SPSS统计简单效应分析语法语句
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在SPSS里实现被试间设计简单效应分析的方法
作者: Highway 发布时间: 2008-7-7
简单效应(simple effect)分析通常是在作方差分析时存在交互效应的情况下的进一步分析。需要在SPSS中编写syntax实现。
比如:
MANO y BY x1(1 2) x2(1 3)
/DESI
/DESI=x1 WITHIN x2(1)
x1 WITHIN x2(2)
x1 WITHIN x2(3)
上述只是一个简单的完全随机设计,若x1与x2存在交互作用而进行的进一步分析(即简单效应分析)。同时你可以再加一个design:
/DESI=x2 WITHIN x1(1)
x2 WITHIN x1(2).
===========说明=============
因变量为Y,自变量1为X1,(两水平),自变量2为X2(三水平),
DESI即是DESIGN,表示实验设计效应类型计算,/DESI=X1 WITHIN X2(1)表示在自变量X2水平1层面上考察X1的两个水平之间是否存在显著性差异.余类推.
下面那句/DESI=X2 WITHIN X1(1)表示在自变量X1水平1的层面上考察自变量X2的三个水平之间是否存在显著性差异.
被试内、被试间、混合实验设计简单效应分析
作者: Highway 发布时间: 2008-7-7
简单效应(simple effect)分析
简单效应(simple effect)分析通常是在作方差分析时存在交互效应的情况下的进一步分析。你
需要在SPSS中编写syntax实现。
一、完全随机因素实验中简单效应得分析程序
假如一个两因素随机实验中,A因素有两个水平、B因素有三个水平,因变量是Y,检验B
因素在A因素的两个水平上的简单效应分析。
TWO-FACTOR RANDOMIZED EXPERIMENT
SIMPLE EFFECTS.
DA TA LIST FREE /A B Y.
BEGIN DATA
1 3 4
1 1 2
1 1 3
2 2 5
2 1 6
1 2 8
2 1 9
1 2 8
2 3 10
2 3 11
2 3 9
2 3 8
END DATA.
MANOV A y BY A(1,2) B(1,3)
/DESIGN
/DESIGN=A WITHIN B(1)
A WITHIN B(2)
A WITHIN B(3).
若A与B存在交互作用而进行的进一步分析(即简单效应分析)。同时你可以再加一个design:
/DESIGN=B WITHIN A(1)
B WITHIN A(2).
自编数据试试
y A B
4.00 1.00 3.00
2.00 1.00 1.00
3.00 1.00 1.00
5.00 2.00 2.00
6.00 2.00 1.00
8.00 1.00 2.00
9.00 2.00 1.00
8.00 1.00 2.00
10.00 2.00 3.00
11.00 2.00 3.00
9.00 2.00 3.00
8.00 1.00 2.00
当然,你可也直接贴下述语句至syntax编辑框:
应会输出下述结果:
The default error term in MANOV A has been changed from WITHIN CELLS to WITHIN+RESIDUAL. Note that these are the same for all full factorial designs.
* * * * * * A n a l y s i s o f V a r i a n c e * * * * * *
12 cases accepted.
0 cases rejected because of out-of-range factor values.
0 cases rejected because of missing data.
6 non-empty cells.
3 designs will be processed.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
* * * * * * A n a l y s i s o f V a r i a n c e -- design 1 * * * * * *
Tests of Significance for Y using UNIQUE sums of squares
Source of Variation SS DF MS F Sig of F
WITHIN CELLS 10.00 6 1.67
X1 15.00 1 15.00 9.00 .024
X2 6.46 2 3.23 1.94 .224
X1 BY X2 33.00 2 16.50 9.90 .013
(Model) 80.92 5 16.18 9.71 .008
(Total) 90.92 11 8.27
R-Squared = .890
Adjusted R-Squared = .798
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
* * * * * * A n a l y s i s o f V a r i a n c e -- design 2 * * * * * *
Tests of Significance for Y using UNIQUE sums of squares
Source of Variation SS DF MS F Sig of F
WITHIN+RESIDUAL 16.46 8 2.06
X1 WITHIN X2(1) 25.00 1 25.00 12.15 .008
X1 WITHIN X2(2) 8.15 1 8.15 3.96 .082 X1 WITHIN X2(3) 43.74 1 43.74 21.26 .002
(Model) 74.46 3 24.82 12.06 .002 (Total) 90.92 11 8.27
R-Squared = .819
Adjusted R-Squared = .751
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -