物的生物合成途径, 包括起始、延伸和终止等步骤。
转录后水平调控
通过控制mRNA的稳定性 、翻译效率和翻译后修饰 来影响次级代谢基因的表 达。
表观遗传调控
通过DNA甲基化、组蛋白 乙酰化等修饰来影响次级 代谢基因的表达。
酶活性调控
酶的合成与降解
通过调节酶的合成和降解来控制次级代谢产物的生成。
次级代谢产物的生物利用与开发
次级代谢产物在医药领域的应 用:如抗生素、激素、抗肿瘤
药物等。
次级代谢产物在工业领域的应 用:如生物塑料、生物燃料、 生物催化剂等。
次级代谢产物在农业领域的应 用:如植物生长调节剂、杀虫
剂、除草剂等。
次级代谢产物的开发前景:随 着生物技术的不断发展,次级 代谢产物在未来的应用前景将 更加广泛。
细胞密度与次级代谢
在达到一定细胞密度后,次级代谢产物开始生成,并 随着细胞密度的增加而增加。
04
次级代谢在生物工程中的应用
次级代谢产物的分离纯化
分离纯化方法
利用物理、化学和生物学方法,从微生物发酵液 中分离纯化次级代谢产物。
技术手段
采用色谱技术、沉淀法、结晶法等手段进行分离 纯化。
注意事项
需注意避免产物的降解和损失,提高产物的纯度 和收率。
05
次级代谢的研究进展与展望
次级代谢产物的发现与鉴定
次级代谢产物的发现
通过基因组学、转录组学和代谢组学技术,发现新的次级代 谢产物。
次级代谢产物的鉴定
利用色谱技术、光谱技术和质谱技术等手段,对次级代谢产 物进行分离、纯化和鉴定。
次级代谢的生物合成机制研究
生物合成途径
研究次级代谢产物的生物合成途径, 包括起始、延伸和终止等步骤。
微生物的代谢ppt课件
6-磷酸葡萄糖酸→5-磷酸核酮糖→ 5-磷酸木酮 ↓
5-磷酸核糖→参与核酸生成
5-磷酸核酮糖→6-磷酸果糖 + 3-磷酸甘油醛(进入EMP)
HMP途径的重要意义
➢为核苷酸和核酸的生物合成提供戊糖-磷酸,途径中的赤藓 糖、景天庚酮糖等可用于芳香族氨基酸、碱基及多糖合成; ➢产生大量NADPH2,一方面为脂肪酸、固醇等物质的合成 提供还原力,另方面可通过呼吸链产生大量的能量; ➢与EMP途径在果糖-1,6-二磷酸和甘油醛-3-磷酸处连接,可 以调剂戊糖供需关系; ➢途径中存在3~7碳的糖,使具有该途径微生物的所能利用利 用的碳源谱更为更为广泛; ➢通过该途径可产生许多种重要的发酵产物;
ED途径的特点
ED途径的特征反应是2-酮-3-脱氧-6-磷酸葡萄糖酸(KDPG) 裂解为丙酮酸和3-磷酸甘油醛
ED途径的特征酶是2-酮-3-脱氧-6-磷酸葡萄糖酸(KDPG)醛 缩酶
ED途径中的两分子丙酮酸来历不同,一分子由2-酮-3-脱氧-6磷酸葡萄糖酸直接裂解产生,另一分子由磷酸甘油醛经EMP 途径转化而来
1.2递氢和受氢
★经上述脱氢途径生成的NADH、NADPH、FAD等还原型辅 酶通过呼吸链等方式进行递氢,最终与受氢体(氧、无机或有 机氧化物)结合,以释放其化学潜能。 ★根据递氢特别是受氢过程中氢受体性质的不同,把微生物能量 代谢分为呼吸作用和发酵作用两大类。
发酵作用:没有任何外援的最终电子受体的生物氧化模式; 呼吸作用:有外援的最终电子受体的生物氧化模式; ★呼吸作用又可分为两类:
代谢:是微生物细胞与外界环境不断进行
物质和能量交换的过程,它是细胞内各种 化学反应的总和。 代谢=物质代谢+能量代谢
代谢的类型
按代谢过程考察的角度不同分:
5-磷酸核糖→参与核酸生成
5-磷酸核酮糖→6-磷酸果糖 + 3-磷酸甘油醛(进入EMP)
HMP途径的重要意义
