2016年甘肃省武威市中考数学试题及答案(正)-武威
2024年甘肃省武威市中考数学试题(含答案)
武威市2024年初中毕业升学暨高中阶段学校招生考试数学试卷考生注意:本试卷满分为150分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.下列各数中,比2-小的数是()A.1- B.4- C.4 D.1【答案】B【解析】【分析】本题主要考查了有理数比较大小,根据正数大于0,0大于负数,两个负数比较大小,绝对值越大其值越小进行求解即可.【详解】解;∵442211-=>-=>-=,∴42114-<-<-<<,∴四个数中比2-小的数是4-,故选:B .2.如图所示,该几何体的主视图是()A. B. C. D.【答案】C【解析】【分析】本题考查了简单组合体的三视图,根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看得到是图形是:故选:C .3.若55A ∠=︒,则A ∠的补角为()A.35︒ B.45︒ C.115︒ D.125︒【答案】D【解析】【分析】根据和为180︒的两个角互为补角,计算即可.本题考查了补角,熟练掌握定义是解题的关键.【详解】55A ∠=︒。
则A ∠的补角为18055125︒-︒=︒.故选:D .4.计算:4222a b a b a b -=--()A.2B.2a b -C.22a b -D.2a b a b --【答案】A【解析】【分析】本题主要考查了同分母分式减法计算,熟知相关计算法则是解题的关键.【详解】解:()42422222222a b a b a b a b a a b a bb --===-----,故选:A .5.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,60ABD ∠=︒,2AB =,则AC 的长为()A.6B.5C.4D.3【答案】C【解析】【分析】根据矩形ABCD 的性质,得12OA OB OC OD AC ====,结合60ABD ∠=︒,得到AOB 是等边三角形,结合2AB =,得到12OA OB AB AC ===,解得即可.本题考查了矩形的性质,等边三角形的判定和性质,熟练掌握矩形的性质是解题的关键.【详解】根据矩形ABCD 的性质,得12OA OB OC OD AC ====,∵60ABD ∠=︒,∴AOB 是等边三角形,∵2AB =,∴122OA OB AB AC ====,解得4AC =.故选C .6.如图,点A ,B ,C 在O 上,AC OB ⊥,垂足为D ,若35A ∠=︒,则C ∠的度数是()A.20︒B.25︒C.30︒D.35︒【答案】A【解析】【分析】根据35A ∠=︒得到70O ∠=︒,根据AC OB ⊥得到90CDO ∠=︒,根据直角三角形的两个锐角互余,计算即可.本题考查了圆周角定理,直角三角形的性质,熟练掌握圆周角定理,直角三角形的性质是解题的关键.【详解】∵35A ∠=︒,∴70O ∠=︒,∵AC OB ⊥,∴90CDO ∠=︒,∴9020C O ∠=︒-∠=︒.故选C .7.如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x 尺,长桌的长为y 尺,则y 与x 的关系可以表示为()A.3y x =B.4y x =C.31y x =+D.41y x =+【答案】B【解析】【分析】本题主要考查了列函数关系式,观察可知,小桌的长是小桌宽的两倍,则小桌的长是2x ,再根据长桌的长等于小桌的长加上2倍的小桌的宽列出对应的函数关系式即可.【详解】解:由题意可得,小桌的长是小桌宽的两倍,则小桌的长是2x ,∴24y x x x x =++=,故选:B .8.近年来,我国重视农村电子商务的发展.下面的统计图反映了2016—2023年中国农村网络零售额情况.根据统计图提供的信息,下列结论错误的是()A.2023年中国农村网络零售额最高B.2016年中国农村网络零售额最低C.2016—2023年,中国农村网络零售额持续增加D.从2020年开始,中国农村网络零售额突破20000亿元【答案】D【解析】【分析】根据统计图提供信息解答即可.本题考查了统计图的应用,熟练掌握统计图的意义是解题的关键.【详解】A.根据统计图信息,得到124491367917083107946205945<<<<<<21700<024900,故2023年中国农村网络零售额最高,正确,不符合题意;B.根据题意,得124491367917083107946205945<<<<<<21700<024900,故2016年中国农村网络零售额最低,正确,不符合题意;C.根据题意,得124491367917083107946205945<<<<<<21700<024900,故2016—2023年,中国农村网络零售额持续增加,正确,不符合题意;D.从2021年开始,中国农村网络零售额突破20000亿元,原说法错误,符合题意;故选D .9.敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A 区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为()15,16,那么有序数对记为()12,17对应的田地面积为()A.一亩八十步B.一亩二十步C.半亩七十八步D.半亩八十四步【答案】D【解析】【分析】根据()1516,可得,横从上面从右向左看,纵从右边自下而上看,解答即可.本题考查了坐标与位置的应用,熟练掌握坐标与位置的应用是解题的关键.【详解】根据()1516,可得,横从上面从右向左看,纵从右边自下而上看,故()12,17对应的是半亩八十四步,故选D .10.如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.5D.22【答案】C【解析】【分析】结合图象,得到当0x =时,4PO AO ==,当点P 运动到点B 时,2PO BO ==,根据菱形的性质,得90AOB BOC ∠=∠=︒,继而得到2225AB BC OA OB ==+=P 运动到BC 中点时,PO 的长为152BC =,解得即可.本题考查了菱形的性质,图象信息题,勾股定理,直角三角形的性质,熟练掌握菱形的性质,勾股定理,直角三角形的性质是解题的关键.【详解】结合图象,得到当0x =时,4PO AO ==,当点P 运动到点B 时,2PO BO ==,根据菱形的性质,得90AOB BOC ∠=∠=︒,故225AB BC OA OB ==+当点P 运动到BC 中点时,PO 的长为152BC =故选C .二、填空题:本大题共6小题,每小题4分,共24分.11.因式分解:228x -=________.【答案】()()222x x +-【解析】【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】()2222822x x -=-()()222x x =+-.故答案为:()()222x x +-.12.已知一次函数24y x =-+,当自变量2x >时,函数y 的值可以是________(写出一个合理的值即可).【答案】2-(答案不唯一)【解析】【分析】根据2x >,选择3x =,此时2342y =-⨯+=-,解得即可.本题考查了函数值的计算,正确选择自变量是解题的关键.【详解】根据2x >,选择3x =,此时2342y =-⨯+=-,故答案为:2-.13.定义一种新运算*,规定运算法则为:*n m n m mn =-(m ,n 均为整数,且0m ≠).例:32*32232=-⨯=,则(2)*2-=________.【答案】8【解析】【分析】根据定义,得()()2(2)*22228-=--⨯-=,解得即可.本题考查了实数新定义计算,正确理解定义是解题的关键.【详解】根据定义,得()()2(2)*22228-=--⨯-=,故答案为:8.14.围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点________的位置,则所得的对弈图是轴对称图形.(填写A ,B ,C ,D 中的一处即可,A ,B ,C ,D 位于棋盘的格点上)【答案】A##C【解析】【分析】根据轴对称图形的定义解答即可.本题考查了轴对称图形,熟练掌握定义是解题的关键.【详解】根据轴对称图形的定义,发现放在B ,D 处不能构成轴对称图形,放在A 或C 处可以,故答案为:A 或C .15.如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8mDE =的矩形,则可判定货车________完全停到车棚内(填“能”或“不能”).【答案】能【解析】【分析】本题主要考查了二次函数的实际应用,根据题意求出当2x =时,y 的值,若此时y 的值大于1.8,则货车能完全停到车棚内,反之,不能,据此求解即可.【详解】解:∵4m CD =,()62.68B ,,∴642-=,在20.020.3 1.6y x x =-++中,当2x =时,20.0220.32 1.6 2.12y =-⨯+⨯+=,∵2.12 1.8>,∴可判定货车能完全停到车棚内,故答案为:能.16.甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC 和扇形OAD 有相同的圆心O ,且圆心角100O ∠=︒,若120OA =cm ,60OB =cm ,则阴影部分的面积是______2cm .(结果用π表示)【答案】3000π【解析】【分析】根据扇形面积公式计算即可.本题考查了扇形面积公式,熟练掌握公式是解题的关键.【详解】∵圆心角100O ∠=︒,120OA =cm ,60OB =cm ,∴阴影部分的面积是2210012010060360360ππ⨯⨯⨯⨯-3000π=2cm 故答案为:3000π.三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17..【答案】0【解析】【分析】根据二次根式的混合运算计算即可.本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.【详解】0===.18.解不等式组:()223122x x x x⎧-<+⎪⎨+<⎪⎩【答案】173x <<【解析】【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:()223122x x x x ⎧-<+⎪⎨+<⎪⎩①②解不等式①得:7x <,解不等式②得:13x >,∴不等式组的解集为173x <<.19.先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b =-.【答案】2a b +,3【解析】【分析】本题主要考查了整式的化简求值,先根据平方差公式和完全平方公式去小括号,然后合并同类项,再根据多项式除以单项式的计算法则化简,最后代值计算即可.【详解】解:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦()()22224442a ab b a b b⎡⎤=++--÷⎣⎦()22224442a ab b a b b=++-+÷()2422ab b b=+÷2a b =+,当2a =,1b =-时,原式()2213=⨯+-=.20.马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;②延长MO 交O 于点C ;即点A ,B ,C 将O 的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O 的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB ,AC ,BC ,若O 的半径为2cm ,则ABC 的周长为______cm .【答案】(1)见解析(2)【解析】【分析】(1)根据尺规作图的基本步骤解答即可;(2)连接AM ,设,AB OM 的交点为D ,根据两圆的圆心线垂直平分公共弦,得到AD OM ⊥,根据O的半径为2cm ,MC 是直径,ABC 是等边三角形,计算即可.本题考查了尺规作图,圆的性质,等边三角形的性质,熟练掌握作图和圆的性质是解题的关键.【小问1详解】根据基本作图的步骤,作图如下:则点A ,B ,C 是求作的O 的圆周三等分点.【小问2详解】连接AM ,设,AB OM 的交点为D ,根据两圆的圆心线垂直平分公共弦,得到AD OM ⊥,∵O 的半径为2cm ,MC 是直径,ABC 是等边三角形,∴90CAM ∠=︒,60,4cm CMA MC ∠=︒=,∴)sin sin 604cm AC MC CMA =∠=︒⨯=,∴ABC 的周长为)cm AB BC AC ++=,故答案为:21.在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.【答案】(1)712(2)这个游戏规则对甲乙双方不公平,理由见解析【解析】【分析】本题主要考查了树状图法或列表法求解概率,游戏的公平性:(1)先画出树状图得到所有等可能性的结果数,再找到两球上的数字之和为奇数的结果数,最后利用概率计算公式求解即可;(2)同(1)求出乙获胜的概率即可得到结论.【小问1详解】解:画树状图如下:由树状图可知,一共有12种等可能性的结果数,其中两球上的数字之和为奇数的结果数有7种,∴甲获胜的概率为712;【小问2详解】解:这个游戏规则对甲乙双方不公平,理由如下:由(1)中的树状图可知,两球上的数字之和为偶数的结果数有5种,∴乙获胜的概率为512,∵571212<,∴甲获胜的概率大于乙获胜的概率,∴这个游戏规则对甲乙双方不公平.22.习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH 垂直于地面,测角仪CD ,EF 在AH 两侧, 1.6m CD EF ==,点C 与点E 相距182m (点C ,H ,E 在同一条直线上),在D 处测得简尖顶点A 的仰角为45︒,在F 处测得筒尖顶点A 的仰角为53︒.求风电塔筒AH 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)【答案】105.6m【解析】【分析】本题主要考查了解直角三角形的实际应用,矩形的性质与判定,过点D 作DG AH ⊥于G ,连接FG ,则四边形CDGH 是矩形,可得 1.6m GH CD ==,DG CH =,再证明四边形EFGH 是矩形,则FG HE =,90HGF ∠=︒,进一步证明D G F 、、三点共线,得到182m DF =;设m AG x =,解Rt ADG 得到m DG x =;解Rt AFG △得到3m 4FG x ≈;则31824x x +=,解得104x =,即104m AG =,则105.6m AH AG GH =+=.【详解】解:如图所示,过点D 作DG AH ⊥于G ,连接FG ,则四边形CDGH 是矩形,∴ 1.6m GH CD ==,DG CH =,∵ 1.6m CD EF ==,∴GH EF =,由题意可得GH CE EF CE ⊥,⊥,∴GH EF ,∴四边形EFGH 是矩形,∴FG HE =,90HGF ∠=︒,∴180DGH FGH +=︒∠∠,∴D G F 、、三点共线,∴182m DF DG FG CH HE CE =+=+==;设m AG x =,在Rt ADG 中,tan AG ADG DG∠=,∴tan 45xDG︒=∴m DG x =;在Rt AFG △中,tan AG AFG FG ∠=,∴tan 53x FG︒=∴3m 4FG x ≈;∴31824x x +=,解得104x =,∴104m AG =,∴105.6m AH AG GH =+=,∴风电塔筒AH 的高度约为105.6m .四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图:信息二:选手乙五轮比赛部分成绩:其中三个得分分别是9.0,8.9,8.3;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:选手统计量甲乙丙平均数m 9.18.9中位数9.29.0n根据以上信息,回答下列问题:(1)写出表中m ,n 的值:m =_______,n =_______;(2)从甲、丙两位选手的得分折线图中可知,选手_______发挥的稳定性更好(填“甲”或“丙”);(3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.【答案】(1)9.1;9.1(2)甲(3)应该推荐甲选手,理由见解析【解析】【分析】本题主要考查了平均数,众数,方差与稳定性之间的关系:(1)根据平均数与众数的定义求解即可;(2)根据统计图可知,甲的成绩的波动比乙的成绩的波动小,则选手甲发挥的稳定性更好;(3)从平均成绩,中位数和稳定性等角度出发进行描述即可.【小问1详解】解:由题意得,9.28.89.38.79.59.15m ++++==;把丙的五次成绩按照从低到高排列为:8.38.49.19.39.4,,,,,∴丙成绩的中位数为9.1分,即9.1n =;故答案为:9.1;9.1;【小问2详解】解:由统计图可知,甲的成绩的波动比乙的成绩的波动小,则选手甲发挥的稳定性更好,故答案为:甲;【小问3详解】解:应该推荐甲选手,理由如下:甲的中位数和平均数都比乙的大,且甲的成绩稳定性比乙好,∴应该推荐甲选手.24.如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0k y x x=>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0k y x x =>的图象于C ,D 两点.(1)求一次函数y ax b =+和反比例函数k y x=的表达式;(2)连接AD ,求ACD 的面积.【答案】(1)一次函数y ax b =+的解析式为132y x =+;反比例函数()0k y x x =>的解析式为()80y x x =>;(2)6【解析】【分析】本题主要考查了一次函数与反比例函数综合:(1)先根据一次函数图象的平移规律3y ax b ax =+=+,再把点A 的坐标分别代入对应的一次函数解析式和反比例函数解析式中,利用待定系数法求解即可;(2)先分别求出C 、D 的坐标,进而求出CD 的长,再根据三角形面积计算公式求解即可.【小问1详解】解:∵将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,∴3y ax b ax =+=+,把()24A ,代入3y ax =+中得:234a +=,解得12a =,∴一次函数y axb =+的解析式为132y x =+;把()24A ,代入()0k y x x =>中得:()402k x =>,解得8k =,∴反比例函数()0k y x x =>的解析式为()80y x x=>;【小问2详解】解:∵BC x ∥轴,()02B ,,∴点C 和点D 的纵坐标都为2,在132y x =+中,当1322y x =+=时,2x =-,即()22-,C ;在()80y x x =>中,当82y x ==时,4x =,即()42D ,;∴()426CD =--=,∵()24A ,,∴()()11642622ACD A C S CD y y =⋅-=⨯⨯-=△.25.如图,AB 是O 的直径, BCBD =,点E 在AD 的延长线上,且ADC AEB ∠=∠.(1)求证:BE 是O 的切线;(2)当O 的半径为2,3BC =时,求tan AEB ∠的值.【答案】(1)见解析(2)7tan 3AEB ∠=【解析】【分析】(1)连接BD ,OC OD =,证明OB 垂直平分CD ,得出90AFD ∠=︒,证明CD BE ∥,得出90ABE AFD ∠=∠=︒,说明AB BE ⊥,即可证明结论;(2)根据AB 是O 的直径,得出90ACB ∠=︒,根据勾股定理求出AC ===,根据三角函数定义求出tan 3AC ABC BC ∠==,证明AEB ABC ∠=∠,得出7tan tan 3AEB ABC ∠=∠=即可.【小问1详解】证明:连接BD ,OC OD =,如图所示:∵ BCBD =,∴BC BD =,∵OC OD =,∴点O 、B 在CD 的垂直平分线上,∴OB 垂直平分CD ,∴90AFD ∠=︒,∵ADC AEB ∠=∠,∴CD BE ∥,∴90ABE AFD ∠=∠=︒,∴AB BE ⊥,∵AB 是O 的直径,∴BE 是O 的切线;【小问2详解】解:∵O 的半径为2,∴224AB =⨯=,∵AB 是O 的直径,∴90ACB ∠=︒,∵3BC =,∴AC ===∴7tan 3AC ABC BC ∠==,∵ AC AC=,∴ADC ABC ∠=∠,∵AEB ADC ∠=∠,∴AEB ABC ∠=∠,∴7tan tan 3AEB ABC ∠=∠=.【点睛】本题主要考查了切线的判定,勾股定理,求一个角的正切值,圆周角定理,垂直平分线的判定,平行线的判定和性质,解题的关键是作出辅助线,熟练掌握相关的判定和性质.26.【模型建立】(1)如图1,已知ABE 和BCD △,AB BC ⊥,AB BC =,CD BD ⊥,AE BD ⊥.用等式写出线段AE ,DE ,CD 的数量关系,并说明理由.【模型应用】(2)如图2,在正方形ABCD 中,点E ,F 分别在对角线BD 和边CD 上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形ABCD 中,点E 在对角线BD 上,点F 在边CD 的延长线上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.【答案】(1)DE CD AE +=,理由见详解,(2)AD DF =+,理由见详解,(3)AD DF =-,理由见详解【解析】【分析】(1)直接证明ABE BCD △≌△,即可证明;(2)过E 点作EM AD ⊥于点M ,过E 点作EN CD ⊥于点N ,先证明Rt Rt AEM FEN ≌,可得AM NF =,结合等腰直角三角形的性质可得:22MD DN DE ==,NF ND DF MD DF =-=-,即有22NF AM AD MD AD DE ==-=-,22NF DE DF =-,进而可得2222AD DE DE DF -=-,即可证;(3)过A 点作AH BD ⊥于点H ,过F 点作FG BD ⊥,交BD 的延长线于点G ,先证明HAE GEF ≌,再结合等腰直角三角形的性质,即可证明.【详解】(1)DE CD AE +=,理由如下:∵CD BD ⊥,AE BD ⊥,AB BC ⊥,∴90ABC D AEB ∠=∠=∠=︒,∴90ABE CBD C CBD ∠+∠=∠+∠=︒,∴ABE C ∠=∠,∵AB BC =,∴ABE BCD △≌△,∴BE CD =,AE BD =,∴DE BD BE AE CD =-=-,∴DE CD AE +=;(2)AD DF =+,理由如下:过E 点作EM AD ⊥于点M ,过E 点作EN CD ⊥于点N ,如图,∵四边形ABCD 是正方形,BD 是正方形的对角线,∴45ADB CDB ∠=∠=︒,BD 平分ADC ∠,90ADC ∠=︒,BD ==,即DE BD BE BE =-=-,∵EN CD ⊥,EM AD ⊥,∴EM EN =,∵AE EF =,∴Rt Rt AEM FEN ≌,∴AM NF =,∵EM EN =,EN CD ⊥,EM AD ⊥,90ADC ∠=︒,∴四边形EMDN 是正方形,∴ED 是正方形EMDN 对角线,MD ND =,∴22MD DN DE ==,NF ND DF MD DF =-=-,∴22NF AM AD MD AD DE ==-=-,22NF DE DF =-,∴2222AD DE DE DF -=-,即AD DF =-,∵DE BE =-,∴)AD BE DF =--,即有AD DF =+;(3)AD DF =-,理由见详解,过A 点作AH BD ⊥于点H ,过F 点作FG BD ⊥,交BD 的延长线于点G ,如图,∵AH BD ⊥,FG BD ⊥,AE EF ⊥,∴90AHE G AEF ∠=∠=∠=︒,∴90AEH HAE AEH FEG ∠+∠=∠+∠=︒,∴HAE FEG ∠=∠,又∵AE AF =,∴HAE GEF ≌,∴HE FG =,∵在正方形ABCD 中,45BDC ∠=︒,∴45FDG BDC ∠=∠=︒,∴45DFG ∠=︒,∴DFG 是等腰直角三角形,∴22FG DF =,∴2HE FG DF ==,∵45ADB ∠=︒,AH HD ⊥,∴ADH 是等腰直角三角形,∴22HD AD =,∴2222DE HD HE AD DF =-=-,∴2222BD BE DE AD DF -==-,∵BD D =,2222BE AD DF-=-,∴AD DF=-.【点睛】本题主要考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,角平分线的性质等知识,题目难度中等,作出合理的辅助线,灵活证明三角形的全等,并准确表示出各个边之间的数量关系,是解答本题的关键.27.如图1,抛物线()2y a x h k=-+交x轴于O,()4,0A两点,顶点为(2,B.点C为OB的中点.(1)求抛物线2()y a x h k=-+的表达式;(2)过点C作CH OA⊥,垂足为H,交抛物线于点E.求线段CE的长.(3)点D为线段OA上一动点(O点除外),在OC右侧作平行四边形OCFD.①如图2,当点F落在抛物线上时,求点F的坐标;②如图3,连接BD,BF,求BD BF+的最小值.【答案】(1)22y x=-+(2)32(3)①(2F②【解析】【分析】(1)根据顶点为(2,B.设抛物线2(2)y a x=-+()4,0A代入解析式,计算求解即可;(2)根据顶点为(2,B.点C为OB的中点,得到(C,当1x=时,33322y=-+=,得到1,2E ⎛ ⎝⎭.结合CH OA ⊥,垂足为H ,得到33322CE =-=的长.(3)①根据题意,得(C ,结合四边形OCFD 是平行四边形,设(F m ,结合点F 落在抛物线232m =-+,解得即可;②过点B 作BN y ⊥轴于点N ,作点D 关于直线BN 的对称点G ,过点G 作GH y ⊥轴于点H ,连接DG ,CH ,FG ,利用平行四边形的判定和性质,三角形不等式,勾股定理,矩形判定和性质,计算解答即可.【小问1详解】∵抛物线的顶点坐标为(2,B .设抛物线2(2)y a x =-+把()4,0A 代入解析式,得()2420a -+=,解得32a =-,∴()22222y x x =--+=-+.【小问2详解】∵顶点为(2,B .点C 为OB 的中点,∴(C ,∵CH OA ⊥,∴CH y ∥轴,∴E 的横坐标为1,设()1,E m ,当1x =时,33322m =-+=,∴331,2E ⎛⎫ ⎪ ⎪⎝⎭.∴22CE =-=.【小问3详解】①根据题意,得(C ,∵四边形OCFD 是平行四边形,∴点C ,点F 的纵坐标相同,设(F m ,∵点F 落在抛物线上,232m =-+,解得12m =+,22m =-(舍去);故(2F +.②过点B 作BN y ⊥轴于点N ,作点D 关于直线BN 的对称点G ,过点G 作GH y ⊥轴于点H ,连接DG ,CH ,FG ,则四边形ODGH 是矩形,∴,OD HG OD HG = ,∵四边形OCFD 是平行四边形,∴,OD CF OD CF = ,∴,GH CF GH CF = ,∴四边形CFGH 是平行四边形,∴FG CH =,∵BG F BF G +≥,故当B G F 、、三点共线时,BG BF +取得最小值,∵BG BD =,∴BG BF +的最小值,就是BD BF +的最小值,且最小值就是CH ,延长FC 交y 轴于点M ,∵OD CF ∥,∴90HMC HOD ∠=∠=︒,∵(C ,∴1,CM OM ==,∵(2,B ,∴ON NH ==,∴HM ON NH OM =+-=∴HC ===故BD BF +的最小值是.【点睛】本题考查了二次函数待定系数法,中点坐标公式,平行四边形的判定和性质,矩形的判定和性质,勾股定理,轴对称,三角形不等式求线段和的最小值,熟练掌握平行四边形的性质,轴对称,三角形不等式求线段和的最小值是解题的关键.。
甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市2016年中考数学试题(图片版,含答案)
