石墨烯的光电特性27页PPT

合集下载

石墨烯研究报告PPT

石墨烯研究报告PPT

三、石墨烯特性 : 电子运输 在发现石墨烯以前,大多数(如果不是所有的话)物理学 家认为,热力学涨落不允许任何二维晶体在有限温度下存在。 所以,它的发现立即震撼了凝聚态物理界。虽然理论和实验界 都认为完美的二维结构无法在非绝对零度稳定存在,但是单层 石墨烯在实验中被制备出来。这些可能归结于石墨烯在纳米级 别上的微观扭曲。 石墨烯还表现出了异常的整数量子霍尔行为。其霍尔电导 =2e²/h,6e²/h,10e²/h.... 为量子电导的奇数倍, 且可以在室温下观测到。这个行为已被科学家解释为“电子在 石墨烯里遵守相对论量子力学,没有静质量”。
四、制备方法 化学解理法 化学解理法是将氧化石墨通过热还原的方法制备石墨烯 的方法,氧化石墨层间的含氧官能团在一定温度下发生反应, 迅速放出气体,使得氧化石墨层被还原的同时解理开,得到 石墨烯。这是一种重要的制备石墨烯的方法,天津大学杨全 红等用低温化学解理氧化石墨的方法制备了高质量的石墨烯。
上图为高定向热解石墨(HOPG),下图为从HOPG撕出来,置于厚度300 nm的 二氧化矽表面的石墨片烯。左下角浅色三角形为单层石墨片烯,其余为1 - 5层不等。
三、石墨烯特性 电子的相互作用 利用世界上最强大的人造辐射源,美国加州大学、哥伦比 亚大学和劳伦斯·伯克利国家实验室的物理学家发现了石墨烯特 性新秘密:石墨烯中电子间以及电子与蜂窝状栅格间均存在着 强烈的相互作用。 科学家借助了美国劳伦斯伯克利国家实验室的“先进光源 (ALS)”电子同步加速器。这个加速器产生的光辐射亮度相 ALS 当于医学上X射线强度的1亿倍。科学家利用这一强光源观测发 现,石墨烯中的电子不仅与蜂巢晶格之间相互作用强烈,而且 电子和电子之间也有很强的相互作用。

石墨烯ppt课件

石墨烯ppt课件

04
缺点
设备成本高,制备过 程复杂。
液相剥离法制备过程及优化策略
过程
将石墨或膨胀石墨分散在溶剂中,通 过超声波、热应力等作用剥离出单层 或少层石墨烯。
优化策略
选择适当的溶剂和剥离条件,如超声 功率、时间、温度等,以提高剥离效 率和石墨烯质量。
优点
制备过程简单,成本低。
缺点
难以制备大面积、单层的石墨烯。
未来挑战和机遇并存局面思考
技术挑战
石墨烯制备技术仍存在一些难题 ,如大规模制备、成本控制、质 量稳定性等,需要加强技术研发
和创新。
市场机遇
随着石墨烯技术的不断突破和市场 需求的持续增长,石墨烯产业将迎 来更广阔的发展空间,企业需要抓 住机遇,积极拓展市场。
跨界融合
石墨烯产业需要与其他产业进行跨 界融合,共同推动产业升级和创新 发展,如与互联网、人工智能等产 业的深度融合。
THANKS
感谢观看
消费电子市场需求
随着消费电子产品的不断更新换代, 石墨烯在智能手机、平板电脑、可穿 戴设备等领域的应用需求将持续增长 。
新能源市场需求
石墨烯在新能源领域具有广阔的应用 前景,如太阳能电池、锂离子电池、 燃料电池等,未来市场需求将不断扩 大。
医疗健康市场需求
石墨烯在生物医疗领域的应用也逐渐 受到关注,如生物传感器、药物载体 、医疗器械等,未来市场需求有望持 续增长。
三维多孔支架、细胞培养基质、神经修复导管
石墨烯组织工程支架材料的研究进展及前景
骨组织工程、皮肤组织工程、心肌组织工程
安全性评价和毒理学问题关注
石墨烯的生物安全性问题
01 细胞毒性、免疫原性、遗传毒性
石墨烯的体内代谢和毒性机制