➢为核苷酸和核酸的生物合成提供戊糖-磷酸,途径中的赤藓 糖、景天庚酮糖等可用于芳香族氨基酸、碱基及多糖合成; ➢产生大量NADPH2,一方面为脂肪酸、固醇等物质的合成 提供还原力,另方面可通过呼吸链产生大量的能量; ➢与EMP途径在果糖-1,6-二磷酸和甘油醛-3-磷酸处连接,可 以调剂戊糖供需关系; ➢途径中存在3~7碳的糖,使具有该途径微生物的所能利用利 用的碳源谱更为更为广泛; ➢通过该途径可产生许多种重要的发酵产物;
ED途径的特点
ED途径的特征反应是2-酮-3-脱氧-6-磷酸葡萄糖酸(KDPG) 裂解为丙酮酸和3-磷酸甘油醛
ED途径的特征酶是2-酮-3-脱氧-6-磷酸葡萄糖酸(KDPG)醛 缩酶
ED途径中的两分子丙酮酸来历不同,一分子由2-酮-3-脱氧-6磷酸葡萄糖酸直接裂解产生,另一分子由磷酸甘油醛经EMP 途径转化而来
1.2递氢和受氢
★经上述脱氢途径生成的NADH、NADPH、FAD等还原型辅 酶通过呼吸链等方式进行递氢,最终与受氢体(氧、无机或有 机氧化物)结合,以释放其化学潜能。 ★根据递氢特别是受氢过程中氢受体性质的不同,把微生物能量 代谢分为呼吸作用和发酵作用两大类。
发酵作用:没有任何外援的最终电子受体的生物氧化模式; 呼吸作用:有外援的最终电子受体的生物氧化模式; ★呼吸作用又可分为两类:
代谢:是微生物细胞与外界环境不断进行
物质和能量交换的过程,它是细胞内各种 化学反应的总和。 代谢=物质代谢+能量代谢
代谢的类型
按代谢过程考察的角度不同分:
微生物的新陈代谢优秀PPT
生物固氮主要在三方面进行研究: 用实验的方法提高主要农作物的固氮能力。 模拟固氮酶,使工业生产N肥在常温、常压下进行。 选择利用高效、优质的固氮微生物做为生物肥料 (根瘤菌肥料和固氮菌肥料)。
2020/4/28
9
(一) 固氮微生物
80余属,全部为原核生物(包括古生菌),主要包 括细菌、放线菌和蓝细菌。根据固氮微生物与高等 植物及其他生物的关系,可将它们分为以下3类:
但大多数固氮菌都是好氧菌。
微生物如何解决既需要氧又须 防止氧对固氮酶损伤的矛盾?
2020/4/28
21
(三) 固氮微生物的避氧害机制
长期进化过程中,各种固氮微生物已进化出适 合在不同条件下保护固氮酶免受氧害的机制。
1. 好氧性自生固氮菌的抗氧保护机制 (1)呼吸保护
固氮菌科的菌种能以极强的呼吸作用迅速将周围环境中
18
固氮酶
固氮酶的特点:
1)还原N2、H+、C2H2等生物活性;
2)由固氮酶(组分I;钼铁蛋白;固二氮酶)和固氮
酶还原酶(组分II;铁蛋白;固二氮酶还原酶来自共同组成时才具有生物活性;
3)氧不可逆失活作用。
2020/4/28
19
固氮的生化途径细节
2020/4/28
20
思考
固氮酶对氧极端敏感(不可逆的失活); 组分II(铁蛋白):在空气中暴露45s后失活一半; 组分I(钼铁蛋白):活性半衰期10 min;
第三节 微生物独特合成代谢 途径举例
2020/4/28
1
一. 自养微生物的CO2固定 二. 生物固氮 三. 肽聚糖的合成 四. 次生代谢
2020/4/28
2
一. 自养微生物的CO2固定
各种自养微生物在其生物氧化中获取的能量主要用于CO2的 固定。在微生物中,至今已了解的CO2固定的途径有4条。
微生物的合成代谢
由葡萄糖合成N-乙酰葡糖胺和N-乙酰胞壁酸
ATP ADP
葡萄糖
葡萄糖-6-磷酸
Gln Glu 果糖-6-磷酸
乙酰CoA CoA
葡糖胺-6-磷酸
N-乙酰葡糖胺-6-磷酸
UTP PPi
N-乙酰葡糖胺-1-磷酸
N-乙酰葡糖胺-UDP
磷酸烯醇式丙酮酸 Pi NADPH NADP
N-乙酰胞壁酸-UDP
“Park”核苷酸 的合成
举例
氨基酸,单糖,单核苷酸 蛋白质,多糖,核酸
蛋白质,多糖,核酸,脂类 抗生素,激素,毒素,色素
初级代谢产物的合成 肽聚糖合成,固氮,微 生物次级代谢反应
微生物合成代谢的原料
微生物合成作用需要小分子物质、能量和还原力 NAD(P)H2
