01集合的概念与运算(1)

合集下载

集合的概念与运算PPT课件

集合的概念与运算PPT课件

6.子集、真子集及其性质: 对任意的 x∈A,都有 x∈B,则 A⊆ B(或 B⊇ A); 若集合 A⊆ B,但存在元素 x∈B,且 x∉A,则 A⫋ B(或 B⫌ A);
⌀ ⊆ A;A⊆ A;A⊆ B,B⊆ C⇒ A⊆ C. 若集合 A 含有 n 个元素,则 A 的子集有 2n 个,A 的非空子集有 2n-1个,A
【例 2-2】已知集合 A={x|x2-2x+a≤0},B={x|x2-3x+2≤0},且 A⫋ B,求实 数 a 的取值范围.
解:由题意可得 B={x|1≤x≤2}. 对于 A:Δ=(-2)2-4a<0,即 a>1 时,A≠⌀ ,满足 A⫋ B;
Δ=(-2)2-4a=0,即 a=1 时,A={1},满足 A⫋ B;
A.(a*b)*a=a
B.[a*(b*a)]*(a*b)=a
C.b*(b*b)=b
D.(a*b)*[b*(a*b)]=b 解析:在 B 选项中,[a*(b*a)]*(a*b)=b*(a*b)=a,故 B 正确;在 C 选项中,易知 a*(b*a)=b*(b*b)=b 成立,故 C 正确;在 D 选项中,令 a*b=c,则 c*(b*c)=b 成立, 故 D 正确.只有 A 选项不能恒成立.
5.设集合 A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数 a 的值为 1
.
解析:∵A={-1,1,3},B={a+2,a2+4},A∩B={3},a2+4>3, ∴a+2=3,a=1.
一、集合的概念
【例 1-1】 若集合 A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合 B 的元 素个数为( B ).

01-第1课时 集合(I)

01-第1课时  集合(I)
(2)A={x|x=2m-1,m∈N},B={x|x=4n±1,n∈N};
(3)A={(x,y)|x+y>0,xR,yR},B={(x,y)|x>0,y>0,xR,yR}.
(4)A={y|y= ,x≠0},B={y|y= ,x≠0}.
【选题说明】正确认识周期性的点列及平面区域及函数值域的描述法表示,学习使用描述法正确书写集合.
4.已知集合P={y|y=x2+1,x∈R},Q={y|y=x+1,x∈R},那么P∩Q等于_____
______[1,+∞)_____________.
5.已知全集U={0,1,2,3,4,5},A={x|x2-5x+q=0},且AU,那么q的允许值构成的集合是___{q|q> ,或q=0,或q=4,或q=6}__,所有可能的∁UA分别是____{0,1,2,3,4,5}、{1,2,3,4}、{0,2,3,5}、{0,1,4,5}_______.
6.已知集合P={x|x(x-1)≥0},Q={x| >0},则P∩Q=____{x|x>1}______.
7.设集合A={x||x|<4},B={x|x2-4x+3>0},则集合{x|x∈A且x A∩B}=[1,3].
8.设a,b∈R,集合{1,a+b,a}={0, ,b},则b-a=__2___.
因为a<1,所以a+1>2a,所以B=(2a,a+1).
因为BA,所以2a≥1或a+1≤-1,即a≥ 或a≤-2,而a<1,
所以 ≤a<1或a≤-2,故当BA时,实数a的取值范围是(-∞,-2]∪[ ,1).
第2课时集合的概念和运算(Ⅱ)
教学目标
(1)能正确利用集合表示方程、不等式(组)的解集以及平面上的点集;
解:由A=B得:
(1),或 (2).

01集合的概念及运算

01集合的概念及运算
211 1, 221 2, 231 4, 241 8,
251 16, 261 32, 271 64, 281 128,
且1 4 16 64 128 211,
i1 1, i2 2, i3 5, i4 7, i5 8.
走进高考
综上知,当A⊆B时,a<-8或a≥2.
(2)当 a=0 时,显然 B ⊆A;
当 则 又当∵ 当a则则 又则又<a- 4aaa∵<0≤∵<>1a0-4a-0时 0a4a-- 时4aa≤, 时<≤1a≥>1a<, 0≤1a2,-20∴ ,,2->,若-12>2∴- 若若12212∴, B-12BB⊆ ,<-⊆⊆∴ 12a,,<∴AA1<2a∴,,<0<∴- - .a0- -如如如 <.00128<<1208≤ <--图图图 <≤aa. a≤ ≤a128a,,a<,<<≤<22<0000aa.<<0.0.
走进高考
【2】(10 湖南文 15)若规定 E={a1,a2 ,..., a10}的子集{ai1 ai2 ,..., ain }
为 E 的第 k 个子集,其中 k 2i11 2i2 1 2in 1 ,则
(1){a1, a3} 是 E 的第_____5____个子集;
(2)E 的第 211 个子集是_{__a_1_,__a_2_,__a_5_,__a_7__,_a_8_}___.
(4)常用数集的记法
数集
自然 数集
正整数集
整数 集
有理 数集
实数 集
复数 集
记法 N N(或N ) Z Q R C

(完整版)高中数学中集合的概念与运算的解题归纳,推荐文档

(完整版)高中数学中集合的概念与运算的解题归纳,推荐文档

§1.1 集合的概念与运算一、知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A 的任意一个元素都是集合B 的元素(若则),则称A a ∉B a ∈集合A 为集合B 的子集,记为A B 或B A ;如果A B ,并且A B ,这时集合A 称为集⊆⊇⊆≠合B 的真子集,记为A B 或B A.4.集合的相等:如果集合A 、B 同时满足A B 、B A ,则A=B.⊆⊇5.补集:设A S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,⊆记为 .A C s 6.全集:如果集合S 包含所要研究的各个集合,这时S 可以看做一个全集,全集通常记作U.7.交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作A B.⋂8.并集:一般地,由所有属于集合A 或者属于B 的元素构成的集合,称为A 与B 的并集,记作A B.⋃9.空集:不含任何元素的集合称为空集,记作.Φ10.有限集:含有有限个元素的集合称为有限集.11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).13.常用数集的记法:自然数集记作N ,正整数集记作N +或N ,整数集记作Z ,有理*数集记作Q ,实数集记作R .二、疑难知识导析1.符号,,,,=,表示集合与集合之间的关系,其中“”包括“”和⊆⊇⊆“=”两种情况,同样“”包括“”和“=”两种情况.符号,表示元素与集合之间⊇∈∉的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B =易漏掉的情况.Φ5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、Venn 图等将有关集合直观地表示出来.8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.9.含有n 个元素的集合的所有子集个数为:,所有真子集个数为:-1n 2n2三、经典例题导讲[例1] 已知集合M={y |y =x 2+1,x∈R },N={y|y =x +1,x∈R },则M∩N=( )A .(0,1),(1,2)B .{(0,1),(1,2)}C .{y|y=1,或y=2}D .{y|y≥1}错解:求M∩N 及解方程组 得 或 ∴选B⎩⎨⎧+=+=112x y x y ⎩⎨⎧==10y x ⎩⎨⎧==21y x 错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M 、N 的元素是数而不是实数对(x,y ),因此M 、N 是数集而不是点集,M 、N 分别表示函数y =x 2+1(x∈R ),y =x +1(x∈R )的值域,求M∩N 即求两函数值域的交集.正解:M={y |y =x 2+1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }.∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1}, ∴应选D .注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2+1,x ∈R }、{(x ,y )|y =x 2+1,x ∈R },这三个集合是不同的.[例2] 已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C .错解:由x 2-3x +2=0得x =1或2.当x =1时,a =2, 当x =2时,a=1.错因:上述解答只注意了B 为非空集合,实际上,B=时,仍满足A∪B=A.当a =0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.正解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或 ∴C={0,1,2}{}{}21或[例3]已知m A,n B, 且集合A=,B=,又∈∈{}Z a a x x ∈=,2|{}Z a a x x ∈+=,12|C=,则有: ( ){}Z a a x x ∈+=,14|A .m +n A B. m +n B C.m +n C D. m +n 不属于A ,B ,C 中任意一个∈∈∈错解:∵m A ,∴m =2a ,a ,同理n =2a +1,a Z, ∴m +n =4a +1,故选C∈Z ∈∈错因是上述解法缩小了m +n 的取值范围.正解:∵m A, ∴设m =2a 1,a 1Z , 又∵n ,∴n =2a 2+1,a 2 Z ,∈∈B ∈∈∴m +n =2(a 1+a 2)+1,而a 1+a 2 Z , ∴m +n B, 故选B.∈∈[例4] 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若BA ,求实数p 的取值范围.错解:由x 2-3x -10≤0得-2≤x≤5.欲使B A ,只须 3351212≤≤-⇒⎩⎨⎧≤-+≤-p p p ∴ p 的取值范围是-3≤p≤3.错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设. 正解:①当B≠时,即p +1≤2p-1p≥2.由B A 得:-2≤p+1且2p -1≤5.由-3≤p≤3.∴ 2≤p≤3②当B=时,即p +1>2p -1p <2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.[例5] 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.(2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0,∵a≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0,又c≠1,故c=-.21点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.[例6] 设A 是实数集,满足若a∈A,则A ,且1∉A.a -11∈1≠a ⑴若2∈A,则A 中至少还有几个元素?求出这几个元素.⑵A 能否为单元素集合?请说明理由.⑶若a∈A,证明:1-∈A.a1⑷求证:集合A 中至少含有三个不同的元素.解:⑴2∈A ⇒ -1∈A ⇒∈A ⇒ 2∈A 21∴ A 中至少还有两个元素:-1和21⑵如果A 为单元素集合,则a =a -11即=012+-a a该方程无实数解,故在实数范围内,A 不可能是单元素集⑶a∈A ⇒ ∈A ⇒ ∈A ⇒A ,即1-∈A a -11a --1111111---a a ∈a 1⑷由⑶知a∈A 时,∈A, 1-∈A .现在证明a,1-, 三数互不相等.a-11a 1a 1a -11①若a=,即a2-a+1=0 ,方程无解,∴a≠a -11a-11②若a=1-,即a 2-a+1=0,方程无解∴a≠1- a 1a1 ③若1- =,即a2-a+1=0,方程无解∴1-≠.a 1a -11a 1a -11综上所述,集合A 中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.[例7] 设集合A={|=,∈N +},集合B={|=,∈N +},试证:a a 12+n n b b 542+-k k k A B .证明:任设∈A,a 则==(+2)2-4(+2)+5 (∈N +),a 12+n n n n ∵ n∈N*,∴ n +2∈N*∴ a∈B 故 ①显然,1,而由{}*2,1|Nn n a a A ∈+==∈B={|=,∈N +}={|=,∈N +}知1∈B,于是A≠B b b 542+-k k k b b 1)2(2+-k k ②由①、② 得A B .点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.(2)判定两集合相等,主要是根据集合相等的定义.四、典型习题导练1.集合A={x|x 2-3x -10≤0,x∈Z},B={x|2x 2-x -6>0, x∈ Z},则A∩B 的非空真子集的个数为( )A .16B .14C .15D .322.数集{1,2,x 2-3}中的x 不能取的数值的集合是( )A .{2,-2 }B .{-2,- }C .{±2,± }D .{,-}55553. 若P={y|y=x 2,x∈R},Q={y|y=x 2+1,x∈R},则P∩Q 等于( )A .PB .QC .D .不知道4. 若P={y|y=x 2,x∈R},Q={(x ,y)|y=x 2,x∈R},则必有( )A .P∩Q=B .P QC .P=QD .P Q5.若集合M ={},N ={|≤},则M N =( )11|<xx x 2x x A . B .}11|{<<-x x }10|{<<x x C . D .}01|{<<-x x ∅6.已知集合A={x|x 2+(m +2)x +1=0,x∈R },若A∩R +=,则实数m 的取值范围是_________.7.(06高考全国II 卷)设,函数若的解集为A ,a R ∈2()22.f x ax x a =--()0f x >,求实数的取值范围。