武威市2016年初中毕业、高中招生考试数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.二、填空题:本大题共8小题,每小题3分,共24分. 11. 2(2)(2)x x +- 12. 5240a b 13.9214.1315. 1216.6 17. 6 18. 2(1)n +或n 2+2n +1三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤. 19.(4分)解:原式=22-(3-1)+2×32+1 2分 =4-3+1+3+1 3分 =6 4分 20.(4分)解:(1)△A 1B 1C 1为所作; 2分 (2)A 2(-3,-1),B 2(0,-2),C 2(-2,-4). 4分21.(6分)(1)解:把x =1代入方程 220x mx m ++-=得 120m m ++-=,解得 m =12. 2分 题号 1 2 3 4 5 6 7 8 9 10 答案ACCBADDABByxO ABCB 1C 1A 1(2)证明:△=24(2)m m -- 3分2(2)4m =-+ 4分∵ 2(2)m -≥0,∴ 2(2)4m -+>0, 即 △>0, 5分 ∴ 此方程有两个不相等的实数根. 6分 22.(6分)解:(1) 过点B 作BF ⊥AC 于点F . 1分 ∴ AF =AC -BD =0.4(米), 2分 ∴ AB =A F ÷sin20°≈1.17(米); 3分 (2)∵ ∠MON =90°+20°=110°, 4分∴ 1100.82218045MN⨯π==π(米). 6分 23.(6分)解:(1)画树状图:方法一: 方法二:2分所以点M (x, y )共有9种可能:(0,-1),(0,-2),(0,0),(1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0); 4分 (2)∵ 只有点(1,-2),(2,-1)在函数2y x=-的图象上, 5分 ∴ 点M (x ,y )在函数2y x=-的图象上的概率为29. 6分四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.(注:解法合理,答案正确均可得分)(0, 0) (0, -1) (0, -2) (1, -1) (1, -2) (1, 0) (2, -2)(2, -1)1 0 2-1-2 0 乙袋 甲袋 结果(2, 0)24.(7分)解:(1)105÷35%=300(人).答:共调查了300名学生; 1分 (2)n =300×30%=90(人),m =300-105-90-45=60(人).故答案为:60, 90;(每空2分) 5分 (3)60300×360°=72°. 答:B 所在扇形的圆心角是72°. 7分 25.(7分)解:(1)把点A (m ,1)代入 14y x =-+,得m =3, 2分 则 A (3,1), ∴ k =3×1=3; 3分把点B (1,n )代入2ky x=,得出n =3; 4分 (2)如图,由图象可知:① 当1<x <3时,1y >2y ; 5分 ② 当x =1或x =3时,1y =2y ; 6分 (注:x 的两个值各占0.5分)③ 当x >3时,1y <2y . 7分26.(8分)(1)证明:∵ EC ∥AB ,∴ ∠C =∠ABF . 1分 又 ∵ ∠EDA =∠ABF ,∴ ∠C =∠EDA . 2分 ∴ AD ∥BC , 3分 ∴ 四边形ABCD 是平行四边形. 4分 (2)证明:∵ EC ∥AB , ∴OA OB OEOD=. 5分又 ∵ AD ∥BC ,∴OF OBOA OD=, 6分∴OA OFOE OA=, 7分∴2OA OE OF=⋅.8分27.(8分)(1)证明:如图①,连接AD,∵在△ABC中,AB=AC,BD=DC,∴AD⊥BC1分∴∠ADB=90°,∴AB是⊙O的直径;2分(2)DE与⊙O的相切.3分证明:如图②,连接OD,∵AO=BO,BD=DC,∴OD是△BAC的中位线,∴OD∥AC,4分又∵DE⊥AC∴DE⊥OD,∴DE为⊙O的切线;5分(3)解:如图③,∵AO=3,∴AB=6,又∵AB=AC,∠BAC =60°,∴△ABC是等边三角形,∴AD=33,6分∵AC∙DE=CD∙AD,∴6∙DE=3×33,7分解得DE =332.8分28.(10分)解:(1)设直线AB的解析式为y kx m=+,1分把A(3,0),B(0,3)代入,得330mk m=⎧⎨+=⎩, 解得13km=-⎧⎨=⎩图②ABCDEOABCDEO图③图①ABCDEO∴ 直线AB 的解析式为 3y x =-+ 2分 把A (3,0),B (0,3) 代入 2y x bx c =-++中,得 9303b c c -++=⎧⎨=⎩ , 解得23b c =⎧⎨=⎩ ∴ 抛物线的解析式为 223y x x =-++. 3分 (2)∵ OA =OB =3,∠BOA =90°,∴ ∠EAF =45°. 设运动时间为t 秒,则AF =2t ,AE =3-t . 4分 (i )当∠EF A =90°时,如图①所示: 在Rt △EAF 中,cos 45°22AF AE ==,即2232t t =-. 解得 t =1. 5分(ii) 当∠FEA =90°时,如图②所示:在Rt △AEF 中,cos 45°22AE AF ==, 即3222t t -=. 解得 t =32. 综上所述,当t =1或t =32时,△AEF 是直角三角形. 6分 (3)存在. 如图③,过点P 作PN ∥y 轴,交直线AB 于点N ,交x 轴于点D. 过点B 作BC ⊥PN 交PN 于点C .设点P (x ,223x x -++),则点N (x ,3x -+)∴ PN =2223(3)3x x x x x -++--+=-+. 7分 ∴ ABP BPN APN S S S ∆∆∆=+=1122PN BC PN AD ⋅+⋅ 8分=2211(3)(3)(3)22x x x x x x -+⋅+-+- =23327228x ⎛⎫--+ ⎪⎝⎭ 9分图①OyAxBEF图②yOA xBE FyOAxBPN C D当32x 时,△ABP的面积最大,最大面积为278.此时点P(32,154).10分。
甘肃省武威市中考数学试卷
甘肃省武威市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.(3分)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×1063.(3分)4的平方根是()A.16 B.2 C.±2 D.4.(3分)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.5.(3分)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=06.(3分)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135° D.145°7.(3分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<08.(3分)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.09.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=57010.(3分)如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)分解因式:x2﹣2x+1=.12.(3分)估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)13.(3分)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.14.(3分)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=°.15.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是.16.(3分)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.(3分)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC 的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)18.(3分)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.20.(4分)解不等式组,并写出该不等式组的最大整数解.21.(6分)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).22.(6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)23.(6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表根据所给信息,解答下列问题:(1)m=,n=;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(7分)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.26.(8分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.27.(8分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.28.(10分)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.2017年甘肃省武威市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)(2017•白银)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)(2017•白银)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于393000有6位,所以可以确定n=6﹣1=5.【解答】解:393000=3.93×105.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2017•白银)4的平方根是()A.16 B.2 C.±2 D.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.(3分)(2017•白银)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:空心圆柱由上向下看,看到的是一个圆环,并且大小圆都是实心的.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.5.(3分)(2017•白银)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=0【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x2,故A不正确;(B)原式=x6,故B不正确;(C)原式=x5,故C不正确;(D)原式=x2﹣x2=0,故D正确;故选(D)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(3分)(2017•白银)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135° D.145°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+45°=135°,∵直尺的两边互相平行,∴∠2=∠3=135°.故选C.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.(3分)(2017•白银)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、三象限,∴k>0,又该直线与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时图象在一、二、三象限.8.(3分)(2017•白银)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c ﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=a+b﹣c+c﹣a﹣b=0.故选D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.9.(3分)(2017•白银)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.10.(3分)(2017•白银)如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.【分析】根据运动速度乘以时间,可得PQ的长,根据线段的和差,可得CP的长,根据勾股定理,可得答案.【解答】解:点P运动2.5秒时P点运动了5cm,CP=8﹣5=3cm,由勾股定理,得PQ==3cm,故选:B.【点评】本题考查了动点函数图象,利用勾股定理是解题关键.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2017•白银)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.12.(3分)(2017•白银)估计与0.5的大小关系是:>0.5.(填“>”、“=”、“<”)【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【解答】解:∵﹣0.5=﹣=,∵﹣2>0,∴>0.答:>0.5.【点评】此题主要考查了两个实数的大小,其中比较两个实数的大小,可以采用作差法、取近似值法等.13.(3分)(2017•白银)如果m是最大的负整数,n是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为0.【分析】根据题意求出m、n、c的值,然后代入原式即可求出答案.【解答】解:由题意可知:m=﹣1,n=0,c=1∴原式=(﹣1)2015+2016×0+12017=0,故答案为:0【点评】本题考查代数式求值,解题的关键根据题意求出m、n、c的值,本题属于基础题型.14.(3分)(2017•白银)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=58°.【分析】由题意可知△OAB是等腰三角形,利用等腰三角形的性质求出∠AOB,再利用圆周角定理确定∠C.【解答】解:如图,连接OB,∵OA=OB,∴△AOB是等腰三角形,∴∠OAB=∠OBA,∵∠OAB=32°,∴∠OAB=∠OAB=32°,∴∠AOB=116°,∴∠C=58°.故答案为58.【点评】本题是利用圆周角定理解题的典型题目,题目难度不大,正确添加辅助线是解题关键,在解决和圆有关的题目时往往要添加圆的半径.15.(3分)(2017•白银)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是k≤5且k≠1.【分析】根据一元二次方程有实数根可得k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解之即可.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.【点评】本题主要考查一元二次方程根的判别式和定义,熟练掌握根的判别式与方程的根之间的关系是解题的关键.16.(3分)(2017•白银)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.【分析】根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即折痕的长.【解答】解:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴=,∴=,∴GH=cm.故答案为:.【点评】本题考查了折叠的性质和相似三角形的性质和判定,折叠是一种对称变换,它属于轴对称,本题的关键是明确折痕是所折线段的垂直平分线,利用三角形相似来解决.17.(3分)(2017•白银)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)【分析】先根据ACB=90°,AC=1,AB=2,得到∠ABC=30°,进而得出∠A=60°,再根据AC=1,即可得到弧CD的长.【解答】解:∵∠ACB=90°,AC=1,AB=2,∴∠ABC=30°,∴∠A=60°,又∵AC=1,∴弧CD的长为=,故答案为:.【点评】本题主要考查了弧长公式的运用,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).18.(3分)(2017•白银)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为8,第2017个图形的周长为6053.【分析】根据已知图形得出每增加一个小梯形其周长就增加3,据此可得答案.【解答】解:∵第1个图形的周长为2+3=5,第2个图形的周长为2+3×2=8,第3个图形的周长为2+3×3=11,…∴第2017个图形的周长为2+3×2017=6053,故答案为:8,6053.【点评】本题主要考查图形的变化类,根据已知图形得出每增加一个小梯形其周长就增加3是解题的关键.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)(2017•白银)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.【解答】解:﹣3tan30°+(π﹣4)0==.【点评】解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.20.(4分)(2017•白银)解不等式组,并写出该不等式组的最大整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解≤1得:x≤3,解1﹣x<2得:x>﹣1,则不等式组的解集是:﹣1<x≤3.∴该不等式组的最大整数解为x=3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)(2017•白银)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【点评】本题考查复杂作图、三角形的中位线的定义、线段的垂直平分线的性质等知识,解题的关键是掌握基本作图,属于中考常考题型.22.(6分)(2017•白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【分析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【解答】解:过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(6分)(2017•白银)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.【分析】(1)根据题意列出表格,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案.【解答】解:(1)根据题意列表如下:可见,两数和共有12种等可能结果;(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为=;刘凯获胜的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)(2017•白银)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表根据所给信息,解答下列问题:(1)m=70,n=0.2;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在80≤x<90分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)本次调查的总人数为10÷0.05=200,则m=200×0.35=70,n=40÷200=0.2,故答案为:70,0.2;(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x<90,∴这200名学生成绩的中位数会落在80≤x<90分数段,故答案为:80≤x<90;(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.25.(7分)(2017•白银)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.【分析】(1)根据P(,8),可得反比例函数解析式,根据P(,8),Q(4,1)两点可得一次函数解析式;(2)根据中心对称的性质,可得点P关于原点的对称点P'的坐标;(3)过点P′作P′D⊥x轴,垂足为D,构造直角三角形,依据P'D以及AP'的长,即可得到∠P'AO的正弦值.【解答】解:(1)∵点P在反比例函数的图象上,∴把点P(,8)代入可得:k2=4,∴反比例函数的表达式为,∴Q (4,1).把P(,8),Q (4,1)分别代入y=k1x+b中,得,解得,∴一次函数的表达式为y=﹣2x+9;(2)点P关于原点的对称点P'的坐标为(,﹣8);(3)过点P′作P′D⊥x轴,垂足为D.∵P′(,﹣8),∴OD=,P′D=8,∵点A在y=﹣2x+9的图象上,∴点A(,0),即OA=,∴DA=5,∴P′A=,∴sin∠P′AD=,∴sin∠P′AO=.【点评】本题主要考查了反比例函数与一次函数的交点问题,中心对称以及解直角三角形,解决问题的关键是掌握待定系数法求函数解析式.26.(8分)(2017•白银)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.27.(8分)(2017•白银)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【分析】(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、坐标与图形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10分)(2017•白银)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;(2)可设N(n,0),则可用n表示出△ABN的面积,由NM∥AC,可求得,则可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n 的值,即可求得N点的坐标;(3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在Rt△AOB和Rt△AOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系.【解答】解:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,∴二次函数的表达式为y=﹣x2+x+4;(2)设点N的坐标为(n,0)(﹣2<n<8),则BN=n+2,CN=8﹣n.∵B(﹣2,0),C(8,0),∴BC=10,在y=﹣x2+x+4中令x=0,可解得y=4,∴点A(0,4),OA=4,=BN•OA=(n+2)×4=2(n+2),∴S△ABN∵MN∥AC,∴,∴==,∴,∵﹣<0,∴当n=3时,即N(3,0)时,△AMN的面积最大;(3)当N(3,0)时,N为BC边中点,∵MN∥AC,∴M为AB边中点,∴OM=AB,∵AB===2,AC===4,∴AB=AC,∴OM=AC.【点评】本题为二次函数的综合应用,涉及待定系数法、平行线分线段成比例、三角形的面积、二次函数的性质、直角三角形的性质、勾股定理等知识.在(1)中注意待定系数法的应用,在(2)中找到△AMN和△ABN的面积之间的关系是解题的关键,在(3)中确定出AB为OM和AC的中间“桥梁”是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
甘肃省定西市、武威市中考数学真题试题(含解析)-人教版初中九年级全册数学试题
2020年某某省某某市、某某市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下列实数是无理数的是()A.﹣2 B.C.D.【解答】解:=3,则由无理数的定义可知,实数是无理数的是.故选:D.2.(3分)若α=70°,则α的补角的度数是()A.130°B.110°C.30°D.20°【解答】解:α的补角是:180°﹣∠A=180°﹣70°=110°.故选:B.3.(3分)若一个正方形的面积是12,则它的边长是()A.2B.3 C.3D.4【解答】解:∵正方形的面积是12,∴它的边长是=2.故选:A.4.(3分)下列几何体中,其俯视图与主视图完全相同的是()A.B.C.D.【解答】解:圆锥的主视图是等腰三角形,俯视图是圆,因此A不符合题意;圆柱的主视图是矩形,俯视图是圆,因此B不符合题意;正方体的主视图、俯视图都是正方形,因此选项C符合题意;三棱柱的主视图是矩形,俯视图是三角形,因此D不符合题意;故选:C.5.(3分)下列各式中计算结果为x6的是()A.x2+x4B.x8﹣x2C.x2•x4D.x12÷x2【解答】解:x2与x4不是同类项,不能合并计算,它是一个多项式,因此A选项不符合题意;同理选项B不符合题意;x2•x4=x2+4=x6,因此选项C符合题意;x12÷x2=x12﹣2=x10,因此选项D不符合题意;故选:C.6.(3分)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b的高度比值接近0.618,可以增加视觉美感.若图中b为2米,则a约为()【解答】解:∵雕像的腰部以下a与全身b的高度比值接近0.618,∴=0.618,∵b为2米,∴a约为1.24米.故选:A.7.(3分)已知x=1是一元二次方程(m﹣2)x2+4x﹣m2=0的一个根,则m的值为()A.﹣1或2 B.﹣1 C.2 D.0【解答】解:把x=1代入(m﹣2)x2+4x﹣m2=0得:m﹣2+4﹣m2=0,﹣m2+m+2=0,解得:m1=2,m2=﹣1,∵(m﹣2)x2+4x﹣m2=0是一元二次方程,∴m﹣2≠0,∴m≠2,∴m=﹣1,故选:B.8.(3分)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE 间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB的度数是()A.90°B.100°C.120°D.150°【解答】解:连结AE,∵AE间的距离调节到60cm,木制活动衣帽架是由三个全等的菱形构成,∴AC=20cm,∵菱形的边长AB=20cm,∴AB=BC=20cm,∴AC=AB=BC,∴△ACD是等边三角形,∴∠B=60°,∴∠DAB=120°.故选:C.9.(3分)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平分,则DC的长为()A.2B.C.2D.【解答】解:∵点D在⊙O上且平分,∴,∵BC是⊙O的直径,∴∠BAC=∠D=90°,∵AC=2,AB=4,∴BC==2,Rt△BDC中,DC2+BD2=BC2,∴2DC2=20,∴DC=,故选:D.10.(3分)如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E 出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4B.4 C.3D.2【解答】解:如图,连接AE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OD=OB,由题意DE=OE,设DE=OE=x,则OA=OD=2x,∵AE=2,∴x2+(2x)2=(2)2,解得x=2或﹣2(不合题意舍弃),∴OA=OD=4,∴AB=AD=4,故选:A.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)如果盈利100元记作+100元,那么亏损50元记作﹣50 元.【解答】解:∵盈利100元记作+100元,∴亏损50元记作﹣50元,故答案为:﹣50.12.(3分)分解因式:a2+a=a(a+1).【解答】解:a2+a=a(a+1).故答案为:a(a+1).13.(3分)暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:元暑假八折优惠,现价:160元【解答】解:设广告牌上的原价为x元,依题意,得:0.8x=160,解得:x=200.故答案为:200.14.(3分)要使分式有意义,x需满足的条件是x≠1.【解答】解:当x﹣1≠0时,分式有意义,∴x≠1,故答案为x≠1.15.(3分)在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有17 个.【解答】解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球,∵假设有x个红球,∴=0.85,解得:x=17,经检验x=17是分式方程的解,∴口袋中有红球约有17个.故答案为:17.16.(3分)如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,),则点E的坐标为(7,0).【解答】解:∵A(3,),D(6,),∴点A向右平移3个单位得到D,∵B(4,0),∴点B向右平移3个单位得到E(7,0),故答案为(7,0).17.(3分)若一个扇形的圆心角为60°,面积为cm2,则这个扇形的弧长为cm(结果保留π).【解答】解:设扇形的半径为R,弧长为l,根据扇形面积公式得;=,解得:R=1,∵扇形的面积=lR=,解得:l=π.故答案为:.18.(3分)已知y=﹣x+5,当x分别取1,2,3,…,2020时,所对应y值的总和是2032 .