2020/7/18
来源:
小分子物质、 能量和还原力 NAD(P)H2
丙酮酸脱羧 脂肪氧化
在生物合成中的作用
核苷糖类 戊糖 多糖贮藏物 核苷酸 脱氧核糖核苷酸
芳香氨基酸 芳香氨基酸 葡萄糖异生 CO2固定
胞壁酸合成 糖的运输 丙氨酸 缬氨酸 亮氨酸 CO2固定
丝氨酸 甘氨酸 半胱氨酸 谷氨酸 脯氨酸 精氨酸 赖氨酸 天冬氨酸 赖氨酸 蛋氨酸 苏氨酸 异亮氨酸
脂肪酸 类异戊二烯 甾醇
菌。二者的区别是,甲基营养菌需要的碳化物比CO2的还原性高 ,有些种能够利用甲醇、甲胺进行生长,但不能利用甲烷,它们 属于化能有机营养微生物,如生丝微菌(Hyphomicrobium)、假单 胞菌、芽胞杆菌和弧菌等属中的一些种。甲烷营养菌则既能利用 甲烷,也能利用更为氧化的一碳化合物,如甲酸,但不能利用具 有C--C键的物质
• EMP • HMP • ED • WD
2020/7/18
代谢ppt课件
在发酵条件下有机化合物只是部分地被氧化,故 8
发酵(fermentation) 在工业生产中常把好氧或兼性厌氧微生物 在通气或厌气的条件下的产品生产过程统 称为发酵。
9
异养微生物的生物氧化
发酵过程的氧化是与有机物的还原偶联在一起;被 还原的有机物来自于初始发酵的分解代谢,即不需 要外界提供电子受体。
光合色素:光合生物所特有的色素,是 将光能转化为化学能的关键物质。
无氧呼吸的最终电子受体不是氧,而是 象NO3-, NO2-,SO42-,S2O32-,CO2等这类外 源受体。
无氧呼吸也需要细胞色素等电子传递体, 并在能量分级释放过程中伴随着磷酸化 作用,也能产生较多的能量用于生命活 动。但由于部分能量随电子转移传给最 13
无氧呼吸
无氧呼吸的氧化底物一般为有机物,如葡 萄糖、乙酸和乳酸等。它们被氧化为CO2, 有ATP生成。
无氧呼吸的特点是底物按常规途径脱氢后,经
部分呼吸链递氢,最终由氧化态的无机物(个
别是有机物延胡索酸)受氢。
无机盐呼吸 无氧呼吸
硝酸盐呼吸
NO2-,N2O,NO,N2 NO3- SO32-,S3O62-,S2O32-,H2S
硫酸盐呼吸
硫呼吸
S2-
SO42-
S0 产乙酸细菌
CH3COOH
碳酸盐呼吸 产甲烷菌
基质(底物)水平磷酸化:厌氧微生物和兼 性厌氧微生物在此过程中,产生一种含高自 由能的中间体,如含高能键的1,3-二磷酸甘 油酸。这一中间体将高能键交给ADP,使 ADP磷酸化而生成ATP。
氧化磷酸化:好氧微生物在呼吸时,通过电 子传递体系产生ATP的过程叫氧化磷酸化。
3
代谢概论
有机物
最初能源
发酵(fermentation) 在工业生产中常把好氧或兼性厌氧微生物 在通气或厌气的条件下的产品生产过程统 称为发酵。
9
异养微生物的生物氧化
发酵过程的氧化是与有机物的还原偶联在一起;被 还原的有机物来自于初始发酵的分解代谢,即不需 要外界提供电子受体。
光合色素:光合生物所特有的色素,是 将光能转化为化学能的关键物质。
无氧呼吸的最终电子受体不是氧,而是 象NO3-, NO2-,SO42-,S2O32-,CO2等这类外 源受体。
无氧呼吸也需要细胞色素等电子传递体, 并在能量分级释放过程中伴随着磷酸化 作用,也能产生较多的能量用于生命活 动。但由于部分能量随电子转移传给最 13
无氧呼吸
无氧呼吸的氧化底物一般为有机物,如葡 萄糖、乙酸和乳酸等。它们被氧化为CO2, 有ATP生成。
无氧呼吸的特点是底物按常规途径脱氢后,经
部分呼吸链递氢,最终由氧化态的无机物(个
别是有机物延胡索酸)受氢。
无机盐呼吸 无氧呼吸
硝酸盐呼吸
NO2-,N2O,NO,N2 NO3- SO32-,S3O62-,S2O32-,H2S
硫酸盐呼吸
硫呼吸
S2-
SO42-