石墨烯简单介绍ppt课件

石墨烯简单介绍ppt课件
一些电子设备,例如手机,由于工程师们正在设法将越来越多的信息
填充在信号中,它们被要求使用越来越高的频率,然而手机的工作频
率越高,热量也越高,于是,高频的提升便受到很大的限制。由于石 墨烯的出现,高频提升的发展前景似乎变得无限广阔了。 这使它在
微电子领域也具有巨大的应用潜力。
26
石墨烯应用
透明电极
石墨烯

,使它在透明电
导电极方面有非常好的应用前景。触摸屏、液晶显示、有机光伏电池、
有机发光二极管等等,都需要良好的透明电导电极材料。特别是,
。由于氧化铟锡脆度较高,比较容易损毁。在溶液
内的石墨烯薄膜可以沉积于大面积区域 。
通过化学气相沉积法,可以制成大面积、连续的、透明、高电导 率的少层石墨烯薄膜,主要用于光伏器件的阳极,并得到高达1.71% 能量转换效率;与用氧化铟锡材料制成的元件相比,大约为其能量转 换效率的55.2%。
石墨烯
1
什 么 是 石 墨 烯?
石墨烯(英文名Graphene)是一种由C原子 形成的蜂窝状的准二维结构,是C的另外一种 同素异形体。
。例如,在计算石墨和碳纳米 管特性时,通常都是从石墨烯这个基本结构单 元出发的。
石墨烯:基本结构单元
2
石墨烯的来源?
实际上石墨烯本来就存在于自然界,只是难以剥离出 单层结构。石墨烯一层层叠起来就是石墨。1mm厚的石墨 大约包含300万层石墨烯。
14
结构与性能
力学性能
石墨烯是已知材料中强度和硬度最高的晶体结构。其

分别为125GPa和1.1TPa。石墨烯的
(抗拉强度)为42N/M2。
普通钢的强度极限大多分布在250~1200MPa范围内,即 0.25ӽ109~1.2ӽ109N/m2。如果钢具有同石墨烯一样的厚度(约 0.335nm),则可推算出其二维强度极限0.084~0.40N/m。由 此可知,

2024版《石墨烯的研究》PPT课件

2024版《石墨烯的研究》PPT课件

目录•引言•石墨烯的基本性质•石墨烯的制备方法•石墨烯的应用领域•石墨烯的挑战与前景•结论引言石墨烯是一种由单层碳原子组成的二维材料。

石墨烯具有极高的电导率、热导率和机械强度等优异性能。

石墨烯的发现引起了科学界的广泛关注,被认为是未来材料科学的重要发展方向之一。

石墨烯的背景与概念0102 03推动材料科学的发展石墨烯作为一种新型材料,其研究有助于推动材料科学的发展,为制备更高性能的材料提供新的思路和方法。

促进相关产业的发展石墨烯的优异性能使其在电子、能源、生物等领域具有广泛的应用前景,其研究有助于促进相关产业的发展。

提高国家科技实力石墨烯作为一种具有重要战略意义的材料,其研究水平的提高有助于提高国家的科技实力和竞争力。

石墨烯的研究意义国内研究现状国内石墨烯研究起步较早,目前已经取得了一系列重要成果,包括石墨烯的制备、表征、应用等方面。

国外研究现状国外石墨烯研究也非常活跃,许多国际知名大学和科研机构都在开展石墨烯相关的研究工作。

发展趋势未来石墨烯的研究将更加注重应用基础研究,探索石墨烯在各个领域的应用潜力,同时加强石墨烯的规模化制备和产业化应用等方面的研究。

国内外研究现状及发展趋势石墨烯的基本性质石墨烯是由单层碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。