【解答】解:当x<4时,原式=4﹣x﹣x+5=﹣2x+9,当x=1时,原式=7;当x=2时,原式=5;当x=3时,原式=3;当x≥4时,原式=x﹣4﹣x+5=1,∴当x分别取1,2,3,…,2020时,所对应y值的总和是:7+5+3+1+1+…+1=15+1×2017=2032.故答案为:2032.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)计算:(2﹣)(2+)+tan60°﹣(π﹣2)0.【解答】解:原式=4﹣3+﹣1=.20.(4分)解不等式组:,并把它的解集在数轴上表示出来.【解答】解:解不等式3x﹣5<x+1,得:x<3,解不等式2(2x﹣1)≥3x﹣4,得:x≥﹣2,则不等式组的解集为﹣2≤x<3,将不等式组的解集表示在数轴上如下:21.(6分)如图,在△ABC中,D是BC边上一点,且BD=BA.(1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.【解答】解:(1)如图,①BE即为所求;②如图,线段DC的垂直平分线交DC于点F.(2)∵BD=BA,BE平分∠ABD,∴点E是AD的中点,∵点F是CD的中点,∴EF是△ADC的中位线,∴线段EF和AC的数量关系为:EF=AC,位置关系为:EF∥AC.22.(6分)图①是某某省博物馆的镇馆之宝﹣﹣铜奔马,又称“马踏飞燕”,于1969年10月出土于某某市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕“雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B到地面的高度为BA,在测点C用仪器测得点B的仰角为α,前进一段距离到达测点E,再用该仪器测得点B的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上.测量数据α的度数β的度数CE的长度仪器CD(EF)的高度31°42°5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)【解答】解:如图,设BG=x米,在Rt△BFG中,FG==,在Rt△BDG中,DG==,由DG﹣FG=DF得,﹣=5,解得,x=9,∴AB=AG+BG=1.5+9=10.5(米),答:这座“马踏飞燕”雕塑最高点离地面的高度为10.5米.23.(6分)2019年某某在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,某某省已有五家国家5A级旅游景区,分别为A:嘉峪关文物景区;B:某某崆峒山风景名胜区;C:某某麦积山景区;D:敦煌鸣沙山月牙泉景区;E:某某七彩丹霞景区.X帆同学与父母计划在暑假期间从中选择部分景区游玩.(1)X帆一家选择E:某某七彩丹霞景区的概率是多少?(2)若X帆一家选择了E:某某七彩丹霞景区,他们再从A,B,C,D四个景区中任选两个景区去旅游,求选择A,D两个景区的概率(要求画树状图或列表求概率).【解答】解:(1)共有5种可能选择的结果,因此X帆一家选择“E:某某七彩丹霞景区”的概率是;(2)从A,B,C,D四个景区中任选两个景区所有可能出现的结果如下:共有12种可能出现的结果,其中选择A、D两个景区的有2种,∴P(选择A、D)==.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.24.(7分)总书记于2019年8月在某某考察时说“黄河之滨也很美”.某某是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,某某的空气质量得到极大改善,“某某蓝”成为某某市民引以为豪的城市名片.如图是根据某某市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了26 天;(2)这七年的全年空气质量优良天数的中位数是254 天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《某某市“十三五”质量发展规划》中指出:2020年,确保某某市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)某某市空气质量优良天数至少需要多少天才能达标.【解答】解:(1)∵296﹣270=26,∴2019年比2013年的全年空气质量优良天数增加了26天;故答案为:26;(2)∵这七年的全年空气质量优良天数分别为:213,233,250,254,270,296,313,∴这七年的全年空气质量优良天数的中位数是254天;故答案为:254;(3)∵=(213+233+250+254+270+296+313)≈261(天),则这七年的全年空气质量优良天数的平均天数为261天;(4)∵全年空气质量优良天数比率达80%以上.∴366×80%=292.8≈293(天),则某某市空气质量优良天数至少需要293天才能达标.25.(7分)通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x 与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x …0 1 2 3 4 5 …y … 6 3 2 1 …(1)当x= 3 时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:函数y随x的增大而减小.【解答】解:(1)当x=3时,y=1.5;故答案为:3;(2)函数图象如图所示:(3)观察画出的图象,这个函数的一条性质:函数y随x的增大而减小.故答案为:函数y随x的增大而减小.26.(8分)如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE =AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.【解答】解:(1)连接OA,∵AE是⊙O的切线,∴∠OAE=90°,∵AB=AE,∴∠ABE=∠AEB,∵OA=OB,∴∠ABO=∠OAB,∴∠OAB=∠ABE=∠E,∵∠OAB+∠ABE+∠E+∠OAE=180°,∴∠OAB=∠ABE=∠E=30°,∴∠AOB=180°﹣∠OAB﹣∠ABO=120°,∴∠ACB=∠AOB=60°;(2)设⊙O的半径为r,则OA=OD=r,OE=r+2,∵∠OAE=90°,∠E=30°,∴2OA=OE,即2r=r+2,∴r=2,故⊙O的半径为2.27.(8分)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°.把△ADN 绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.【解答】(1)证明:∵△ADN≌△ABE,∴∠DAN=∠BAE,DN=BE,∵∠DAB=90°,∠MAN=45°,∴∠MAE=∠BAE+∠BAM=∠DAN+∠BAM=45°,∴∠MAE=∠MAN,∵MA=MA,∴△AEM≌△ANM(SAS).(2)解:设CD=BC=x,则CM=x﹣3,=x﹣2,∵△AEM≌△ANM,∴EM=MN,∵BE=DN,∴MN=BM+DN=5,∵∠C=90°,∴MN2=CM2+2,∴25=(x﹣2)2+(x﹣3)2,解得,x=6或﹣1(舍弃),∴正方形ABCD的边长为6.28.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y 轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC∥AB,求点P的坐标;(3)连接AC,求△PAC面积的最大值及此时点P的坐标.【解答】解:(1)抛物线y=ax2+bx﹣2,则c=﹣2,故OC=2,而OA=2OC=8OB,则OA=4,OB=,故点A、B、C的坐标分别为(﹣4,0)、(,0)、(0,﹣2);则y=a(x+4)(x﹣)=a(x2+x﹣2)=ax2+bx﹣2,故a=1,故抛物线的表达式为:y=x2+x﹣2;(2)抛物线的对称轴为x=﹣,当PC∥AB时,点P、C的纵坐标相同,根据函数的对称性得点P(﹣,2);(3)过点P作PH∥y轴交AC于点H,由点A、C的坐标得,直线AC的表达式为:y=﹣x﹣2,则△PAC的面积S=S△PHA+S△PHC=PH×OA=×4×(﹣x﹣2﹣x2﹣x+2)=﹣2(x+2)2+8,∵﹣2<0,∴S有最大值,当x=﹣2时,S的最大值为8,此时点P(﹣2,﹣5).。
(精品中考卷)甘肃省武威中考数学真题(原卷版)
武威市2022年初中毕业、高中招生考试数学试卷考生注意:本试卷满分为120分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1. 2-的相反数为( )A. 2-B. 2C. 2±D. 122. 若40A ∠=︒,则A ∠的余角的大小是( )A 50° B. 60° C. 140° D. 160° 3. 不等式324x ->的解集是( )A. 2x >-B. 2x <-C. 2x >D. 2x < 4. 用配方法解方程x 2-2x =2时,配方后正确的是( )A. ()213x +=B. ()216x +=C. ()213x -=D. ()216x -= 5 若ABC DEF :△△,6BC =,4EF =,则AC DF =( ) A. 49 B. 94 C. 23 D. 326. 2022年4月16日,神州十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神州十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”.其中,航天员们在轨驻留期间共完成37项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是( )A. 完成航天医学领域实验项数最多B. 完成空间应用领域实验有5项C. 完成人因工程技术实验项数比空间应用领域实验项数多..D. 完成人因工程技术实验项数占空间科学实验总项数的24.3%7. 大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF ,若对角线AD 的长约为8mm ,则正六边形ABCDEF 的边长为( )A. 2mmB.C.D. 4mm 8. 《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x 天相遇,根据题意可列方程为( ) A. 11179x ⎛⎫+= ⎪⎝⎭ B. 11179x ⎛⎫-= ⎪⎝⎭ C. ()971x -= D. ()971x +=9. 如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧( AB ),点O 是这段弧所在圆的圆心,半径90m OA =,圆心角80AOB ∠=︒,则这段弯路( AB )的长度为( )A. 20m πB. 30m πC. 40m πD. 50m π 10. 如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )A. B. C. D. 二、填空题:本大题共8小题,每小题3分,共24分.11. 计算:323a a ⋅=_____________.12. 因式分解:34m m -=_________________.13. 若一次函数y =kx −2的函数值y 随着自变量x 值的增大而增大,则k =_________(写出一个满足条件的值).14. 如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,若AB =,4cm AC =,则BD 的长为_________cm .15. 如图,在⊙O 内接四边形ABCD 中,若100ABC ∠=︒,则ADC ∠=________︒.16. 如图,在四边形ABCD 中,AB DC ,AD BC ∥,在不添加任何辅助线的前提下,要想四边形ABCD 成为一个矩形,只需添加的一个条件是_______________.17. 如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系:2520h t t =-+,则当小球飞行高度达到最高时,飞行时间t =_________s .18. 如图,在矩形ABCD 中,AB =6cm ,BC =9cm ,点E ,F 分别在边AB ,BC 上,AE =2cm ,BD ,EF 交于点G ,若G 是EF 的中点,则BG 的长为____________cm .三、解答题:本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.19..20. 化简:()2233322x x x x x x ++÷-++. 21. 中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:原文释义 甲乙丙为定直角.以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线. 如图2,ABC ∠为直角. 以点B 为圆心,以任意长为半径画弧,交射线BA ,BC 分别于点D ,E ; 以点D 为圆心,以BD 长为半径画弧与 DE 交于点F ; 再以点E 为圆心,仍以BD 长为半径画弧与 DE 交于点G ; 作射线BF ,BG .(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出DBG ∠,GBF ∠,FBE ∠的大小关系. 22. 灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:方案设计:如图2,点C 为桥拱梁顶部(最高点),在地面上选取A ,B 两处分别测得∠CAF 和∠CBF 的度数(A ,B ,D ,F 在同一条直线上),河边D 处测得地面AD 到水面EG 的距离DE (C ,F ,G 在同一条直线上,DF ∥EG ,CG ⊥AF ,FG =DE ).数据收集:实地测量地面上A ,B 两点的距离为8.8m ,地面到水面的距离DE =1.5m ,∠CAF =26.6°,∠CBF =35°.问题解决:求灞陵桥拱梁顶部C 到水面的距离CG (结果保留一位小数).参考数据:sin266°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.根据上述方案及数据,请你完成求解过程.23. 第24届冬季奥林匹克运动会于2022年2月4至20日在我国北京-张家口成功举办,其中张家口赛区设有四个冬奥会竞赛场馆,分别为:A .云顶滑雪公园、B .国家跳台滑雪中心、C .国家越野滑雪中心、D .国家冬季两项中心.小明和小颖都是志愿者,他们被随机分配到这四个竞赛场馆中的任意一个场馆的可能性相同..(1)小明被分配到D .国家冬季两项中心场馆做志愿者的概率是多少?(2)利用画树状图或列表的方法,求小明和小颖被分配到同一场馆做志愿者的概率.四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.24. 受疫情影响,某初中学校进行在线教学的同时,要求学生积极参与“增强免疫力、丰富学习生活”为主题的居家体育锻炼活动,并实施锻炼时间目标管理.为确定一个合理的学生居家锻炼时间的完成目标,学校随机抽取了30名学生周累计居家锻炼时间(单位:h )的数据作为一个样本,并对这些数据进行了收集、整理和分析,过程如下:【数据收集】7 8 6 5 9 10 4 6 7 5 11 12 8 7 6 4 6 3 6 8 9 10 10 13 6 7 8 3 5 10【数据整理】将收集的30个数据按A ,B ,C ,D ,E 五组进行整理统计,并绘制了如图所示的不完整的频数分布直方图(说明:A .35t ≤<,B .57t ≤<,C .79t ≤<,D .911t <≤,E .1113t ≤≤,其中t 表示锻炼时间);【数据分析】 统计量 平均数 众数 中位数锻炼时间(h ) 7.3 m 7根据以上信息解答下列问题:(1)填空:m =___________;(2)补全频数分布直方图;(3)如果学校将管理目标确定为每周不少于7h ,该校有600名学生,那么估计有多少名学生能完成目标?你认为这个目标合理吗?说明理由.25. 如图,B ,C 是反比例函数y =k x(k ≠0)在第一象限图象上的点,过点B 的直线y =x -1与x 轴交于点A ,CD ⊥x 轴,垂足为D ,CD 与AB 交于点E ,OA =AD ,CD =3.(1)求此反比例函数的表达式;(2)求△BCE 面积.26. 如图,ABC 内接于O ,AB ,CD 是O 的直径,E 是DB 延长线上一点,且DEC ABC ∠=∠.(1)求证:CE 是O 的切线;(2)若DE =2AC BC =,求线段CE 长.27. 已知正方形ABCD ,E 为对角线AC 上一点.(1)【建立模型】如图1,连接BE ,DE .求证:BE DE =;(2)【模型应用】如图2,F 是DE 延长线上一点,FB BE ⊥,EF 交AB 于点G . ①判断FBG △的形状并说明理由;②若G 为AB 的中点,且4AB =,求AF 的长.(3)【模型迁移】如图3,F 是DE 延长线上一点,FB BE ⊥,EF 交AB 于点G ,BE BF =.求证:)1GE DE =-.的的28. 如图1,在平面直角坐标系中,抛物线()()134y x x a =+-与x 轴交于A ,()4,0B 两点,点C 在y 轴上,且OC OB =,D ,E 分别是线段AC ,AB 上的动点(点D ,E 不与点A ,B ,C 重合).(1)求此抛物线的表达式;(2)连接DE 并延长交抛物线于点P ,当DE x ⊥轴,且1AE =时,求DP 的长;(3)连接BD .①如图2,将BCD △沿x 轴翻折得到BFG ,当点G 在抛物线上时,求点G 的坐标; ②如图3,连接CE ,当CD AE =时,求BD CE +的最小值。
甘肃省武威市第二十三中学2016-2017学年八年级下学期期中考试数学试题
座号2016——2017学年度第二学期期中考试八年级 数学命题人:(温馨提示:本试卷满分120分,考试时间120分钟,请将答案写在答题卡上)一、选择题( 每小题3分,共36分) 1.下列各式中错误的式子是( ) ①1156=+;②710-17=;③683533=+;④b a b a +=+22A.4个B.3个C.2个D.1个2. 已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=,则三角形的形状是( )A.底与边不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形3. 在平行四边形、矩形、菱形、正方形中是轴对称图形的有( )个 A.1 B.2 C.3 D.44.下列各式中,最简二次根式是( ) A.3.0 B. 12 C. 36x D. 12+x5.在□ABCD 中,∠D 、∠C 的度数之比为3∶1,则∠A 等于( )A.45°B.135°C.50°D.130°6.学校的书香苑呈三角形形状,三边分别是9、12、15,那么书香苑的面积是( ) A.135 B.180 C.108 D.547.若13-m 有意义,则m 能取的最小整数值是( )A .m=0B .m=1C .m=2D .m=38.一艘轮船以16海里∕小时的速度从港口A 出发向东北方向航行,同时另一轮船以12海里∕小时从港口A 出发向东南方向航行,离开港口3小时后,则两船相距( ) A.36 海里 B.48 海里 C.60海里 D.84海里 9.已知菱形的两条对角线长分别是4和8,则菱形的面积是( ) A.32 B.64 C. 16 D.32S 3S 2S 1CB A10.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( ) A .43-=a B .34=a C .a=1 D .a= —1 11.在四边形ABCD 中,若有下列四个条件:①AB//CD ;②AD=BC ;③∠A=∠C ;④AB=CD ,现以其中的两个条件为一组,能判定四边形ABCD 是平行四边形的条件有 ( ) A .3组 B .4组 C .5组 D .6组12.下列命题中:① 两条对角线互相平分且相等的四边形是正方形; ②菱形的一条对角线平分一组对角;③顺次连结四边形各边中点所得的四边形是平行四边形;④两条对角线互相平分的四边形是矩形;⑤平行四边形对角线相等.假命题的个数是( ) A.1 B.2 C.3 D.4 二、填空题( 每小题3分,共24分) 13二次根式31-x 有意义的条件是 。
2016年甘肃省兰州市临夏州武威市平凉市张掖市白银市定西市中考数学试卷(word解析版)
甘肃省兰州市2016 年中考试题数学(A)注意事项:1.本试卷满分150 分,考试用时120 分钟。
2.考生必须将姓名、准考证号、考场、座位号等个人信息填(涂)在答题卡上。
3.考生务必将答案直接填(涂)写在答题卡的相应位置上。
一、选择题:本大题共15 小题,每小题4 分,共60 分,在每小题给出的四个选项中仅有一项是符合题意的。
1.如图是由5 个大小相同的正方体组成的几何体,则该几何体的主视图是()。
(A)(B)(C)(D)【答案】A【解析】主视图是从正面看到的图形。
从正面看有两行,上面一行最左边有一个正方形,下面一行有三个正方形,所以答案选A。
【考点】简单组合体的三视图2.反比例函数的图像在()。
(A)第一、二象限(B)第一、三象限(C)第二、三象限(D)第二、四象限【答案】B【解析】反比例函数的图象受到的影响,当k 大于0 时,图象位于第一、三象限,当k小于0 时,图象位于第二、四象限,本题中k =2 大于0,图象位于第一、三象限,所以答案选B。
【考点】反比例函数的系数k 与图象的关系3.已知△ABC ∽△DEF,若△ABC与△DEF的相似比为3/4,则△ABC与△DEF对应中线的比为()。
(A)3/4(B)4/3(C)9/16(D)16/9【答案】A【解析】根据相似三角形的性质,相似三角形的对应高线的比、对应中线的比和对应角平分线的比都等于相似比,本题中相似三角形的相似比为3/4,即对应中线的比为3/4,所以答案选A。
【考点】相似三角形的性质4.在Rt △ABC中,∠C=90°,sinA=3/5,BC=6,则AB=()。
(A)4 (B)6 (C)8 (D)10【答案】D【解析】在Rt △ABC中,sinA=BC/AB=6/AB=3/5,解得AB=10,所以答案选D。
【考点】三角函数的运用5.一元二次方程的根的情况()。
(A)有一个实数根(B)有两个相等的实数根(C)有两个不相等的实数根(D)没有实数根【答案】B【解析】根据题目,∆==0, 判断得方程有两个相等的实数根,所以答案选B。
甘肃省武威市中考数学试卷(解析版)
2016年甘肃省武威市中考数学试卷(解析版)-CAL-FENGHAI.-(YICAI)-Company One12016年甘肃省武威市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:A.2.(3分)在1,﹣2,0,这四个数中,最大的数是()A.﹣2 B.0 C.D.1【解答】解:由正数大于零,零大于负数,得﹣2<0<1<.最大的数是,故选:C.3.(3分)在数轴上表示不等式x﹣1<0的解集,正确的是()A. B. C.D.【解答】解:x﹣1<0解得:x<1,故选:C.4.(3分)(2016•临夏州)下列根式中是最简二次根式的是()A. B. C. D.【解答】解:A、=,故此选项错误;B、是最简二次根式,故此选项正确;C、=3,故此选项错误;D、=2,故此选项错误;故选:B.5.(3分)已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由点P(0,m)在y轴的负半轴上,得m<0.由不等式的性质,得﹣m>0,﹣m+1>1,则点M(﹣m,﹣m+1)在第一象限,故选:A.6.(3分)如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34° B.54°C.66°D.56°【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选D.7.(3分)如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:2【解答】解:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2,故选:D.8.(3分)某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.= B.=C.= D.=【解答】解:设原计划平均每天生产x台机器,根据题意得:=,故选:A.9.(3分)(2016•临夏州)若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.30【解答】解:∵x2+4x﹣4=0,即x2+4x=4,∴原式=3(x2﹣4x+4)﹣6(x2﹣1)=3x2﹣12x+12﹣6x2+6=﹣3x2﹣12x+18=﹣3(x2+4x)+18=﹣12+18=6.故选B10.(3分)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.【解答】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=x2;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=﹣x2+2x,故选A二、填空题(共8小题,每小题4分,满分32分)11.(4分)因式分解:2a2﹣8=2(a+2)(a﹣2).【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).12.(4分)计算:(﹣5a4)•(﹣8ab2)=40a5b2.【解答】解:(﹣5a4)•(﹣8ab2)=40a5b2.故答案为:40a5b2.13.(4分)(2016•临夏州)如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.【解答】解:过点A作AB⊥x轴于B,∵点A(3,t)在第一象限,∴AB=t,OB=3,又∵tanα===,∴t=.故答案为:.14.(4分)如果单项式2x m+2n y n﹣2m+2与x5y7是同类项,那么n m的值是.【解答】解:根据题意得:,解得:,则n m=3﹣1=.故答案是.15.(4分)(2016•临夏州)三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为12.【解答】解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,所以x1=5,x2=8,而三角形的两边长分别是3和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为12.16.(4分)(2016•临夏州)如图,在⊙O中,弦AC=2,点B是圆上一点,且∠ABC=45°,则⊙O 的半径R=.【解答】解:∵∠ABC=45°,∴∠AOC=90°,∵OA=OC=R,∴R2+R2=2,解得R=.故答案为:.17.(4分)将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=6cm.【解答】解:如图,延长原矩形的边,∵矩形的对边平行,∴∠1=∠ACB,由翻折变换的性质得,∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=6cm,∴AC=6cm.故答案为:6.18.(4分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…第n个三角形数记为x n,则x n+x n+1=(n+1)2.【解答】解:∵x1=1,x2═3=1+2,x3=6=1+2+3,x4═10=1+2+3+4,x5═15=1+2+3+4+5,…∴x n=1+2+3+…+n=,x n+1=,则x n+x n+1=+=(n+1)2,故答案为:(n+1)2.三、解答题(共5小题,满分38分)19.(6分)计算:()﹣2﹣|﹣1+|+2sin60°+(﹣1﹣)0.【解答】解:()﹣2﹣|﹣1+|+2sin60°+(﹣1﹣)0=4+1﹣+2×+1=4+1﹣++1=6.20.(6分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).21.(8分)(2016•临夏州)已知关于x的方程x2+mx+m﹣2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.【解答】解:(1)根据题意,将x=1代入方程x2+mx+m﹣2=0,得:1+m+m﹣2=0,解得:m=;(2)∵△=m2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.22.(8分)(2016•临夏州)图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON位置运动到与地面垂直的OM位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)(1)求AB的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N点运动到M点的路径的长度.(结果保留π)【解答】解:(1)过B作BE⊥AC于E,则AE=AC﹣BD=0.66米﹣0.26米=0.4米,∠AEB=90°,AB==≈1.17(米);(2)∠MON=90°+20°=110°,所以的长度是=π(米).23.(10分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣的图象上的概率.【解答】解:(1)画树状图得:则点M所有可能的坐标为:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)∵点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),∴点M(x,y)在函数y=﹣的图象上的概率为:.四、解答题(共5小题,满分50分)24.(8分)2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m=60,n=90;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?【解答】解:(1)105÷35%=300(人),答:一共调查了300名同学,(2)n=300×30%=90(人),m=300﹣105﹣90﹣45=60(人).故答案为:60,90;(3)×360°=72°.答:扇形统计图中,热词B所在扇形的圆心角是72度.25.(10分)如图,函数y1=﹣x+4的图象与函数y2=(x>0)的图象交于A(m,1),B(1,n)两点.(1)求k,m,n的值;(2)利用图象写出当x≥1时,y1和y2的大小关系.【解答】解:(1)把A(m,1)代入一次函数解析式得:1=﹣m+4,即m=3,∴A(3,1),把A(3,1)代入反比例解析式得:k=3,把B(1,n)代入一次函数解析式得:n=﹣1+4=3;(2)∵A(3,1),B(1,3),∴由图象得:当1<x<3时,y1>y2;当x>3时,y1<y2;当x=1或x=3时,y1=y2.26.(10分)如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:OA2=OE•OF.【解答】证明:(1)∵EC∥AB,∴∠EDA=∠DAB,∵∠EDA=∠ABF,∴∠DAB=∠ABF,∴AD∥BC,∵DC∥AB,∴四边形ABCD为平行四边形;(2)∵EC∥AB,∴△OAB∽△OED,∴=,∵AD∥BC,∴△OBF∽△ODA,∴=,∴=,∴OA2=OE•OF.27.(10分)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.【解答】(1)证明:连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径;(2)DE与圆O相切,理由为:证明:连接OD,∵O、D分别为AB、BC的中点,∴OD为△ABC的中位线,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切;(3)解:∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC中点,∴E为CF中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得:BF==3,则DE=BF=.28.(12分)如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB 上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点,∴,∴,∴y=﹣x2+2x+3,设直线AB的解析式为y=kx+n,∴,∴,∴y=﹣x+3;(2)由运动得,OE=t,AF=t,∴AE=OA﹣OE=3﹣t,∵△AEF为直角三角形,∴①△AOB∽△AEF,∴,∴,∴t=,②△AOB∽△AFE,∴,∴,∴t=;(3)如图,存在,过点P作PC∥AB交y轴于C,∵直线AB解析式为y=﹣x+3,∴设直线PC解析式为y=﹣x+b,联立,∴﹣x+b=﹣x2+2x+3,∴x2﹣3x+b﹣3=0∴△=9﹣4(b﹣3)=0∴b=,∴BC=﹣3=,x=,∴P(,).过点B作BD⊥PC,∴直线BD解析式为y=x+3,∴BD=,∴BD=,∵AB=3S最大=AB×BD=×3×=.即:存在面积最大,最大是,此时点P(,).。