S0 产乙酸细菌
CH3COOH
碳酸盐呼吸 产甲烷菌
基质(底物)水平磷酸化:厌氧微生物和兼 性厌氧微生物在此过程中,产生一种含高自 由能的中间体,如含高能键的1,3-二磷酸甘 油酸。这一中间体将高能键交给ADP,使 ADP磷酸化而生成ATP。
氧化磷酸化:好氧微生物在呼吸时,通过电 子传递体系产生ATP的过程叫氧化磷酸化。
3
代谢概论
有机物
最初能源
微生物第七章
•
微 生 某些厌氧和兼性厌氧微生物在无氧条件下进行无氧 呼吸。无氧呼吸的最终电子受体不是氧,而是像 物 NO 的 、NO 、SO 、CO 等这类外源受体。无氧呼 吸也需要细胞色素等电子传递体,并在能量分级释 营 放过程中伴随有磷酸化作用,也能产生较多的能量 养 用于生命活动。但仅部分能量随电子转移传给最终 和 电子受体,所以生成的能量不如有氧呼吸产生的多。 代 谢
3.
微 生 第三阶段是通过三羧酸循环将第二阶段产物完 物 全降解生成CO2,并产生ATP、NADH及 的 FADH2。 营第二和第三阶段产生的ATP、NADH及 FADH2通过电子传递链被氧化,可产生大量的 养 ATP。 和 代 谢
微 生 物 的 营 养 和 代 谢
•
•
微 生 合成代谢所利用的小分子物质源于分解代谢过程中 物 产生的中间产物或环境。 在代谢过程中,微生物通过分解代谢产生化学能, 的 光合微生物还可将光能转换成化学能,这些能量用 营 于合成代谢、微生物的运动和运输,另有部分能量 养 以热或光的形式释放到环境中去。 和 代 谢
• 产气杆菌在无氧条件下进行发酵葡萄糖时,除将一部
分丙酮酸按混合酸发酵的类型进行外,大部分丙酮酸
转变为3-羟基丁酮,再还原为2,3-丁二醇。称为丁二醇 发酵。 • 3-羟基丁酮在碱性条件下易被氧化为二乙酰,可与精 氨酸反应,形成红色化合物——V.P.试验。
鉴别肠道细菌的V.P.试验
鉴别原理
缩合 脱羧
+
• 另一种是可溶性氢化酶,它能催化氢 的氧化,而使NAD+还原的反应。所生 成的NADH主要用于CO2的还原。
微 生 双歧发酵是两歧双歧杆菌(bifidobacterium bifidum)发酵葡 物 萄糖产生乳酸的一条途径。此反应中有两种磷酸酮糖酶参 的 加反应,即果糖-6-磷酸磷酸酮糖酶和木酮糖-5-磷酸磷酸酮 营 糖酶分别催化果糖-6-磷酸和木酮糖-5-磷酸裂解产生乙酰磷 酸和丁糖-4-磷酸及甘油醛-3-磷 酸和乙酰磷酸。 养 和 代 谢
微生物学 第七章 微生物的代谢(共81张PPT)
特点:
a 、不经EMP途径和TCA循环而得到彻底氧化,无ATP生成,
b、产大量的NADPH+H+还原力 ; c、产各种不同长度的重要的中间物(5-磷酸核糖、4-磷酸-赤藓糖 ) d、单独HMP途径较少,一般与EMP途径同存
e、HMP途径是戊糖代谢的主要途径。
3)ED途径
——2-酮-3-脱氧-6-磷酸-葡萄糖酸裂解途径 1952年 Entner-Doudoroff :嗜糖假单胞菌
过程: (4步反应) 1 葡萄糖 6-磷酸-葡萄糖
6-磷酸-葡糖酸
6-磷酸-葡萄糖-脱水酶
特点:
a、步骤简单 b、产能效率低:1 ATP
KDPG KDPG醛缩酶
3--磷酸--甘油醛 + 丙酮酸
c、关键中间产物 KDPG,特征酶:KDPG醛缩酶
细菌:铜绿、荧光假单胞菌,根瘤菌,固氮菌,农杆菌,运动发酵单胞 菌等。
——严格厌氧菌进行的 唯一能大规模生产的发酵产 品。(丙酮、丁醇、乙醇混合物,其比例3:6:1) ——丙酮丁醇梭菌(Clostridium acetobutyricum)
2丙酮酸
2乙酰-CoA
缩合
乙酰-乙酰 CoA
(CoA转移酶)
丙酮 +CO2 丁醇
5)氨基酸的发酵产能(stickland反应)