集合的基本概念与运算方法

集合的基本概念与运算方法

集合的基本概念与运算方法在数学中,集合是由一组独立的元素组成的。

理解集合的基本概念和运算方法对于解决各种数学问题至关重要。

本文将介绍集合的基本概念以及常用的运算方法。

一、集合的基本概念1. 集合的定义:集合通常用大写字母表示,集合内的元素用逗号分隔,并放在大括号中。

例如,集合A可以表示为:A = {1, 2, 3, 4}。

2. 元素:一个集合由若干个元素组成,元素是集合的基本单位。

例如,集合A中的元素1、2、3、4便是集合A的元素。

3. 子集:若一个集合A的所有元素都属于另一个集合B,则称集合A为集合B的子集。

用符号表示为A ⊆ B。

例如,集合A = {1, 2}是集合B = {1, 2, 3}的子集。

4. 相等集合:若两个集合A和B拥有相同的元素,则称集合A和集合B相等。

用符号表示为A = B。

二、集合的运算方法1. 并集:若A和B为两个集合,他们的并集就是包含两个集合中所有元素的集合。

用符号表示为A ∪ B。

例如,集合A = {1, 2}和集合B = {2, 3}的并集为A ∪ B = {1, 2, 3}。

2. 交集:若A和B为两个集合,他们的交集就是属于A且属于B的所有元素的集合。

用符号表示为A ∩ B。

例如,集合A = {1, 2}和集合B = {2, 3}的交集为A ∩ B = {2}。

3. 补集:设U为全集,若A为一个集合,则相对于全集U,A的补集为U中不属于A的所有元素组成的集合。

用符号表示为A'。

例如,集合A = {1, 2, 3, 4}相对于全集U = {1, 2, 3, 4, 5, 6}的补集为A' = {5, 6}。

4. 差集:若A和B为两个集合,他们的差集就是属于A但不属于B的所有元素的集合。

用符号表示为A - B。

例如,集合A = {1, 2, 3, 4}和集合B = {2, 3}的差集为A - B = {1, 4}。

5. 互斥集:若两个集合A和B的交集为空集,则称它们为互斥集。

集合的概念与运算例题及答案

集合的概念与运算例题及答案

集合的概念与运算例题及答案1 集合的概念与运算(一)目标:1.理解集合、子集的概念,能利用集合中元素的性质解决问题2.理解交集、并集、全集、补集的概念,掌握集合的运算性质,3.能利用数轴或文氏图进行集合的运算,掌握集合问题的常规处理方法.重点:1.集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用;2.交集、并集、补集的求法,集合语言、集合思想的运用.基本知识点:知识点1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素知识点2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合N ,{}Λ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {}Λ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {}Λ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *知识点3、元素与集合关系(隶属)(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ?注意:“∈”的开口方向,不能把a ∈A 颠倒过来写知识点4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)知识点5、集合与元素的表示:集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……例题精析1:1、下列各组对象能确定一个集合吗(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)2、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是_-2,0,2__ 3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素(B )3个元素(C )4个元素(D )5个元素4、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证:(1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,而x1不一定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2∵a ∈Z, b ∈Z,c ∈Z, d ∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d)2 ∈G ,又∵211b a x +==2222222b a b b a a --+- 且22222,2b a b b a a ---不一定都是整数,∴211b a x +==2222222b a b b a a --+-不一定属于集合G知识点6、集合的表示方法:(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素(2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x ∈A| P (x )} 含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或}23|{>-x x 所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}(3)、文氏图:用一条封闭的曲线的内部来表示一个集合的方法思考:何时用列举法何时用描述法},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗 }1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集例题精析2:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}③=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)}⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 巩固提升:1、数集{}21,,x x x -中元素x 所满足的条件是 2、已知{}23,21,1A a a a =--+,其中a R ∈,⑴若3A -∈,求实数a 的值;⑵当a 为何值时,集合A 的表示不正确。

专题01 集合的概念与运算 (解析版)

专题01 集合的概念与运算 (解析版)

专题01 集合的概念与运算【名师预测】江苏高考对集合知识的考查比较低,以填空题的形式进行考查,主要考查集合与集合、元素与集合间的关系以及集合的交集、并集、补集的运算,同时注重对Venn图、数轴等数形结合思想的考查。

集合的基本运算有时会以集合知识为载体,往往与函数、方程、不等式等知识结合考查,体现出小题目综合化的命题趋势。

集合的学习要有弹性,要有所取舍.比如我们不必在集合间的关系上过于深究,也不必在集合的概念等内容上过于钻研。

【知识精讲】1.集合的相关概念(1)集合元素的三个特性:确定性、无序性、互异性.(2)元素与集合的两种关系:属于,记为∈;不属于,记为∉.(3)集合的三种表示方法:列举法、描述法、图示法.(4)五个特定的集合:2.集合间的基本关系3.集合的基本运算4.集合关系与运算的常用结论(1)若集合A中有n个元素,则A的子集有2n个,真子集有12n-个,非空子集有12n-个.(2)集合的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B.(考虑A是空集和不是空集两种情况)(4)C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B).【典例精练】考点一集合的基本概念例1. A={1,2,4},则集合B={(x,y)|x∈A,y∈A}中元素的个数为________.【解析】集合B中元素有(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4),共9个.故答案为9.例2.若-1∈{a-1,2a+1,a2-1},则实数a的取值集合是________.【解析】若a-1=-1,解得a=0,此时集合中的元素为-1,1,-1,不符合元素的互异性;若2a+1=-1,解得a=-1,此时集合中的元素为-2,-1,0,符合题意;若a2-1=-1,解得a=0,不符合题意,综上所述,a=-1.故答案为{-1}.例3.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=________.【解析】若集合A中只有一个元素,则方程ax2-3x+2=0只有一个实根或有两个相等实根.①当a=0时,x=23,符合题意;②当a ≠0时,由Δ=(-3)2-8a =0,得a =98. ∴a 的值为0或98故答案为0或98.例4.已知集合A ={1,2,3},B ={1,m },若3-m ∈A ,则非零实数m 的值是________. 【解析】由题意知,若3-m =1,则m =2,符合题意;若3-m =2,则m =1,此时集合B 不符合元素的互异性,故m ≠1; 若3-m =3,则m =0,不符合题意. 故m =2. 故答案为2.【方法点睛】与集合中元素有关问题的求解策略 (1)确定集合的元素是什么,即集合是数集还是点集; (2)看这些元素满足什么限制条件;(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.在解决集合中含有字母的问题时,一定要返回代入验证,防止与集合中元素的互异性相矛盾. 考点二 集合间的基本关系例5.已知集合{}1,2,3,4,5A =,{}(,),,,B x y x A y A x y x y A =∈∈<+∈,则集合B 的子集的个数是 . 【解析】∵集合{}1,2,3,4,5A =,{}(,),,,B x y x A y A x y x y A =∈∈<+∈ ∴{}(1,2),(2,3),(1,3),(1,4)B = ∴集合B 的子集个数是4216=. 故答案为16.例6.设集合{}2,4A =,{}2,2B a =,(其中0a <),若A B =,则实数a =________. 【解析】∵集合{}2,4A =,{}2,2B a =,且A B = ∴24a = 又0a < ∴2a =- 故答案为-2.例7.已知集合{}1,2a A =,集合{}1,1,4B =-,且A B ⊆,则正实数a =________.【解析】∵集合{}1,2a A =,集合{}1,1,4B =-,且A B ⊆ ∴24a = ∴2a = 故答案为2.例8.已知集合{}15A x x =≤<,{}3B x a x a =-<≤+,若()B A B ⊆,则实数a 的取值范围为________.【解析】∵()B A B ⊆∴B A ⊆①当B =∅时,满足B A ⊆,此时3a a -≥+,即32a ≤-. ②当B ≠∅时,要使B A ⊆,则3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,解得312a -<≤-由①②可知,实数a 的取值范围为(,1]-∞-. 故答案为(,1]-∞-.【方法点睛】判断集合间关系的3种方法①列举法:根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系;②结构法:从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断; ③数轴法:在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系,运用数轴图示法时要特别注意端点是实心还是空心.注意:空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解. 考点三 集合的基本运算例9.设全集{}*5,U x x x N =<∈,集合{}1,2A =,{}2,4B =,则()U C AB = .【解析】∵集合{}{}*5,1,2,3,4U x x x N =<∈=,且集合{}1,2A =,{}2,4B = ∴{}1,2,4AB =∴{}()3U C AB =故答案为{}3.例10.已知全集{}22,3,23U a a =+-,{}21,2A a =-,{}5U C A =,则实数a =________. 【解析】由题意知,2235a a +-=,解得a =-4或a =2.① 当a =-4时,|2a -1|=9,而9U ∉,所以a =-4不满足题意,舍去; ② 当a =2时,|2a -1|=3,3U ∈,满足题意. 故实数a 的值为2. 故答案为2.例11.设集合{}(,)1A x y y ax ==+,集合{}(,)B x y y x b ==+,且{}(2,5)A B =,则a b +=____.【解析】∵集合{}(,)1A x y y ax ==+,{}(,)B x y y x b ==+,且{}(2,5)A B =∴521a =+,且52b =+ ∴2a =,3b = ∴5a b += 故答案为5.例12.设A ,B 是非空集合,定义{}()()A B x x A B x A B ⊗=∈∉且.已知集合{}02A x x =<<,{}0B y y =≥,则A B ⊗=________.【解析】∵{}02A x x =<<,{}0B y y =≥ ∴{}0AB x x =≥,{}02A B x x =<<∴{}02A B x x x ⊗==≥或 故答案为{}02x x x =≥或.【方法点睛】解集合运算问题4个技巧① 看元素构成:集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键; ② 对集合化简:有些集合是可以化简的,先化简集合再研究其关系并进行运算,可使问题简单明 了、易于解决;③ 数形结合:常用的数形结合形式有数轴、坐标系和Venn 图;④新定义型问题:以集合为依托,对集合的定义、运算、性质加以深入的创新,但最终化为原来的集合知识和相应数学知识来解决.【名校新题】一、填空题1.(2019·江苏徐州第一次质量检测)已知集合{}0,1,2,3A =,{}|02B x x =<…,则A B =_________.【解析】取集合,A B 的公共部分即可,所以,{1,2}A B ⋂= 故答案为:{}1,22.(2019·苏北七市第二次质量检测)已知集合{}13A a =,,,{45}B =,.若A B ={4},则实数a 的值为____.【解析】∵A B ⋂= {}4,∴a=4 故答案为43.(2019·江苏金陵中学高考第四次模拟)设全集U ={}5N x x x *<∈,,集合A ={1,2},B ={2,4},则∁U (A ⋃B)=_______.【解析】集合U ={}5N x x x *<∈,={}1,2,3,4,且A ={1,2},B ={2,4},得A ⋃B ={1,2,4},所以∁U (A ⋃B)={3} 故答案为:{3}4.(2019·江苏南通四月质量检测)已知集合 ,B ,则A B _____.【解析】∵由题意可知A∩B 中的元素是2的整数倍,且在(-2,3)内, ∴A∩B ={0,2}. 故答案为:{0,2}.5.(2019·江苏徐州高考考前模拟)集合{}1,0,1A =-,{}|20B x x =-<<,则A B 中元素的个数是______.【解析】A 中仅有1B -∈,故AB 中元素的个数为1,填1 .6.(2019·江苏宿迁调研测试)已知集合[)1,4,(,)A B a ==-∞,若A B ⊆,则实数a 的取值范围是 。

