数学建模队员选拔和组队精修订

合集下载

挑选队员的模型

挑选队员的模型

挑选队员的策略模型摘要全国大学生建模竞赛已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛,各大高校对这项比赛都很重视,那么如何挑选出优秀的队员和如何将队员进行合理的组队就至关重要了。

本文将提出的问题转化为数学的模型以及合理的假设分析给出了妥帖的解决方案。

1、对于问题一我们用多元统计分析中的层次分析法首先建立了模型1.1,给各项条件指标一个权重,来计算加权函数i i ij j i iii W P L W ∑=∑===7161,αα,再求每个队员的综合水平,用Excel 整理数据,最后淘汰8、9两名队员。

然后在模型1.1的基础上建立了模型 1.2,从理论上按照层次分析法的步骤算出权重,再按模型 1.1的加权函数计算每个队员的综合水平,得出的结果也是淘汰8、9两名队员,充分的验证了模型的合理性。

2、对于问题二我们用逐项选优法和均衡模型法,由于学校参赛的目的不同给出两种模型。

我们把这个问题转化成求竞赛水平函数i j ml k ji m l k jW a W af ∑==61,,,,),(,模型2.1目的是使学校尽可能拿更高的奖项,用逐项求优法挑选竞赛水平高的队伍,重复挑选选取最优。

模型2.2目的是使学校尽可能多的获奖,也就是期望六支队伍都获奖,用均衡模型法,先选出竞赛水平最高的一组保证能够获奖,将剩下的队员均衡分配,从而竞赛水平都达到某一高度,这样六支队伍都能获奖。

综合这两种模型我们在不同的情况下做了合理的分析,认为模型2.1优于模型2.2. 3、对于问题三我们用求价值函数和仿真的方法,模型3.1是使每个教练挑选的队员的价值函数i i k q p o i i kq p o i kW d W dg ∑==613),,(3),,(3),(达到最大,同时保证他们之间相差不大,这样才能使教练相对满意。

模型3.2是用仿真的方法,通过仿真模拟出能够满足各个教练所需求的“最优”,又能使得他们所得队员差距更小,以取得使教练都尽可能满意的结果。

全国大学生数学建模竞赛参赛规则(2019年修订稿)

全国大学生数学建模竞赛参赛规则(2019年修订稿)

全国大学生数学建模竞赛参赛规则(2019年修订稿)根据《全国大学生数学建模竞赛章程》(以下简称《章程》)和竞赛活动的实践,为了促进全国大学生数学建模竞赛活动的健康发展,保障竞赛的公正公平,特制订本规则。

1、指导教师和参赛学生必须严格遵守《章程》和《全国大学生数学建模竞赛论文格式规范》(以下简称《规范》)中的各项规定,认真履行所签署的《全国大学生数学建模竞赛承诺书》中的各项承诺。

对违反承诺及不符合《章程》和《规范》要求的论文,将无条件取消评奖资格。

2、参赛学校有责任结合本校的学风建设,指导和监督参赛学生与指导教师严格遵守竞赛纪律,支持和配合全国大学生数学建模竞赛组织委员会(以下简称全国组委会)及各赛区组织委员会(以下简称赛区组委会)对违规违纪行为的调查与处理。

3、指导教师主要从事赛前辅导和参赛的组织工作,并有责任教育和监督参赛学生严格遵守竞赛纪律。

指导教师在竞赛期间不得通过任何方式对参赛学生进行任何形式的指导(包括向学生解释赛题或提供选题、解题建议,提供参考资料,修改论文或提供修改建议等),否则一律按违纪处理。

对出现违纪行为的参赛队的指导教师,全国组委会两年内将不受理该指导教师指导学生参加本竞赛的报名申请。

4、抄袭是严重违反竞赛纪律的行为;参赛论文引用他人的研究成果或其他任何公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文中加以引用,并在参考文献中明确列出,且不得大篇幅照抄,否则视为学术不端行为和违反竞赛纪律,相应的参赛队将被无条件取消评奖资格。

5、竞赛期间各参赛队必须独立完成赛题解答,禁止参赛队员以任何方式与队外的任何人(包括指导教师)交流及讨论与赛题有关的问题,参赛队员无论主动参与讨论还是被动接收讨论信息均视为严重违反竞赛纪律。

竞赛期间参赛队员不得加入或留在涉及赛题讨论的互联网交流平台(含“贴吧”、QQ群和微信群等),否则一律视为严重违反竞赛纪律。

严重违纪的参赛队将被无条件取消评奖资格,并视情节给予相应的通报。

数学建模竞赛队员的选拔和组队问题

数学建模竞赛队员的选拔和组队问题

2011级信计《数学模型》课程论文题目:出版社的资源配置问题姓名:学号:摘要数学建模竞赛队员的选拔和组队问题该模型解决了选拔数学建模参赛队员及确定最佳组队的问题。

本文主要采用了层次分析法,并用计算机编程计算,在综合考虑15名队员个人的各项指标后,从中选出了9名优秀队员,又考虑到整队的技术水平,最终将挑出的9名队员分成三队,并建立了最佳组队的方案。

具体在针对问题二选拔队员时,要全面考察了队员的六项指标,并用层次分析法计算出权重得到15名队员的综合排名,最后淘汰掉排名靠后的6 名队员。

为了组成3个队,使得这三个队整体技术水平最高,我加入了权重,并依次选出了数学成绩较好、计算机成绩较好及综合成绩较好的三名同学,而且在考虑组队的过程中,尽量让问题简化,按成绩优劣均分队员,使三组的总体技术水平相当。

针对问题二,只要考虑计算机能力而不再考察其它情况,设置添加了一名队员S16。

比较分析综合排名,S13的综合能力排第九,而S16的综合能力排在S13之后。

如果直接选拔S16,队伍的总体水平下降。

可见这种选拔方式,有可能影响队伍的总体水平,所以不可取。

针对问题三,提出了建模队员选拔机制建议,帮助教练组提高建模队员选拔的效率和质量。

一、问题重述一年一度的全国大学生数学建模竞赛是高等院校的重要赛事。

由于竞赛场地、经费等原因,不是所有想参加竞赛的人都能被录用。

为了能够选拔出真正优秀的同学代表学校参加全国竞赛,数学建模教练组需要投入大量的精力,但是每年在参赛的时候还是有很多不如意之处:有的学生言过其实,有的队员之间合作不默契,影响了数学建模的成绩。