二维碳纳米材料石墨烯中的碳原子以六边形进行排列,每个碳原子与周围三个碳原子通过σ键相连,形成稳定的晶格结构。

碳原子排列方式石墨烯中碳-碳键长约为0.142nm ,每个晶格内有三个σ键,所有碳原子均为sp2杂化。

原子尺寸零带隙半导体石墨烯是一种零带隙半导体,其载流子在狄拉克点附近呈现线性色散关系,具有极高的载流子迁移率。

高电导率由于石墨烯中载流子的特殊性质,其电导率极高,甚至超过铜等传统导体。

量子霍尔效应在低温强磁场条件下,石墨烯会表现出量子霍尔效应,这是其独特电学性质之一。

石墨烯的强度极高,其抗拉强度是钢铁的数百倍,同时具有优异的韧性。

石墨烯简介PPT课件

石墨烯简介PPT课件

精选
17
应用与性能的关系
E
Relation between application and performance
精选
应用与性能的关系
精选
20
应用与性能的关系
透明度大
透明电极
电导率高
触控屏幕
比表面积大
太阳能电池
力学性能好 导热系数大
晶体管 复合材料
电子迁移率高
锂离子电池
精选
21
应用与性能的关系
B
精选
石墨烯的性能
力学性质:106N/cm2 光学性质:2.3%
Science, 321, 385 (2008) Science 320, 1308 (2008)
热学性质:5300 W/mK 电学性质:1/300光速
Nano Lett. 8, 902 (2008) Science, 306, 666 (2004)
精选
16
石墨烯的表征—其它方法
石墨烯表征方法
热重—示差扫描
用于分析温度变化过程中的物理化学变化,如物质含量、 分解和氧化还原等,研究样品的热失重行为和热量变化。
低温氮吸附测试
测定石墨烯的孔结构和比表面积,计算比表面积、孔径大小、 孔分布、孔体积等物理参数。
傅里叶变换红外光谱分析(FT-IR)
用来识别化合物和结构的官能团,在石墨烯制备中主要用于 氧化石墨烯的基面和边缘位的官能团的识别。
石墨烯的优异性能
精选
19
制备方法 Preparation Method
C
精选
机械剥离法
碳纳米管横向切割法
微波法 电弧放电法 光照还原法 外延生长法
石墨烯制备方法
石墨氧化还原法 电化学还原法

石墨烯的光电特性共29页

石墨烯的光电特性共29页
Thank you
ቤተ መጻሕፍቲ ባይዱ
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
石墨烯的光电特性
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比

石墨烯光学介绍PPT课件

石墨烯光学介绍PPT课件

For different w, the gate voltage Vg determined from
maximum (d R / R ) is different, following the relation
,
V mod
E F 2(v F )2 C |V g V 0|
dR/R
2EF
w
Slope of the line allows deduction of slope of the band structure
H
u1 u2
Ep, f *(k
),
f (k Ep
)
u1 u2
f (k ) [1 eik a1 eik a2 ]
E (k ) Ep | f (k ) |
Ep 3 2 cos k a1 2 cos k a2 2 cos k (a2 a1)
Ep 1 4 cos2 ( 3kxa / 2) 4 cos( 3kxa / 2) cos(3kya / 2)
No Image
x
IV
II
x
Transitions II & IV inactive Transition I active
36
Differential Bilayer Spectra (dD = 0)
(Difference between spectra of D0 and D=0)
I
I
IV
Larger bandgap stronger transition I
18
Experimental Arrangement
Det
OPA
Gold
Graphene
Doped Si

2024石墨烯技术PPT课件

2024石墨烯技术PPT课件

contents •石墨烯概述•石墨烯制备方法•石墨烯表征技术•石墨烯应用领域•石墨烯产业发展现状与趋势•总结与展望目录石墨烯定义与结构定义结构石墨烯的每个碳原子与周围三个碳原子通过共价键连接,形成稳定的六边形结构。