2023年甘肃省武威市中考数学试卷(含答案)
武威市2023年初中毕业、高中招生考试数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项。
1.9的算术平方根是()A.±3B.±9C.3D.-32.若a2=3b,则ab=()A.6B.32C.1 D.233.计算:a a+2-2a=()A.2B.a2C.a2+2aD.a2-2a4.若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为()A.-2B.-1C.-12D.25.如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交BC的延长线于点E,则∠DEC=()A.20°B.25°C.30°D.35°6.方程2x =1x+1的解为()A.x=-2B.x=2C.x=-4D.x=47.如图,将矩形ABCD对折,使边AB与DC,BC与AD分别重合,展开后得到四边形EFGH。
若AB=2,BC=4,则四边形EFGH的面积为()A.2B.4C.5D.68.据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是()年龄范围(岁)人数(人)90-912592-9394-9596-971198-9910100-101mA.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在92-93岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在96-97岁的人数估计有110人9.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就。
其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于人射角”。
2015年甘肃省武威市中考数学试卷及答案解析(Word版)
2015年甘肃省武威市中考数学试卷(解析版)一、本大题共10小题,每小题3分,共30分1.(3分)(2015•荆门)64的立方根是()A .4 B.±4 C.8 D.±8考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵4的立方等于64,∴64的立方根等于4.故选A.点评:此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(2015•武威)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A .0.675×105B.6.75×104C.67.5×103D.675×102考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将67500用科学记数法表示为:6.75×104.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2015•武威)若∠A=34°,则∠A的补角为()A .56°B.146°C.156°D.166°考点:余角和补角.分析:根据互补的两角之和为180°,可得出答案.解答:解:∵∠A=34°,∴∠A的补角=180°﹣34°=146°.故选B.点评:本题考查了余角和补角的知识,解答本题的关键是掌握互补的两角之和为180°.4.(3分)(2015•武威)下列运算正确的是()A .x2+x2=x4B.(a﹣b)2=a2﹣b2C.(﹣a2)3=﹣a6D.3a2•2a3=6a6考点:完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同类项、完全平方公式、幂的乘方和单项式的乘法计算即可.解答:解:A、x2+x2=2x2,错误;B、(a﹣b)2=a2﹣2ab+b2,错误;C、(﹣a2)3=﹣a6,正确;D、3a2•2a3=6a5,错误;故选C.点评:此题考查同类项、完全平方公式、幂的乘方和单项式的乘法,关键是根据法则进行计算.5.(3分)(2015•武威)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A .B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.(3分)(2015•武威)下列命题中,假命题是()A 平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y考点:命题与定理;有理数的乘方;线段垂直平分线的性质;中心对称图形;用样本估计总体.分析:根据平行四边形的性质、三角形外心的性质以及用样本的数字特征估计总体的数字特征和有理数乘方的运算逐项分析即可.解答:解:A、平行四边形是中心对称图形,它的中心对称点为两条对角线的交点,故该命题是真命题;B、三角形三边的垂直平分线相交于一点,为三角形的外心,这点到三角形三个顶点的距离相等,故该命题是真命题;C、用样本的数字特征估计总体的数字特征:主要数据有众数、中位数、平均数、标准差与方差,故该命题是真命题;D、若x2=y2,则x=±y,不是x=y,故该命题是假命题;故选D.点评:本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.7.(3分)(2015•武威)今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A .2500x2=3600 B.2500(1+x)2=3600C .2500(1+x%)2=3600D.2500(1+x)+2500(1+x)2=3600考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:根据2013年教育经费额×(1+平均年增长率)2=2015年教育经费支出额,列出方程即可.解答:解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.点评:本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).8.(3分)(2015•武威)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A .80°B.160°C.100°D.80°或100°考点:圆周角定理.分析:首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数.解答:解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.点评:此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.9.(3分)(2015•武威)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A .B.C.D.考点:相似三角形的判定与性质.分析:证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=,借助相似三角形的性质即可解决问题.解答:解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC==,故选D.点评:本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.10.(3分)(2015•武威)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P 作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A .B.C.D.考点:动点问题的函数图象.分析:证明△BPE∽△CDP,根据相似三角形的对应边的比相等求得y与x的函数关系式,根据函数的性质即可作出判断.解答:解:∵∠CPD=∠FPD,∠BPE=∠FPE,又∵∠CPD+∠FPD+∠BPE+∠FPE=180°,∴∠CPD+∠BPE=90°,又∵直角△BPE中,∠BPE+∠BEP=90°,∴∠BEP=∠CPD,又∵∠B=∠C,∴△BPE∽△CDP,∴,即,则y=﹣x2+,y是x的二次函数,且开口向下.故选C.点评:本题考查了动点问题的函数图象,求函数的解析式,就是把自变量当作已知数值,然后求函数变量y的值,即求线段长的问题,正确证明△BPE∽△CDP是关键.二、填空题,本大题共8小题,每小题3分,共24分11.(3分)(2015•武威)分解因式:x3y﹣2x2y+xy=xy(x﹣1)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取公因式,再利用完全平方公式分解即可.解答:解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(2015•武威)分式方程的解是x=2.考点:解分式方程.分析:观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x(x+3),得2(x+3)=5x,解得x=2.检验:把x=2代入x(x+3)=10≠0,即x=2是原分式方程的解.故原方程的解为:x=2.故答案为:x=2.点评:此题考查了分式方程的求解方法.注意:①解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,②解分式方程一定注意要验根.13.(3分)(2015•武威)在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x+1≥0且x≠0,解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠0.点评:考查了函数自变量的取值范围,函数自变量的取值范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(3分)(2015•武威)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为x>﹣1.考点:一元一次不等式的应用.专题:新定义.分析:根据运算的定义列出不等式,然后解不等式求得不等式的解集即可.解答:解:3⊕x<13,3(3﹣x)+1<13,解得:x>﹣1.故答案为:x>﹣1.点评:此题考查一元一次不等式解集的求法,理解运算的方法,改为不等式是解决问题的关键.15.(3分)(2015•武威)已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=75°.考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:算术平方根.分析:根据非负数的性质求出sinα、tanβ的值,然后根据特殊角的三角函数值求出两个角的度数.解答:解:∵|sinα﹣|+=0,∴sinα=,tanβ=1,∴α=30°,β=45°,则α+β=30°+45°=75°.故答案为:75°.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.16.(3分)(2015•武威)关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是k≥﹣6.考点:根的判别式;一元一次方程的解.分析:由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.解答:解:当k=0时,﹣4x﹣=0,解得x=﹣,当k≠0时,方程kx2﹣4x﹣=0是一元二次方程,根据题意可得:△=16﹣4k×(﹣)≥0,解得k≥﹣6,k≠0,综上k≥﹣6,故答案为k≥﹣6.点评:本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.17.(3分)(2015•武威)如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为π.考点:扇形面积的计算.分析:根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.解答:解:∵AB=BC,CD=DE,∴=,=,∴+=+,∴∠BOD=90°,∴S阴影=S扇形OBD==π.故答案是:π.点评:本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.18.(3分)(2015•武威)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是45,2016是第63个三角形数.考点:规律型:数字的变化类.分析:根据所给的数据发现:第n个三角形数是1+2+3+…+n,由此代入分别求得答案即可.解答:解:第9个三角形数是1+2+3+4+5+6+7+8+9=45,1+2+3+4+…+n=2016,n(n+1)=4032,解得:n=63.故答案为:45,63.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.三、简答题(一)本大题共5小题,共26分19.(4分)(2015•武威)计算:()0++(﹣1)2015﹣tan60°.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用算术平方根定义计算,第三项利用乘方的意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=1+2﹣1﹣×=2﹣3=﹣1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(4分)(2015•武威)先化简,再求值:÷(1﹣),其中x=0.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=0代入进行计算即可.解答:解:原式=÷(﹣)=•=,当x=0时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(6分)(2015•武威)如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.考点:作图—复杂作图;切线的性质.分析:(1)作∠ABC的平分线交AC于P,再以P为圆心PA为半径即可作出⊙P;(2)根据角平分线的性质得到∠ABP=30°,根据三角函数可得AP=,再根据圆的面积公式即可求解.解答:解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠B=60°,BP平分∠ABC,∴∠ABP=30°,∵tan∠ABP=,∴AP=,∴S⊙P=3π.点评:本题主要考查了作图﹣复杂作图,角平分线的性质,即角平分线上的点到角两边的距离相等.同时考查了圆的面积.22.(6分)(2015•武威)如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)考点:解直角三角形.分析:(1)先根据直角三角形的两锐角互为求出∠CDG的度数,再根据两直线平行,同位角相等求出∠DEF,然后根据三角形的一个外角等于与它不相邻的两个内角的和即可求出∠EFA;(2)根据度数求出HB的长度,再根据∠CBH=∠CGD=42°,利用42°的余弦值进求解.解答:解:(1)∵∠CGD=42°,∠C=90°,∴∠CDG=90°﹣42°=48°,∵DG∥EF,∴∠CEF=∠CDG=48°;(2)∵点H,B的读数分别为4,13.4,∴HB=13.4﹣4=9.4(m),∴BC=HBcos42°≈9.4×0.74≈6.96(m).答:BC的长为6.96m.点评:本题考查了解直角三角形与平行线的性质,直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和,综合性较强,但难度不大,仔细分析图形并认真计算即可.23.(6分)(2015•武威)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.考点:列表法与树状图法;分式的定义.分析:(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果能组成分式的情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图:列表:x2+1 ﹣x2﹣2 3第一次第二次x2+1﹣x2﹣23(2)代数式所有可能的结果共有6种,其中代数式是分式的有4种:,,,,所以P (是分式)=.点评:此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.四、简答题(二)本大题共5小题,共40分24.(7分)(2015•武威)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.训练后篮球定点投篮测试进球统计表进球数(个)8 7 6 5 4 3人数2 1 4 7 8 2 请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为 5 个;(2)选择长跑训练的人数占全班人数的百分比是 10% ,该班共有同学 40 人; (3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.考点: 扇形统计图;一元一次方程的应用;统计表. 分析:(1)根据平均数的概念计算平均进球数;(2)根据所有人数的比例和为1计算选择长跑训练的人数占全班人数的百分比;由总人数=某种运动的人数÷所占比例计算总人数;(3)通过比较训练前后的成绩,利用增长率的意义即可列方程求解. 解答:解:(1)参加篮球训练的人数是:2+1+4+7+8+2=24(人). 训练后篮球定时定点投篮人均进球数==5(个).故答案是:5;(2)由扇形图可以看出:选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%, 则全班同学的人数为24÷60%=40(人), 故答案是:10%,40;(3)设参加训练之前的人均进球数为x 个, 则x (1+25%)=5,解得 x=4.即参加训练之前的人均进球数是4个.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(7分)(2015•武威)如图,平行四边形ABCD 中,AB=3cm ,BC=5cm ,∠B=60°,G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连结CE ,DF . (1)求证:四边形CEDF 是平行四边形;(2)①当AE= 3.5 cm 时,四边形CEDF 是矩形; ②当AE= 2 cm 时,四边形CEDF 是菱形. (直接写出答案,不需要说明理由)考点:平行四边形的判定与性质;菱形的判定;矩形的判定.专题:动点型.分析:(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.解答:(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.点评:本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.26.(8分)(2015•武威)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>x,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.考点:反比例函数综合题.分析:(1)过点D作x轴的垂线,垂足为F,首先得出A点坐标,再利用反比例函数图象上点的坐标性质得出即可;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,得出点D′的纵坐标为3,求出其横坐标,进而得出菱形ABCD平移的距离.解答:解:(1)过点D作x轴的垂线,垂足为F,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴点A坐标为(4,8),∴k=xy=4×8=32,∴k=32;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,过点D′做x轴的垂线,垂足为F′.∵DF=3,∴D′F′=3,∴点D′的纵坐标为3,∵点D′在的图象上∴3=,解得:x=,即OF′=,∴FF′=﹣4=,∴菱形ABCD平移的距离为.点评:此题主要考查了反比例函数综合以及反比例函数图象上点的坐标性质,得出A点坐标是解题关键.27.(8分)(2015•武威)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):∠BAE=90°或者∠EAC=∠ABC.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.考点:切线的判定.分析:(1)求出∠BAE=90°,再根据切线的判定定理推出即可;(2)作直径AM,连接CM,根据圆周角定理求出∠M=∠B,∠ACM=90°,求出∠MAC+∠CAE=90°,再根据切线的判定推出即可.解答:解:(1)①∠BAE=90°,②∠EAC=∠ABC,理由是:①∵∠BAE=90°,∴AE⊥AB,∵AB是直径,∴EF是⊙O的切线;②∵AB是直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠EAC=∠ABC,∴∠BAE=∠BAC+∠EAC=∠BAC+∠ABC=90°,即AE⊥AB,∵AB是直径,∴EF是⊙O的切线;(2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线.点评:本题考查了圆周角定理,切线的判定的应用,主要考查学生运用定理进行推理的能力,注意:经过半径的外端,并且垂直于半径的直线是圆的切线.28.(10分)(2015•武威)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C (5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x﹣1)(x﹣5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;(2)点A关于对称轴的对称点A′的坐标为(6,4),连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小,可求出直线BA′的解析式,即可得出点P的坐标.(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),再求得直线AC的解析式,即可求得NG的长与△ACN的面积,由二次函数最大值的问题即可求得答案.解答:解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AM×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).点评:本题主要考查了二次函数与方程、几何知识的综合应用,解题的关键是方程思想与数形结合思想的灵活应用.。
2016届甘肃省威武市中考数学