参加数学建模需要的学生应具有较好的数学基础和必要的数学建模知识、良好的编程能力和熟练使用数学软件的能力、较强的语言表达能力和写作能力、良好的团队合作精神,同时还要求思维敏捷,对建立数学模型有较好的悟性。

目前大多数高校选拔队员主要考虑以下几个环节:校内竞赛获奖情况,数学建模暑假培训班考勤记录,培训课程的考试成绩,学生个人简介,面试,老师和学生的推荐等,通过这种方式选拔出队员。

数学建模活动方案流程策划

数学建模活动方案流程策划

数学建模活动方案流程策划数学建模活动是通过对实际问题进行数学模型的建立和求解,培养学生应用数学知识和方法解决现实问题的能力。

本次活动旨在通过团队合作、实践探索等方式,提高学生的数学建模能力,激发学生对数学的兴趣,培养学生的创新思维和动手能力。

二、活动方案流程1. 组队与选题(1)学生自行组队,每队5-6人。

鼓励队伍中成员之间具备不同的背景知识和技能,以便更充分地发挥团队合作的优势。

(2)每个队伍选择一个感兴趣的实际问题进行研究,鼓励跨学科的选题,以增加问题的复杂度和解决难度。

2. 调研与问题分析(1)组织学生进行相关领域的调研,了解该领域的基本知识和问题背景。

(2)对选定的问题进行分析,确定问题的主要研究方向和解决难点。

(3)根据问题分析的结果,制定解决方案的具体目标和方法。

3. 建模与求解(1)学生根据问题的特点和解决思路,建立相应的数学模型,包括变量定义、函数关系、约束条件等。

(2)运用数学工具和软件,对模型进行求解和优化,得到问题的解答或结果。

(3)对模型的合理性和可行性进行检验和评估,对结果进行解释和解读。

4. 报告与演示(1)学生撰写完整的研究报告,包括选题背景、理论分析、模型建立、求解过程和结果分析等内容。

(2)学生组织形式多样的报告演示活动,向其他队伍和老师同学们展示研究成果。

(3)学生通过口头陈述和答辩,对自己的研究内容和方法进行阐述,回答相关问题。

5. 总结与评价(1)学生在活动结束后进行总结和评价,对整个研究过程进行反思和提升。

(2)老师对学生的表现和研究成果进行评价和激励,提供指导和建议,帮助学生进一步提高数学建模能力。

三、活动策划1. 活动时间安排本次活动的时间安排为两个月,具体时间分配如下:第1-2周:组队与选题第3-4周:调研与问题分析第5-6周:建模与求解第7-8周:报告与演示第9-10周:总结与评价2. 活动资源准备(1)教师资源:指导学生活动的教师应具备较高的数学建模能力和丰富的教学经验,能够提供学生合适的指导和鼓励。

数学建模竞赛参赛队员选拔与组队

数学建模竞赛参赛队员选拔与组队

2014年河南科技大学模拟训练一承诺书我们仔细阅读了数学建模选拔赛的规则.我们完全明白,在做题期间不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与选拔题有关的问题。

我们知道,抄袭别人的成果是违反选拔规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守选拔规则,以保证选拔的公正、公平性。

如有违反选拔规则的行为,我们将受到严肃处理。

我们选择的题号是(从A/B/C中选择一项填写): A 队员签名:1.2.3.日期: 2014 年月日2014年河南科技大学数学建模竞赛选拔编号专用页评阅编号(评阅前进行编号):我校数学建模竞赛参赛队员选拔与组队摘要一年一度的全国大学生数学建模竞赛是高等院校的重要赛事。

但在对参赛队员进行选拔时,往往会遇到很多难题,以至有时并不能选出真正优秀的队员代表学校参加全国竞赛。

本文通过建立数学模型研究了数学建模竞赛参赛队员选拔与组队问题。

我们针对本题所要解决的实际问题,提出了不同的模型或算法,过程如下:问题一:假设问题给出的数据均为可供分析的可靠数据,不存在错误数据,利用SPSS对已给数据进行标准化处理;EXCEL分析数据;主成分分析法对影响综合成绩的五个因素:校内竞赛答题稿成绩、校内竞赛答题稿答辩成绩、数学模型公选课测试成绩、软件比赛成绩、三次模拟点评成绩,做无关性处理;从而作出五个环节的成绩汇总表(表1);问题二:根据成绩汇总表(表1)用SPSS作单个样本统计量表(表2);对统计量作T检验得单个样本检验表(表3);由表2和表3得出第一组评委比较严格,第四组和第五组评委比较松;问题三:利用席位分配(Q值法)从参加竞赛的120个队中选出相对优秀的36个队公费参加全国竞赛;根据评奖标准各个高校最多推荐10个国家奖,最后我们首先利用层次分析法计算出准则层(P)对目标层(O)的权重再利用动态规化法对选出的10个队进行重新组队,用MATLAB求解,选出整体实力最强的组队法,以及最佳组合阵容,使得我校获得全国奖最大化。

数学建模竞赛参赛的队员选拔与组队问题

数学建模竞赛参赛的队员选拔与组队问题

数学建模竞赛参赛的队员选拔与组队问题数学建模竞赛参赛的队员选拔与组队问题【摘要】本⽂根据竞赛队员的选拔和组队问题的基本要求,制定合理假设并求解。

依据各种能⼒的权重,建⽴能⼒加权值图表,由能⼒加权值排名进⾏参赛队员的选拔。

在确定最佳组队的问题上,⾸先以综合加权能⼒为依据选择,再根据相对优势制定调整⽅案。

为参赛队员组队的⽅案参照了最佳组队的⽅法并进⾏了推⼴,使所有队伍之间能⼒相差降低。

最后,建⽴与最⼤值及差值相关的⽬标函数,将队员组队,并将模型进⾏推⼴和改进。

关键词:加权相对优势差值⼀、问题描述问题描述:在参加数学建模竞赛活动中,各院校都会遇到如何选拔最优秀的队员和科学合理的组队问题。

今假设有20名队员准备参赛,根据队员的能⼒和⽔平要选出18名优秀队员分别组成6个队,选拔和评价队员主要考虑的条件依次为有关的学科成绩(平均成绩)、智⼒⽔平(反映思维能⼒、分析和解决问题的能⼒等)、动⼿能⼒(计算机的使⽤及其他⽅⾯的实际操作能⼒)、写作能⼒、外语⽔平、协作能⼒(组织、协调)和其它特长,每个队员的基本条件量化后如下表(略):(1)在20名队员中选择18名优秀的队员参加竞赛;(2)确定⼀个最佳的组队使得竞赛技术⽔平最⾼;(3)给出由18名队员组成6个队的组队⽅案,使整体竞赛技术⽔平最⾼;并给出每个队的竞技⽔平。