考点01 集合(核心考点讲与练)2023年高考一轮复习核心考点讲与练(新高考专用)(解析版)

考点01  集合(核心考点讲与练)2023年高考一轮复习核心考点讲与练(新高考专用)(解析版)

考点01 集合(核心考点讲与练)1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。

如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,…};②描述法。

2、两类关系:(1)元素与集合的关系,用∈或∉表示;(2)集合与集合的关系,用⊆,≠⊂,=表示,当A⊆B时,称A是B的子集;当A≠⊂B时,称A是B的真子集。

3、集合运算(1)交,并,补,定义:A∩B={x|x∈A且x∈B},A∪B={x|x∈A,或x∈B},C U A={x|x∈U,且x∉A},集合U表示全集;(2)运算律,如A∩(B∪C)=(A∩B)∪(A∩C),C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B)等。

集合基本运算的方法技巧:(1)当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助Venn图运算;(2)当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验.集合常与不等式,基本函数结合,常见逻辑用语常与立体几何,三角函数,数列,线性规划等结合.venn图法解决集合运算问题一、单选题1.(2022·海南·嘉积中学模拟预测)已知全集U =R ,集合{}2,3,4A =,集合{}0,2,4,5B =,则图中的阴影部分表示的集合为( )A .{}2,4B .{}0C .{}5D .{}0,5【答案】D【分析】根据给定条件,利用韦恩图表达的集合运算直接计算作答. 【详解】依题意,图中的阴影部分表示的集合是()U A B ,而全集U =R ,{}2,3,4A =,{}0,2,4,5B =,所以(){0,5}U A B ⋂=. 故选:D2.(2022·山东潍坊·模拟预测)如图,已知全集U =R ,集合{}1,2,3,4,5A =,()(){}120B x x x =+->,则图中阴影部分表示的集合中,所包含元素的个数为( )A .1B .2C .3D .4【答案】B【分析】求出集合B ,分析可知阴影部分所表示的集合为()U A B ∩,利用交集的定义可求得结果. 【详解】因为()(){}{1201B x x x x x =+->=<-或}2x >,则{}12U B x x =-≤≤, 由题意可知,阴影部分所表示的集合为(){}1,2UA B =.故选:B.3.(2022·浙江绍兴·模拟预测)已知全集{}0,1,2,3,4,5U =,集合{}1,3,5A =,{}0,1B =,则( ) A .{}0B .{}2,4C .{}0,1,3,5D .{}0,1,2,4【答案】A【分析】根据集合的补集与交集的运算求解即可.【详解】解:因为全集{}0,1,2,3,4,5U =,集合{}1,3,5A =,{}0,1B =, 所以,所以.故选:A 二、填空题4.(2020·江苏南通·三模)已知集合A ={0,2},B ={﹣1,0},则集合A B = _______ . 【答案】{﹣1,0,2}【解析】直接根据并集运算的定义求解即可. 【详解】解:∵A ={0,2},B ={﹣1,0}, ∴A B ={﹣1,0,2}, 故答案为:{﹣1,0,2}.【点睛】本题主要考查集合的并集运算,属于基础题.分类讨论方法解决元素与集合关系问题1.(2022·北京石景山·一模)已知非空集合A ,B 满足:A B =R ,A B =∅,函数()3,,32,x x A f x x x B⎧∈=⎨-∈⎩对于下列结论:①不存在非空集合对(),A B ,使得()f x 为偶函数; ②存在唯一非空集合对(),A B ,使得()f x 为奇函数; ③存在无穷多非空集合对(),A B ,使得方程()0f x =无解. 其中正确结论的序号为_________. 【答案】①③【分析】通过求解332x x =-可以得到在集合A ,B 含有何种元素的时候会取到相同的函数值,因为存在能取到相同函数值的不同元素,所以即使当x 与x -都属于一个集合内时,另一个集合也不会产生空集的情况,之后再根据偶函数的定义判断①是否正确,根据奇函数的定义判断②是否正确,解方程()0f x =判断③是否正确【详解】①若x A ∈,x A -∈,则3()f x x =,3()f x x -=-,()()f x f x ≠- 若x B ∈,x B -∈,则()32f x x =-,()32f x x -=--,()()f x f x ≠- 若x A ∈,x B -∈,则3()f x x =,()32f x x -=--,()()f x f x ≠- 若x B ∈,x A -∈,则()32f x x =-,3()f x x -=-,()()f x f x ≠- 综上不存在非空集合对(),A B ,使得()f x 为偶函数 ②若332x x =-,则1x =或2x =-,当{}1B =,时,(1)312f =⨯-满足当1x =时31x =,所以()f x 可统一为3()f x x =,此时3()()f x x f x -=-=-为奇函数 当{}2B =-,A B =R时,(2)3(2)28f -=⨯--=-满足当2x =-时38x =-,所以()f x 可统一为3()f x x =,此时3()()f x x f x -=-=-为奇函数所以存在非空集合对(),A B ,使得()f x 为奇函数,且不唯一 ③30x =解的0x =,320x -=解的23x =,当非空集合对(,)A B 满足0A ∉且23B ∉,则方程无解,又因为AB =R ,AB =∅,所以存在无穷多非空集合对(),A B ,使得方程()0f x =无解故答案为:①③【点睛】本题主要考查集合间的基本关系与函数的奇偶性,但需要较为缜密的逻辑推理①通过对x 所属集合的分情况讨论来判断是否存在特殊的非空集合对(,)A B 使得函数()f x 为偶函数 ②观察可以发现3x 为已知的奇函数,通过求得不同元素的相同函数值将解析式32x -归并到3x 当中,使得()f x 成为奇函数③通过求解解析式零点,使得可令两个解析式函数值为0的元素均不在所对应集合内即可得到答案 2(2020·北京·模拟预测)对给定的正整数n ,令1{(n a a Ω==,2a ,⋯,)|{0n i a a ∈,1},1i =,2,3,⋯,}n .对任意的1(x x =,2x ,⋯,)n x ,1(y y =,2y ,⋯,)n n y ∈Ω,定义x 与y 的距离1122(,)n n d x y x y x y x y =-+-+⋯+-.设A 是n Ω的含有至少两个元素的子集,集合{(,)|D d x y x y =≠,x ,}∈y A 中的最小值称为A 的特征,记作χ(A ).(Ⅰ)当3n =时,直接写出下述集合的特征:{(0A =,0,0),(1,1,1)},{(0B =,0,0),(0,1,1),(1,0,1),(1,1,0)},{(0C =,0,0),(0,0,1),(0,1,1),(1,1,1)}.(Ⅱ)当2020n =时,设2020A ⊆Ω且χ(A )2=,求A 中元素个数的最大值;(Ⅲ)当2020n =时,设2020A ⊆Ω且χ(A )3=,求证:A 中的元素个数小于202022021.【答案】(Ⅰ)答案详见解析;(Ⅱ)22019;(Ⅲ)证明详见解析.【解析】(Ⅰ)根据x 与y 的距离d 的定义,直接求出(,)d x y 的最小值即可;(Ⅱ)一方面先证明A 中元素个数至多有2 2019 个元素,另一方面证明存在集合A 中元素个数为2 2019 个满足题意,进而得出A 中元素个数的最大值;(Ⅲ)设1{A x =,2x ,}m x ⋯,定义x 的邻域2020(){|(,)1}i i N x a d a x =∈Ω,先证明对任意的1i m ,()i N x 中恰有 2021 个元素,再利用反证法证明()()i j N x N x ⋂=∅,于是得到12()()()m N x N x N x ⋃⋃⋯⋃中共有2021m 个元素,但2020Ω中共有20202 个元素,所以202020212m ,进而证明结论.【详解】(Ⅰ)χ(A )3=,χ(B )2=,χ(C )1=;(Ⅱ)(a ) 一方面:对任意的1(a a =,2a ,3a ,⋯,2019a ,2020)a A ∈, 令f (a )1(a =,2a ,3a ,⋯,2019a ,2020)a , 则(d a ,f (a )2020)1212a =-=<,故f (a )A ∉, 令集合{B f =(a )|}a A ∈,则A B =∅,2020()A B ⋃⊆Ω 且A 和B 的元素个数相同,但2020Ω 中共有20202 个元素,其中至多一半属于A , 故A 中至多有2 2019 个元素.(b )另一方面:设1{(A a =,2a ,⋯,20202020122020)|a a a a ∈Ω++⋯+ 是偶数},则A 中的元素个数为024********20202020202020202C C C C +++⋯+= 对任意的1(x x =,2x ,⋯,2020)x ,1(y y =,2y ,⋯,2020)y A ∈,x y ≠,易得1122(,)n n d x y x y x y x y =-+-+⋯+-与112220202020x y x y x y ++++⋯++ 奇偶性相同,故(,)d x y 为偶数,由x y ≠,得(,)0d x y >,故(,)2d x y ,注意到(0,0,0,0,⋯,0,0),(1,1,0,0,0⋯,0)A ∈ 且它们的距离为2, 故此时A 满足题意,综上,A 中元素个数的最大值为22019.(Ⅲ)当2020n = 时,设2020A ⊆Ω 且χ(A )3=, 设1{A x =,2x ,}m x ⋯,任意的i x A ∈,定义x 的邻域2020(){|(,)1}i i N x a d a x =∈Ω, (a ) 对任意的,()i N x 中恰有 2021 个元素,事实上①若(,)0i d a x =,则i a x =,恰有一种可能;,②若(,)1i d a x =,则a 与i x ,恰有一个分量不同,共2020种可能; 综上,()i N x 中恰有2021个元素, (b ) 对任意的,()()i j N x N x ⋂=∅,事实上,若()()i j N x N x ⋂≠∅,不妨设()()i j a N x N x ∈⋂,1(j x x =',2x ',⋯,2020)x ', 则20201(,)i j k k k d x x x x ==-'∑20201(||)kk k xa a x =-+-'∑20202020112k k k k x a a x ===-+-'∑∑,这与χ(A )3=,矛盾,由 (a ) 和 (b ),12()()()m N x N x N x ⋃⋃⋯⋃中共有2021m 个元素,但2020Ω中共有20202 个元素, 所以,注意到m 是正整数,但202022021不是正整数,上述等号无法取到,所以,集合A 中的元素个数m 小于202022021.【点睛】本题考查集合的新定义,集合的含义与表示、集合的运算以及集合之间的关系,反证法的应用,考查学生分析、解决问题的能力,正确理解新定义是关键,综合性较强,属于难题.根据集合包含关系求参数值或范围一、单选题1.(2021·全国·模拟预测)已知集合{}232A x y x x ==+-,{}22B x x k =-+>.若A B A =,则实数k 的取值范围为( ) A .()7,+∞ B .(),1-∞-C .()1,7-D .()(),17,∞∞--⋃+【答案】D【分析】求出集合,A B ,再根据A B A =,知A B ⊆,列出不等式,解之即可得出答案. 【详解】解:解不等式2320x x +-≥,得13x -≤≤,即{}13A x x =-≤≤, {}{22B x x k x x k =-+>=>或}4x k <-,由A B A =,知A B ⊆,所以43k ->或1k <-,解得7k >或1k <-. 故选:D .2.(2021·全国·模拟预测)已知集合{}24A x x =<<,{}2211B x x a =--≤,若A B B =,则实数a 的取值范围是( ) A .()1,3 B .()2,3C .[]1,3D .[]2,3【答案】B【分析】首先通过解绝对值不等式化简集合B ,然后由题意得B A ⊆,从而建立不等式组求得a 的范围. 【详解】解不等式2211x a --≤,得1a x a ≤≤+,所以{}1B x a x a =≤≤+. 由A B B =,得B A ⊆,∴214a a >⎧⎨+<⎩,解得23a <<﹒故选:B数轴法解决集合运算问题一、单选题1.(2022·四川·泸县五中模拟预测(文))设全集U =R ,已知集合2|4A x x x >={},|4B x y x ==-{},则=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞【答案】D【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|4B x y x ==-{}{|4}x x =≤, 所以{|0}A B x x =<, 所以 ={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D2.(2022·江西宜春·模拟预测(文))已知集合{}1A x y x ==-,{}2B x x =<,则A B =( ) A .R B .∅C .[]1,2D .[)1,2【答案】D【分析】求函数定义域化简集合A ,解不等式化简集合B ,再利用交集的定义求解作答. 【详解】由1y x =-1≥x ,则[1,)A =+∞,由2x <解得22x -<<,即(2,2)B =-, 所以[1,2)A B ⋂=. 故选:D3.(2022·全国·模拟预测(文))已知集合{}2log 1M x x =<,{}21N x x =≤,则M N ⋃=( )A .(],1-∞B .(),2-∞C .[)1,2-D .(]0,1【答案】C【分析】求出集合M ,N ,然后进行并集的运算即可. 【详解】∵{}02M x x =<<,{}11N x x =-≤≤, ∴[1,2)M N ⋃=-. 故选:C .二、填空题4.(2022·重庆市育才中学模拟预测)设集合{}{}23,650A x x B x x x =≤=-+≤,则A B =________.【答案】[1,3]【分析】根据交集的定义求解即可.【详解】解不等式2650x x -+≤ ,得()()150x x --≤ ,解得15x ≤≤ , 即[]1,5B = ,[]1,3A B ∴= ; 故答案为:[]1,3 .5.(2020·上海·模拟预测)已知集合(){}2log 21A x x =-<,31B x x ⎧⎫=<⎨⎬⎩⎭,则A B =______.【答案】()3,4【分析】先解对数不等式和分式不等式求得集合A 、B ,再根据交集定义求得结果. 【详解】因为(){}{}()2log 2102224A x x x x =-<=<-<=,,()()331003x B x x x x ⎧⎫⎧⎫-=<=<=-∞⋃+∞⎨⎬⎨⎬⎩⎭⎩⎭,,,所以()3,4A B ⋂=, 故答案为:()3,4.【点睛】本题考查对数不等式和分式不等式的解法以及交集定义,属于基础题.6.(2020·江苏·模拟预测)已知集合{}|12A x x =-<<,{}|0B x x =>,则A B =______. 【答案】{}|02x x <<【分析】利用集合的交运算即可求解.【详解】由集合{}|12A x x =-<<,{}|0B x x =>, 所以A B ={}|02x x <<. 故答案为:{}|02x x <<【点睛】本题主要考查了集合的交概念以及运算,属于基础题.7.(2020·江苏·吴江盛泽中学模拟预测)已知集合{}0,1,2A =,集合{}2|20B x x =-<,则A B =________.【答案】{}0,1【详解】{}0,1,2A =,{}{}220=02B x x x x =-<<<,所以{}01A B =,. 【点睛】本题考查了交集运算,此题属于简单题.8.(2020·江苏镇江·三模)已知全集U =R ,A ={x |f (x )=ln (x 2﹣1)},B ={x |x 2﹣2x ﹣3<0},则=_____.