2016届甘肃省威武市中考数学一、选择题(共10小题;共50分)1. 下列图形中,是中心对称图形的是A. B.C. D.2. 在,,,这四个数中,最大的数是A. B. C. D.3. 在数轴上表示不等式的解集,正确的是A. B.C. D.4. 下列根式中是最简二次根式的是A. B. C. D.5. 已知点在轴的负半轴上,则点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 如图,,,,则的度数为A. B. C. D.7. 如果两个相似三角形的面积比是,那么它们的周长比是A. B. C. D.8. 某工厂现在平均每天比原计划多生产台机器,现在生产台所需时间与原计划生产台机器所需时间相同.设原计划平均每天生产台机器,根据题意,下面所列方程正确的是A. B. C. D.9. 若,则的值为A. B. C. D.10. 如图,是等腰直角三角形,,,点是边上一动点,沿的路径移动,过点作于点,设,的面积为,则下列能大致反映与函数关系的图象是A. B.C. D.二、填空题(共8小题;共40分)11. 因式分解: ______.12. 计算: ______.13. 如图,点在第一象限,与轴所夹的锐角为,,则的值是______.14. 如果单项式与是同类项,那么的值是______.15. 三角形的两边长分别是和,第三边长是方程的根,则该三角形的周长为______.16. 如图,在中,弦,点是圆上一点,且,则的半径______.17. 将一张矩形纸片折叠成如图所示的图形,若,则 ______ .18. 古希腊数学家把数,,,,,,叫做三角形数,它有一定的规律性,若把第一个三角形数记为,第二个三角形数记为,第个三角形数记为,则 ______.三、解答题(共10小题;共130分)19. 计算:.20. 如图,在平面直角坐标系中,的顶点,,均在正方形网格的格点上.(1)画出关于轴的对称图形;(2)将沿轴方向向左平移个单位后得到,写出顶点,,的坐标.21. 已知关于的方程.(1)若此方程的一个根为,求的值;(2)求证:不论取何实数,此方程都有两个不相等的实数根.22. 图1是小明在健身器材上进行仰卧起坐锻炼时的情景,图2是小明锻炼时上半身由位置运动到与地面垂直的位置时的示意图.已知米,米,.(参考数据:,,)(1)求的长(精确到米);(2)若测得米,试计算小明头顶由点运动到点的路径的长度.(结果保留)23. 在甲、乙两个不透明的布袋里,都装有个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字,,;乙袋中的小球上分别标有数字,, .现从甲袋中任意摸出一个小球,记其标有的数字为,再从乙袋中任意摸出一个小球,记其标有的数字为,以此确定点的坐标.(1)请你用画树状图或列表的方法,写出点所有可能的坐标;(2)求点在函数的图象上的概率.24. 2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的:"互联网+政务服务",:“工匠精神”,:“光网城市”,:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中, ______, ______;(3)扇形统计图中,热词所在扇形的圆心角是多少度?25. 如图,函数的图象与函数的图象交于,两点.(1)求,,的值;(2)利用图象写出当时,和的大小关系.26. 如图,已知,.(1)求证:四边形是平行四边形;(2)求证:.27. 如图,在中,,点在上,,过点作,垂足为,经过,,三点.(1)求证:是的直径;(2)判断与的位置关系,并加以证明;(3)若的半径为,,求的长.28. 如图,已知抛物线经过,两点.(1)求此抛物线的解析式和直线的解析式;(2)如图1,动点从点出发,沿着方向以个单位/秒的速度向终点匀速运动,同时,动点从点出发,沿着方向以个单位/秒的速度向终点匀速运动,当,中任意一点到达终点时另一点也随之停止运动,连接,设运动时间为秒,当为何值时,为直角三角形?(3)如图2,取一根橡皮筋,两端点分别固定在,处,用铅笔拉着这根橡皮筋使笔尖在直线上方的抛物线上移动,动点与,两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.答案第一部分1. A2. C3. C4. B5. A6. D7. D8. A9. B 10. B第二部分11.12.13.14.15.16.17.18.第三部分19. 原式20. (1)如图所示:(2)如图所示,,,.21. (1)将代入方程,得:,;(2),不论取何值,,.不论取何实数,该方程都有两个不相等的实数根.22. (1)米;(2)23. (1)树状图如下图:所有可能的坐标为:,,,,,,,,;(2)点在函数的图象上的有:,,点在函数的图象上的概率为:.24. (1)(人),答:一共调查了名同学;(2),;(3),答:扇形统计图中,热词所在扇形的圆心角是 .25. (1)把代入得:,即,,把代入得: .把代入一次函数解析式得: .(2),,根据图象得:当时,;当时,;当或时,.26. (1),.,..又,四边形为平行四边形.(2),.,...27. (1)连接 .,,..为的直径.(2)与相切.理由为:连接 .、分别为、的中点,为的中位线..,.为的半径,与相切.(3)连接 .,,为等边三角形..为的直径,., .为中点,为中点, .在中,,,,.则 .28. (1)抛物线经过,两点,解得,抛物线的解析式为 .设直线的解析式为 .解得直线的解析式为 .(2)由题意得,,,.为直角三角形,①若 ....②若,...综上所述,或 .(3)如图,存在,过点作交轴于,当直线与有且只有一个交点时,面积最大.直线解析式为,设直线解析式为 .....解方程组得..过点作 .直线解析式为,....最大即:存在面积最大,最大值是,此时点 .。
2016年甘肃省武威市中考数学试卷
2016年甘肃省武威市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1. 下列图形中,是中心对称图形的是()A. B. C. D.【答案】A【考点】中心对称图形【解析】根据中心对称图形的特点即可求解.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:A.2. 在1,−2,0,5这四个数中,最大的数是( )3D.1 A.−2 B.0 C.53【答案】C【考点】有理数大小比较【解析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得−2<0<1<5.3,最大的数是53故选C.3. 在数轴上表示不等式x−1<0的解集,正确的是()A. B.C. D.【答案】C【考点】在数轴上表示不等式的解集【解析】解不等式x−1<0得:x<1,即可解答.【解答】解:x−1<0解得:x<1,故选:C.4. 下列根式中是最简二次根式的是()A.√23B.√3C.√9D.√12【答案】B【考点】最简二次根式【解析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、√23=√63,故此选项错误;B、√3是最简二次根式,故此选项正确;C、√9=3,故此选项错误;D、√12=2√3,故此选项错误;故选:B.5. 已知点P(0, m)在y轴的负半轴上,则点M(−m, −m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【考点】点的坐标【解析】根据y轴的负半轴上点的横坐标等于零,纵坐标小于零,可得m的值,根据不等式的性质,可得到答案.【解答】解:由点P(0, m)在y轴的负半轴上,得:m<0.由不等式的性质,得:−m>0,−m+1>1,则点M(−m, −m+1)在第一象限.故选A.6. 如图,AB // CD,DE⊥CE,∠1=34∘,则∠DCE的度数为()A.34∘B.54∘C.66∘D.56∘【答案】D【考点】平行线的性质【解析】根据平行线的性质得到∠D=∠1=34∘,由垂直的定义得到∠DEC=90∘,根据三角形的内角和即可得到结论.【解答】∵AB // CD,∴∠D=∠1=34∘,∵DE⊥CE,∴∠DEC=90∘,∴∠DCE=180∘−90∘−34∘=56∘.7. 如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16B.1:4C.1:6D.1:2【答案】D【考点】相似三角形的性质【解析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答即可.【解答】∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2,8. 某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.800 x+50=600xB.800x−50=600xC.800x=600x+50D.800x=600x−50【答案】A【考点】由实际问题抽象为分式方程【解析】根据题意可知现在每天生产x+50台机器,而现在生产800台所需时间和原计划生产600台机器所用时间相等,从而列出方程即可.【解答】解:设原计划平均每天生产x台机器,根据题意得:600x =800x+50.故选A.9. 若x2+4x−4=0,则3(x−2)2−6(x+1)(x−1)的值为()A.−6B.6C.18D.30【答案】B【考点】整式的混合运算—化简求值【解析】原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式代入计算即可求出值.【解答】∵x2+4x−4=0,即x2+4x=4,∴原式=3(x2−4x+4)−6(x2−1)=3x2−12x+12−6x2+6=−3x2−12x+18=−3(x2+4x)+18=−12+18=6.10. 如图,△ABC是等腰直角三角形,∠A=90∘,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A. B.C. D.【答案】B【考点】动点问题【解析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45∘,BH=CH=AH=12BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=12x2;当2<x≤4时,如图2,易得PD=CD=4−x,根据三角形面积公式得到y=−12x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【解答】过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45∘,BH=CH=AH=12BC=2,当0≤x≤2时,如图1,∵∠B=45∘,∴PD=BD=x,∴y=12⋅x⋅x=12x2;当2<x≤4时,如图2,∵∠C=45∘,∴PD=CD=4−x,∴y=12⋅(4−x)⋅x=−12x2+2x,二、填空题(共8小题,每小题4分,满分32分)因式分解:2a2−8=________.【答案】2(a+2)(a−2)【考点】提公因式法与公式法的综合运用【解析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2−8=2(a2−4)=2(a+2)(a−2).故答案为:2(a+2)(a−2).计算:(−5a4)•(−8ab2)=________.【答案】40a5b2【考点】单项式乘单项式【解析】直接利用单项式乘以单项式运算法则求出答案.【解答】解:(−5a4)•(−8ab2)=40a5b2.故答案为:40a5b2.如图,点A(3, t)在第一象限,OA与x轴所夹的锐角为α,tanα=32,则t的值是________.【答案】92【考点】坐标与图形性质解直角三角形【解析】过点A作AB⊥x轴于B,根据正切等于对边比邻边列式求解即可.【解答】过点A作AB⊥x轴于B,∵点A(3, t)在第一象限,∴AB=t,OB=3,又∵tanα=ABOB =t3=32,∴t=92.如果单项式2x m+2n y n−2m+2与x5y7是同类项,那么n m的值是________.【答案】1【考点】同类项的概念【解析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程组,求出n ,m 的值,再代入代数式计算即可.【解答】解:根据题意得:{m +2n =5n −2m +2=7, 解得:{m =−1n =3, 则n m =3−1=13.故答案是13.三角形的两边长分别是3和4,第三边长是方程x 2−13x +40=0的根,则该三角形的周长为________.【答案】12【考点】三角形三边关系一元二次方程的解【解析】先利用因式分解法解方程得到x 1=5,x 2=8,再根据三角形三边的关系确定三角形第三边的长为5,然后计算三角形的周长.【解答】x 2−13x +40=0,(x −5)(x −8)=0,所以x 1=5,x 2=8,而三角形的两边长分别是3和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.如图,在⊙O 中,弦AC =2√3,点B 是圆上一点,且∠ABC =45∘,则⊙O 的半径R =________.【答案】√6【考点】勾股定理圆周角定理【解析】通过∠ABC =45∘,可得出∠AOC =90∘,根据OA =OC 就可以结合勾股定理求出AC 的长了.【解答】∵∠ABC=45∘,∴∠AOC=90∘,∵OA=OC=R,∴R2+R2=(2√3)2,解得R=√6.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=6cm.【答案】6.【考点】翻折变换(折叠问题)【解析】延长原矩形的边,然后根据两直线平行,内错角相等可得∠1=∠ACB,根据翻折变换的性质可得∠1=∠ABC,从而得到∠ABC=∠ACB,再根据等角对等边可得AC=AB,从而得解.【解答】如图,延长原矩形的边,∵矩形的对边平行,∴∠1=∠ACB,由翻折变换的性质得,∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=6cm,∴AC=6cm.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…第n个三角形数记为x n,则x n+ x n+1=________.【答案】(n+1)2【考点】规律型:图形的变化类规律型:点的坐标规律型:数字的变化类【解析】根据三角形数得到x 1=1,x 2=3=1+2,x 3=6=1+2+3,x 4=10=1+2+3+4,x 5=15=1+2+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,即x n =1+2+3+...+n =n(n+1)2、x n+1=(n+1)(n+2)2,然后计算x n +x n+1可得.【解答】∵ x 1=1,x 2=3=1+2,x 3=6=1+2+3,x 4=10=1+2+3+4,x 5=15=1+2+3+4+5,…∴ x n =1+2+3+...+n =n(n+1)2,x n+1=(n+1)(n+2)2, 则x n +x n+1=n(n+1)2+(n+1)(n+2)2=(n +1)2, 三、解答题(共5小题,满分38分)计算:(12)−2−|−1+√3|+2sin 60∘+(−1−√3)0.【答案】解:(12)−2−|−1+√3|+2sin 60∘+(−1−√3)0=4+1−√3+2×√32+1 =4+1−√3+√3+1=6.【考点】零指数幂、负整数指数幂特殊角的三角函数值 实数的运算【解析】本题涉及负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、二次根式化简5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(12)−2−|−1+√3|+2sin 60∘+(−1−√3)0=4+1−√3+2×√32+1 =4+1−√3+√3+1=6.如图,在平面直角坐标系中,△ABC 的顶点A(0, 1),B(3, 2),C(1, 4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【答案】△A1B1C1,即为所求;△A2B2C2,即为所求,点A2(−3, −1),B2(0, −2),C2(−2, −4).【考点】作图-轴对称变换作图-相似变换作图-位似变换【解析】(1)直接利用关于x轴对称点的性质得出各对应点位置进而得出答案;(2)直接利用平移的性质得出各对应点位置进而得出答案.【解答】如图所示:△A1B1C1,即为所求;如图所示:△A2B2C2,即为所求,点A2(−3, −1),B2(0, −2),C2(−2, −4).已知关于x的方程x2+mx+m−2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.【答案】解:(1)根据题意,将x=1代入方程x2+mx+m−2=0,得:1+m+m−2=0,;解得:m=12(2)∵Δ=m2−4×1×(m−2)=m2−4m+8=(m−2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.【考点】根的判别式一元二次方程的解【解析】(1)直接把x=1代入方程x2+mx+m−2=0求出m的值;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.【解答】(1)解:根据题意,将x=1代入方程x2+mx+m−2=0,得:1+m+m−2=0,;解得:m=12(2)证明:∵Δ=m2−4×1×(m−2)=m2−4m+8=(m−2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON位置运动到与地面垂直的OM位置时的示意图.已知AC=0.66米,BD=0.26米,α=20∘.(参考数据:sin20∘≈0.342,cos20∘≈0.940,tan20∘≈0.364)(1)求AB 的长(精确到0.01米);(2)若测得ON =0.8米,试计算小明头顶由N 点运动到M 点的路径MN ̂的长度.(结果保留π)【答案】解:(1)过B 作BE ⊥AC 于E ,如图所示:则AE =AC −BD =0.66−0.26=0.4(米),∠AEB =90∘,AB =AE sin ∠ABE =0.4sin 20∘≈1.17(米);(2)∠MON =90∘+20∘=110∘,所以MN ̂的长度是110π×0.8180=2245π(米). 【考点】解直角三角形的应用弧长的计算【解析】(1)过B 作BE ⊥AC 于E ,求出AE ,解直角三角形求出AB 即可;(2)求出∠MON 的度数,根据弧长公式求出即可.【解答】解:(1)过B 作BE ⊥AC 于E ,如图所示:则AE =AC −BD =0.66−0.26=0.4(米),∠AEB =90∘,AB =AE sin ∠ABE =0.4sin 20∘≈1.17(米);(2)∠MON =90∘+20∘=110∘,所以MN̂的长度是110π×0.8180=2245π(米).在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字−1,−2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x, y).(1)请你用画树状图或列表的方法,写出点M 所有可能的坐标;(2)求点M(x, y)在函数y =−2x 的图象上的概率.【答案】画树状图得:则点M 所有可能的坐标为:(0, −1),(0, −2),(0, 0),(1, −1),(1, −2),(1, 0),(2, −1),(2, −2),(2, 0);∵ 点M(x, y)在函数y =−2x 的图象上的有:(1, −2),(2, −1), ∴ 点M(x, y)在函数y =−2x 的图象上的概率为:29.【考点】反比例函数图象上点的坐标特征列表法与树状图法【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由点M(x, y)在函数y=−2x的图象上的有:(1, −2),(2, −1),直接利用概率公式求解即可求得答案.【解答】画树状图得:则点M所有可能的坐标为:(0, −1),(0, −2),(0, 0),(1, −1),(1, −2),(1, 0),(2, −1),(2, −2),(2, 0);∵点M(x, y)在函数y=−2x的图象上的有:(1, −2),(2, −1),∴点M(x, y)在函数y=−2x 的图象上的概率为:29.四、解答题(共5小题,满分50分)2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,________=________,________=________;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?【答案】一共调查了300名同学,m,60,n,90扇形统计图中,热词B所在扇形的圆心角是72度【考点】扇形统计图条形统计图【解析】(1)根据A的人数为105人,所占的百分比为35%,求出总人数,即可解答;(2)C所对应的人数为:总人数×30%,B所对应的人数为:总人数−A所对应的人数−C所对应的人数−D所对应的人数,即可解答;(3)根据B所占的百分比×360∘,即可解答.【解答】105÷35%=300(人),答:一共调查了300名同学,n=300×30%=90(人),m=300−105−90−45=60(人).故答案为:60,90;60×360∘=72∘.300答:扇形统计图中,热词B所在扇形的圆心角是72度.(x>0)的图象交于A(m, 1),B(1, n)两点.如图,函数y1=−x+4的图象与函数y2=kx(1)求k,m,n的值;(2)利用图象写出当x≥1时,y1和y2的大小关系.【答案】把A(m, 1)代入一次函数解析式得:1=−m+4,即m=3,∴A(3, 1),把A(3, 1)代入反比例解析式得:k=3,把B(1, n)代入一次函数解析式得:n=−1+4=3;∵A(3, 1),B(1, 3),∴由图象得:当1<x<3时,y1>y2;当x>3时,y1<y2;当x=1或x=3时,y1=y2.【考点】反比例函数与一次函数的综合【解析】(1)把A与B坐标代入一次函数解析式求出m与a的值,确定出A与B坐标,将A坐标代入反比例解析式求出k的值即可;(2)根据B的坐标,分x=1或x=3,1<x<3与x>3三种情况判断出y1和y2的大小关系即可.【解答】把A(m, 1)代入一次函数解析式得:1=−m+4,即m=3,∴A(3, 1),把A(3, 1)代入反比例解析式得:k=3,把B(1, n)代入一次函数解析式得:n=−1+4=3;∵A(3, 1),B(1, 3),∴由图象得:当1<x<3时,y1>y2;当x>3时,y1<y2;当x=1或x=3时,y1=y2.如图,已知EC // AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:OA2=OE⋅OF.【答案】∵EC // AB,∴∠EDA=∠DAB,∵∠EDA=∠ABF,∴∠DAB=∠ABF,∴AD // BC,∵DC // AB,∴四边形ABCD为平行四边形;∵EC // AB,∴△OAB∽△OED,∴OAOE =OBOD,∵AD // BC,∴△OBF∽△ODA,∴OBOD =OFOA,∴OAOE =OFOA,∴OA2=OE⋅OF.【考点】平行四边形的性质与判定相似三角形的性质与判定【解析】(1)由EC // AB,∠EDA=∠ABF,可证得∠DAB=∠ABF,即可证得AD // BC,则得四边形ABCD为平行四边形;(2)由EC // AB,可得OAOE =OBOD,由AD // BC,可得OBOD=OFOA,等量代换得出OAOE=OFOA,即OA2=OE⋅OF.【解答】∵EC // AB,∴∠EDA=∠DAB,∵∠EDA=∠ABF,∴∠DAB=∠ABF,∴AD // BC,∵DC // AB,∴四边形ABCD为平行四边形;∵EC // AB,∴△OAB∽△OED,∴OAOE =OBOD,∵AD // BC,∴△OBF∽△ODA,∴OBOD =OFOA,∴OAOE =OFOA,∴OA2=OE⋅OF.如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为3,∠BAC=60∘,求DE的长.【答案】证明:连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90∘,∴AB为圆O的直径;DE与圆O相切,理由为:证明:连接OD,∵O、D分别为AB、BC的中点,∴OD为△ABC的中位线,∴OD // AC,∵DE⊥AC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切;∵AB=AC,∠BAC=60∘,∴△ABC为等边三角形,∴AB=AC=BC=6,设AC与⊙O交于点F,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90∘,∴AF=CF=3,DE // BF,∵D为BC中点,∴E为CF中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得:BF=√62−32=3√3,则DE=12BF=3√32.【考点】圆的综合题【解析】(1)连接AD,由AB=AC,BD=CD,利用等腰三角形三线合一性质得到AD⊥BC,利用90∘的圆周角所对的弦为直径即可得证;(2)DE与圆O相切,理由为:连接OD,由O、D分别为AB、CB中点,利用中位线定理得到OD与AC平行,利用两直线平行内错角相等得到∠ODE为直角,再由OD为半径,即可得证;(3)由AB=AC,且∠BAC=60∘,得到三角形ABC为等边三角形,设AC与⊙O交于点F,连接BF,DE为三角形CBF中位线,求出BF的长,即可确定出DE的长.【解答】证明:连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90∘,∴AB为圆O的直径;DE与圆O相切,理由为:证明:连接OD,∵O、D分别为AB、BC的中点,∴OD为△ABC的中位线,∴OD // AC,∵DE⊥AC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切;∵AB=AC,∠BAC=60∘,∴△ABC为等边三角形,∴AB=AC=BC=6,设AC与⊙O交于点F,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90∘,∴AF=CF=3,DE // BF,∵D为BC中点,∴E为CF中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得:BF=√62−32=3√3,则DE=12BF=3√32.如图,已知抛物线y=−x2+bx+c经过A(3, 0),B(0, 3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以√2个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.【答案】∵抛物线y=−x2+bx+c经过A(3, 0),B(0, 3)两点,∴{−9+3b+c=0c=3,∴{b=2c=3,∴y=−x2+2x+3,设直线AB的解析式为y=kx+n,∵A(3, 0),B(0, 3)∴{3k+n=0n=3,∴{k=−1n=3,∴y=−x+3;由运动得,OE=t,AF=√2t,∵OA=3,∴AE=OA−OE=3−t,∵△AEF和△AOB为直角三角形,且∠EAF=∠OAB,①如图1,当△AOB∽△AEF时,∴AFAB =AEOA,∴√2t3√2=3−t3,∴t=32,②如图2,当△AOB∽△AFE时,∴OAAF =ABAE,∴√2t =3√23−t,∴t=1;如图,存在,过点P作PC // AB交y轴于C,∵直线AB解析式为y=−x+3,∴设直线PC解析式为y=−x+b,联立{y=−x+by=−x2+2x+3,∴−x+b=−x2+2x+3,∴x2−3x+b−3=0∴△=9−4(b−3)=0∴b=214,∴BC=214−3=94,x=32,∴P(32, 154).过点B作BD⊥PC,∴直线BD解析式为y=x+3,∴√2BD=94,∴BD=9√28,∵AB=3√2S 最大=12AB ×BD =12×3√2×9√28=278. 即:存在面积最大,最大是278,此时点P(32, 154).方法2、如图②,过点P 作PN ⊥x 轴于N ,交AB 于M ,设点P(m, −m 2+2m +3),∴ M(m, −m +3),∴ PM =−m 2+2m +3+m −3=−m 2+3m ,∴ S =S △PAB =S △PAM +S △PBM =12(−m 2+3m)×3=−32(m 2−3m)=−32(m −32)2+278,∴ 当m =32时,S 最大=278,此时,P(32, 154).【考点】二次函数综合题【解析】(1)用待定系数法求出抛物线,直线解析式;(2)分两种情况进行计算即可;(3)方法1、确定出面积达到最大时,直线PC 和抛物线相交于唯一点,从而确定出直线PC 解析式为y =−x +214,根据锐角三角函数求出BD ,计算即可.方法2、设出点P 的坐标,进而表示出点M 坐标,即可表示出PM ,最后用面积和即可得出二次函数,即可得出结论.【解答】∵ 抛物线y =−x 2+bx +c 经过A(3, 0),B(0, 3)两点,∴ {−9+3b +c =0c =3, ∴ {b =2c =3, ∴ y =−x 2+2x +3,设直线AB 的解析式为y =kx +n ,∵ A(3, 0),B(0, 3)∴ {3k +n =0n =3,∴{k=−1n=3,∴y=−x+3;由运动得,OE=t,AF=√2t,∵OA=3,∴AE=OA−OE=3−t,∵△AEF和△AOB为直角三角形,且∠EAF=∠OAB,①如图1,当△AOB∽△AEF时,∴AFAB =AEOA,∴√2t3√2=3−t3,∴t=32,②如图2,当△AOB∽△AFE时,∴OAAF =ABAE,∴√2t =3√23−t,∴t=1;如图,存在,过点P 作PC // AB 交y 轴于C ,∵ 直线AB 解析式为y =−x +3,∴ 设直线PC 解析式为y =−x +b ,联立{y =−x +b y =−x 2+2x +3, ∴ −x +b =−x 2+2x +3,∴ x 2−3x +b −3=0∴ △=9−4(b −3)=0∴ b =214, ∴ BC =214−3=94,x =32, ∴ P(32, 154). 过点B 作BD ⊥PC ,∴ 直线BD 解析式为y =x +3,∴ √2BD =94, ∴ BD =9√28,∵ AB =3√2S 最大=12AB ×BD =12×3√2×9√28=278. 即:存在面积最大,最大是278,此时点P(32, 154).方法2、如图②,过点P 作PN ⊥x 轴于N ,交AB 于M , 设点P(m, −m 2+2m +3),∴ M(m, −m +3),∴ PM =−m 2+2m +3+m −3=−m 2+3m , ∴ S =S △PAB =S △PAM +S △PBM =12(−m 2+3m)×3=−32(m 2−3m)=−32(m −32)2+278,∴ 当m =32时,S 最大=278,此时,P(32, 154).。