⼆、问题分析:队员选择上,关于队员的选取,要从20名队员中淘汰两⼈。

可采取排名然后去除后两名的⽅法。

根据原表格的数据,队员的评估指标分为了7项。

这7项指标的平均值、波动程度都不同。

因此,每种能⼒的权重不⼀致,因此采⽤表⽰差距的⽅差和原始指标的积来表⽰该队员在这项能⼒上的加权指标。

组队原则上:为了组成⼀个最强的组队⽅案,⾸先从综合加权能⼒的排名⼊⼿,再让每位队员的劣势得以补充。

综合所有的18名队员进⾏分组,可以根据以下原则进⾏分组强弱队员结合,综合实⼒较差的队员要有加权能⼒较强的队员给予补充;强弱能⼒结合,某⼀项能⼒较差的队员要有在该项能⼒较强的队员给予补充;不可以存在弱项,表现在模型⾥即为,各指标的最⼤值均⾮负。

(大学生数学建模竞赛组队方案)

(大学生数学建模竞赛组队方案)

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):成都纺织高等专科学校参赛队员(打印并签名) :1. XXX(机电XXX)2. XXX国贸XXX)3. XXX(电商XXX)指导教师或指导教师组负责人(打印并签名):日期: 2014 年 06 月 06 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):目录一、问题的重述 (1)1.1 背景资料与条件 (1)1.2 需要解决的问题 (1)二、问题的分析 (2)2.1 问题的重要性分析 (2)2.2问题的思路分析 (3)三、模型的假设 (4)四、符号及变量说明 (4)五、模型的建立与求解 (4)5.1建立层次结构模型 (4)5.2构造成对比较矩阵 (5)5.3成对比较矩阵的最大特征根和特征向量的实用算法 (6)5.4一致性检验 (7)5.5层次分析模型的求解与分析 (8)5.5.1 构造成对比较矩阵 (8)5.5.2计算25优秀大学生的综合得 (9)六、模型的应用与推广 (11)七、模型的评价与改进 (12)7.1模型的优点分析 (12)7.2模型的缺点分析 (12)7.3模型的进一步改进 (12)八、参考文献 (13)附件一 (14)附件二 (16)XXXX第六届校级数学建模竞赛B题优秀大学毕业生的评选摘要成都纺织大学2011级管理学院有会计电算化、物流管理、国际贸易、酒店管理、旅游管理和连锁经营等6个专业11班共计470多名毕业生。

最new数学建模队员选拔组队问题PPT

最new数学建模队员选拔组队问题PPT

问题二
队员编号
5 11 13 6 21 25 16 8 14 4
建模水平
0.032219 0.029622 0.027367 0.024771 0.024771 0.013769 0.030921 0.026069 0.023472 Max 0.0033517
编程水平
Max 0.009821 0.009821 0.009821 0.009821 0.009821 0.009821 0.005456 0.007639 0.005456 0.007639
⑶ 得特征向量并一致性检验
特征向量 0 [0.1095,0.3090,0.5815] 3.0037 最大特征值 一致性检验 CR CI 0.00185 0.0032 0.1
RI 0.58
通过一致性检
问题一
⑷ 对各项指标进行量化
① 将校赛名次一等奖,二等奖,三等奖,参赛 奖用7,5,3,1来代替 ②等级评分A,B,C,D用4.5,3.5,2.5,1.5来代替
第一组 第二组 第三组 第四组 第五组 最优 4 5 16 1 11 7 25 3 21 6 13 18 14 8 12 13 9 2 0.08856 0.08856 0.08856 0.080274 0.078721 0.076102 AAAA AAAA AAAA AAAB AABB ABBB
谢谢大家!
11
0.011786
12
0.006987
9
0.029002
1
0.032499
21
0.011786
13
0.006987
13
0.029002
16
0.032499
6
0.011786

数学建模参赛改进措施阐述

数学建模参赛改进措施阐述

数学建模参赛改进措施阐述引言数学在生活领域广泛应用,许多理工类大学均开设了有关数学的各种课程,如高等数学、概率论、模糊数学、线性代数、实变函数、复变函数、数学建模等。

其中,数学建模的思想方法(层次分析法、时间序列法等)在解决日常生活问题上起到了至关重要的作用,如席位分配问题、优化问题[1]等。

为了更好地激发大学生的创新意识,培养大学生的应用能力,提高大学生參赛的积极性,本文重点从三方面来阐述数学建模的改进方案。

1、数学建模改进措施1.1学生组队问题1.1.1参加国内建模比赛的组队问题数学建模的组队方式有很多,其中比较优化的组合方法有两种。

第一种是团队三人均有较强的实力。

成员要有求知欲,有足够的兴趣阅读有关建模的书籍,能够运用建模思想解决生活问题,比如垃圾分类问题,道路设计问题[2]等。

要明确建模是一个团队协作,成员要有团队意识,要站在对方的立场考虑问题、解决问题,在建模比赛中相互鼓励。

俗话讲,众人拾柴火焰高。

第二种是团队三人能力互补。

每个人均有各自的强项。

第一个人的强项是数学思维。

他应掌握一定数量的建模方法,在看到建模问题的时候,能在较短的时间内分析出问题的大概模型。

此外,最好有一定的组织能力,可以根据其他成员的强项,分配工作;第二个人的强项是程序设计。

他要熟悉必要的软件,如EXCEL ﹑WORD等办公自动化软件;SPSS、SAS等统计分析软件;MATLAB 、MATHTYPE等其他软件;LINGO、LINDO等数学规划软件;。