发酵菌体:生孢梭菌、肉毒梭菌、斯氏梭菌、双 酶梭环(TCA 循环支路)
乙酸
乙酰-CoA
(乙酰--CoA合成酶)
异柠檬酸
(异柠檬酸裂合酶)
苹果酸 (苹果酸合成酶) 琥珀酸 + 乙醛酸
Ii 丙酮酸 、PEP等化合物固定CO2的方法 Iii 厌氧、兼性厌氧微生物获得TCA 中间产物方式
------通过TCA的逆过程
a 、不经EMP途径和TCA循环而得到彻底氧化,无ATP生成,
b、产大量的NADPH+H+还原力 ; c、产各种不同长度的重要的中间物(5-磷酸核糖、4-磷酸-赤藓糖 ) d、单独HMP途径较少,一般与EMP途径同存
e、HMP途径是戊糖代谢的主要途径。
3)ED途径
——2-酮-3-脱氧-6-磷酸-葡萄糖酸裂解途径 1952年 Entner-Doudoroff :嗜糖假单胞菌
过程: (4步反应) 1 葡萄糖 6-磷酸-葡萄糖
6-磷酸-葡糖酸
6-磷酸-葡萄糖-脱水酶
特点:
a、步骤简单 b、产能效率低:1 ATP
KDPG KDPG醛缩酶
3--磷酸--甘油醛 + 丙酮酸
c、关键中间产物 KDPG,特征酶:KDPG醛缩酶
细菌:铜绿、荧光假单胞菌,根瘤菌,固氮菌,农杆菌,运动发酵单胞 菌等。
——严格厌氧菌进行的 唯一能大规模生产的发酵产 品。(丙酮、丁醇、乙醇混合物,其比例3:6:1) ——丙酮丁醇梭菌(Clostridium acetobutyricum)
2丙酮酸
2乙酰-CoA
缩合
乙酰-乙酰 CoA
(CoA转移酶)
丙酮 +CO2 丁醇
5)氨基酸的发酵产能(stickland反应)
发酵菌体:生孢梭菌、肉毒梭菌、斯氏梭菌、双 酶梭环(TCA 循环支路)
乙酸
乙酰-CoA
(乙酰--CoA合成酶)
异柠檬酸
(异柠檬酸裂合酶)
苹果酸 (苹果酸合成酶) 琥珀酸 + 乙醛酸
Ii 丙酮酸 、PEP等化合物固定CO2的方法 Iii 厌氧、兼性厌氧微生物获得TCA 中间产物方式
------通过TCA的逆过程
微生物的代谢ppt课件
酶制剂发酵
利用微生物产生各种酶类的代谢过程 ,将酶提取后广泛应用于食品加工、 洗涤剂等领域。
微生物代谢在环境保护中应用
废水处理
利用微生物降解有机污染物的代 谢能力,将废水中的有害物质转 化为无害物质,达到废水处理的
目的。
生物脱硫脱氮
利用微生物分解有机垃圾的代谢 过程,将有机垃圾转化为稳定的 腐殖质,实现有机垃圾的资源化
也最快。
酸碱度对微生物代谢影响
酸碱度(pH值)对微生物的生长和 代谢有很大影响。
pH值通过影响微生物细胞膜的通透 性、酶的活性以及营养物质的吸收等 方式来影响微生物的代谢。
不同微生物对pH值的适应性不同, 有些微生物只能在酸性或碱性环境中 生长。
微生物在适宜的pH值范围内,其代 谢活动才能正常进行。
医疗健康
微生物代谢与人类健康密切相 关,研究微生物代谢有助于了 解疾病的发生机制并开发新的 治疗方法。
农业领域
微生物代谢在农业领域也有重 要作用,如生物肥料、生物农
药的研制和应用等。
02
微生物能量代谢
能量代谢基本概念
能量代谢
指生物体内能量的转移和转换过程, 包括能量的释放、传递、储存和利用 。
氧化还原反应
通过改变酶分子的数量来调节代谢速率,如酶合成和降解的速
率控制。
基因表达调控机制
转录水平调控
通过控制基因转录的速率来调节基因表达,如启动子和转录因子的 相互作用。
翻译水平调控
通过控制mRNA的翻译速率来调节基因表达,如核糖体结合位点和 翻译起始因子的作用。
转录后和翻译后调控
通过控制mRNA和蛋白质的修饰、加工和降解来调节基因表达,如 RNA剪接和蛋白质磷酸化。
微生物的代谢ppt课件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.精品课件.