【答案】{|3x x ≥或1}x <- 【分析】先化简集合,A B ,再求UB ,最后求UAB 得解.【详解】解:A ={x |f (x )=ln (x 2﹣1)}={x |x <﹣1或x >1},B ={x |x 2﹣2x ﹣3<0}={x |﹣1<x <3},则UB ={x |x ≥3或x ≤﹣1},则UA B ={|3x x ≥或1}x <-,故答案为:{|3x x ≥或1}x <-.【点睛】本题主要考查对数型复合函数的定义域的求法,考查一元二次不等式的解法,考查集合的交集和补集运算,意在考查学生对这些知识的理解掌握水平.一、单选题1.(2021·新高考全国11卷)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UA B =( )A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【分析】根据交集、补集的定义可求()U A B ⋂. 【详解】由题设可得{}U1,5,6B =,故(){}U 1,6A B ⋂=,故选:B.2.(2021·新高考全国1卷)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( ) A .{}2 B .{}2,3C .{}3,4D .{}2,3,4【答案】B【分析】利用交集的定义可求A B . 【详解】由题设有{}2,3A B ⋂=, 故选:B .3.(2021·全国·高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( ) A .{}2 B .{}2,3C .{}3,4D .{}2,3,4【答案】B【分析】利用交集的定义可求A B . 【详解】由题设有{}2,3A B ⋂=, 故选:B .4.(2021·全国·高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则( ) A .∅ B .SC .TD .Z【答案】C【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆, 因此,S T T =. 故选:C.5.(2021·全国·高考真题(理))设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则MN =( )A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【答案】B【分析】根据交集定义运算即可【详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.6.(2021·全国·高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则( ) A .{3} B .{1,6}C .{5,6}D .{1,3}【答案】B【分析】根据交集、补集的定义可求.【详解】由题设可得,故,故选:B.一、单选题1.(2022·全国·高三专题练习)已知集合(){}ln 3M x y x ==-,{}xN y y e ==,则() RM N ⋂=( ) A .()3,0- B .(]0,3 C .()0,3 D .[]0,3【答案】B【分析】由题知{}3M x x =>,{}0N y y =>,进而根据补集运算与交集运算求解即可.【详解】解:因为(){}{}ln 33M x y x x x ==-=>,{}{}0xN y y e y y ===>,所以{} R3M x x =≤,所以() RM N ⋂={}(]030,3x x <≤=故选:B2.(2022·全国·高三专题练习)已知集合{}2,1x M y y x ==>,{}22N x y x x =-,则M N ⋃等于( ) A .∅ B .{}2C .[)1,+∞D .[)0,∞+【答案】D【分析】利用指数函数的单调性求出指数函数的值域进而得出集合M ,根据二次根式的意义求出集合N ,利用并集的定义和运算直接计算即可.【详解】{}112222x x y M y y >∴=>=∴=>.{}2200202x x x N x x -≥∴≤≤∴=≤≤.因此[0,)M N =+∞.故选:D3.(2022·全国·高三专题练习)已知集合{}14A x x =≤≤,{}3B x x =≤,则A B =( ) A .{}34x x -≤≤ B .{}33x x -≤≤ C .{}14x x ≤≤ D .{}13x x ≤≤【答案】D【分析】先化简集合B ,再去求A B . 【详解】{}{}333B x x x x =≤=-≤≤则{}{}{}143313A B x x x x x x ⋂=≤≤⋂-≤≤=≤≤ 故选:D4.(2022·全国·高三专题练习)已知集合{}62A x x =-≤≤,{}3,B y y x x A ==-∈,则A B =( ) A .{}01x x ≤≤ B .{}12x x ≤≤ C .{}02x x ≤≤ D .{}13x x ≤≤【答案】B【分析】首先根据定义域求出函数的值域,得集合B ,然后根据集合的交集运算法则求得结果. 【详解】当62x -≤≤时,133x ≤-≤,则{}13B y y =≤≤,所以{}12A B x x ⋂=≤≤. 故选:B.5.(2022·全国·高三专题练习)已知全集U =R ,集合{}2,1x A y y x ==≥,(){}2lg 9B x y x ==-,则图中阴影部分表示的集合为( )A .3,2B .()3,2-C .(]3,2-D .[)3,2-【答案】B【分析】先求出集合A 、B ,由韦恩图分析,求UB A ⋂.【详解】由1≥x ,得22x ≥,则[)2,A =+∞,所以()U,2A =-∞.\由290->x ,得33x -<<,则()3,3B =-,则图中阴影部分表示的集合为()U3,2B A ⋂=-.故选:B.6.(2022·全国·高三专题练习)已知集合{}22A x x =-≤≤,{}2230B x N x x =∈--<,则A B =( ) A .{}12x x -<≤ B .{}21x x -≤< C .{}1,2 D .{}0,1,2【答案】D【分析】先解不含参数的一元二次不等式,进而求出集合B ,然后根据交集的概念即可求出结果. 【详解】解不等式2230x x --<得13x ,又x ∈N ,所以{}0,1,2B =,所以{}0,1,2A B =,故选:D.7.(2022·全国·高三专题练习)已知集合(){}ln 10A x x =-≤,{}20B x x x =-≥,则下列结论一定正确的是( ) A .B A ⊆ B .A B ≠⊂ C .[)1,A B ⋂=+∞D .A B R =【答案】B【分析】由对数函数定义域、一元二次不等式的解法分别求得集合,A B ,进而得到结果. 【详解】{}{}[)011010,1A x x x x =<-≤=≤<=,{}[]010,1B x x =≤≤=,[)0,1A B A ∴==,[]0,1A B B ==,A B ≠∴⊂.故选:B.8.(2022·全国·高三专题练习)已知集合{}2,0x A y y x ==≥,(){}ln 2B x y x ==-,则A B =( ) A .[]1,2 B .()1,2 C .[)1,2 D .(),-∞+∞【答案】C【分析】利用指数函数的性质可化简集合A ,根据对数函数性质得集合B ,然后计算交集.【详解】由已知{}2,0[1,)xA y y x ∞==≥=+,{}ln(2)B x y x ==-(){|20}{|2},2x x x x =->=<=-∞,∴[1,2)A B ⋂=.故选:C .9.(2022·全国·高三专题练习)若集合{}23A x Z x x =∈≤,{}2,B x y x y A ==∈,则A B =( ) A .{}0,1,2 B .{}0,2 C .{}0,1 D .{}1,2【答案】C【分析】先解不等式求出集合A ,再求出集合B ,然后求两集合的交集即可 【详解】解不等式23x x ≤,得03x ≤≤,又x ∈Z ,所以{}0,1,2,3A =, 所以{}132,0,,1,22B x y x y A ⎧⎫==∈=⎨⎬⎩⎭,所以{}0,1A B =.故选:C10.(2022·全国·高三专题练习)已知集合2{|230}A x x x =--≥,{B x y ==,则A B ⋃=( ) A .[)3,+∞B .[)2,+∞C .(][),10,-∞-⋃+∞D .(][),12,-∞-⋃+∞【答案】D【分析】根据一元二次不等式的解法和函数定义域的定义,求得集合,A B ,集合集合并集的运算,即可求解.【详解】由不等式2230x x --≥,解得1x ≤-或3x ≥,所以集合{|1A x x =≤-或3}x ≥, 又由20x -≥,解得2x ≥,所以集合{}2B x x =≥, 所以(][),12,A B ⋃=-∞-⋃+∞. 故选:D .11.(2022·全国·高三专题练习)设全集{}24U x N x =∈-<<,{}0,2A =,则UA 为( )A .{}1,3B .{}0,1,3C .{}1,1,3-D .{}1,0,1,3-【答案】A【分析】根据全集U 求出A 的补集即可.【详解】{}{}24=0,1,2,3U x N x =∈-<<,{}0,2A =,{}U =1,3A ∴. 故选:A.12.(2022·全国·高三专题练习)已知集合{}4A x y x ==-,{}1,2,3,4,5B =,则A B =( ). A .{}2,3 B .{}1,2,3 C .{}1,2,3,4 D .{}2,3,4【答案】C【分析】先化简集合A ,再利用集合的交集运算求解.【详解】因为集合{}{}44A x y x x x ==-=≤,{}1,2,3,4,5B =, 所以A B = {}1,2,3,4, 故选:C13.(2022·全国·高三专题练习)已知集合(){}{}22log 213,40A x x B x x =-≤=-≤,则()A B =R ( ) A .122x x ⎧⎫-≤≤⎨⎬⎩⎭B .122x x ⎧⎫<≤⎨⎬⎩⎭C .{}22x x -≤≤D .∅【答案】A【分析】先求出集合A 和集合A 的补集,集合B ,再求出()A B ⋂R【详解】由22log (21)3log 8x -≤=,得0218x <-≤,解得1922x <≤,所以1922A x x ⎧⎫=<≤⎨⎬⎩⎭,所以12RA x x ⎧=≤⎨⎩或,由240x -≤得22x -≤≤,所以{}22B x x =-≤≤, 所以()A B =R 122x x ⎧⎫-≤≤⎨⎬⎩⎭故选:A14.(2022·全国·高三专题练习)已知集合{1,0,1,2,3,4}A =-,{}2ln 2B x x =<,图中阴影部分为集合M ,则M 中的元素个数为( )A .1B .2C .3D .4【答案】C【分析】由Venn 图得到()AM A B =⋂求解.【详解】如图所示()AM A B =⋂,2ln 2x <,22ln ln e x ∴<,解得e e x -<<且0x ≠,(e,0)(0,e)B ∴=- 又{1,0,1,2,3,4}A =-,{1,1,2}A B ∴=-,(){0,3,4}AA B ∴⋂=,{0,3,4}M ∴=,所以M 中元素的个数为3 故选:C15.(2022·全国·高三专题练习)已知全集2,1,0,1,2U,{}21A x Z x =∈-<<,{}1,0,1B =-,则()U B A ⋂=( )A .∅B .{}0C .{}1D .{}0,1【答案】C【分析】根据集合的运算法则计算. 【详解】{2,1,2}UA =-,(){1}U BA =.故选:C . 二、多选题16.(2022·全国·高三专题练习)已知集合E 是由平面向量组成的集合,若对任意,a b E ∈,()0,1t ∈,均有()1ta t b E +-∈,则称集合E 是“凸”的,则下列集合中是“凸”的有( ).A .(){},e x x y y ≥B .(){},ln x y y x ≥C .(){},210x y x y +-≥D .(){}22,1x y x y +≤【答案】ACD【分析】作出各个选项表示的平面区域,根据给定集合E 是“凸”的意义判断作答. 【详解】设OA a =,OB b =,()1OC ta t b =+-,则C 为线段AB 上一点,因此一个集合E 是“凸”的就是E 表示的平面区域上任意两点的连线上的点仍在该区域内, 四个选项所表示的平面区域如图中阴影所示:A BC D 观察选项A ,B ,C ,D 所对图形知,B 不符合题意,ACD 符合题意. 故选:ACD【点睛】思路点睛:涉及符合某个条件的点构成的平面区域问题,理解不等式变为对应等式时的曲线方程的意义,再作出方程表示的曲线,作图时一定要分清虚实线、准确确定区域.17.(2022·全国·高三专题练习)已知全集U =R ,集合1|02x A x x -⎧⎫=<⎨⎬-⎩⎭,则关于UA 的表达方式正确的有( ) A .][(),12,-∞⋃+∞ B .()(){}210xx x --≥∣ C .102x xx -⎧⎫≥⎨⎬-⎩⎭∣ D .()(),12,-∞+∞【答案】AB【分析】根据补集的概念及分式不等式及其解法即可求解.【详解】由题意得,()(){}()1|0|2101,22x A x x x x x -⎧⎫=<=--<=⎨⎬-⎩⎭,所以][()()(){},12,|210UA x x x ∞∞=-⋃+=--≥,故AB 正确,CD 错误, 故选:AB.18.(2022·全国·高三专题练习)设[]x 表示不大于x 的最大整数,已知集合[]{}22M x x =-<<,{}250N x x x =-<,则( )A .[]lg2002=B .{}02M N x x ⋂=<<C .[]lg 2lg3lg51-+=D .{}15M N x x ⋃=-≤<【答案】ABD【分析】由对数运算可知2lg 2003<<,()lg2lg3lg51lg30,1-+=-∈,由[]x 的定义可知AC 正误;解不等式求得集合,M N ,由交集和并集定义可知BD 正误.【详解】对于A ,1002001000<<,2lg 2003∴<<,[]lg 2002∴=,A 正确;对于C ,()()lg2lg3lg5lg2lg5lg31lg30,1-+=+-=-∈,[]lg2lg3lg50∴-+=,C 错误; 对于BD ,[]{}{}2212M x x x x =-<<=-≤<,{}05N x x =<<,{}02M N x x ∴⋂=<<,{}15M N x x ⋃=-≤<,BD 正确.故选:ABD.19.(2022·全国·高三专题练习)给定数集M ,若对于任意a ,b M ∈,有a bM ,且a b M -∈,则称集合M 为闭集合,则下列说法中不正确的是( ) A .集合{}4,2,0,2,4M =--为闭集合 B .正整数集是闭集合C .集合{|3,}M n n k k Z ==∈为闭集合D .若集合12,A A 为闭集合,则12A A ⋃为闭集合 【答案】ABD【分析】根据集合M 为闭集合的定义,对选项进行逐一判断,可得出答案.【详解】选项A :当集合{}4,2,0,2,4M =--时,2,4M ∈,而246M +=∉,所以集合M 不为闭集合,A 选项错误;选项B :设,a b 是任意的两个正整数,则abM ,当a b <时,-a b 是负数,不属于正整数集,所以正整数集不为闭集合,B 选项错误;选项C :当{}3,M n n k k Z ==∈时,设12123,3,,a k b k k k Z ==∈,则()()12123,3a b k k M a b k k M +=+∈-=-∈,所以集合M 是闭集合,C 选项正确;选项D :设{}{}1232A n n k k Z A n n k k Z ==∈==∈,,,,由C 可知,集合12,A A 为闭集合,()122,3A A ∈⋃,而()()1223A A +∉⋃,故12A A ⋃不为闭集合,D 选项错误. 故选:ABD . 三、填空题20.(2022·全国·高三专题练习)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =___________ 【答案】{1,2}【分析】利用交集的定义进行求解.【详解】因为{1,0,1,2}A =-,{|03}B x x =<<, 所以{1,2}A B =. 故答案为:{1,2}.。