在需要技术支持的时候,他能够运用软件分析数据,得出结论;第三个人的强项是理解能力和写作能力。

在做题中,随时记录每个人的想法,理解建模的整体思路及细节,并能够把团队的建模思想通过论文形式呈现出来。

对于建模态度端正及应用能力较强的学生来说,无论选择哪种方式,参赛成功的几率都会大大增加。

1.1.2参加国外建模比赛的组队问题如果参加国外举办的数学建模竞赛[3],则在1.1.1的基础上,对团队的英语水平有更高要求。

全国大学生数学建模竞赛参赛规则

全国大学生数学建模竞赛参赛规则

全国大学生数学建模竞赛参赛规则1. 参赛对象全国大学生数学建模竞赛面向全国高校(含港澳台地区)在校本科生,研究生及在职研究生。

2. 组队要求(1)本科生组队要求:每队3名正式在籍的本科生(含预科生),不得来自同一年级、同一学院(或同一系)、同一导师及同一小组;(2)研究生及在职研究生组队要求:每队3名正式在籍的研究生(含在职研究生/博士生),不得来自同一导师及同一课题组。

3. 比赛形式全国大学生数学建模竞赛采取网络/校内考试+现场答辩的形式,共分为A、B两场比赛。

(1)A场比赛:全国大学生数学建模竞赛A场比赛是在12月第一个周末统一全国范围内进行的网络/校内考试,线上时间为4个小时;(2)B场比赛:全国大学生数学建模竞赛B场比赛是在以下月份之一内的一个周末统一在指定城市进行的现场答辩,具体时间及地点由主办方另行公布。

在B场比赛中,参赛队伍需根据现场情况选择一道A场试题或一道B场试题进行现场展示及答辩,答辩时间为20分钟。

4. 竞赛规则(1)本科生组别:比赛期间每队只允许使用一台笔记本电脑或台式计算机,无需提前上传程序;(2)研究生及在职研究生组别:比赛期间每队只允许使用计算器、规划板、铅笔、直尺等简单的绘图工具,无需提前上传程序。

(3)A场试题:比赛时间为4个小时,答题方式为探究式,在试题规定的时间内,回答试题、写论文、制作报告,并将报告提交至主办方指定邮箱;(4)B场试题:参赛队伍在B场现场答辩时,面对评委会进行现场展示及答辩,为每组答辩提供20分钟时间。

5. 评分规则全国大学生数学建模竞赛A、B两个环节各占总成绩的50%。

(1)A场环节:A场比赛作为团队成员的表现考察,其团队报告的分数占总成绩的50%;(2)B场环节:作为个人表现的考核,B场答辩分数占团队总分的50%。

6. 竞赛奖励全国大学生数学建模竞赛根据团队总成绩高低,分别颁发特等奖、一等奖、二等奖、三等奖及优秀奖,并颁发证书。

同时,优秀成员也将获得荣誉证书。

数学建模队员的选拔-层次分析法

数学建模队员的选拔-层次分析法

数学建模队员的选拔-层次分析法层次分析法(Analytic Hierarchy Process,简称AHP)是一种多准则决策方法,通过构造层次结构分析问题,通过对于决策中所涉及的因素和目标进行层次分解,将问题的各部分分解成若干层次,在该层次结构中使用定量和定性的方法来描述因素之间的关联和权重。

本文将利用层次结构模型,以及层次分析法,对数学建模队员的选拔进行分析。

层次结构模型在进行数学建模队员的选拔中,影响选拔的多个因素可以构建成一个层次结构模型。

例如:在数学建模队员选拔中,可以将最终选出的队员作为最终的目标,而影响选拔的因素可以分解成以下多个因素:1.专业水平:参赛者们的数学水平、学习能力、逻辑思维等问题。

2.团队合作能力:参赛者是否适应团队合作及与人组队互动等问题。

3.沟通和表达能力:参赛者的表达能力、口头和文字沟通交流等问题。

4.个人素质:如责任感、进取心、合作精神、团队协作精神等。

层次分析法在层次分析法中,问题通常首先进行分层,使用准则、子准则和指标以及目标来描述问题,并按照这种结构构造一个具有层次结构特征的问题描述。

接着,将问题中的各个层次之间的依赖关系描述出来,并将各个准则、子准则、指标和目标的重要性大小转化为数量化的比较关系。

比较矩阵是层次分析法中的核心概念。

比较矩阵是一种用于比较各个因素之间差异的矩阵视图,在比较矩阵中,每一个单元格代表两个不同的元素之间的相对权重。

比较矩阵的各行数值之和为1。

以数学建模队员选拔的专业水平为例:在该因素层面上考虑选择队员是否有良好的数学水平、学习能力、逻辑思维;在这些因素比较中,可以进行两两比较后形成下图所示的矩阵视图。

| 比较矩阵 | 数学水平 | 学习能力 | 逻辑思维 ||--------------|----------|----------|----------|| 数学水平 | 1 | 3 | 5 || 学习能力 | 1/3 | 1 | 3 || 逻辑思维 | 1/5 |1/3 | 1 |上表中的数字代表数量级:按比例表示数据之间的重要程度或优先级,并且满足归一化性质:对于矩阵中的每一列,它们的权重比之和应为1。

最佳组队问题

最佳组队问题

最佳组队问题的求解与分析摘要参加重大比赛前,院校如何选拔最优秀的队员并科学合理地组队是各院校取得优秀名次的关键。

本文就此通过层次分析法建立层次结构模型(模型一),结合模型比较得出参赛的18名队员。

根据所得18名成员建立优化模型(模型二)求解最佳竞赛技术队。

接着,使用非线性规划模型(模型三)求解整体竞赛技术水平最高问题,最后,通过误差分析得到模型四推翻模型一,同时重解模型二、三,得出优化后的组队分配。

针对问题一,本文通过建立成对比较矩阵确定各项权重及其一致性,并通过权重计算得出淘汰队员应为I,H。

针对问题二,本文通过问题一的权重以及优化模型求解,得出G,L,S组成的队伍是竞赛技术水平最高的最佳组队。

针对问题三,本文通过非线性规划模型,得出以下组队方案:经过模型的误差分析,重新建立模型四,得:1.应淘汰A、O队员。

2.最强队组合人员应为G,H,L3.最佳组队方案应如下所示:关键词层次分析法权重优化模型非线性规划模型一、问题重述1.1问题背景在一年一度的我国和美国大学生数学建模竞赛活动中, 任何一个参赛院校都会遇到如何选拔最优秀的队员和科学合理地组队问题,因此现假设有20名队员准备参加竞赛,请根据问题及所给参数进行相关选拔及组合。