8
2. HMP途径 (己糖一磷酸途径、戊糖磷酸途径)
6C6H12O6
.精品课件.
5葡糖-6-磷酸
35ATP
6CO2 9
特点
1)是一条葡萄糖不经EMP途径和TCA循环而彻底氧化产能、 产还原力[H]和许多中间代谢产物的途径;
2)进行一次周转需要六分子的葡萄糖同时参与,但实际只 消耗一分子的葡萄糖;
还原态无机物 化能自养型
通用能源ATP
ATP的结构
.精品课件.
3
一、化能异养微生物的生物氧化和产能
1. 生物氧化的定义
发生在活细胞内的一系列产能性氧化反应的总称。
燃烧
生物体外的氧化
.精品课件.
4
2. 生物氧化的形式:加氧、脱氢或失去电子; 3. 生物氧化的过程:脱氢、递氢、受氢 4. 生物氧化的结果: 产ATP、还原力[H]和小分子代 谢产物
比较各类无机盐呼吸的特点
➢ 硫呼吸
➢ 铁呼吸
➢ 碳酸盐呼吸
➢ 有机物呼吸
➢ 延胡索酸呼吸
➢ 甘氨酸呼吸 ➢ 氧化三甲胺呼吸
.精品课件.
C6H12O6
.精品课件.
2丙酮酸 2ATP 2NADH2
7
特点
1)是大多数生物所共有的基本代谢途径;
2)有氧和无氧条件下都能进行; 有氧条件下,该途径与TCA途径连接; 无氧条件下,丙酮酸被还原,形成乳酸等发酵 产物;
3)该途径是糖代谢和脂类代谢的连接点(如磷酸二
羟丙酮可还原成甘油,进入脂类代谢 ;
(一)底物脱氢的四条途径
.精品课件.
5
底物脱氢的四条途径
.精品课件.
6
1.
途径 EMP
(糖酵解途径或己糖二磷酸途径)
己糖激 酶
(1)
磷酸己糖异构酶(2)
磷酸果糖激酶(3)
醛缩酶(4) 磷酸丙糖异构酶(5)
3-磷酸甘油醛脱氢酶 (6)
磷酸甘油酸激酶(7)
稀醇化酶(9) 磷酸甘油变位酶(8)
丙酮酸激酶(10)
ED途径:
少数细菌以该途径代替EMP途径。 1分子葡萄糖经4步反 应产生2分子丙酮酸、2分子[H]和1个ATP;
TCA循环:
有氧条件下,丙酮酸经TCA循环进一步代谢产能或用于合 成。
.精品课件.
16
(二)递氢 — 电子传递链
电子传递链
是指位于膜(原核生物在细胞质内膜,真核微生物在线粒体 内膜)上,由一系列氧化还原势呈梯度差的,链状排列的电 子传递体组成;
4.顺乌头酸酶
8.琥珀酸脱氢酶
5.异柠檬酸脱氢酶
15ATP
3.精品课件.
13
特点
TCA循环由10步酶促反应组成;
产能效率极高,是细胞产生ATP的主要场所;
在微生物代谢中占有枢纽的地位;
提供生物合成所用碳架的重要来源;
与微生物大量发酵产物的生产密切相关(如柠檬酸、 苹果酸、谷氨酸等);
2-酮-3-脱氧-6-磷酸葡萄糖酸
C6H12O6
.精品课件.