甘肃武威中考数学试题及答案.doc
2015年甘肃武威中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
甘肃武威中考数学真题测试卷有答案
武威市2015年初中毕业、高中招生考试数学试题一、选择题:本大题共10小题,每小题3分,共30分.1.64的立方根是()A.4B.±4C.8D.±82.中国航空母舰“辽宁号”的满载排水量为67500吨,将数67500用科学记数学可表示为()A.0.675×105B.6.75×104C.67.5×103 D.675×1023.若∠A=34°,则∠A的补角为()A.56°B. 146°C. 156°D. 166°4.下列运算正确的是 ( )A.x2+x2=x4B.(a–b)2=a2–b2C.( –a2)3=–a6D. 3a2· 2a3=6a65.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )A B C D6.下列命题中,假命题是 ( )A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机抽样,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y7.近年来某县加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元.设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是 ( ) A. 2500x2=3600 B. 2500(1+x)2=3600C.2500(1 +x%)2=3600D. 2500(1 +x) +2500(1 +x)2=36008.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是 ( )A. 80°B. 160°C. 100°D. 80°或100°9.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,若S△BDE: S△CDE=l:3,则S△DOE:S△AOC的值为 ( )A.13B.14C.19D.116ODEB CA10.如图,矩形ABCD中,AB=3,BC=5,点F是BC边上的一个动点(点F与点B,C都不重合),现将△FCD沿直线FD折叠,使点C落到点F处;过点P作∠BPFF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )EFA BCDP二、填空题:本大题共8小题,每小题3分,共24分.11.分解因式:x 3y -2x 2y +xy =_______________.12. 分式方程253x x =+的解是______________. 13.在函数1x y x+=中,自变量x 的取值范围是_________________.14.定义新运算:对于任意实数a ,b 都有:a ⊕b =a (a -b )+1,其中等式右边是通常的加法、减法及乘法运算,如:2⊕5=2×(2-5)+1 =2×(-3)+l =-5,那么不等式3⊕x<13的解集为____________.15.已知α,β均为锐角,且满足21sin (tan 1)0,____.2αβαβ-+-=+=则16.关于x 的方程22403kx x --=有实数根,则k 的取值范围是__________. 17.如图,半圆O 的直径AE =4,点B ,C ,D 均在半圆上,若AB = BC,CD = DE ,连结OB ,OD ,则图中阴影部分的面积为__________.18.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中l 是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是____,2016是第____个三角形数.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19. 计算:02015(5)4(1)3tan 60π︒-++--20. 先化简,再求值:22213(1),11x x x x -+÷--+其中x=021. 如图,已知在△ABC 中,∠A =90°.(l)请用圆规和直尺作出⊙P ,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图 痕迹,不写作法和证明)(2)若∠B =60°,AB =3,求⊙P 的面积.AB C22.如图①所示,将直尺摆放在三角板ABC上,使直尺与三角板的边分别交于点D,E,F,G,量得∠CGD=42°.(l)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的读数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)图①图②23.有三张卡片(形状、大小、颜色、质地都相同),正面分别写上整式x2+1,-x2-2,3将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式告AB.(1)请用画树状图或列表的方法,写出代数式AB所有可能的结果;(2)求代数式AB恰好是分式的概率.24.某班同学响应“阳光体育运动”号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行训练,训练后进行了测试现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出了如下统计图表:项目选择人数情况统计图长跑铅球10%立定跳远20%篮球定时定点投篮60%请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为________个;(2)选择长跑训练的人数占全班人数的百分比是____,该班共有学生____人;(3)根据测试数据,参加篮球定时定点投篮的学生训练后比训练前的人均进球数增加了25%,求参加训练之前的人均进球数.进球数(个)8 7 6 5 4 3人数 2 1 4 7 8 2训练后篮球定时定点投篮测试进球数统计表25.如图,平行四边形ABCD 中,AB =3cm .BC =5cm .∠B =60°.G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连结CE ,DF . (1)求证:四边形CEDF 是平行四边形;(2)①当AE =______cm 时,四边形CEDF 是矩形; ②当AE =____cm 时,四边形CEDF 是菱形. (直接写出答案,不需要说明理由)FGAB DCE26.如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在函数y =kx(k >0,x >0)的图象上,点D 的坐标为(4,3), (1)求k 的值;(2)若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在函数y =kx(k >0,x >0)的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.xy(C)y=k xAO DB27.已知△ABC 内接于⊙O ,过点A 作直线EF .(1)如图①所示,若AB 为⊙O 的直径,要使EF 成为⊙O 的切线,还需要添加的一个条件是(要求写出两种情况):_____________或者__________________. (2)如图②所示,如果AB 是不过圆心0的弦,且∠CAE =∠B ,那么EF 是⊙O 的切线吗?试证明你的判断.图2图1ABAOOF ECFEBC28.如图,在平面直角坐标系中,抛物线经过点A (0,4),B (l ,0),C (5,0),其对称轴与x 轴相交于点M .(1)求此抛物线的解析式和对称轴;(2)在此抛物线的对称轴上是否存在一点F ,使△FAB 的周长最小?若存在,请求出点F 的坐标;若不存在,请说明理由;(3)连接AC ,在直线AC 下方的抛物线上,是否存在一点N ,使△NAC 的面积最大,若存在,请求出点N 的坐标;若不存在,请说明理由.xy 514AMC B O参考答案一、选择题1.A 解析:先找出题中的数是哪个数的立方,由开立方和立方是互为逆运算,求得这个数的立方根.∵4的立方等于64,∴64的立方根等于4,故选择 A .点评:本题考查了立方根的计算,解题的关键是掌握利用逆运算求立方根的方法.2.B 解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数, 65700在确定a 的值后,n 的值要比原数的位数小1.将65700用科学记数法表示为:6.75×104,故选择B .点评:本题考查了科学记数法,解题的关键是正确确定a 的值以及n 的值.3. B 解析:互补两个角之和为180°, ∠A 的补角等于180°减去∠A . 点评:本题考查了补角计算,解题的关键是掌握补角的定义.4. C解析:A 、结果是2x 2,故本选项错误;B 、结果是a 2–2ab +b 2,故本选项错误; C 、结果是–a 6,故本选项正确;D 、结果是6a 5,故本选项错误,故选择 C . 点评:本题考查了整式的运算,解题的关键是正确掌握运算法则5. A 解析:俯视图是从上面看得到的图形,按照这个方法得出本题答案.解:俯视图有三行三列,第一列和第二列都有两个正方形,第三列只有一个正方形,故选择 A . 点评:本题考查了三视图,解题的关键是会从不同侧面观察立体图形,并且抽象出平面图形.6. D 解析:平行四边形是中心对称图形,三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等, 对于简单的随机抽样,可以用样本的方差去估计总体的方差, 若x 2 = y 2,则x = ±y .A 、B 、C 都是正确的,D 没有考虑到互为相反数的平方值相等,所以错误,故选择D . 点评:本题考查了命题,解题的关键是正确判断命题的真假性.7. (2015甘肃武威,7,3分)近年来某县加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元.设该县投入教育经费的年平均增长率为x ,根据题意列方程,则下列方程正确的是 ( )A . 2500x 2 =3600 B. 2500(1+x )2=3600C.2500(1 +x %)2 =3600 D . 2500(1 +x ) +2500(1 +x )2 =3600 【答案】B解析:当年增长率为x ,如果增长后的年份与增长前的年份相差n ,那么增长后的量=增长前的量×(1+增长率)n .由题意得:2500(1+x )2=3600,故选择B .点评:本题考查了实际问题的增长率问题,解题的关键是掌握增长率问题的解题方法.8.D 解析:一般这类题先画出图形,再进行分类讨论,分圆心在三角形内部和圆心在三角形外部来做.解:如图,∵∠AO C =160°,∴1116080,22ABC AOC ∠=∠=⨯︒=︒ ∵∠ABC +∠AB ′C =180°,∴∠AB ′C =180°-∠ABC =180°-80°=100°, ∴∠ABC 的度数是:80°或100°,故选择 D .OACBB'点评:本题考查了圆周角定理及圆内接四边形的性质,解题的关键是掌握其关系并注意分类讨论思想.9.D 解析:由S △BDE : S △CDE =l ∶3,可得BE :EC =1∶3,所以BE ∶BC =1∶4,易证△BDE∽△BAC ,△DOE ∽△COA ,所以14DE BE AC BC ==,22116DOE AOC S DE S AC ∆∆==.点评:本题考查了相似三角形的判定与性质的应用,解题的关键是相似三角形的判定与性质的灵活应用.10.C 解析:由折叠可得∠CFD =∠FFD∵FE 平分∠BPF ,∴∠BPE =∠FPE ,∴∠FPD =∠FPE +∠DPF =90°, ∴∠BPE +∠CPD =90°∵矩形ABCD ,∴∠B =∠C =90°,∴∠BEP +∠EPB =90°,∴∠BEP =∠CPD ∴△EBF ∽△PCD ,∴BE PC BPCD=∵AB =3,BC =5,BP =x ,BE =y ,∴CD =3,PC =5-x∴53y x x -=,化简得:21533y x x =-+ E FA BCDP点评:本题考查了相似三角形及二次函数的应用,解题的关键是通过相似三角形性质求关系式.二、填空题11. xy (x -1)2解析:提取公因式xy ,余下的式子为(x 2-2x +1),再利用完全平方公式分解. x 3y -2x 2y +xy =x (x 2-2x +1)=xy (x -1)2 . 故答案为:xy (x -1)2.点评:本题考查了因式分解,解题的关键是按因式分解的步骤来分解.12. x =2 解析:253x x =+, 去分母得:2(x +3)=5x , 2x +6=5x , 3x =6, x =2,经检验:x =2是原方程的解,故答案为 x =2.点评:本题考查了解分式方程,解题的关键是熟练掌握解分式方程的方法.13. x ≥-1且x ≠0解析:根据分式有意义的条件是分母不为0;根据二次根式的性质,被开方数大于或等于0,可解得x 的取值范围. 根据题意若分式1x x+有意义,可得x ≠0; 若二次根式1x +有意义,则x +1≥0,解得x ≥-1.所以x ≥-1且x ≠0,故答案为: x ≥-1且x ≠0.点评:本题考查了函数自变量的取值范围、分式和根式的定义,解题的关键是清楚分式和根式的有意义的条件.14. x >-1解析:新定义的运算是按右边的算式来计算的,所以3⊕x = 3(3-x )+1,再由3⊕x <13可得不等式,求得解集. 解:3(3–x )+1 <139–3x +1<13 –13x <13x > -1 ,故答案为:x >-1 .点评:本题考查了一元一次不等式及阅读能力,解题的关键是读懂题意,理解模型.15. 75°解析:∵21sin (tan 1)02αβ-+-=, 可得:1sin tan 102αβ-+-=:, ∴sin α=12,tan β=1,∴α=30°,β=45°, ∴α+β=75°,故答案为75°. 点评:本题考查了特殊角的三角函数值和非负数的性质,解题的关键是掌握特殊角的三角函数值.16. k ≥-6解析:本题进行分类讨论:当k ≠0时,由于一元二次方程ax 2+bx +c =0(a ≠0)有实数根,所以b 2-4ac ≥0,由此可求出k 的取值范围;当k =0时,方程为一元一次方程,也有实数根.228(4)4()k 1633816036010.66.kk k k k k k ≠∆=--⨯-=+∴+≥∴≥-≠=≥-当k 0时,方程有实数根,且;当时,方程的解为x=-所以的取值范围为点评:本题考查了一元二次方程根的判别式及方程的知识,解题的关键审清题意,掌握一元二次方程根的判别式(b 2-4ac )与一元二次方程根的情况之间的关系.17.π解析:根据题意,阴影部分的圆心角与空白部分的圆心角相等,则面积也会相等,所以阴影面积是半圆面积的一半,可求出面积. ∵AB =BC ,CD =DE , ∴,AB BC CD DE ==, ∴∠BOD =∠AOB +∠DOE∴阴影部分面积=S 扇形BOD =22112.424AE πππ⎛⎫=⨯= ⎪⎝⎭点评:本题考查了与圆有关的面积计算,解题的关键是正确表示出阴影部分的面积.18. 45,63解析:观察三角形数,由3=1+2,6=1+2+3,10=1+2+3+4,归纳得第n 个三角形数=1+2+3+…+n ,根据这个规律可解出结果.第9个三角形数:三角形数的规律为第n 个三角形数=1+2+3+…+n =(n 1)2n +, 所以第9个三角形数9(91)452+=, 2016是第几个三角形数:n(n 1)20162+=,解得:n=63,n =-64(舍去)所以2016是第63个三角形数点评:本题考查了数字的变化规律,解题的关键是找出数字之间的运算规律.三、解答题19.解析:分别根据有理数乘方的法则、二次根式的化简、特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.12133+⨯解:原式=--=2−3=-1.点评:本题考查了实数的运算,解题的关键是熟知有理数乘方的法则、二次根式的化简、特殊角的三角函数值.20. 解析:先化简分式,再代入求值.22(1)13()(1)(1)11(1)1(1)(1)2121.2x x x x x x x x x x x x x -+÷-+--+-+=∙+---=-解:原式=当x=0时,原式=点评:本题考查分式的化简求值,解题的关键是掌握分式的运算法则.21.解析:⊙P 与AB ,BC 两边都相切,可知圆心到两边的距离都相等,那么P 就在∠ABC的角平分线上,那么就容易找到P 点位置,第二小题由三角函数易得答案. 解:(1)如图所示,则⊙P 为所求作的图.(2)∵∠B =60°,BP 平分∠ABC ,∴∠ABP =30°,A B∵t an ∠ABP =APAB,∴AP =3, ∴S ⊙P =3π点评:本题考查了圆的有关概念及角平分线的性质,解题的关键是掌握圆的基本概念.22. 解析:(1)根据三角形内角和等于180°,可算出∠CDG 的度数,再利用两直线平行,同位角相等,就可算出∠CEF 的度数;(2)由三角函数可算出答案. 解:(1)∵∠CGD =42°,∠C =90°,∴∠CDG =90°-42°=48°,(2)∵点H ,B 的读数分别为4,13.4, ∴HB =13.4-4=9.4,∴BC =HB ·cos42°≈9.4×0.74≈6.96(m ) 答:BC 的长为6.96m.点评:本题考查了平行线的性质,解题的关键是掌握平行线的性质.23. 解析:用列表法或画树形图表示所有等可能的结果,进而确定事件发生的概率. 解:(1)画树状图:列表:第一次第二次x 2+1 - x 2-2 3 x 2+12221x x --+ 231x + - x 2-22212x x +--232x --3213x + 223x --(2)代数式A B 所有可能的结果共有6种,其中代数式AB是分式的有4种:2212x x +--,2221x x --+,231x +,232x --, 所以F ( 是分式) 4263==. 点评:本题考查了用列表或画树形图的方法确定随机事件的概率及分式的概念,解题的关键是灵活应用列表法或画树形图表示所有等可能的结果.24.解析:(1)根据统计表算加权平均数,就可得出答案.(2)观察扇形统计图,通过计算,可算出长跑训练的人数占全班人数的百分比;利用篮球参加人数除以百分比,可算出班级总人数.开 始 2212x x +-- 213x + 2221x x --+ 223x -- 231x + 232x -- x 2+1 - x 2-2 3 - x 2-2 3 x 2+1 3 x 2+1 - x 2-2 第一次 第二次 A B(3)利用增长率来求出原来人数.解:(1) 5 (2)10%, 40(3)设参加训练之前的人均进球数为x 个,则x (1+25%)=5,解得 x =4,即参加训练之前的人均进球数是4个.点评:本题考查了扇形统计图和统计表,解题的关键是明白统计图的意义.25. 解析:(1)只要证明△FCG ≌△EDG ,就可得到对角线互相平分,可证平行四边形;(2)①过A 作AH ⊥BC 于H ,先证明△HBA ≌△EDC ,从而推出∠CED =∠AMB =90°,根据矩形的判定推出即可;②先证明△CDE 是等边三角形,从而得到CE =DE ,根据菱形的判定推出即可.(1)证明:∵ 四边形ABCD 是平行四边形,∴ CF ∥ED ,∴ ∠FCG =∠EDG ,∵ G 是CD 的中点,∴ CG =DG ,在△FCG 和△EDG 中,FCG EDG CG DGCGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △FCG ≌△EDG (A S A )∴ FG =EG ,∵ CG =DG ,∴ 四边形CEDF 是平行四边形;(2)① 解:当AE =3.5cm 时,四边形CEDF 是矩形.解:当AE =3.5时,平行四边形CED F 是矩形,理由是:过A 作AH ⊥BC 于H ,∵∠B =60°,AB =3,∴BH =1.5,∵四边形ABCD 是平行四边形,∴∠CDA =∠B =60°,DC =AB =3,BC =AD =5,∵AE =3.5,∴DE =1.5=BM ,在△HBA 和△EDC 中,BH DE B CDA AB CD =⎧⎪∠=∠⎨⎪=⎩∴△HBA ≌△EDC (SAS ),∴∠CED =∠AHB =90°,∵四边形CEDF 是平行四边形,∴四边形CEDF 是矩形,故答案为:3.5;② 当AE =2cm 时,四边形CEDF 是菱形.理由是:∵AD =5,AE =2,∴DE =3,∵CD =3,∠CDE =60°,∴△CDE 是等边三角形,∴CE =DE ,∵四边形CEDF 是平行四边形,∴四边形CEDF 是菱形,故答案为:2. 点评:本题考查了全等三角形的判定与性质、特殊四边形的性质及判定,解题的关键是掌握全等三角形的判定与性质、特殊四边形的性质及判定综合运用.26. 解析:(1)由D 点坐标可求出菱形的边长,易得A 点坐标,则可求出反比例函数解析式,那么k 的值得解.(2)将菱形ABCD 沿x 轴正方向平移,由D 点坐标,可得纵坐标没有变,那么代入反比例函数,求得横坐标后,可算出平移距离.解:(1)过点D 作x 轴的垂线,垂足为F ,∵ 点D 的坐标为(4,3), ∴ OF =4,DF =3,∴ OD =5, ∴ AD =5,∴ 点A 坐标为(4,8),∴ k =xy =4×8=32,∴ k =32;(2)将菱形ABCD 沿x 轴正方向平移,使得点D 落在函数32y x=(x >0)的图象D '点处,过点D '做x 轴的垂线,垂足为F '.∵ DF =3, ∴ 3,D F ''=∴ 点D '的纵坐标为3, ∵ 点D '在32y x=的图象上 ∴ 3 =32x ,解得x =323, 即323220,4,333F OF F '=∴'=-= ∴ 菱形ABCD 平移的距离为203. 点评:本题考查了反比例函数与菱形的性质,解题的关键是求出菱形的边长,及反比例函数的解析式.27.解析:(1)只要能证明OA ⊥EF 的条件都可以.(2)作直径AM ,连接CM ,则∠ACM =90°,∠M =∠B ,因为∠M +∠CAM =90°,容易证得∠MAE =90°,那么EF 是⊙O 的切线.解: (1)①∠BAE =90°,②∠EAC =∠ABC ,理由是:①∵∠BAE =90°,∴AE ⊥AB ,∵AB 是直径,∴EF 是⊙O 的切线;②∵AB 是直径,∴∠ACB =90°,∴∠ABC +∠BAC =90°,∵∠EAC =∠ABC ,∴∠BAE =∠BAC +∠EAC =∠BAC +∠ABC =90°,即AE ⊥AB ,∵AB 是直径,∴EF 是⊙O 的切线;(2)EF 是⊙O 的切线.证明:作直径AM ,连接CM ,则 ∠ACM =90°,∠M =∠B , E CAF O M B∴ ∠M +∠CAM =∠B +∠CAM =90°,∵ ∠CAE =∠B ,∴ ∠CAM +∠CAE =90°,∴ AE ⊥AM ,∵ AM 为直径,∴ EF 是⊙O 的切线.点评:本题考查了切线的判定定理,解题的关键是掌握切线的判定定理.28.解析:(1)由三点坐标,可由交点式求得解析式.(2)当AF +FB 的值最小时,△F AB 的周长最小,由轴对称求最短路径,连接AC 与对称轴的交点就是所求的F 点,再求出直线AC 的解析式,就容易求出F 点坐标了.(3)N 点在抛物线上,假设N 点存在,设点坐标,过N 点作x 轴的垂线交直线AC 于点G ,那么△NAC 的面积=△ANG 的面积+△NAC 的面积,列出函数关系式,利用二次函数的性质求最值即可.解:(1)根据已知条件可设抛物线的解析式为(1)(5)y a x x =--,把点A (0,4)代入上式,解得 45a =, ∴ 224424416(1)(5)4(3)55555y x x x x x =--=-+=-- ∴ 抛物线的对称轴是 3x =;(2)存在;F 点坐标为(3,85). 如图,连接AC 交对称轴于点F ,连接BF ,AB ,∵ 点B 与点C 关于对称轴对称,∴FB =FC ,∴ AB +AF +FB =AB +AF +FC =AB +AC ,∴ 此时△F AB 的周长最小.设直线AC 的解析式为 y kx b =+,把A (0,4),C (5,0)代入y kx b =+,得 4,50b k b =⎧⎨+=⎩, 解得 4,54k b ⎧=-⎪⎨⎪=⎩, ∴ 445y x =-+,∵ 点F 的横坐标为3, ∴ 483455y =-⨯+=, ∴ F (3,85).(3)在直线AC 下方的抛物线上存在点N ,使△NAC 面积最大.如图,设N 点的横坐标为t ,此时点N (2424455t t t -+,)(0<t <5), 过点N 作y 轴的平行线,分别交x 轴、AC 于点F 、G ,过点A 作 AD ⊥NG ,垂足为D ,由(2)可知直线AC 的解析式为 445y x =-+, 把x t =代入445y x =-+得 445y t =-+, 则G (t ,445t -+), 此时,NG =22442444(4)45555t t t t t -+--+=-+ ∵ AD +CF =OC =5,∴ S △NAC =S △ANG +S △CGN =12NG ﹒AD +12NG ﹒CF =12NG ﹒OC =22214525(4)52102()2522t t t t t ⨯-+⨯=-+=--+ ∴ 当52t =时,△NAC 面积的最大值为252, 由 52t =,得 24244355y t t =-+=-, ∴ N (52,3-) 点评:本题考查了二次函数综合题,解题的关键是轴对称求最短路径和坐标系中三角形面积分割.。
2024年甘肃省武威市中考数学真题试卷及答案