1.2题目所给信息及参数根据队员的能力和水平选出18名优秀队员分别组成6个队, 每个队3名队员去参加比赛。

其中选拔队员主要考虑的条件按重要度依次为有关学科成绩(平均成绩)、智力水平(反映思维能力、分析问题和解决问题的能力等)、动手能力(计算机的使用和其它方面实际操行能力)、写作能力、外语能力、协作能力(团结协作能力)和其它特长,相关数据如下表所示。

表 1-队员各项能力汇总表1.3所需解决问题(1)在20名队员中选择18名优秀队员参加竞赛。

(2)确定一个最佳的组队使竞赛技术水平最高。

(3)给出由18名队员组成6个队的组队方案, 使整体竞赛技术水平最高, 并给出每个队的竞赛技术水平。

数学建模竞赛参赛队员的选拔与组队

数学建模竞赛参赛队员的选拔与组队

数学建模竞赛参赛队员的选拔与组队摘要如何选拔最优秀的队员并科学合理的组队,是一个非常具有实际意义的数学模型问题。

本篇文章根据实际数据,综合考虑各方面因素的影响,给出了可以判断队员组队情况好坏的一般规律,并联系实际,运用所得规律进行科学的预测。

为了给出可以判断队员组队情况好坏的一般规律,本文综合考虑队员的性别、所属学院类型、在校期间的成绩。

为了分析前两者的影响,本文对三类(获国家奖、获省奖、没获奖)队伍的性别分布及所属学院类型分布进行了对比。

发现:规律1:队员不同的性别组合对数学建模成绩没有显著影响。

规律2:三个队员中至少有两个来自理工类学院时,组队效果好。

三个队员都来自文科类学院,组队效果不好。

在分析成绩的影响时,首先,联合使用计算机筛选(以课程开设学院为筛选依据,仅筛选出统计与数学学院、计算机与信息工程学院、人文学院、马克思学院开设的课程)与人工筛选,选出每个人学过的能反映数学建模能力的所有课程。

根据实际经验,数学建模是数学能力、计算机能力和写作能力的综合运用,利用筛选出的成绩可以对每个人的各项能力进行量化。

而后,为了得到衡量数学建模综合能力的指标,本文利用层次分析法求解出数学能力、计算机能力、写作能力对数学建模综合能力的权重分别为0.5396、0.2969、0.1634。

文中使用了两种方法确定了两个综合能力指标,其一为队伍能发挥的最大综合能力,该指标下每个队伍的单项能力为三个队员该项能力的最大值;其二为平均综合能力,该指标下每个队伍的单项能力为三个队员该项能力的平均值。

经过对比,得到如下规律:规律3:队伍能发挥的最大综合能力越高,组队效果越好。

队伍能发挥的最大综合能力低于80.6时,组队效果不好,高于90.69时,组队效果非常好。

规律4:队伍能发挥的平均综合能力越高,组队效果越好。

队伍能发挥的平均综合能力低于75.32时,组队效果不好,高于88.48时,组队效果非常好。

根据以上规律对问题二的5支队伍进行预测,发现:这5支队伍都有很大的几率获奖(国家奖或省奖),X1很有可能获得国家奖,X5最好成绩应该为省奖。

数学建模队员的选拔

数学建模队员的选拔

数学建模论文学院:计算机与信息学院专业班级:信息与计算科学111班姓名:熊溢斌学号:3110702143题目:一年一度的全国大学生数学建模竞赛是高等院校的重要赛事。

由于竞赛场地、经费等原因,不是所有想参加竞赛的人都能被录用。

为了能够选拔出真正优秀的同学代表学校参加全国竞赛,数学建模教练组需要投入大量的精力,但是每年在参赛的时候还是有很多不如意之处:有的学生言过其实,有的队员之间合作不默契,影响了数学建模的成绩。

数学建模需要学生具有较好的数学基础和必要的数学建模知识、良好的编程能力和熟练使用数学软件的能力、较强的语言表达能力和写作能力、良好的团队合作精神,同时还要求思维敏捷,对建立数学模型有较好的悟性。

目前选拔队员主要考虑以下几个环节数学建模培训课程的签到记录;数学建模的笔试成绩,上机操作,学生个人简介,面试,老师和学生的推荐等,通过这种方式选拔出队员。

然后按照3人一组分为若干小组,为了使得小组具有较好的知识结构,一般总是将不同专业的学生安排在一起,使得每个小组至少包含一位数学基础较好的同学、计算机编程能力强的同学。

各组通过做题进行交流和磨合,合作比较好的保留,合作不好的进行调整。

下表列出了15个学生的部分信息,空白处为学生不愿意提供或未能了解的情况学生专业笔试班级排名听课次数其它情况思维敏捷机试知识面S1 数学96 2 2 A B A S2 电子信息93 1 6 过计算机三级 A B B S3 机械92 3 4 C D C S4 机械82 10 4 上过建模选修课 B B A S5 数学82 3 B C B S6 电子信息82 3 6 A B D S7 化工与材料80 7 5 C B B S8 数学79 4 考过程序员 A B A S9 电子信息78 12 4 学过MATLAB A C C S10 电子信息77 5 学过MATLAB A B B S11 化工与材料76 6 C A B S12 化工与材料74 2 A C A S13 计算机78 2 B A D S14 计算机76 5 A B A S15 计算机66 6 C B B现在需要解决以下几个问题:1.根据你们所了解的数学建模知识,选拔数学建模队员要考察学生的哪些情况?哪些素质是数学建模的关键素质,如何进行考察?2.根据上表中信息,建立建模队员选拔的数学模型,从中选出9位同学,并组成3个队,使得这三个队具有良好的知识结构。

数学建模队员的选拔

数学建模队员的选拔

数学建模队员的选拔一、摘要本文是一个如何选拔最优秀的队员和科学合理组队问题的数学模型。

此模型我们主要采用的是层次分析法,综合考虑每个学生的指标和整队的技术水平,最终从15名学生中挑选出9名数学建模队员进行参赛,对9名队员进行科学地分组,提出了最佳组队方案,达到更大的获奖几率。

此外,我们还给出一些关于队员选拔的建议。

问题二:选拔队员是一个多目标决策的优化问题,我们采用层次分析法,全面考察了15名学生的七项指标,并按照其对目标层的权重的大小进行了排序,挑选出了排名较前的9名学生进行参赛,他们依次是:S1,S2,S6,S15,S8,S9,S10,S14,S4。