2丙酮酸 1ATP
NADH2 NADPH2
11
特点
少数细菌(如假单胞菌、根瘤菌和土壤杆菌等)因缺少某 些完整EMP途径的一种替代途径,为微生物所特有;
反应步骤简单,通过四步反应可快速获得2分子的丙酮酸;
产能效率低,1分子的葡萄糖仅产1个ATP;
3)能产生大量的还原力[H] (12个NADPH2); 是合成脂肪酸、固醇等物质所需;
也可通过呼吸链产生大量能量;
4)反应中有C3-C7各种糖,使微生物可利用的碳源范围广;
5)能产生多种重要的中间代谢产物(如核苷酸、多种氨基
酸、辅酶和乳酸等)。
.精品课件.
10
3. ED途径 (2-酮-3-脱氧-6-磷酸葡萄糖酸途径)
第七章 微生物的代谢 (Microbial metabolism)
.精品课件.
1
第一节 微生物的能量代谢
研究能量代谢的实质就是追踪微生物可 利用的最初能源是如何转化并释放出一切 生命活动的通用能源 — ATP的过程。
微生物可利用的最初能源有哪些?
.精品课件.
2
最初能源
有机物 日光
化能异养型 光能营养型
.精品课件.
14
TCA循环在微生物分解代.精品谢课件和. 合成代谢中的枢纽地15位
四种脱氢途径的比较
EMP途径:
许多微生物都利用该途径对糖类进行分解代谢。1分子葡 萄糖经10步反应产生2分子丙酮酸、2分子[H]和2个ATP;
该途径定位在微生物细胞质中,有氧和无氧都能进行;
HMP途径:
可与EMP途径或ED途径同时存在,也能在有氧和无氧条 件下发生。许多微生物通过该途径产能,但它的主要作用 是用于生物合成。
典 型 的 呼 吸 链
.精品课件.
低能水1平9 (高氧化还原势)
产生ATP的机制?
现在普遍接受的观点是1978年诺贝尔奖获得者英国学者 P.Mitchell 于1961年提出的化学渗透学说 该学说认为生物的通用能源-ATP 是由跨膜的质子梯度差 (质子动势)而产生的;
.精品课件.
20
ATP酶和ATP的合成
一个化合物的氧化还原势是其对电子亲和力的量度;
原核生物和真核生物的电子传递链组成不同,但二者的功能 相似;
电子传递链的主要组分及传递顺序:
NAD(P)→FP→Fe•S→COQ→Cyt.b→Cyt.c→Cyt.a→Cyt.a3
.精品课件.
17
(三)受氢
经多种途径脱氢和递氢后,最终与氢受体结合并释放其中的能
可与EMP、HMP和TCA循环等各种代谢途径相连接,以 满足微生物对能量、还原力和不同中间代谢产物的需要;
反应中有一个特征性酶—KDPG醛缩酶;
.精品课件.
12
4.TCA循环 (三羧酸循环、Krebs循环或柠檬酸循环)
1.丙酮酸脱氢酶复合体
10.苹果酸脱氢酶
2.柠檬酸合成酶
9.延胡索酸酶
1丙酮酸 3.顺乌头酸酶
量。根据受氢体性质的不同,可把生物氧化分为呼吸、无氧呼 吸和发酵;
1. 呼吸(有氧呼吸)
是一种最普遍和最重要的生物氧化或产能方式;
其特点是底物按常规方式脱氢后,经完整的呼吸链传递,最 终被外源分子氧接受,释放能量;
递氢和受氢必须在有氧条件下进行,是一种高效产能方式;
.精品课件.
18
高能水平 (低氧化还原势)
头部
颈部 基部
.精品课件.
21
2.无氧呼吸(厌氧呼吸)
➢ 是一类在无氧条件下进行的、产能效率较低的特殊呼吸;
➢ 其特点是底物按常规途径脱氢后,经部分呼吸链递氢,最终由 氧化态的无机物(少数为有机氧化物)受氢,并完成产能反应;
➢ 根据呼吸链末端氢受体的不同,可把无氧呼吸分成多种类型
➢ 无机盐呼吸
➢ 硝酸盐呼吸 ➢ 硫酸盐呼吸