2024年甘肃省武威市中考数学真题试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项. 1. 下列各数中,比2-小的数是( ) A.1-B. 4-C. 4D. 12. 如图所示,该几何体的主视图是( )A. B. C. D.3. 若55A ∠=︒,则A ∠的补角为( ) A. 35︒ B. 45︒C. 115︒D. 125︒4. 计算:4222a ba b a b-=--( ) A. 2B. 2a b -C.22a b- D.2a ba b-- 5. 如图,在矩形ABCD 中,对角线AC ,BD 相交于点O,60ABD ∠=︒,2AB =,则AC 的长为( )A. 6B. 5C. 4D. 36. 如图,点A,B,C 在O 上,AC OB ⊥,垂足为D,若35A ∠=︒,则C ∠的度数是( )A. 20︒B. 25︒C. 30︒D. 35︒7. 如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x 尺,长桌的长为y 尺,则y 与x 的关系可以表示为( )A. 3y x =B. 4y x =C. 31y xD. 41y x =+8. 近年来,我国重视农村电子商务的发展.下面的统计图反映了2016—2023年中国农村网络零售额情况.根据统计图提供的信息,下列结论错误的是( )A. 2023年中国农村网络零售额最高B. 2016年中国农村网络零售额最低C. 2016—2023年,中国农村网络零售额持续增加D. 从2020年开始,中国农村网络零售额突破20000亿元9. 敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A 区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为()15,16,那么有序数对记为()12,17对应的田地面积为( )A. 一亩八十步B. 一亩二十步C. 半亩七十八步D. 半亩八十四步10. 如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x,PO 的长为y,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为( )A. 2B. 3C.D. 二、填空题:本大题共6小题,每小题4分,共24分. 11. 因式分解:228x -=________.12. 已知一次函数24y x =-+,当自变量2x >时,函数y 的值可以是________(写出一个合理的值即可).13. 定义一种新运算*,规定运算法则为:*n m n m mn =-(m,n 均为整数,且0m ≠).例:32*32232=-⨯=,则(2)*2-=________.14. 围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点________的位置,则所得的对弈图是轴对称图形.(填写A,B,C,D 中的一处即可,A,B,C,D 位于棋盘的格点上)15. 如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8m DE =的矩形,则可判定货车________完全停到车棚内(填“能”或“不能”).16. 甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC 和扇形OAD 有相同的圆心O,且圆心角100O ∠=︒,若120OA =cm ,60OB =cm ,则阴影部分的面积是______ 2cm .(结果用π表示)三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17. 计算. 18. 解不等式组:()223122x x x x ⎧-<+⎪⎨+<⎪⎩19. 先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b .20. 马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O和圆上一点M.作法如下:①以点M为圆心,OM长为半径,作弧交O于A,B两点;①延长MO交O于点C;即点A,B,C将O的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB,AC,BC,若O的半径为2cm,则ABC的周长为______ cm.21. 在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.22. 习近平总书记于2021年指出,中国将力争2030年前实现碳达峰,2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH垂直于地面,测角仪CD,EF在AH两侧,1.6mCD EF==,点C与点E相距182m(点C,H,E在同一条直线上),在D处测得简尖顶点A的仰角为45︒,在F处测得筒尖顶点A的仰角为53︒.求风电塔筒AH的高度.(参考数据:sin534 5︒≈,cos533 5︒≈,tan534 3︒≈.)四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23. 在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图:信息二:选手乙五轮比赛部分成绩:其中三个得分分别是9.0,8.9,8.3;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:根据以上信息,回答下列问题:(1)写出表中m,n 的值:m =_______,n =_______;(2)从甲、丙两位选手的得分折线图中可知,选手_______发挥的稳定性更好(填“甲”或“丙”); (3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.24. 如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0ky x x=>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0ky x x=>的图象于C,D 两点.(1)求一次函数y ax b =+和反比例函数ky x=的表达式; (2)连接AD ,求ACD 的面积.25. 如图,AB 是O 的直径,BC BD =,点E 在AD 的延长线上,且ADC AEB ∠=∠.(1)求证:BE 是O 的切线;(2)当O 的半径为2,3BC =时,求tan AEB ∠的值.26. 【模型建立】(1)如图1,已知ABE 和BCD △,AB BC ⊥,AB BC =,CD BD ⊥,AE BD ⊥.用等式写出线段AE ,DE ,CD 的数量关系,并说明理由.【模型应用】(2)如图2,在正方形ABCD 中,点E,F 分别在对角线BD 和边CD 上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由. 【模型迁移】(3)如图3,在正方形ABCD 中,点E 在对角线BD 上,点F 在边CD 的延长线上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.27. 如图1,抛物线()2y a x h k =-+交x 轴于O,()4,0A 两点,顶点为(2,B .点C 为OB 的中点.(1)求抛物线2()y a x h k =-+的表达式;(2)过点C 作CH OA ⊥,垂足为H,交抛物线于点E .求线段CE 的长. (3)点D 为线段OA 上一动点(O 点除外),在OC 右侧作平行四边形OCFD . ①如图2,当点F 落在抛物线上时,求点F 的坐标; ①如图3,连接BD ,BF ,求BD BF +的最小值.2024年甘肃省武威市中考数学真题试卷答案一、选择题.二、填空题.11.【答案】()()222x x +- 12.【答案】2-(答案不唯一) 13.【答案】8 14.【答案】A 或C 15.【答案】能 16.【答案】3000π 三、解答题. 17.【答案】018.【答案】173x <<19.【答案】2a b +,320.【答案】(1)略 (2)21.【答案】(1)23(2)这个游戏规则对甲乙双方不公平,理由见解析 22.【答案】105.6m 四、解答题.23.【答案】(1)9.1;9.1(2)甲 (3)应该推荐甲选手,理由见解析 24.【答案】(1)一次函数y ax b =+的解析式为132y x =+;反比例函数()0ky x x =>的解析式为()80y x x=>; (2)625.【答案】(1)略 (2)tan AEB ∠=26.【答案】(1)DE CD AE+=(2)AD DF=+(3)AD DF=-27.【答案】(1)2y x=+(2(3)①(2F①。
2016年威武市中考数学真题(解析版)
2016年威武市中考数学真题一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,是中心对称图形的是( )A .B .C .D .【答案】A.2.在1,﹣2,0,53这四个数中,最大的数是( )A .﹣2B .0C.53D .1 【答案】C. 【解析】根据正数大于零,零大于负数,可得﹣2<0<1<53.故选C.3.在数轴上表示不等式x ﹣1<0的解集,正确的是( ) A .B .C .D .【答案】C. 【解析】解不等式x ﹣1<0得:x <1.把它表示在数轴上可知选项C 正确.4.下列根式中是最简二次根式的是( )A .32B .3C .9D .12 【答案】B.【解析】利用最简二次根式的定义分析得出答案.选项A :被开方数中含有分母,故不是最简二次根式;选项C :39=,故不是最简二次根式;选项D :3212=,故不是最简二次根式.故选B.5.已知点P (0,m )在y 轴的负半轴上,则点M (﹣m ,﹣m+1)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A.6.如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .54°C .66°D .56°【答案】D. 【解析】:∵AB ∥CD ,∴∠D=∠1=34°.∵DE ⊥CE ,∴∠DCE=90°-∠EDC=56°.故选D.7.如果两个相似三角形的面积比是1:4,那么它们的周长比是( ) A .1:16 B .1:4 C .1:6 D .1:2【答案】D.【解析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方.可求得周长比是1:2.故选D.8.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( ) A .x x 60050800=+ B .x x 60050800=- C .50600800+=x x D .50600800-=x x【答案】A.9.若x 2+4x ﹣4=0,则3(x ﹣2)2﹣6(x+1)(x ﹣1)的值为( ) A .﹣6 B .6 C .18 D .30【答案】B.【解析】:∵x 2+4x ﹣4=0,∴x 2+4x=4,∴原式=3(x 2﹣4x+4)﹣6(x 2﹣1)=3x 2﹣12x+12﹣6x 2+6=﹣3x 2﹣12x+18=﹣3(x 2+4x )+18=﹣12+18=6.故选B.10.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .【答案】B.【解析】:过A 点作AH ⊥BC 于H ,∵△ABC 是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH= BC=2, 当0≤x ≤2时,如图1,∵∠B=45°,∴PD=BD=x ,∴y=12·x ·x=12x 2;当2<x ≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x ,∴y=12(4﹣x )·x=﹣12x 2+2x ,故选B.二、填空题(共8小题,每小题4分,满分32分)11.因式分解:2a 2﹣8= .【答案】2(a+2)(a-2). 【解析】:2a 2-8=2(a 2-4)=2(a+2)(a-2).12.计算:(﹣5a 4)•(﹣8ab 2)= .【答案】40a 5b 2. 【解析】(-5a 4)·(-8ab 2)=[(-5)×(-8)]·a 4+1b 2=40a 5b 2.13.如图,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是 .【答案】92.14.如果单项式2x m+2n y n ﹣2m+2与x 5y 7是同类项,那么n m 的值是 .【答案】13.【解析】根据题意,得⎩⎨⎧=+-=+72252m n n m .解得⎩⎨⎧=-=31nm .∴n m =3-1=13.15.三角形的两边长分别是3和4,第三边长是方程x 2﹣13x+40=0的根,则该三角形的周长为 . 【答案】12.16.如图,在⊙O 中,弦AC=23,点B 是圆上一点,且∠ABC=45°,则⊙O 的半径R= .【答案】6.【解析】∵∠ABC=45°,∴∠AOC=90°,∴OA 2+OC 2=AC 2. ∴OA 2+OA 2=(23)2.∴OA=6.故⊙O 的半径为6.17.将一张矩形纸片折叠成如图所示的图形,若AB=6cm ,则AC= cm .【答案】6.试题分析:如图,∵矩形的对边平行,∴∠1=∠ACB ,∵∠1=∠ABC ,∴∠ABC=∠ACB ,∴AC=AB ,∵AB=6cm ,∴AC=6cm .18.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,则x n +x n+1= . 【答案】(n+1)2【解析】: x 1=1,x 2=3=1+2,x 3=6=1+2+3,x 4=10=1+2+3+4,···,∴x n =1+2+3+···+n=n (n +1)2.∴x n+1+x n =(n +1)(n +2)2+n (n +1)2=(n+1)2.三、解答题(共5小题,满分38分)19.计算:()23160sin 23121--+︒++--⎪⎪⎭⎫⎝⎛-.【答案】6.20.如图,在平面直角坐标系中,△ABC 的顶点A (0,1),B (3,2),C (1,4)均在正方形网格的格点上.(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)将△A 1B 1C 1沿x 轴方向向左平移3个单位后得到△A 2B 2C 2,写出顶点A 2,B 2,C 2的坐标.【答案】(1)画图见解析;(2)画图见解析,A 2(-3,-1),B 2(0,-2),C 2(-2,-4).考点:1轴对称变换;2平移变换. 21.已知关于x 的方程x 2+mx+m ﹣2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根. 【答案】(1)12;(2)证明见解析.【解析】试题分析:(1)直接把x=1代入原方程可求得m 得值;(2)计算出根的判别式,再证明其大于零即可. 试题解析:(1)将x=1代入方程x 2+mx+m ﹣2=0,得:1+m+m ﹣2=0,∴m=12;(2)∵△=m 2﹣4×1×(m ﹣2)=m2﹣4m+8=(m ﹣2)2+4,∴不论m 取何值,(m ﹣2)2≥0,∴(m ﹣2)2+4>0.∴不论m 取何实数,该方程都有两个不相等的实数根.22.图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON 位置运动到与地面垂直的OM 位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364) (1)求AB 的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N 点运动到M 点的路径的长度.(结果保留π)【答案】(1)1.17米;(2)2245.考点:1解直角三角形;2弧长公式.23.在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ). (1)请你用画树状图或列表的方法,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数y=﹣2x的图象上的概率.【答案】(1)树状图见解析,则点M 所有可能的坐标为:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)29.﹣2),(2,0);(2)∵点M (x ,y )在函数y=﹣2x 的图象上的有:(1,﹣2),(2,﹣1),∴点M (x ,y )在函数y=﹣2x 的图象上的概率为:29.考点:列表法或树状图法求概率.四、解答题(共5小题,满分50分)24.2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A :“互联网+政务服务”,B :“工匠精神”,C :“光网城市”,D :“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m= ,n= ; (3)扇形统计图中,热词B 所在扇形的圆心角是多少度? 【答案】(1)300;(2)m=60,n=90;(3)72°.考点:统计图.25.如图,函数y 1=﹣x+4的图象与函数y 2=kx (x >0)的图象交于A (m ,1),B (1,n )两点.(1)求k ,m ,n 的值;(2)利用图象写出当x ≥1时,y 1和y 2的大小关系.【答案】(1)k=3,m=3,n=3;(2)当1<x <3时,y 1>y 2;当x >3时,y 1<y 2;当x=1或x=3时,y 1=y 2. 【解析】试题分析:(1)(1)把A 与B 坐标代入一次函数解析式求出m 与n 的值,将A 坐标代入反比例解析式求出k 的值;(2)利用图像,可知分x=1或x=3,1<x <3与x >3三种情况判断出y 1和y 2的大小关系即可. 试题解析:(1)把A (m ,1)代入y=-x+4得:1=﹣m+4,即m=3,∴A (3,1),把A (3,1)代入y=k x 得:k=3,把B (1,n )代入一次函数解析式得:n=﹣1+4=3;(2)∵A (3,1),B (1,3),∴根据图像得当1<x <3时,y 1>y 2;当x >3时,y 1<y 2;当x=1或x=3时,y 1=y 2. 考点:1一次函数;2反比例函数;3数形结合. 26.如图,已知EC ∥AB ,∠EDA=∠ABF . (1)求证:四边形ABCD 是平行四边形; (2)求证:OA 2=OE •OF .【答案】(1)证明见解析;(2)证明见解析.考点:1平行线分线段成比例;2平行四边形性质和判定.27.如图,在△ABC 中,AB=AC ,点D 在BC 上,BD=DC ,过点D 作DE ⊥AC ,垂足为E ,⊙O 经过A ,B ,D 三点.(1)求证:AB 是⊙O 的直径;(2)判断DE 与⊙O 的位置关系,并加以证明; (3)若⊙O 的半径为3,∠BAC=60°,求DE 的长.【答案】(1)证明见解析;(2)DE 与圆O 相切,证明见解析;(3)233. 【解析】试题分析:(1)连接AD ,根据等腰三角形三线合一性质得到AD ⊥BC ,再根据90°的圆周角所对的弦为直径中点,∴E 为CF 中点,DE=12BF ,在Rt △ABF 中,∠AFB=90°,AB=6,AF=3,∴BF=33362222=-=-AF AB ,则DE=12BF=233. 学科网 考点:1圆;2等腰三角形;3平行线的性质.28.如图,已知抛物线y=﹣x 2+bx+c 经过A (3,0),B (0,3)两点.(1)求此抛物线的解析式和直线AB 的解析式;(2)如图①,动点E 从O 点出发,沿着OA 方向以1个单位/秒的速度向终点A 匀速运动,同时,动点F 从A 点出发,沿着AB 方向以个单位/秒的速度向终点B 匀速运动,当E ,F 中任意一点到达终点时另一点也随之停止运动,连接EF ,设运动时间为t 秒,当t 为何值时,△AEF 为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A ,B 处,用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A ,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.【答案】(1)抛物线:y=-x2+2x+3,直线AB:y=-x+3;(2)7)2 35(15-或41)325(9-;(3)存在,最大面278,P(32,154).∴直线AB的解析式为y=﹣x+3;(2)由题意得,OE=t,AF=2t,∴AE=OA﹣OE=3﹣t,∵△AEF为直角三角形,∴①若△AOB∽△AEF,∴AFAB=A EOA,∴3352tt-=,∴t=7)235(15-.②△AOB∽△AFE,∴OAAF=ABA E,∴tt-=3523,∴t=41)325(9-;综上所述,t=7)235(15-或41)325(9-;(3)如图,存在,过点P作PC∥AB交y轴于C,当直线PC与y=﹣x2+2x+3有且只有一个交点时,∆PAB面积最大.∵直线AB解析式为y=﹣x+3,∴设直线PC解析式为y=﹣x+b,∴﹣x+b=﹣x2+2x+3,∴x2﹣3x+b﹣3=0,∴△=9﹣4(b﹣3)=0,∴b=214.解方程组⎪⎩⎪⎨⎧++-=+-=324212xxyxy,得⎪⎪⎩⎪⎪⎨⎧==41523yx.∴P(32,154)∴BC=214﹣3=94.过点B作BD⊥PC,考点:1二次函数;2一次函数;3相似三角形;4平面直角坐标系中,直线平行与垂直解析式关系.。
2023-2024学年甘肃省武威七中九年级(上)期末数学试卷+答案解析
2023-2024学年甘肃省武威七中九年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列有关环保的四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.用配方法解方程时,配方后正确的是()A. B. C. D.3.对于反比例函数,下列说法错误的是()A.图象经过点B.图象位于第二、第四象限C.当时,y随x的增大而减小D.当时,y随x的增大而增大4.已知抛物线与x轴的一个交点为,则代数式的值是()A. B. C.2012 D.20135.某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x,根据题意,所列方程正确的是()A. B.C. D.6.一个不透明的盒子中装有5个红球,3个黄球和4个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A. B. C. D.7.如图,正三角形ABC内接于圆O,于点D交圆于点E,动点P在优弧BAC上,且不与点B,点C重合,则等于()A.B.C.D.8.如图,将绕点A逆时针旋转得到,AD与BC相交于点F,若且是以线段FC为底边的等腰三角形,则的度数为()A.B.C.D.9.如图,P为外一点,PA、PB分别切于A、B,CD切于点E,分别交PA、PB于点C、D,若,则的周长为()A.5B.10C.15D.2010.如图是二次函数图象的一部分,对称轴是直线关于下列结论:①;②;③;④;⑤方程的两个根为,,其中正确的结论有()A.①③④B.②④⑤C.①②⑤D.②③⑤二、填空题:本题共8小题,每小题3分,共24分。
11.已知点与点关于原点对称,则______.12.某学习小组的成员互赠新年贺卡,共用去72张贺卡,则该学习小组______有名成员.13.已知扇形的弧长为4,所在圆的半径为2,则它的面积为______.14.已知抛物线与x轴的公共点坐标是,,则______.15.如图,的内接正六边形的半径是4,则这个正六边形的边长为______.16.若点,,在反比例函数的图象上,则,,的大小关系是______.17.如图,AB是的直径,弦于点E,,,则OC的长为______.18.如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线轴,且直线l分别与反比例函数和的图象交于P、Q两点,若,则k的值为______.三、解答题:本题共8小题,共66分。
中考数学试卷及答案-2016年中考真题精品解析 数学(甘肃武威卷)
2016年中考真题精品解析 数学(甘肃武威卷)精编word 版一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列图形中,是中心对称图形的是( )A .B .C .D .2.(3分)在1,﹣2,0,35这四个数中,最大的数是( ) A .﹣2 B .0 C .35D .1 3.(3分)在数轴上表示不等式x ﹣1<0的解集,正确的是( ) A .B .C .D .4.(3分)下列根式中是最简二次根式的是( ) A .32B .2C .9D .12 5.(3分)已知点P (0,m )在y 轴的负半轴上,则点M (﹣m ,﹣m+1)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.(3分)如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .54°C .66°D .56°7.(3分)如果两个相似三角形的面积比是1:4,那么它们的周长比是( ) A .1:16B .1:4C .1:6D .1:28.(3分)某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( ) A .x x 60050800=+ B .x x 60050800=- C .50600800+=x x D .50600800-=x x9.(3分)若x 2+4x ﹣4=0,则3(x ﹣2)2﹣6(x+1)(x ﹣1)的值为( ) A .﹣6 B .6C .18D .3010.(3分)如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .二、填空题(共8小题,每小题4分,满分32分)11.(4分)因式分解:2a 2﹣8= .12.(4分)计算:(﹣5a 4)•(﹣8ab 2)= .13.(4分)如图,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是 .14.(4分)如果单项式2xm+2n y n ﹣2m+2与x 5y 7是同类项,那么n m的值是 .15.(4分)三角形的两边长分别是3和4,第三边长是方程x 2﹣13x+40=0的根,则该三角形的周长为 .16.(4分)如图,在⊙O 中,弦AC=23,点B 是圆上一点,且∠ABC=45°,则⊙O 的半径R= .17.(4分)将一张矩形纸片折叠成如图所示的图形,若AB=6cm ,则AC= cm .18.(4分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,则x n +x n+1= .三、解答题(共5小题,满分38分)19.(6分)计算:()23160sin 23121--+︒++--⎪⎪⎭⎫ ⎝⎛-.20.(6分)如图,在平面直角坐标系中,△ABC 的顶点A (0,1),B (3,2),C (1,4)均在正方形网格的格点上.(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)将△A 1B 1C 1沿x 轴方向向左平移3个单位后得到△A 2B 2C 2,写出顶点A 2,B 2,C 2的坐标.21.(8分)已知关于x 的方程x 2+mx+m ﹣2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.22.(8分)图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON位置运动到与地面垂直的OM位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)(1)求AB的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N点运动到M点的路径的长度.(结果保留π)23.(10分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣2x的图象上的概率.四、解答题(共5小题,满分50分)24.(8分)2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m=,n=;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?25.(10分)如图,函数y1=﹣x+4的图象与函数y2=kx(x>0)的图象交于A(m,1),B(1,n)两点.(1)求k,m,n的值;(2)利用图象写出当x≥1时,y1和y2的大小关系.26.(10分)如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:OA2=OE•OF.27.(10分)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O 经过A,B,D三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.28.(12分)如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F 从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.一、选择题(共10小题,每小题3分,满分30分) 1.下列图形中,是中心对称图形的是( )A .B .C .D .【答案】A.考点:中心对称图形.2.在1,﹣2,0,53这四个数中,最大的数是( )A .﹣2B .0 C.53D .1 【答案】C. 【解析】试题分析:根据正数大于零,零大于负数,可得﹣2<0<1<53.故选C.考点:有理数的大小比较.3.在数轴上表示不等式x ﹣1<0的解集,正确的是( ) A .B .C .D .【答案】C. 【解析】试题分析:解不等式x ﹣1<0得:x <1.把它表示在数轴上可知选项C 正确. 考点:数轴上表示不等式的解集.4.下列根式中是最简二次根式的是( )A .32B .3C .9D .12 【答案】B. 【解析】试题分析:利用最简二次根式的定义分析得出答案.选项A :被开方数中含有分母,故不是最简二次根式;选项C :39=,故不是最简二次根式;选项D :3212=,故不是最简二次根式.故选B. 考点:最简二次根式.5.已知点P (0,m )在y 轴的负半轴上,则点M (﹣m ,﹣m+1)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】A.考点:1平面直角坐标系内点的坐标特征;2不等式.6.如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .54°C .66°D .56° 【答案】D. 【解析】试题分析:∵AB ∥CD ,∴∠D=∠1=34°.∵DE ⊥CE ,∴∠DCE=90°-∠EDC=56°.故选D. 考点:1平行线的性质;2直角三角形.7.如果两个相似三角形的面积比是1:4,那么它们的周长比是( ) A .1:16 B .1:4 C .1:6 D .1:2【答案】D. 【解析】试题分析:根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方.可求得周长比是1:2.故选D.考点:相似三角形的性质.8.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A .x x 60050800=+ B .x x 60050800=- C .50600800+=x x D .50600800-=x x 【答案】A.考点:分式方程的应用.9.若x 2+4x ﹣4=0,则3(x ﹣2)2﹣6(x+1)(x ﹣1)的值为( ) A .﹣6 B .6 C .18 D .30【答案】B. 【解析】试题分析:∵x 2+4x ﹣4=0,∴x 2+4x=4,∴原式=3(x 2﹣4x+4)﹣6(x 2﹣1)=3x 2﹣12x+12﹣6x 2+6=﹣3x 2﹣12x+18=﹣3(x 2+4x )+18=﹣12+18=6.故选B. 考点:1整式的化简求值.2整体代入.10.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .【答案】B. 【解析】试题分析:过A 点作AH ⊥BC 于H ,∵△ABC 是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH= BC=2, 当0≤x ≤2时,如图1,∵∠B=45°,∴PD=BD=x ,∴y=12·x ·x=12x 2;当2<x ≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x ,∴y=12(4﹣x )·x=﹣12x 2+2x ,故选B.