为了能够科学地组队,利用数学软件lingo得到最优组合,如下表:分组队员一队员二队员三该组水平第一组S1 S6 S8 0.2195 第二组S2 S14 S9 0.2097 第三组S15 S4 S10 0.2059问题3:倘若直接录用一个计算机编程高手,不考虑其他方面的情况,我们以机试知识面为计算机编程高手的主要素质,可以在15名学生中挑选出几名能力相似的同学,他们分别为S3、S11、S13和S15,在问题二的结果中,我们可以发现计算机能力强的学生中,只有S15的综合能力排名能进入前9名,其他都被剔除掉,可见,如果只考虑计算机能力这一点,会影响队伍的总体水平,所以该做法是不可取的。

关键词:层次分析法多目标决策最优组合lingo二、问题重述一年一度的全国大学生数学建模竞赛是全国所有高校的重要赛事,如何选拔最优秀的队员和科学合理组队问题是一个首先需要解决的数学模型问题。

我们需要解决以下几个问题:1.根据你们所了解的数学建模知识,选拔数学建模队员要考察学生的哪些情况?哪些素质是数学建模的关键素质,如何进行考察?2.根据上表中信息,建立建模队员选拔的数学模型,从中选出9位同学,并组成3个队,使得这三个队具有良好的知识机构。

3.判断直接录用一个计算机编程高用,而不再考察其它情况这种选拔方式是否可取。

数学建模最佳组队方案

数学建模最佳组队方案

在一年一度的数学建模竞赛活动中,都会有不少院校组织学生参加数学建模竞赛, 比赛规则就是3 个人组成一个队,但是每一个学校都会有同样的问题,那就是在挑选出来的参赛团队中如何安排组队才干使队伍实力最强,以及整个团队实力最强,即追求一种整体实力最大化,这是参赛之前每一个院校必须做好的工作,组队原则是队员各方面能力能互补。

根据某院校20 名参赛预选队员,学校决定从20 名队员中选出18 名队员参加数学建模竞赛。

根据对20 名队员各项(7 项) 衡量指标判定学生的综合素质,我们通过定义7 项指标的权重得到一个正互反阵,采用层次分析法,进行分析,并且检验是否通过一致性检验,即则通过一致性检验,那末就可以知道每一个学生的综合成绩,通过筛选把最差的两个学生排除,就得到安排人数及名单,经检验在问题一中各项指标分层分析都通过一致性检验,运用MATLAB 进行计算输出结果。

在问题二中采用一随机三个人进行组合,进行随机组队,然后采用对每一个队组成的的一个矩阵这样的矩阵通过MATLAB 计算有816 个,那末就有816 种组合方式,在矩阵中每一行表示学生的姓名, 列表示学生的各项指标,为了让三个对员能够形成互补,我们采用调用函数方法进行搜索每一列最大值,构成一个新的数组,代表该队的各项能力水平,这样挨次取出就得到816 个队的各项指标的成绩,再与问题一里面的权重向量相乘,就得到一个的一个总体综合实力的矩阵,再通过排序筛选出最大的一个值,找到与之对应的组合队员,那么就可以确定该队实力最强。

问题三采用随机排序然后每隔3 个数归为一个整体代表每一个,一共有六个,通过增加其随机次数来确定它的稳定值.层次分析,随机数循环,加权向量,MATLAB,一致性检验对于问题一的得要求要在20 个队员中选出最好的18 个人参加比赛,通过筛选把最后的两个同学进行排就可以确定参赛队员名单。

对于问题二,根据题目要求通过对全局组合进行筛选,这里运用问题一里面的数据,通过层次分析出来的权向量, 以及筛选出来的18 个队员名单进行罗列组合的所有可能性做一个全局计算,得到每种可能组队的一个总体评价分数指标,然后筛选出最大的一个分数,就可以知道该队的人员组合安排.对于问题三,根据题目要求筛选出来的18 名队员组成的六个队需要进行一个科学合理的搭配使得总体水平效果最好,要解决的问题是具体安排每一个队由哪些人员组成,需要解决的是队员组成的队伍里面队员能够进行相互各方面的缺陷,这样才干使总体效果最好。

大学生数学建模竞赛组织数学建模选拔方案及试题

大学生数学建模竞赛组织数学建模选拔方案及试题

云南大学旅游文化学院第一届大学生数学建模竞赛组织的通知全国大学生数学建模竞赛是全国高校规模最大的课外科技活动之一,于每年9月举行。

为培训和选拔我校优秀学生参加2014年全国大学生数学建模竞赛,特举办此次预选赛。

一、竞赛目的:激发学生学习数学的积极性,开拓知识面,提高学生独立分析问题、建立数学模型、运用计算机技术模拟解决实际问题、论文写作等的综合能力,鼓励广大青年学生在基础及应用学科研究中推陈出新,提升对数学科学理论及其应用的价值认识;加强数学与经济金融、计算机等学科之间的联系,促进数学教育改革;培养学生的创造精神及合作意识,塑造同学们的科创意识与团队精神,为同学们将来能更好地走上社会、服务社会打下更为坚实的基础。

二、参赛对象及报名方式:1、参赛对象:信科系、会计系、经管系学生。

2、报名方式:参赛者以个人为单位报名,每队1人三、竞赛内容及相关要求:1、竞赛内容:本次预赛提供A、B两个竞赛题目,题目有较大的灵活性供参赛者发挥其创造能力,参赛者自选其中一个题目,根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。

2、竞赛时间:6月10日——6月20日3、竞赛要求:竞赛采取开放形式,参赛学生可到信科系吕小俊、李睿、靳巧花老师处复制或到所在系部复制参赛试题,完成作品。

各参赛队于6月20日下午6点前完成论文,并将电子稿(WORD 或PDF版本)与打印稿交到信科系办公室2-204。

电子稿统一命名格式为“专业_姓名_学号”,如“国贸_张三_088”。

论文(包括电子稿与打印稿)需要制作论文封面,论文封面参见附件三。

论文不得抄袭,如发现论文抄袭,直接取消参赛资格!四、奖项设置根据参赛情况评选出一等奖5%,二等奖10%,三等奖20%及优胜奖若干。

获奖者可获得由学院颁发的证书,并参加2014年全国大学生数学建模大赛校内集训。

联系人及电话:杨七九 086(办公室)附件:1、预赛试题A题2、预赛试题B题3、数学建模论文格式4、数学建模论文范文5、数学建模论文封面云南大学信息科学与技术系二〇一四年六月十日附件1云南大学旅游文化学院数学建模竞赛选拔说明:竞赛试题共有A、B试题两种,参赛学生任选一种试题,写成数学建模论文的形式,论文参照格式见附件3,参照论文见附件4。