这种结构使得石墨烯具有出色的力学、电学和热学性能。

石墨烯性质与特点力学性质石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,可以弯曲成各种形状而不断裂。

电学性质石墨烯具有优异的导电性能,电子在其中的移动速度极快,使得石墨烯成为理想的电极材料。

热学性质石墨烯具有极高的热导率,可以快速地将热量从一个区域传递到另一个区域,这使得石墨烯在散热领域具有广阔的应用前景。

光学性质石墨烯对光的吸收率很低,且透光性极好,这使得石墨烯在透明导电薄膜等领域具有潜在的应用价值。

石墨烯发现历程及意义发现历程石墨烯最初是由英国曼彻斯特大学的两位科学家通过机械剥离法从石墨中分离出来的。

这一发现引起了科学界的广泛关注,并开启了石墨烯研究的新篇章。

意义石墨烯的发现不仅打破了二维晶体无法稳定存在的传统认知,而且为材料科学、凝聚态物理以及电子器件等领域的发展带来了新的机遇。

石墨烯的优异性能使得它在能源、环保、医疗、航空航天等领域具有广阔的应用前景,有望引领新一轮的技术革命和产业变革。

机械剥离法01020304原理优点缺点应用领域化学气相沉积法在高温下,碳源气体在催化剂表面分解并沉积形成石墨烯。

可控制备大面积、高质量的石墨烯;与现有半导体工艺兼容。

设备成本高,制备过程中可能产生有毒气体。

透明导电薄膜、电子器件、传感器等。

原理优点缺点应用领域原理优点缺点应用领域氧化还原法利用溶剂将石墨剥离成单层或少层石墨烯,适用于大规模生产。

液相剥离法碳化硅外延法电弧放电法激光诱导法通过高温处理碳化硅晶体,使其表面外延生长出石墨烯,适用于制备高质量石墨烯。

利用电弧放电产生的高温高压条件,将石墨转化为石墨烯,但产量较低。

利用激光束照射石墨表面,诱导出石墨烯,但设备成本较高。

环境材料-石墨烯-PPT模版

环境材料-石墨烯-PPT模版

LOGO
LOGO
石墨烯利用前景
Other Uses
涂料
海水淡化 抗菌效用 多孔材料 物理研究
石墨烯基涂料可用于导电油墨,抗静电,电磁 干扰屏蔽,和气体阻隔的应用 石墨烯过滤器远优于其它海水淡化技术,与水分 子分解发电技术结合,水、电可成为廉价产品 石墨烯氧化物对于抑制大肠杆菌的生长超级有效, 而且不会伤害到人体细胞
当石墨烯被释放到地表水中时,它 的硬度会增大,吸附的的有机材料 也更少,它很快就会变得不稳定, 既不能发生沉淀,也不能随水的流 动而被带走。
LOGO
【参考文献】
The Rise of Graphene. A K Geim & K S Novoselov. Nature Materials 6, 183-191 (2007) A Road Map for Graphene. K S Novoselov et al. Nature 490, 192200 (2012) The Transportation and Stability of Graphene Oxide Nanoparticles in Ground Water and Surface nphere. Environmental Engineering Science,2014
LOGO
石墨烯制备及产业化
机械分离 机械分离(Mechanical exfoliation):最普通的是微机械分离法,直接将石墨烯薄片 从较大的晶体上剪裁下来,如用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦, 体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。产 率低、仅供实验研究。 氧化还原法 氧化还原(Oxidation-reduction):将天然石墨与强酸和强氧化性物质反应生成氧化 石墨(GO),经过超声分散制备成氧化石墨烯(单层氧化石墨),然后加入还原剂去除氧 化石墨表面的含氧基团,如羧基、环氧基和羟基,得到石墨烯。宏量制备产生废液污 染、石墨烯品质不高存在缺陷。 取向附生法 取向附生(Epitaxy):让碳原子在 1150 ℃下渗入钌,然后冷却到850℃,之前吸收 的大量碳原子就会“浮”到钌表面,镜片形状的单层碳原子“ 孤岛” 布满整个基质表面, 最终生长成完整的一层石墨烯。成本高、厚度不均匀。