重难点01 集合的概念与运算—2023年高考数学(原卷版)

重难点01 集合的概念与运算—2023年高考数学(原卷版)

重难点01 集合概念与运算1.集合的有关概念(1)集合中元素的三个特性:确定性、互异性、无序性。

(2)集合与元素的关系:若a属于集合A,记作a∈A;若b不属于集合A,记作b∉A。

(3)集合的表示方法:列举法、描述法、图示法。

(4)五个特定的集合:集合非负整数集(或自然数集) 正整数集整数集有理数集实数集符号N N*或N+Z Q R 2.集合间的基本关系表示关系文字语言记法集合间的基本关系子集集合A中任意一个元素都是集合B中的元素A⊆B或B⊇A 真子集集合A是集合B的子集,并且B中至少有一个元素不属于AA⊂B或B⊃A 相等集合A中的每一个元素都是集合B中的元素,集合B中的每一个元素也都是集合A中的元素A⊆B且B⊆A⇔A=B 空集空集是任何集合的子集∅⊆A空集是任何非空集合的真子集∅⊂B且B≠∅3.集合的三种基本运算符号表示图形表示符号语言集合的并集A∪B A∪B={x|x∈A,或x∈B}集合的交集 A ∩ BA ∩B ={x |x ∈A ,且x ∈B }集合的补集若全集为U ,则集合A 的补集为∁U A∁U A ={x |x ∈U ,且x ∉A }4.集合基本运算的性质 (1)A ∩A =A ,A ∩∅=∅。

(2)A ∪A =A ,A ∪∅=A 。

(3)A ∩(∁U A )=∅,A ∪(∁U A )=U ,∁U (∁U A )=A 。

(4)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅。

2023年高考中仍将与一元二次不等式解法、一元一次不等式解法、指数、对数不等式解法结合重点考查集合的交集运算,也可能考查集合的并集、补集运算,依然放在前2题位置,难度为基础题.(建议用时:20分钟)一、单选题1.设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =( )(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}2.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A =( )A. {}1,6B. {}1,7C. {}6,7D. {}1,6,73.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合{}1,3,4,6,7B =,则集合UAB =A .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,8 4.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B A A . [0,2] B .(1,3) C . [1,3) D . (1,4)5.设集合{|(1)(2)0}A=x x x +-<,集合{|13}B x x =<<,则A BA .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<6.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R ,则()A C B =A.{}2B.{}2,3C.{}1,2,3-D.{}1,2,3,4 7.设集合}034|{2<+-=x x x A ,}032|{>-=x x B ,则B A = A.3(3,)2-- B.3(3,)2- C.3(1,)2 D.3(,3)28.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x y -∈A },则B 中所含元素的个数为A .3B .6C .8D .109.已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}UA B =,{1,2}B =,则UAB =A .{3}B .{4}C .{3,4}D .∅10.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 11.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=( )A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D. }{23x x <<12.已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =A .{}|0x x ≤B .{}|24x x ≤≤C . {}|024x x x ≤<>或D .{}|024x x x <≤≥或13.集合{}R 25A x x =∈-≤中的最小整数为_______.14.已知集合A ={x |y =x 2},B ={y |y =x 2},C ={(x ,y )|y =x 2},则A ∩B =________,A ∩C =________。

1、集合的概念与运算(一)

1、集合的概念与运算(一)