考点:1二次函数;2分类思想;3数形结合.二、填空题(共8小题,每小题4分,满分32分)11.因式分解:2a 2﹣8= . 【答案】2(a+2)(a-2). 【解析】试题分析:2a 2-8=2(a 2-4)=2(a+2)(a-2). 考点:因式分解.12.计算:(﹣5a 4)•(﹣8ab 2)= . 【答案】40a 5b 2. 【解析】试题分析:(-5a 4)·(-8ab 2)=[(-5)×(-8)]·a 4+1b 2=40a 5b 2. 考点:整式的乘法.13.如图,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是 .【答案】92.考点:三角函数. 14.如果单项式2x m+2n y n ﹣2m+2与x 5y 7是同类项,那么n m的值是 .【答案】13.【解析】试题分析:根据题意,得⎩⎨⎧=+-=+72252m n n m .解得⎩⎨⎧=-=31nm .∴n m =3-1=13.考点:1同类项;2二元一次方程组.15.三角形的两边长分别是3和4,第三边长是方程x 2﹣13x+40=0的根,则该三角形的周长为 . 【答案】12.考点:1一元二次方程;2三角形.16.如图,在⊙O 中,弦AC=23,点B 是圆上一点,且∠ABC=45°,则⊙O 的半径R= .【答案】6. 【解析】试题分析:∵∠ABC=45°,∴∠AOC=90°,∴OA 2+OC 2=AC 2. ∴OA 2+OA 2=(23)2.∴OA=6.故⊙O 的半径为6. 考点:1圆周角定理;2勾股定理..17.将一张矩形纸片折叠成如图所示的图形,若AB=6cm ,则AC= cm .【答案】6. 【解析】试题分析:如图,∵矩形的对边平行,∴∠1=∠ACB ,∵∠1=∠ABC ,∴∠ABC=∠ACB ,∴AC=AB ,∵AB=6cm , ∴AC=6cm .考点:1轴对称;2矩形的性质;3等腰三角形.18.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,则x n +x n+1= . 【答案】(n+1)2【解析】试题分析: x 1=1,x 2=3=1+2,x 3=6=1+2+3,x 4=10=1+2+3+4,···,∴x n =1+2+3+···+n=n (n +1)2.∴x n+1+x n =(n +1)(n +2)2+n (n +1)2=(n+1)2.考点:探索规律.三、解答题(共5小题,满分38分)19.计算:()23160sin 23121--+︒++--⎪⎪⎭⎫⎝⎛-.【答案】6.考点:1实数的混合运算;2零指数幂和负整数指数幂;3特殊角三角函数值.20.如图,在平面直角坐标系中,△ABC 的顶点A (0,1),B (3,2),C (1,4)均在正方形网格的格点上.(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)将△A 1B 1C 1沿x 轴方向向左平移3个单位后得到△A 2B 2C 2,写出顶点A 2,B 2,C 2的坐标.【答案】(1)画图见解析;(2)画图见解析,A 2(-3,-1),B 2(0,-2),C 2(-2,-4).考点:1轴对称变换;2平移变换. 21.已知关于x 的方程x 2+mx+m ﹣2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根. 【答案】(1)12;(2)证明见解析.【解析】试题分析:(1)直接把x=1代入原方程可求得m 得值;(2)计算出根的判别式,再证明其大于零即可. 试题解析:(1)将x=1代入方程x 2+mx+m ﹣2=0,得:1+m+m ﹣2=0,∴m=12;(2)∵△=m 2﹣4×1×(m ﹣2)=m2﹣4m+8=(m ﹣2)2+4,∴不论m 取何值,(m ﹣2)2≥0,∴(m ﹣2)2+4>0.∴不论m 取何实数,该方程都有两个不相等的实数根.考点:1一元二次方程;2完全平方式.22.图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON 位置运动到与地面垂直的OM 位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364) (1)求AB 的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N 点运动到M 点的路径的长度.(结果保留π)【答案】(1)1.17米;(2)2245.考点:1解直角三角形;2弧长公式.23.在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ).(1)请你用画树状图或列表的方法,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数y=﹣2x的图象上的概率.【答案】(1)树状图见解析,则点M 所有可能的坐标为:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)29.﹣2),(2,0);(2)∵点M (x ,y )在函数y=﹣2x 的图象上的有:(1,﹣2),(2,﹣1),∴点M (x ,y )在函数y=﹣2x 的图象上的概率为:29.考点:列表法或树状图法求概率.四、解答题(共5小题,满分50分)24.2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A :“互联网+政务服务”,B :“工匠精神”,C :“光网城市”,D :“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m= ,n= ; (3)扇形统计图中,热词B 所在扇形的圆心角是多少度? 【答案】(1)300;(2)m=60,n=90;(3)72°.考点:统计图.25.如图,函数y 1=﹣x+4的图象与函数y 2=kx (x >0)的图象交于A (m ,1),B (1,n )两点.(1)求k ,m ,n 的值;(2)利用图象写出当x ≥1时,y 1和y 2的大小关系.【答案】(1)k=3,m=3,n=3;(2)当1<x <3时,y 1>y 2;当x >3时,y 1<y 2;当x=1或x=3时,y 1=y 2. 【解析】试题分析:(1)(1)把A 与B 坐标代入一次函数解析式求出m 与n 的值,将A 坐标代入反比例解析式求出k 的值;(2)利用图像,可知分x=1或x=3,1<x <3与x >3三种情况判断出y 1和y 2的大小关系即可. 试题解析:(1)把A (m ,1)代入y=-x+4得:1=﹣m+4,即m=3,∴A (3,1),把A (3,1)代入y=k x 得:k=3,把B (1,n )代入一次函数解析式得:n=﹣1+4=3;(2)∵A (3,1),B (1,3),∴根据图像得当1<x <3时,y 1>y 2;当x >3时,y 1<y 2;当x=1或x=3时,y 1=y 2. 考点:1一次函数;2反比例函数;3数形结合.26.如图,已知EC ∥AB ,∠EDA=∠ABF . (1)求证:四边形ABCD 是平行四边形; (2)求证:OA 2=OE •OF .【答案】(1)证明见解析;(2)证明见解析.考点:1平行线分线段成比例;2平行四边形性质和判定.27.如图,在△ABC 中,AB=AC ,点D 在BC 上,BD=DC ,过点D 作DE ⊥AC ,垂足为E ,⊙O 经过A ,B ,D 三点.(1)求证:AB 是⊙O 的直径;(2)判断DE 与⊙O 的位置关系,并加以证明; (3)若⊙O 的半径为3,∠BAC=60°,求DE 的长.【答案】(1)证明见解析;(2)DE 与圆O 相切,证明见解析;(3)233.【解析】试题分析:(1)连接AD ,根据等腰三角形三线合一性质得到AD ⊥BC ,再根据90°的圆周角所对的弦为直径中点,∴E 为CF 中点,DE=12BF ,在Rt △ABF 中,∠AFB=90°,AB=6,AF=3,∴BF=33362222=-=-AF AB ,则DE=12BF=233.学科网考点:1圆;2等腰三角形;3平行线的性质.28.如图,已知抛物线y=﹣x 2+bx+c 经过A (3,0),B (0,3)两点. (1)求此抛物线的解析式和直线AB 的解析式;(2)如图①,动点E 从O 点出发,沿着OA 方向以1个单位/秒的速度向终点A 匀速运动,同时,动点F 从A 点出发,沿着AB 方向以个单位/秒的速度向终点B 匀速运动,当E ,F 中任意一点到达终点时另一点也随之停止运动,连接EF ,设运动时间为t 秒,当t 为何值时,△AEF 为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A ,B 处,用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A ,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.【答案】(1)抛物线:y=-x 2+2x+3,直线AB :y=-x+3;(2)7)235(15-或41)325(9-;(3)存在,最大面278,P (32,154). ∴直线AB 的解析式为y=﹣x+3;(2)由题意得,OE=t ,AF=2t ,∴AE=OA ﹣OE=3﹣t ,∵△AEF 为直角三角形,∴①若△AOB ∽△AEF ,∴AF AB =A E OA ,∴3352t t -=,∴t=7)235(15-.②△AOB ∽△AFE ,∴OA AF =ABA E ,∴tt-=3523,∴t=41)325(9-;综上所述,t=7)235(15-或41)325(9-;(3)如图,存在,过点P 作PC ∥AB 交y 轴于C ,当直线PC 与y=﹣x 2+2x+3有且只有一个交点时,∆PAB 面积最大.∵直线AB 解析式为y=﹣x+3,∴设直线PC 解析式为y=﹣x+b ,∴﹣x+b=﹣x 2+2x+3,∴x 2﹣3x+b ﹣3=0,∴△=9﹣4(b ﹣3)=0,∴b=214.解方程组⎪⎩⎪⎨⎧++-=+-=324212x x y x y ,得⎪⎪⎩⎪⎪⎨⎧==41523y x .∴P (32,154)∴BC=214﹣3=94.过点B 作BD ⊥PC ,考点:1二次函数;2一次函数;3相似三角形;4平面直角坐标系中,直线平行与垂直解析式关系.。
甘肃省武威市凉州区中考数学真题试题(含答案)-人教版初中九年级全册数学试题
某某省某某市某某区2018年中考数学真题试题一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项. 1.-2018的相反数是( )A .-2018B .2018C .12018-D .120183x 的是( )A .62x x ÷ B .4x x - C .2x x +D .2x x ⋅65,则它的补角的度数为( )A .25B .35C .115D .125(0,0)23a ba b =≠≠,下列变形错误的是( ) A .23a b = B .23a b = C .32b a = D .32a b =24x x-的值为0,则x 的值是( ) A .2或-2 B .2 C .-2 D .06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数x 与方差2s 如下表:若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( ) A .甲 B .乙 C .丙 D .丁x 的一元二次方程240x x k ++=有两个实数根,则k 的取值X 围是( )A .4k ≤-B .4k <-C .4k ≤D .4k <8.如图,点E 是正方形ABCD 的边DC 上一点,把ADE ∆绕点A 顺时针旋转90到ABF ∆的位置,若四边形AECF 的面积为25,2DE =,则AE 的长为( )A .5B .23C .7D .299.如图,A 过点(0,0)O ,(3,0)C ,(0,1)D ,点B 是x 轴下方A 上的一点,连接BO ,BD ,则OBD ∠的度数是( )A .15B .30C .45D .602y ax bx c =++(a ,b ,c 是常数,0a ≠)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是1x =.对于下列说法:①0ab <;②20a b +=;③30a c +>;④()a b m am b +≥+(为实数);⑤当13x -<<时,0y >,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤ 二、填空题:本大题共8小题,每小题3分,共24分. 11.计算:2018112sin 30(1)()2-+--=. 3x -有意义的x 的取值X 围是. 1080,则该正多边形的边数是.14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.a ,b ,c 是ABC ∆的三边长,a ,b 满足27(1)0a b -+-=,c 为奇数,则c =.16.如图,一次函数2y x =--与2y x m =+的图象相交于点(,4)P n -,则关于x 的不等式组2220x m x x +<--⎧⎨--<⎩的解集为.a ,则勒洛三角形的周长为.18.如图是一个运算程序的示意图,若开始输入x 的值为625,则第2018次输出的结果为.三、解答题(一):本大题共5小题,共26分.解答应写出文字说明、证明过程或演算步骤. 19.计算:22(1)b aa b a b÷---.20.如图,在ABC ∆中,90ABC ∠=.(1)作ACB ∠的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作O ;(要求:不写作法,保留作图痕迹) (2)判断(1)中AC 与O 的位置关系,直接写出结果.21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A ,B 两地被大山阻隔,由A 地到B 地需要绕行C 地,若打通穿山隧道,建成A ,B 两地的直达高铁,可以缩短从A 地到B 地的路程.已知:30CAB ∠=,45CBA ∠=,640AC =公里,求隧道打通后与打通前相比,从A 地到B 地的路程将约缩短多少公里?(参考数据:3 1.7≈,2 1.4≈)23.如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少? (2)现将方格内空白的小正方形(A ,B ,C ,D ,E ,F )中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共5小题,共50分.解答应写出文字说明、证明过程或演算步骤.24.“足球运球”是中考体育必考项目之一.某某市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A ,B ,C ,D 四个等级进行统计,制成了如下不完整的统计图.(说明:A 级:8分—10分,B 级:7分—7.9分,C 级:6分—6.9分,D 级:1分—5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C 对应的扇形的圆心角是_______度; (2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在_______等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A 级的学生有多少人? 25.如图,一次函数4y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象交于(1,)A a -,B 两点,与x 轴交于点C .(1)求此反比例函数的表达式; (2)若点P 在x 轴上,且32ACP BOC S S ∆∆=,求点P 的坐标. ABCD 中,E 是AD 边上的一个动点,点F ,G ,H 分别是BC ,BE ,CE 的中点.(1)求证:BGF FHC ∆≅∆;(2)设AD a =,当四边形EGFH 是正方形时,求矩形ABCD 的面积.27.如图,点O 是ABC ∆的边AB 上一点,O 与边AC 相切于点E ,与边BC ,AB 分别相交于点D ,F ,且DE EF =.(1)求证:90C ∠=; (2)当3BC =,3sin 5A =时,求AF 的长. 28.如图,已知二次函数22y ax x c =++的图象经过点(0,3)C ,与x 轴分别交于点A ,点(3,0)B .点P 是直线BC 上方的抛物线上一动点.(1)求二次函数22y ax x c =++的表达式;(2)连接PO ,PC ,并把POC ∆沿y 轴翻折,得到四边形'POP C .若四边形'POP C 为菱形,请求出此时点P 的坐标;(3)当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 点的坐标和四边形ACPB 的最大面积.某某市2018年初中毕业、高中招生考试数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.题号 1 2 3 4 5 6 7 8 9 10 答案BDCBAACDBA二、填空题:本大题共8小题,每小题3分,共24分. 11.0 12.3x >13.8 14.108 15.7 16.22x -<< 17.a π三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理,答案正确均可得分) 19.(4分) 解:原式=()()b a a ba b a b a b -+÷+--2分 =()()b a b a b +-﹒a bb-3分1a b=+. 4分20.(4分)解:(1)如图,作出角平分线CO ;1分作出⊙O . 3分(2)AC 与⊙O 相切. 4分A O21. (6分)解:设合伙买鸡者有x 人,鸡价为y 文钱. 1分根据题意可得方程组911616y x y x =-⎧⎨=+⎩, 3分 解得 970x y =⎧⎨=⎩. 5分答:合伙买鸡者有9人,鸡价为70文钱. 6分 22. (6分)解:如图,过点C 作CD ⊥AB , 垂足为D .1分在Rt△ADC 和Rt△BCD 中, ∵∠CAB =30°,∠CBA =45°,AC =640. ∴CD =320,AD =∴BD =CD =320,BC =, 2分 ∴AC +BC =6401088+≈, 3分 ∴AB =AD +BD =320864≈, 4分 ∴ 1088-864=224(公里). 5分答:隧道打通后与打通前相比,从A 地到B 地的路程将约缩短224公里. 6分 23.(6分)解:(1)米粒落在阴影部分的概率为3193=; 2分 (2)列表:DBAC4分共有30种等可能的情况,其中图案是轴对称图形的有10种, 故图案是轴对称图形的概率为;6分(注:画树状图或列表法正确均可得分)四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理,答案正确均可得分) 24.(7分) (1)117; 2分(2)如图4分(3)B ; 5分 (4)430030().40⨯=人7分 CDBA等级25.(7分)解:(1)把点A (-1,a )代入4y x =+,得3a =,∴A (-1,3)把A (-1,3)代入反比例函数k y x=,得3k =-,∴ 反比例函数的表达式为3y x=-. 3分 (2)联立两个函数表达式得 43y x y x =+⎧⎪⎨=-⎪⎩, 解得 13x y =-⎧⎨=⎩,31x y =-⎧⎨=⎩. ∴ 点B 的坐标为B (-3,1). 当40y x =+=时,得4x =-.∴ 点C (-4,0). 4分 设点P 的坐标为(x ,0).∵32ACPBOCSS =,∴1313(4)41222x ⨯⨯--=⨯⨯⨯. 即 42x +=,解得 16x =-,22x =-. 6分∴ 点P (-6,0)或(-2,0). 7分 26.(8分)解:(1)∵ 点F ,H 分别是BC ,CE 的中点,∴FH ∥BE ,12FH BE =. 1分 ∴CFH CBG ∠=∠.2分 又 ∵ 点G 是BE 的中点, ∴FH BG =. 3分 又 ∵BF CF =, ∴△BGF ≌△FHC .4分(2)当四边形EGFH 是正方形时,可知EF ⊥GH 且EF =∵ 在△BEC 中,点G ,H 分别是BE,EC 的中点, ∴111222GH BC AD a ===且GH ∥BC , ∴EF ⊥BC. 6分ECD11 / 12又∵AD ∥BC, AB ⊥BC , ∴12AB EF GH a ===,∴21122ABCD S AB AD a a a ===矩形⋅⋅. 8分 27.(8分)(1)证明:连接OE ,BE .∵DE =EF , ∴DE ︵=EF ︵, ∴∠OBE =∠DBE . ∵OE =OB , ∴∠OEB=∠OBE ,∴∠OEB =∠DBE , ∴OE ∥BC . 3分 ∵⊙O 与边AC 相切于点E , ∴OE ⊥AC . ∴BC ⊥AC , ∴∠C =90°. 4分 (2)解:在△ABC 中,∠C =90°,BC =3,3sin 5A =,∴AB =5. 5分设⊙O 的半径为r ,则AO =5-r , 在Rt △AOE 中,3sin 55OE r A OA r ===-, ∴158r =. 7分 ∴1555284AF =-⨯=. 8分28.(10分)解:(1)将点B 和点C 的坐标代入22=++y ax x c ,得 3960=⎧⎨++=⎩c a c , 解得 1=-a ,3=c .∴ 该二次函数的表达式为223=-++y x x . 3分 (2)若四边形POP′C 是菱形,则点P 在线段CO 的垂直平分线上;4分 如图,连接PP′,则PE ⊥CO ,垂足为E , ∵C (0,3), ∴ E (0,32),y xCOA BP′P E AC BDEOF12 / 12∴ 点P 的纵坐标等于32. ∴23232x x -++=, 解得1210x +=,2210x -=(不合题意,舍去), 6分∴ 点P 的坐标为(210+,32). 7分 (3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F , 设P (m ,223-++m m ),设直线BC 的表达式为3=+y kx , 则 330k +=,解得 1=-k .∴ 直线BC 的表达式为 3=-+y x . ∴Q 点的坐标为(m ,3-+m ), ∴23QP m m =-+. 当 2230x x -++=, 解得 1213x ,x =-=,∴AO =1,AB =4,∴S 四边形ABPC =S △ABC +S △CPQ +S △BPQ=111222AB OC QP OF QP FB ⋅++⋅⋅ =21143(3)322m m ⨯⨯+-+⨯ =23375()228m --+. 9分 当 32m =时,四边形ABPC 的面积最大.此时P 点的坐标为315(,)24,四边形ABPC 的面积的最大值为758. 10分yxCOABPQF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武威市2016年初中毕业、高中招生考试数学试题、参考答案及评分标准
参考答案及评分标准
一、选择题:本大题共10小题,每小题3分,共30分.
二、填空题:本大题共8小题,每小题3分,共24分. 11. 2(2)(2)x x +- 12. 5240a b 13.
92
14.
13
15. 12
16.
17. 6 18. 2(1)n +或n 2+2n +1
三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤. 19.(4分)
解:原式=22-
-1)+2
×
2
+1 2分 =4
+1
+1 3分 =6 4分 20.(4分)解:(1)△A 1B 1C 1为所作; 2分 (2)A 2(-3,-1),B 2(0,-2),C 2(-2,-4). 4分
21.(6分)
(1)解:把x =1代入方程 220x mx m ++-=得 120m m ++-=,
解得 m =
1
2
. 2分 (2)证明:△=24(2)m m -- 3分
2(2)4m =-+ 4分
∵ 2(2)m -≥0,
∴ 2(2)4m -+>0, 即 △>0, 5分 ∴ 此方程有两个不相等的实数根. 6分 22.(6分)
解:(1) 过点B 作BF ⊥AC 于点F . 1分 ∴ AF =AC -BD =0.4(米), 2分 ∴ AB =A F ÷sin20°≈1.17(米); 3分 (2)∵ ∠MON =90°+20°=110°, 4分 ∴ 1100.822
18045
MN ⨯π=
=π(米). 6分
23.(6分)
解:(1)画树状图:
方法一: 方法二:
2分
所以点M (x, y )共有9种可能:
(0, 0) (0, -1) (0, -2) (1, -1) (1, -2) (1, 0) (2, -2)
(2, -1)
1 0 2
-1
-2 0 乙袋
甲袋 结果
(2, 0)
(0,-1),(0,-2),(0,0),(1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0); 4分
(2)∵ 只有点(1,-2),(2,-1)在函数2
y x
=-
的图象上, 5分 ∴ 点M (x ,y )在函数2y x =-的图象上的概率为2
9
. 6分
四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或
演算步骤.(注:解法合理,答案正确均可得分) 24.(7分)
解:(1)105÷35%=300(人).
答:共调查了300名学生; 1分 (2)n =300×30%=90(人),m =300-105-90-45=60(人).
故答案为:60, 90;(每空2分) 5分 (3)
60
300
×360°=72°. 答:B 所在扇形的圆心角是72°. 7分 25.(7分)
解:(1)把点A (m ,1)代入 14y x =-+,得m =3, 2分 则 A (3,1), ∴ k =3×1=3; 3分 把点B (1,n )代入2k
y x
=
,得出n =3; 4分 (2)如图,由图象可知:
① 当1<x <3时,1y >2y ; 5分 ② 当x =1或x =3时,1y =2y ; 6分 (注:x 的两个值各占0.5分)
③ 当x >3时,1y <2y . 7分
26.(8分)
(1)证明:∵EC∥AB,
∴∠C=∠ABF.1分
又∵∠EDA=∠ABF,
∴∠C=∠EDA.2分
∴AD∥BC,3分
∴四边形ABCD是平行四边形.4分
(2)证明:∵EC∥AB,
∴OA OB
OE OD
=. 5分又∵ AD∥BC,
∴OF OB
OA OD
=, 6分
∴OA OF
OE OA
=, 7分∴2
OA OE OF
=⋅.8分27.(8分)
(1)证明:如图①,连接AD,
∵在△ABC中,AB=AC,BD=DC,
∴AD⊥BC1分
∴∠ADB=90°,
∴AB是⊙O的直径;2分
(2)DE与⊙O的相切.3分
证明:如图②,连接OD,
∵AO=BO,BD=DC,
∴OD是△BAC的中位线,
∴OD∥AC,4分又∵DE⊥AC
图②
A
B
C
D
E
O
图①
A
B
C
D
E
O
∴DE ⊥OD ,
∴ DE 为⊙O 的切线; 5分 (3)解:如图③,∵ AO =3,∴ AB =6, 又 ∵ AB =AC ,∠BAC =60°, ∴ △ABC 是等边三角形,
∴ AD =33, 6分 ∵ AC ∙DE =CD ∙AD ,
∴ 6∙DE =3×33, 7分 解得 DE =33
2
. 8分 28.(10分)
解:(1)设直线AB 的解析式为 y kx m =+, 1分
把A (3,0),B (0,3)代入, 得 3
30
m k m =⎧⎨
+=⎩ , 解得
1
3k m =-⎧⎨=⎩
∴ 直线AB 的解析式为 3y x =-+ 2分 把A (3,0),B (0,3) 代入 2y x bx c =-++中,
得 930
3b c c -++=⎧⎨=⎩ , 解得
2
3b c =⎧⎨=⎩
∴ 抛物线的解析式为 223y x x =-++. 3分 (2)∵ OA =OB =3,∠BOA =90°,∴ ∠EAF =45°. 设运动时间为t 秒,则AF =2t ,AE =3-t . 4分 (i )当∠EF A =90°时,如图①所示: 在Rt △EAF 中,cos45°2
2AF AE =
=
,即2232
t t =-. 解得 t =1. 5分
A
B
C
D
E O
图③
图①
O
y
A
B
E
F
(ii) 当∠FEA =90°时,如图②所示:
在Rt △AEF 中,cos45°2
2
AE AF ==
, 即
32
2
2t t -=. 解得 t =
32
. 综上所述,当t =1或t =
3
2
时,△AEF 是直角三角形. 6分 (3)存在. 如图③,过点P 作PN ∥y 轴,交直线AB 于点N ,交x 轴于点D. 过点B 作BC ⊥PN 交PN 于点C .
设点P (x ,223x x -++),则点N (x ,3x -+)
∴ PN =2223(3)3x x x x x -++--+=-+. 7分 ∴ ABP BPN APN S S S ∆∆∆=+
=112
2
PN BC PN AD ⋅+⋅ 8分
=2211
(3)(3)(3)22
x x x x x x -+⋅+-+- =2
3327
228
x ⎛⎫
--+ ⎪⎝⎭ 9分
当32
x =
时,
△ABP 的面积最大,最大面积为27
8
. 此时点P (32,15
4
). 10分
图②
y
O
A x
B
E F
y
O
A
B
P
图③
N C D。