石墨烯的光电特性

石墨烯的光电特性

安德烈·盖姆
康斯坦丁·诺沃肖洛夫
2004年,英国曼彻斯特大学物理学家Andre Geim和Konstantin Novoselov,首次成功分离出石 墨烯,两人在2010年共同获得诺贝尔物理学奖。
石墨烯简介
“二维结构”从想象到现实
石墨烯是-种由碳原子以sp2杂化连接形成的单原子层二维晶体,其厚度为 0.335nm,电子显微镜下观测的石墨烯,其碳原子间距仅0.142纳米。
纳米电子 器件
作为超级 电容器的
研究
触摸屏
应用及展望
重防腐涂料 海洋重 防腐
电子通 可穿戴带电子、触摸屏、集成电

路、传感器
纳米碳材料、飞 机材料
航天新材 料
基因测序、医疗检测 设备、抗菌设备
生物 医药
新能源 太阳能光伏材料
锂电池 电池
石墨烯锂硫电池、 超级电容器
谢谢!
原子结构
每个碳原子可以和周围的三个碳原子结合在平面上形成 三个σ键。另外一个2p电子在垂直于平面的方向形成π键。
原子结构
一个2s轨道上的电子被激 发到2Pz轨道上,另一个2s电子 与 2Px , 2Py 上 的 电 子 通 过 sp2 杂化形成三个杂化轨道。
原子结构
原子结构
能带结构 紧束缚近似模型
石墨烯替代ITO
柔性 透光率 原料成本 工艺设备 废旧处理
石墨烯导电膜 优异,弯曲半径3mm
97.7%
ITO(氧化铟锡) 弯曲半径5cm;易破碎
85%-95%
来源丰富,成本低 工艺简单 废旧易处理
金属铟昂贵
设备要求低真空制备, 维护成本高
重金属有毒性,回收成 本高
应用
锂离子电 池电极材

石墨烯-最终版PPT课件

石墨烯-最终版PPT课件

.
14
小结
这种方法生长石墨烯是最有可能实现C 基集成 电路的有效途径之一。但单晶SiC的价格昂贵,石墨 烯的制作成本非常高,生长条件苛刻,目前还难以实 现大面积制备。
在可控制备及性能研究上存在着以下问题: 外延石墨烯的可控生长机制有待进一步深入研究, 其生长的可控性(层数、晶畴大小、大面积均匀一致 性)有待进一步增强。
机械剥离法 化学气相沉积法(CVD) 表面外延生长法 氧化石墨还原法 ……
.
6
利用机械力将石墨烯片从高度定向热解石墨表面剥离开来 的制备方法。Geim等就是采用微机械剥离法得到了石墨 烯,并进行了表征 ,他们将薄片的两面粘在一种特殊的胶 带上,通过撕开胶带将石墨烯剥离开,制备的石墨烯片最 大宽度可以达到10um以上。目前,该法仍是制备石墨烯 最简单直接的方法。
.
4
石墨烯的性质
极高的载流 子迁移率, 常温下超过 15000 cm2/V·s
世界上电 阻率最小 的材料
——多才多艺
极高的强度,理论 弹性模量1000GPa、 拉伸强度125GPa
石墨烯
良好的透光性, 单层只吸收 2.3%的光
较大的比表 面积 2600m2/g
导热系数高达
5300W/m·K
.
5
石墨烯的制备
表面外延生长法 机械剥离法
化学气相沉积法
氧化石墨还原法
.
19
表面外延生长法
表面外延生长法是渗碳原 理的进一步推广,提高了 石墨烯的晶体完整度,但 该法的成本比前面两种方 法更高。
氧化石墨还 原法
机械剥离法
表面外延生长法
化学气相沉积法
.
20
其他方法如有机合成法、 直接超声剥离法甚至生物 还原法等都提供了可供借 鉴的思路。将不同的方法 结合起来也有一定的前景。