诸城繁华中学高三数学文科第一轮复习讲义1 第一章《集合与简易逻辑》§1.1 集合的概念和运算(一)【复习目标】1. 了解集合中元素的三种特性,正确使用集合的符号和语言表达数学问题;2. 分清集合中的两种关系,即元素与集合关系、集合与集合的关系;3. 了解空集的意义,在解题中强化空集的意识。

【重点难点】集合语言的正确、准确理解;熟练进行集合的基本运算【知识回顾】1、基本概念:集合、元素;有限集、无限集;空集、全集;2、集合的表示法: 、 、 .3、集合元素的特征: 、 、 .4、集合与元素的关系: 。

【课前预习】1. 数0与空集φ的关系是 ( )A .0φ∈B .0φ=C .{0}φ=D .0φ∉2. 集合M=8|,,3y y x y Z x ⎧⎫=∈⎨⎬+⎩⎭的元素个数是 ( ) A .2个 B .4个 C .6个 D .8个 3. 用适当符号(,,,,∈∉=刭)填空: π Q ;{3.14} Q ;N N *;{|21,}x x k k Z =+∈ {|21,}x x k k Z=-∈; *{|21,}x x k k N =+∈ *{|21,}x x k k N =-∈. 4. 用描述法表示下列集合(1) 由直线y=x+1上所有点的坐标组成的集合 ;(2) {0,-1,-4,-9,-16,-25,-36,-49} ;5. 设集合M=1{|,}24k x x k Z =+∈,N=1{|,}42k x x k Z =+∈,则 ( ) A .M=N B .M ØN C .M ÙN D .M ⋂N=φ6. 若A ⋂B=B ,,则A B (填,⊆⊇);若A ⋃B=B ,则A B. 【典型例题】例1 已知集合M={|3,}x x n n Z =∈,N={|31,}x x n n Z =+∈,P={|31,}x x n n Z =-∈,且,,a M b N c P ∈∈∈,设d a b c =-+,则A .d M ∈B .d N ∈C .d P ∈D .以上都不正确第1课:§1.1 集合的概念和运算(一)- 2 - 例2 已知集合2{|210,,}x ax x a R x R ++=∈∈(1) 若A 中只有一个元素,求a 的值;(2) 若A 中至多有一个元素,求a 的取值范围。

第1讲 集合的概念与运算(1)

第1讲 集合的概念与运算(1)

第1讲集合的概念与运算一、知识梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+) Z Q R [注意] N为自然数集(即非负整数集),包含0,而N*和N+的含义是一样的,表示正整数集,不包含0.2.集合间的基本关系表示关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A B(或B A)集合相等集合A,B中元素相同A=B集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A或x∈B}A∩B={x|x∈A且x∈B}∁U A={x|x∈U且x∉A}(1)A ∪B =A ⇔B ⊆A ,A ∩B =A ⇔A ⊆B.(2)A ∩A =A ,A ∩∅=∅. (3)A ∪A =A ,A ∪∅=A. (4)A ∩(∁U A)=∅,A ∪(∁U A)=U ,∁U (∁U A)=A.集合的基本概念(1)已知集合A ={1,2,3,4,5},B ={(x ,y)|x ∈A 且y ∈A 且x -y ∈A},则B 中所含元素的个数为( )A .3B .6C .8D .10(2)已知集合A ={m +2,2m 2+m},若3∈A ,则m 的值为________.【解析】 (1)由x ∈A ,y ∈A ,x -y ∈A ,得x -y =1或x -y =2或x -y =3或x -y =4,所以集合B ={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},所以集合B 中有10个元素.(2)因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),当m =-32时,m +2=12≠3,符合题意.所以m =-32.【答案】 (1)D (2)-32与集合中元素有关问题的求解策略1.已知集合A ={x|x ∈Z ,且32-x ∈Z },则集合A 中的元素个数为( )A .2B .3C .4D .5解析:选C.因为32-x∈Z ,所以2-x 的取值有-3,-1,1,3,又因为x ∈Z ,所以x 的值分别为5,3,1,-1,故集合A 中的元素个数为4.2.设a ,b ∈R ,集合{1,a +b ,a}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2解析:选C.因为{1,a +b ,a}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,b a ,b ,a ≠0,所以a +b =0,则b a =-1,所以a =-1,b =1.所以b -a =2.3.设集合A ={0,1,2,3},B ={x|-x ∈A ,1-x ∉A},则集合B 中元素的个数为( ) A .1 B .2 C .3D .4解析:选A.若x ∈B ,则-x ∈A ,故x 只可能是0,-1,-2,-3,当0∈B 时,1-0=1∈A ; 当-1∈B 时,1-(-1)=2∈A ; 当-2∈B 时,1-(-2)=3∈A ; 当-3∈B 时,1-(-3)=4∉A ,所以B ={-3},故集合B 中元素的个数为1.集合间的基本关系(1)已知集合A ={x|x 2-3x +2=0,x ∈R },B ={x|0<x<5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)已知集合A ={x|-1<x <3},B ={x|-m<x<m},若B ⊆A ,则m 的取值范围为______. 【解析】 (1)由题意可得,A ={1,2},B ={1,2,3,4},又因为A ⊆C ⊆B ,所以C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4}.(2)当m ≤0时,B =∅,显然B ⊆A. 当m>0时,因为A ={x|-1<x<3}. 当B ⊆A 时,在数轴上标出两集合,如图,所以⎩⎨⎧-m ≥-1,m ≤3,-m<m.所以0<m ≤1.综上所述,m 的取值范围为(-∞,1]. 【答案】 (1)D (2)(-∞,1][提醒] 题目中若有条件B ⊆A ,则应分B =∅和B ≠∅两种情况进行讨论.1.已知集合A ={x|x 2-2x>0},B ={x|-5<x<5},则( ) A .A ∩B =∅ B .A ∪B =R C .B ⊆AD .A ⊆B解析:选B.因为A ={x|x>2或x<0},因此A ∪B ={x|x>2或x<0}∪{x|-5<x<5}=R .故选B. 2.已知集合A ={x|x 2-2x -3≤0,x ∈N *},则集合A 的真子集的个数为( ) A .7 B .8 C .15D .16解析:选A.法一:A={x|-1≤x≤3,x∈N*}={1,2,3},其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3}共7个.法二:因为集合A中有3个元素,所以其真子集的个数为23-1=7(个).3.设集合A={x|1<x<2},B={x|x<a},若A∩B=A,则a的取值范围是( )A.{a|a≤2} B.{a|a≤1}C.{a|a≥1} D.{a|a≥2}解析:选D.由A∩B=A,可得A⊆B,又A={x|1<x<2},B={x|x<a},所以a≥2.故选D.4.已知集合M={0,1,2,3,4},N={1,3,5},则集合M∪N的子集的个数为________.解析:由已知得M∪N={0,1,2,3,4,5},所以M∪N的子集有26=64(个).答案:64集合的基本运算1.已知集合U={-1,0,1},A={x|x=m2,m∈U},则∁U A=________.解析:因为A={x|x=m2,m∈U}={0,1},所以∁U A={-1}.答案:{-1}2.已知集合A={x|(x-1)(x-3)<0},B={x|2<x<4},则A∩B=________,A∪B=________,(∁R A)∪B=________.解析:由已知得A={x|1<x<3},B={x|2<x<4},所以A∩B={x|2<x<3},A∪B={x|1<x<4},(∁R A)∪B={x|x≤1或x>2}.答案:(2,3) (1,4) (-∞,1]∪(2,+∞)3.已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值是________.解析:易得M={a}.因为M∩N=N,所以N⊆M,所以N=∅或N=M,所以a=0或a=±1.答案:0或1或-1角度一集合的运算(1)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6} B.{1,7}C.{6,7} D.{1,6,7}(2)设全集U=R,集合A={x|-3<x<1},B={x|x+1≥0},则∁U(A∪B)=( )A.{x|x≤-3或x≥1} B.{x|x<-1或x≥3}C.{x|x≤3} D.{x|x≤-3}【解析】(1)依题意得∁U A={1,6,7},故B∩∁U A={6,7}.故选C.(2)因为B={x|x≥-1},A={x|-3<x<1},所以A∪B={x|x>-3},所以∁U(A∪B)={x|x≤-3}.故选D.【答案】(1)C (2)D集合基本运算的求解策略角度二利用集合的运算求参数(1)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是( )A.-1<a≤2 B.a>2C.a≥-1 D.a>-1(2)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( )A.0 B.1C.2 D.4【解析】(1)因为A∩B≠∅,所以集合A,B有公共元素,作出数轴,如图所示,易知a>-1.(2)根据并集的概念,可知{a,a2}={4,16},故a=4.【答案】(1)D (2)D根据集合的运算结果求参数的值或取值范围的方法(1)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到.(2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.(3)根据求解结果来确定参数的值或取值范围.1.)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( ) A.{2} B.{2,3}C.{-1,2,3} D.{1,2,3,4}解析:选D.通解:因为A∩C={1,2},B={2,3,4},所以(A∩C)∪B={1,2,3,4}.故选D.优解:因为B={2,3,4},所以(A∩C)∪B中一定含有2,3,4三个元素,故排除A,B,C,选D.2.)已知集合A={-1,0,1,2},B={x|x2-1≥0},则下图中阴影部分所表示的集合为( )A.{-1} B.{0}C.{-1,0} D.{-1,0,1}解析:选B.阴影部分对应的集合为A∩∁R B,B={x|x2-1≥0}={x|x≤-1或x≥1},则∁R B={x|-1<x<1},则A∩∁R B={0},故选B.3.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:选D.因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,解得m≥2或m≤-2.作业1.已知全集U=R,集合A={x|x<-1或x>1},则∁U A=( )A.(-∞,-1)∪(1,+∞) B.(-∞,-1]∪[1,+∞)C.(-1,1) D.[-1,1]解析:选D.因为全集U=R,集合A={x|x<-1或x>1},所以∁U A={x|-1≤x≤1},故选D.2.)设集合A={x∈Z|x>4},B={x|x2<100},则A∩B的元素个数为( )A.3 B.4 C.5 D.6解析:选C.因为B={x|-10<x<10},所以A∩B={x∈Z|4<x<10}={5,6,7,8,9}.所以A∩B 的元素个数为5,故选C.3.已知集合A={0},B={-1,0,1},若A⊆C⊆B,则符合条件的集合C的个数为( ) A.1 B.2 C.4 D.8解析:选C.由题意得,含有元素0且是集合B的子集的集合有{0},{0,-1},{0,1},{0,-1,1},即符合条件的集合C共有4个.故选C.4.已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图所示的阴影部分表示的集合是( )A.(-2,1) B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1] D.[0,1]解析:选C.因为集合A={x|x(x+2)<0},B={x||x|≤1},所以A={x|-2<x<0},B={x|-1≤x≤1},所以A∪B=(-2,1],A∩B=[-1,0),所以阴影部分表示的集合为∁A∪B(A∩B)=(-2,-1)∪[0,1],故选C.5.)已知全集U={1,2,3,4,5},集合A={1,3,4},B={3,5},则A∩B=______,∁U A=______.解析:因为全集U={1,2,3,4,5},集合A={1,3,4},B={3,5},所以A∩B={3},则∁U A ={2,5}.答案:{3} {2,5}6.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=________.解析:由于A∪B={x|x≤0或x≥1},结合数轴,∁U(A∪B)={x|0<x<1}.答案:{x|0<x<1}7.已知集合A={1,2,3,4},集合B={x|x≤a,a∈R},A∪B=(-∞,5],则a的值是________.解析:因为集合A={1,2,3,4},集合B={x|x≤a,a∈R},A∪B=(-∞,5],所以a=5.答案:5。