数学建模队员的选拔(1)1

数学建模队员的选拔(1)1

数学建模队员的选拔摘要针对数学建模如何才能选拔出真正优秀的同学代表学校参加竞赛,文章对数学建模队员的选拔与组合作出探究。

对于问题一,运用层次分析法,利用AHP层次分析法软件,得出数学成绩、写作能力、编程能力、团队合作精神、创新能力的判断矩阵,从而得出这五个方面对于选拔队员这个目标的权重。

对写作能力、团队精神、创新能力进行无量纲化处理,对编程能力、写作能力、数学成绩、团队精神、创新能力的权重采用每隔五分为一级定量化,通过层次分析法建立模型筛选出综合权重大的前9名的同学,他们分别是S1,S2,S3 ,S5, S6 ,S8 ,S9, S10 ,S11。

首先选出数学成绩最好的三位学生为一组,再从剩下的六位选出创新能力强的三位一组,最后剩下的三位一组,从而列成矩阵,取斜线分组。

最后得出的最佳分组是S1,S5,S8 ;S10,S11,S2;S9,S3,S6。

对于问题二,通过对问题一的结果分析,得出直接录取一个计算机编程高手学生,不再考察其它情况,这种做法是不可取的。

首先,选拔队员是根据他们的综合素质而考虑的,因此应从多方面考虑。

其次是最为看重数学成绩和创新能力,若直接录取这位编程高手,会出现编程很好,但其他方面欠缺,从而影响该队数学建模竞赛成绩。

综合以上分析,最终得出这种做法不可取。

关键词: AHP层次分析法软件;综合考虑;判断矩阵;数学建模队员的选拔;权重一、问题重述一年一度的全国大学生数学建模竞赛是高等院校的重要赛事。

由于竞赛场地、经费等原因,不是所有想参加竞赛的人都能被录用。

为了能够选拔出真正优秀的同学代表学校参加竞赛,数学建模指导教师需要投入大量的精力,但是每年在参赛的时候还是有很多不如意之处:有的学生言过其实,有的队员之间合作不默契,影响了数学建模的成绩。

数学建模需要学生具有较好的数学基础知识、良好的编程能力、较强的写作能力、良好的团队合作精神,同时还要求具有一定的创新能力。

1.根据上表中信息,建立建模队员选拔的数学模型,要求从15名同学中选择9名组成3队参加竞赛,使得这三个参赛队有较好的竞技水平,要求模型具有可推广性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模队员选拔和组队GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-数学建模队员选拔摘要针对题目的要求,我们建立了两个模型,分别用于选拔队员与编队,来实现团队获奖最大化。

为了选出最合适的18名队员,已知不同指标在不同成员里波动不同,于是我们计算出各个指标所代表的数值的标准差,根据标准差的大小来确定各项能力的离散程度即重要性,然后将加权的综合能力定义为各个能力与其标准差之积平均值,并将总加权能力值排序取前18名同学。

为了将18名队员最合理的分成6组,建立差值模型,确定每个队员的相对优势。

队员按综合能力排名分成3组:优、中、劣。

每次分别从优、中、劣选出一人,组成新的一组,以此选出6组。

此时为使6组的实力尽可能大且接近,建立总偏差函数模型与最大能力值函数,该函数值越大表明相对队员总体水平越高。

关键词:离散程度加权平均数差值相对优势总偏差函数目录数学建模队员选拔摘要..........................................一、问题描述...................................................二、问题分析...................................................三、基本假设 (5)四、符号说明...................................................五、模型建立与求解.............................................5.1建立加权指标模型并排序 ..................................5.1.1 求解权重系数.............................................5.1.2对所有队员的综合能力进行由强到弱的排序可得...............5.2.1对剩余队员重新编排号码 ...................................5.2.2建立差值模型 .............................................5.2.3.1组队方案的选取过程 (10)5.2.3.2对各指标下队员进行分组 (10)5.2.3.3建立模型构造函数 (10)5.2.3.4选择方案 (11)六、模型的优缺点...............................................一、问题描述全国大学生数学建模竞赛是由教育部发起的18项大学生创新训练项目之一,是高等院校的重要赛事。

我校每年都会有一定数量的学生参加此项赛事,并取得了一定的成绩。

在一年一度的竞赛活动中,任何一个参赛院校都会遇到如何选拔最优秀的队员和科学合理地组队问题,这本身就是一个最实际而且是首先需要解决的数学模型问题。

假设我校选拔队员主要参考如下三个环节:(1)校数学建模公选课成绩;(2)校内数学建模竞赛成绩;(3)按照一定的准则,教师组对每个学生的某些能力和素质给出一个等级评分。

现有25名学生准备参加竞赛,根据上述参考的三个环节选出18名优秀学生分别组成6个队,每个队3名学生去参加比赛。

假设在竞赛中不考虑其他随机因素的影响,所有队员竞赛水平的发挥只取决于表中所给的各项条件,并且参赛队员都能正常发挥自己的水平。

研究以下问题:1、假设学生基本素质中各项能力在综合评价中地位等同,按择优录取原则,在25名学生中选择18名优秀队员参加竞赛。

2、根据你的理解与认识,给环节(3)中各能力素质在数学建模竞赛中的重要性排序。

在考虑重要性排序的情况下,给出问题1中18名队员的组队方案,使获奖最大化。

根据题意,本文需要解决的问题有:1、分析每项能力的重要性,选出实力最强的18名同学参与竞赛。

2、对选出来的18名同学进行编组,三人一组,使每一组在能力最大化的同时没有短板。

附25名学生的各个成绩及评价:二、问题分析本题主要解决两个问题,即选人与分组。

队员选择上,关于队员的选取,要从25名队员中淘汰七人。

根据原表格的数据,队员的评估指标分为了6项。

这6项指标的平均值、波动程度都不同。

因此,每种能力的权重不一致,因此采用表示差距的方差和原始指标的积来表示该队员在这项能力上的加权指标。

即利用加权平均数建立模型计算出每个同学的综合能力。

由此排出25名同学的综合能力表,前18名入选。

对于问题二,由于每一位同学的能力侧重各不相同,因此需要建立新的模型,结合问题一中选出的18位同学和各素质的离散程度,建立差值模型、构造总偏差函数,以此作为选取队员的依据。