石墨烯材料PPT课件

石墨烯材料PPT课件

1985
第7页/共111页
石墨烯的晶格结构与其相应的倒格矢空间
第8页/共111页
石墨烯能带结构
第9页/共111页
石墨烯层数的表征方法
(1)扫描隧道显微镜(STM)
具有很高的空间分辨率,横向为 0.1~0.2nm,纵向可达0.001nm。
单层石墨烯厚度只有0.335nm
第10页/共111页
(2)原子力显微镜表征
石墨烯的组成与结构
第1页/共111页
石墨简介
石墨(graphite)是一种结晶形碳。 六方晶系,为铁墨色至深灰色。密度 2.25克/厘米3,硬度1.5,熔点3652℃, 沸点4827℃。质软,有滑腻感,可导 电。
化学性质不活泼,耐腐蚀,与酸、 碱等不易反应。在空气或氧气中加 强热,可燃烧并生成二氧化碳。强氧 化剂会将它氧化成有机酸。
研究人员发现单氢化及双氢化锯齿状边的石墨烯具有铁磁性。此外,通过对 石墨烯不同方向的裁剪及化学改性可以对其磁性能进行调控。研究表明分子在石 墨烯表面的物理吸附将改变其磁性能。例如氧的物理吸附增加石墨烯网络结构的 磁阻,位于石墨烯纳米孔道内的钾团簇将导致非磁性区域的出现。
第25页/共111页
石墨烯的优异特性
第27页/共111页
• 分数量子霍尔效应和异常量子霍尔效应
第28页/共111页
整数量子霍尔效应
1985年的诺贝尔物理学奖
量子霍尔效应只发生于二维导体。这效应促成了一种新度
量衡标准,称为电阻率量子(resistivity quantum)
h/e2;垂直于外磁场的载流导线,其横向电导率会呈现量
子化值。称这横向电导率为霍尔电导(Hall
第36页/共111页
•外延生长法

石墨烯PPT

石墨烯PPT
如果有五角元胞和七角元胞存在,那么他们构成石墨烯的缺陷 。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会 形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯;
可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管 、三维石墨)的基本单元
第8页,本讲稿共28页
第9页,本讲稿共28页
二、石墨烯材料的制备
兆赫(terahertz)领域。
第24页,本讲稿共28页
双层石墨烯可降低元器件电噪声
美国IBM公司T·J·沃森研究中心的科
学家,最近攻克了在利用石墨构建纳米 电路方面最令人困扰的难题,即通过将 两层石墨烯片叠加,可以将元器件的电 噪声降低10倍,由此可以大幅改善晶 体管的性能,这将有助于制造出比硅 晶体管速度快、体积小、能耗低的石 墨烯晶体管。
烯的厚度。
第12页,本讲稿共28页
3、热膨胀法
用酸进行插层反应得到膨胀率较低的石墨鳞片 ,鳞片的平均厚度约为30μm,横向尺寸在 400μm左右,这种石墨鳞片就是可膨胀石墨。将 这种可膨胀石墨放入微波或高温炉中加热,就可 以的到厚度为几纳米到几十个纳米的纳米石墨片 。
第13页,本讲稿共28页
4、化学法
第15页,本讲稿共28页
三、石墨烯材料的性质
1、力学性质——比钻石还要硬
数据转换分析:在石墨烯样品微粒开始碎裂前,它们每100纳
米距离上可承受的最大压力居然达到了大约2.9微牛。
据科学家们测算,这一结果相当于要施加55牛顿的压力才 能使1米长的石墨烯断裂。如果物理学家们能制取出厚度相当于 普通食品塑料包装袋的(厚度约100纳米)石墨烯,那么需要 施加差不多两万牛的压力才能将其扯断。换句话说,如果用 石墨烯制成包装袋,那么它将能承受大约两吨重的物品。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档