集合的概念及其基本运算PPT教学课件

集合的概念及其基本运算PPT教学课件

在描述法表示集合时,描 述不清或描述错误导致集 合不确定。应该准确描述 元素的性质,确保集合的 确定性。
在进行集合运算时,忽略 空集的情况。空集是任何 集合的子集,因此在进行 交集、并集等运算时需要 考虑空集的情况。
在表示集合时,要确保元 素的互异性,即同一个元 素在一个集合中只能出现 一次。
在进行集合运算时,要遵 循运算规则,确保结果的 准确性。例如,在求交集 时要找两个集合中共有的 元素;在求并集时要将两 个集合中的所有元素合并 在一起并去掉重复元素。
偏序关系与等价关系
等价关系定义
设R是集合A上的一个二元关系 ,如果R满足自反性、对称性和 传递性,则称R是A上的一个等 价关系。
区别
偏序关系不满足对称性而等价关 系满足对称性;偏序关系具有方 向性而等价关系不具有方向性。
01
偏序关系定义
设R是集合A上的一个二元关系 ,如果R满足自反性、反对称性 和传递性,则称R是A上的一个 偏序关系。
说明。
感谢您的观看
THANKS
04
集合的应用举例
在数学领域的应用
数的分类
自然数集、整数集、有理数集、实数集等都 是数学中常见的集合,通过对这些集合的研 究,可以深入了解数的性质和分类。
函数定义域和值域
函数中的定义域和值域都是集合,通过对这 些集合的运算和研究,可以了解函数的性质 和特点。
方程和不等式的解集
方程和不等式的解集也是集合,通过对这些 集合的运算和研究,可以了解方程和不等式 的解的性质和特点。
02
03
联系
偏序关系和等价关系都是集合上 的二元关系,都满足自反性和传 递性。
04
序偶与笛卡尔积
序偶定义:由两个元素a和b按一定顺序排列成的二元 组称为序偶,记作(a,b)。序偶中的元素具有顺序性,即 (a,b)和(b,a)表示不同的序偶。 笛卡尔积的性质

集合的概念及运算

集合的概念及运算

2, a+b, 0}, 则 a2006+b2007= 1 . 1.若{a, b , 1}={ a a 2.若集合 M={-1, 1, 2}, N={y | y=x2, x∈M}, 则 M∩N 是 ( B ) A. {1, 2, 4} B. { 1 } C. {1, 4} D. x+1 3.若集合 M={12, a}, 集合P={x | x -2 ≤0, x∈Z} 且 M∩P={0}, 记 M∪P=S, 则集合 S 的真子集个数是 ( D) A. 8 B. 7 C. 16 D. 15 4.已知集合 S, M, N, P 如图所示, 则图中阴影部分表示的集合 S 是( D) A. M∩(N∪P) B. M∩Cs(N∩P) P M N C. M∪Cs(N∩P) D. M∩Cs(N∪P)
一、集合的基本概念及表示方法
1.集合与元素 某些指定的对象集在一起就成为一个集合 , 简称集, 通常 用大写字母A, B, C, … 表示. 集合中的每个对象叫做这个集合 的元素, 通常用小写字母a, b, c, … 表示. 2.集合的分类 集合按元素多少可分为: 有限集(元素个数有限)、无限集 (元素个数无限)、空集(不含任何元素); 也可按元素的属性分, 如: 数集(元素是数), 点集(元素是点)等. 3.集合中元素的性质 对于一个给定的集合, 它的元素具有确定性、互异性、无 序性. 4.集合的表示方法 ①列举法;②描述法;③图示法;④区间法;⑤字母法.
三、集合之间的运算性质
1.交集的运算性质 A∩B=B∩A, A∩BA, A∩BB, A∩A=A, A∩=, AB A∩B=A. 2.并集的运算性质 A∪B=B∪A, A∪BA, A∪BB, A∪A=A, A∪=A, AB A∪B=B. 3.补集的运算的性质 设S为全集, AS, 则: Cs(CsA)=A, Cs=S, CsS= A∩(CsA)=, A∪(CsA)=S, Cs (A∩B)=(CsA)∪(CsB), Cs(A∪B)=(CsA)∩(CsB).

01、集合的概念与运算

01、集合的概念与运算

01、集合的概念与运算一、基础知识1、集合中元素与集合之间的关系:文字描述为属于和不属于的关系,符号表示为 ∈ 和 ∉(1)集合里元素的特性:确定性、互异性、无序性(2)集合的分类 有限集:含有有限个元素的集合 (单元素集:只有一个元素的集合叫做单元素集。

) 无限集:含有无限个元素的集合空 集:不含任何元素的集合 记作Φ,如:}01|{2=+∈x R x =Φ2、常见集合的符号:自然数集:N ,正整数集: N *(或N +),整数集:Z ,有理数集:Q ,实数集:R.3、集合的表示方法:1 , 2 , 3 ,列举法:把集合中的元一一列举出来,写在大括号内表示集合的方法。

描述法:把集合中的元的公共属性描述出来,写在大括号内表示集合的方法,格 式:{x ∈A| P (x )} (或{x | P (x )} 含义:在集合A 中满足条件P (x )的x 的集合注意两点:集合中的元具有性质p ;具有性质p 的元都在集合中。

图示法:文氏图:用一条封闭的曲线的内部来表示一个集合的方法。

(还有其他的表示方法,如数轴表示法:用数轴里的点或范围来表示一个集合的方法; 及坐标平面表示法:用坐标平面里的点或图形来表示一个集合的方法等)点评:(1)注意抓住集合中元素的3个性质,对互异性要注意检验;(2)集合的表示方法中描述法是重、难点,要注意几种常见的集合:2{|230}A x x x =+-=;}12|{2++==x x y y B ;}12|),{(2++==x x y y x C ;2{|230}E x x x =+->。

4、集合间的基本关系:(1)相等关系:_________A B B A ⊆⊆⇔且(2)子集:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,那么集合A 叫做集合B 的子集,记作A B ⊆(或B A ⊇).(3)真子集:如果A 是B 的子集,并且B 中至少有一个元素不属于A ,那么集合A 叫做集合B 的真子集,A 是B 的真子集,记作A ⊂B 或B ⊃A注意:不含任何元素的集合叫做 ,记作 ,并规定空集是任何集合的子集,是任何非空集合的 点评:(1)子集的定义也是证明子集的唯一的方法,即任给00,,x A x B ∈⇒∈则A B ⊆。

01第一讲:集合的概念与运算

01第一讲:集合的概念与运算

第一讲:集合的概念与运算一、知识梳理:1. 集合的含义与表示:(1) 一般地,我们把研究对象统称为__________,把一些元素组成的总体叫做____________(简称______).(2) 集合中元素的三个性质:____________,__________,___________. (3)集合中元素与集合的关系分为____________和____________两种,分别用__________和_________表示. (4) 几种常用集合的表示法:数集 自然数集正整数集整数集有理数集 实数集 表示(5) 集合的三种表示法:___________,____________,_______________. 2. 集合间的基本关系:(1)B ⊆的含义是:__________________________________________. (2)若集合B A ⊆且A B ⊆,我们就说____________________________. (3)若集合B A ⊆且B A ≠,则称__________________记着___________. 即若B A ⊆,但存在B x ∈0,且A x ∉0。

(4)不含任何元素的集合叫做________,记为_______,并规定:空集是任何集合的子集,空集是任何非空集合的真子集。

3.集合的基本运算:(1)B A ⋃的含义是__________________________________________. (2)B A ⋂的含义是_______ _____________________________. (3)如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为__________________,通常记作________________.(4)对于一个集合A ,由全集U 中___________________的所有元素组成的集合称为集合A 相对于全集U 的补集,记作________________. 即________________________________=C U 。

集合的概念及运算

集合的概念及运算
有限集合的子集个数公式 设有限集合A中有n个元素,则A的子集个数有:
C0n+C1n+C2n+…+Cnn=2n个,其中真子集的个数为2n-1个,非空子集个数为2n-1个,非空真子集个数为2n-2个 对任意两个有限集合A、B有
card(A∪B)=card(A)+card(B)-card(A∩B)
01
延伸·拓展
【解题回顾】本题解答过程中,通过不断实施各种数学语言间的等价转换脱去集合符号和抽象函数的“外衣”,找出本质的数量关系是关键之所在.
4.已知函数f(x)=x2+px+q,且集合A={x|x=f(x)}, B={x|f[f(x)]=x} (1)求证AB; (2)如果A={-1,3},求B
(4)集合S,M,N,P如图所示,则图中阴影部分所 表示的集合是( ) (A) M∩(N∪P) (B) M∩CS(N∩P) (C) M∪CS(N∩P) (D) M∩CS(N∪P)
D
B
(5)集合 其中 ,把满足上述条件的一对有序整数(x , y) 作为一个点,这样的点的个数是( ) (A)9 (B)14 (C)15 (D)21
二、元素与集合、集合与集合之间的关系
2.集合与集合之间的关系 (1)包含关系 ①如果x∈A,则x∈B,则集合A是集合B的子集,记为AB或BA 显然A A,Φ A
(3)真子集关系 对于集合A、B,如果A∈B,并且A≠B,我们就说集合A是集合B的真子集 显然,空集是任何非空集合的真子集
4
补集:一般地设S是一个集合,A是S的一个子集(即A∈S),由S中所有不属于A的元素组成的集合,叫做集A在全集S中的补集(或余集).
三、集合之间的运算性质
1.交集的运算性质 A∩B=B∩A,A∩BA,A∩BB,A∩A=A,A∩Φ=Φ,ABA∩B=A 2.并集的运算性质 A∪B=B∪A,A∪BA,A∪BB,A∪A=A,A∪Φ=A,ABA∪B=B 3.补集的运算的性质 CS(CSA)=A,CSΦ=S,A∩CSA=Φ, A∪CSA=S CS(A∩B)=(CSA)∪(CSB), CS(A∪B)=(CSA)∩(CSB)

第1讲 集合的概念与运算学生(新高一培优十六讲系列)

第1讲 集合的概念与运算学生(新高一培优十六讲系列)