三、基本假设(一)在竞赛中不考虑其他因素的影响(二)所有指标均能够正常反映一个队员在该项目上的能力;(三)所有评委评分时保证公平公正;(四)各个组队的综合实力最接近同时最高能使团队获奖最大化;(五)选择队伍的过程中,不能让所有队员均在某一方面占有弱项; (六)综合实力强的队员对综合实力弱的队员进行补充;(七)一个队在某一方面的能力体现为在这方面最强的队员的能力。

四、符号说明数学建模课成绩、数学建模校内赛名次、创新能力、编程能力、专业知识面、写作能力分别编号为)6...3,2,1( i将各名队员编号为j初表格中的始值定义为i X ,该项能力在队员中的标准差为i Y 其中第j 名队员的第i 项能力为ij X 第j 名队员的加权能力为j Z 第j 名队员的第i 加权能力为i j Z 第i 项能力的加权中位值为i M第j 名队员的加权能力与中位能力的差值为ij Wmax(,,...)a b c 表示,,...a b c 各元素中的最大值(,,....)D a b c 表示,,...a b c 各元素的标准差第j 名队员的综合能力为j S五、模型建立与求解5.1建立加权指标模型并排序5.1.1 求解权重系数对表格分析可知,各个队员的6种能力均呈现一定的波动,各种能力的对比中,有的能力在各位队员里差别很大,而有的差别很小。

计算可知,各种能力在队员中的标准差如下:表一——各项能力的权重系数可见,“数学建模课成绩”在各个队员中的差别很小,说明,数学建模课成绩在一个队员的综合能力的重要性中占用很小;而“数学建模校内赛名次”、“写作能力”在队员中的差别很大,说明这些能力在一个队员的综合能力中占用很大。

因此加权的综合能力定义为各个能力与其标准差之积的平均值。

即:使用表格表示为:表二——各项能力的加权值学生j成绩加权比赛加权创新加权编程加权专业加权写作加权总加权分学生1(A)658.57 750.00 921.06 775.94 818.24 687.39 84.53学生2(B)644.70 850.00 824.11 775.94 818.24 779.04 86.02学生3(C)644.70 850.00 824.11 593.37 914.50 687.39 82.75学生4(D)637.77 950.00 921.06 775.94 914.50 779.04 91.27学生5(E)630.84 850.00 921.06 867.23 818.24 779.04 89.21学生623.91 950.00 824.11 867.23 721.98 687.39 85.70 6(F)学生623.91 850.00 921.06 684.65 818.24 687.39 84.06 7(G)学生616.97 750.00 824.11 775.94 818.24 870.69 85.36 8(H)学生610.04 850.00 727.15 775.94 721.98 779.04 81.84 9(I)学生589.24 650.00 824.11 684.65 818.24 595.73 76.30 10(J)学生582.31 850.00 921.06 867.23 625.71 779.04 84.79 11(K)学生575.38 750.00 727.15 775.94 914.50 687.39 81.22 12(L)学生575.38 750.00 824.11 867.23 914.50 779.04 86.35 13(M)学生554.58 950.00 824.11 684.65 625.71 870.69 82.67 14(N)学生554.58 650.00 727.15 775.94 818.24 595.73 75.56 15(O)学生547.65 950.00 921.06 684.65 721.98 870.69 86.09 16(P)学生540.72 750.00 727.15 775.94 625.71 779.04 76.97 17(Q)学生540.72 750.00 824.11 775.94 721.98 687.39 78.83 18(R)学生533.79 750.00 824.11 684.65 721.98 687.39 77.03 19(S)学生533.79 650.00 727.15 775.94 625.71 687.39 73.33 20(T)学生533.79 850.00 824.11 867.23 721.98 687.39 82.21 21(U)学生519.92 650.00 630.20 684.65 721.98 595.73 69.71 22(V)学生519.92 750.00 727.15 684.65 818.24 779.04 78.44 23(W)学生512.99 650.00 630.20 593.37 721.98 595.73 67.91 24(X)学生506.06 750.00 630.20 867.23 818.24 779.04 79.76 25(Y)(4,5,13,16,2,6,8,11,1,7,3,14,21,9,12,25,18,23,19,17,10,15,20,22,24)根据选拔要求,去除七名队员:19,17,10,15,20,22,24。

让剩余的18名选手参加比赛。

5.2.2建立差值模型剩余的18名队员中,根据各个队员的相对优势进行组合,模型采用相对优势作为选取队员特长的依据。

相对优势,即每位队员的各个能力指标中,该指标与中位水平的差值除以该项指标的波动程度(即标准差),即可得到剔除各个指标波动幅度下的队员优势。

可得差值表,以确定各队员的相对优势学生 队号j 学生 队号j 学生 队号jD 1 H 7 U 13E 2 K 8 I 14M 3 A 9 L 15P 4 G 10 Y 16B 5C 11 R 17F 6 N 12 W 18表三——各队员相对优势的差值表现学生j创新差值编程差值专业差值写作差值差值和学生9(A)0.00003175 -0.00000196-10.00023260-0.000659141学生5(B)-0.00045632 0.00003175 -0.00000196 -0.00023260-0.000659141学生11(C)-0.00045632-10.00023260-20.00065914学生1(D)0.00003175 -0.00023260学生2(E)10.00003175 -0.00000196 -0.00023260 学生6(F)-0.00045632 10.00003175-10.00000196-10.00023260-10.0006591410(G)-0.0000019610.00023260 10.00065914学生7(H)-0.00045632 0.00003175 -0.00000196学生14(I)-10.000456320.00003175-10.00000196-0.00023260-20.00065914学生8(K)10.00003175-20.00000196-0.00023260-0.000659141学生15(L)-10.000456320.00003175-10.00023260-10.00065914学生3(M)-0.00045632 10.00003175 -0.00023260 学生12(N)-0.00045632-20.00000196-20.000659144(P)10.00000196 0.000659141学生17(R)-0.00045632 0.00003175-10.00000196-10.00023260-20.00065914学生13(U)-0.00045632 10.00003175-10.00000196-10.00023260-10.00065914学生18(W)-10.00045632-0.00000196 -0.00023260-20.00065914学生16(Y)-20.0004563210.00003175 -0.00000196 -0.00023260-10.00065914综合考虑18名队员时,不能以单一队伍的实力来制定组合方案,应尽量使各个队伍的能力平均。

相关文档
最新文档