第1讲 集合的概念与运算[玩前必备]1.元素与集合的概念(1)集合:研究的对象统称为元素,把一些元素组成的总体叫作集合. (2)集合元素的特性:确定性、互异性. 2.元素与集合的关系(1)空集:不含任何元素的集合,记作∅.(2)非空集合:①有限集:含有有限个元素的集合. ②无限集:含有无限个元素的集合. 4.常用数集的表示符号 把有限集合中的所有元素都列举出来,写在花括号“{__}”内表示这个集合的方法. 6.描述法(1)集合的特征性质如果在集合I 中,属于集合A 的任意一个元素x 都具有性质p (x ),而不属于集合A 的元素都不具有性质p (x ),则性质p (x )叫做集合A 的一个特征性质. (2)特征性质描述法集合A 可以用它的特征性质p (x )描述为{x ∈I |p(x )},它表示集合A 是由集合I 中具有性质p (x )的所有元素构成的.这种表示集合的方法,叫做特征性质描述法,简称描述法. 7.集合间的基本关系A B(或B A)8.集合的运算(1)如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U表示;[玩转典例]题型一集合的基本概念例1(大纲全国,1) 设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6例2 已知集合A={m+2,2m2+m},若3∈A,则m的值为________.[玩转跟踪]1.(新课标全国,1)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B 中所含元素的个数为()A.3B.6C.8D.102.已知集合A是由a-2,2a2+5a,12三个元素组成的,且-3∈A,求实数a.3.(探究与创新)设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1).求证: (1)若2∈A ,则A 中必还有另外两个元素; (2)集合A 不可能是单元素集.题型二 集合的表示方法例3 下面三个集合:A ={x |y =x 2+1};B ={y |y =x 2+1};C ={(x ,y )|y =x 2+1}. 问:(1)它们是不是相同的集合? (2)它们各自的含义是什么?例4 已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .[玩转跟踪]1.已知x ,y 为非零实数,则集合M =⎩⎨⎧m |m =x |x |+y |y |+⎭⎬⎫xy |xy |为( )A.{0,3}B.{1,3}C.{-1,3}D.{1,-3}2.(探究与创新)已知集合A ={x |ax 2-3x -4=0,x ∈R }: (1)若A 中有两个元素,求实数a 的取值范围; (2)若A 中至多有一个元素,求实数a 的取值范围.题型三 集合间的基本关系例5 (2013·江苏,4)集合{-1,0,1}共有________个子集.例6 设集合⎭⎬⎫⎩⎨⎧∈+==Z k k x x M ,412|,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,421|,则( ) A .N M =B .NM C .MN D .=N M I例7 已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A . 求实数m 的取值范围.[玩转跟踪]1.设M 为非空的数集,M ⊆{1,2,3},且M 中至少含有一个奇数元素,则这样的集合M 共有( ) A .6个B .5个C .4个D .3个2.(2016·山东北镇中学、莱芜一中、德州一中4月联考)定义集合A -B ={x |x ∈A 且x ∉B },若集合M ={1,2,3,4,5},集合N ={x |x =2k -1,k ∈Z },则集合M -N 的子集个数为( ) A.2 B.3C.4D.无数个3.已有集合A ={x |x 2-4x +3=0},B ={x |mx -3=0},且B ⊆A ,求实数m 的集合.题型四 集合的基本运算例8 (2016·全国Ⅰ,1)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,3 例9 (2015·四川,1)设集合A ={x |(x +1)(x -2)<0},集合B ={x |1<x <3},则A ∪B =( ) A .{x |-1<x <3} B .{x |-1<x <1} C .{x |1<x <2} D .{x |2<x <3} 例10 (1)设全集U =R ,A ={x |x (x +3)<0},B ={x |x <-1},则图中阴影部分表示的集合为( )A .{x |-3<x <-1}B .{x |-3<x <0}C .{x |-1≤x <0}D .{x |x <-3}(2).(2011·江西,2)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x -2x ≤0,则A ∩B =( )A.{x |-1≤x <0}B.{x |0<x ≤1}∅C.{x |0≤x ≤2}D.{x |0≤x ≤1}例11 已知A ={x |2a ≤x ≤a +3},B ={x |x <-1,或x >5},若A ∩B =∅,求实数a 的取值范围.[玩转跟踪]1.(2016·安徽安庆市第二次模拟)若集合P ={x ||x |<3,且x ∈Z },Q ={x |x (x -3)≤0,且x ∈N },则P ∩Q 等于( )A.{0,1,2}B.{1,2,3}C.{1,2}D.{0,1,2,3}2.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( )A.(M ∩P )∩SB.(M ∩P )∪SC.(M ∩P )∩(∁I S )D.(M ∩P )∪(∁I S )3.(探究与创新)已知集合A ={x |-2≤x ≤5},B ={x |2a ≤x ≤a +3},若A ∪B =A ,求实数a 的取值范围.[玩转练习]1.已知集合A ={y |y =|x |-1,x ∈R },B ={x |x ≥2},则下列结论正确的是( ) A .-3∈A B .3∉B C .A ∩B =BD .A ∪B =B2.设集合M ={-1,1},N =⎩⎨⎧⎭⎬⎫x ⎪⎪1x<2,则下列结论中正确的是( ) A .N M B .M N C .N ∩M =∅D .M ∪N =R3.(2018·全国Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为() A .9 B .8 C .5 D .44.(2018·济南模拟)设全集U =R ,集合A ={x |x -1≤0},集合B ={x |x 2-x -6<0},则右图中阴影部分表示的集合为( )A .{x |x <3}B .{x |-3<x ≤1}C .{x |x <2}D .{x |-2<x ≤1}5.(2018·潍坊模拟)设集合A =N ,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x x -3≤0,则A ∩B 等于( )A .[0,3)B .{1,2}C .{0,1,2}D .{0,1,2,3}6.(2017·全国Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B 等于( ) A .{1,-3} B .{1,0} C .{1,3} D .{1,5}7.已知集合A ={x |-1<x <0},B ={x |x ≤a },若A ⊆B ,则a 的取值范围为( ) A .(-∞,0] B .[0,+∞) C .(-∞,0)D .(0,+∞)8.满足{a ,b }∪B ={a ,b ,c }的集合B 的个数是________.9.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a 的值为________. 10.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,则满足条件的实数x 组成的集合为________.11.已知全集I ={2,3,a 2+2a -3},若A ={b,2},∁I A ={5},求实数a ,b .12.已知A ={x |x 2-3x +2=0},B ={x |ax -2=0},且A ∪B =A ,求实数a 组成的集合C .13.设全集为R ,集合A ={x |3≤x <6},B ={x |2<x <9}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值构成的集合.14.已知集合A ={x |0<x -a ≤5},B ={x |-a2<x ≤6}.(1)若A∩B=A,求a的取值范围;(2)若A∪B=A,求a的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学第一轮总复习
第一章集合、不等式的解法与简易逻辑
一、本章复习建议:解不等式是高中数学的主要工具之一,建议将第六章“不等
式”拆开,把不等式的解法安排在第一章.
二、考试内容:
(1) 集合、子集、补集、交集、并集.
(2)不等式的解法.含绝对值的不等式.
(3)逻辑联结词.四种命题.充分条件和必要条件.
三、考试要求:
(1)理解集合、子集、补订、交集、交集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.
(2)掌握简单不等式的解法.
(3)理解逻辑联结词"或"、"且"、"非"的含义.理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.
集合的概念和运算(1)
一、知识回顾:
1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.
2.集合的表示法:列举法、描述法、图形表示法.
3.集合元素的特征:确定性、互异性、无序性.
4.集合运算:交、并、补.
{|,}{|}{,}
A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:
,,,,
,;,;,.
U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C
(2) 等价关系:U A B A B A A B B A
B U ⊆⇔=⇔=⇔=
C (3) 集合的运算律:
交换律:.;A B B A A B B A ==
结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ=== 等幂律:.,A A A A A A ==
求补律:A ∩ U A =φ A ∪ U A =U U U =φ U φ=U U ( U A )=A 反演律: U (A ∩B)= ( U A )∪( U B ) U (A ∪B)= ( U A )∩( U B ) 6. 有限集的元素个数
定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.
基本公式:
(1)()()()()(2)()()()()
()()()
()
card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+
(3) card ( U A )= card(U)- card(A) (4)设有限集合A, card(A)=n,则
(ⅰ)A 的子集个数为n 2; (ⅱ)A 的真子集个数为12-n ;
(ⅲ)A 的非空子集个数为12-n ;(ⅳ)A 的非空真子集个数为22-n .
(5)设有限集合A 、B 、C , card(A)=n ,card(B)=m,m<n,则
(ⅰ) 若A C B ⊆⊆,则C 的个数为m n -2;
(ⅱ) 若A C B ⊂⊆,则C 的个数为12--m n ; (ⅲ) 若A C B ⊆⊂,则C 的个数为12--m n ; (ⅳ) 若A C B ⊂⊂,则C 的个数为22--m n .
二、基础训练
1.(04年全国Ⅰ理)设A 、B 、I 均为非空集合,且满足I B A ⊆⊆,则下列各式
中错误的是
( )
(A )I B A C I =⋃)( (B) I B C A C I I =⋃)()( (C) Φ=⋂)(B C A I (D) B C B C A C I I I =⋂)()(
2.(05全国卷Ⅰ)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(C)
(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)321S C S C S C I I I (D )123I I S C S C S ⊆⋃()
3.(05湖北卷)设P 、Q 为两个非空实数集合,定义集合 P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是 ( B ) A .9 B .8
C .7
D .6
4.设集合A 和B 都是坐标平面上点集{(x,y )︳x ∈R,y ∈R},映射f: A →B 把集合A 中的元素(x,y)映射成集合B 中的元素(x+y,x-y),则在映射f 下,象(2,1)的原象是 ( )
(A)(3,1) (B) (21,23) (C)(2
1,23-) (D)(1,3) f(P)={y ︱y=f(x),x ∈P} 5.(04年北京理)函数⎩⎨
⎧∈-∈=M
x x P x x
x f )(,其中P 、M 为实数集R 的两个非空子
集,又规定f(P)={y ︱y=f(x),x ∈P}, f(M)={y ︱y=f(x),x ∈M}.给出下列四个判断,其中正确判断有 ( ) ①若P ∩M=Φ则f(P)∩f(M)=Φ②若P ∩M ≠Φ则f(P)∩f(M)≠Φ ③若P ∪M=R 则f(P)∪f(M)=R ④若P ∪M ≠R 则f(P)∪f(M)≠R (A)1个 (B) 2个 (C) 3个 (D) 4个 三、例题分析
例1.已知集合A={}xy y x y x ,,+-,B={}0,,2222y x y x -+,A=B ,求x ,y 的值。

例2.已知集使A={}0)1()1(222>++++-a a y a a y y ,
B=⎭
⎬⎫

⎨⎧
≤≤+-=30,2
52
1
2x x x y y ,A ∩B=φ,求实数a 的取值范围.

3.已知函数
y=3x+1
的定义域为
A={}d c b ,,,3,值域为
B={}2324,7,3,5220a a a a a ++++求a+b+c+d.
四、 课堂练习
1.设集合M={a,b},则满足M ∪N ⊂{a,b,c}的集合N 的个数为 ( )
A .1
B .4
C .7
D .8
2.设S 为全集,S A B ⊂⊂,则下列结论中不正确的是
( )
A .
B
C A C S S ⊂ B .B B A = C .φ=)(B C A S
D .φ=B A C S )( (04山东)
3.已知集合A={x|x 2-5x+6=0},B={x|mx+1=0},且A ∪B=A ,则实数m 组成的集合___________.
4.设集合P={a,b,c,d},Q={A|A P},则集合Q 的元素个数__________________. 5.定义A -B={x|x ∈A 且x ∉B},若M={1,2,3,4,5},N={2,3,6},则N -M 等于 ( )
A .M
B .N
C .{1,4,5}
D .{6}。

相关文档
最新文档