6.发酵动力学
6发酵动力学
第 2节
发酵动力学分类
1. 根据细胞生长与产物形成有否偶联进行分类 细胞浓度(x)或产物浓度对时间作图时 , 细胞浓度 或产物浓度对时间作图时, 或产物浓度对时间作图时 两者密切平行, 两者密切平行 , 其最大的比生长速率和 最大的产物合成比速率出现在同一时刻. 最大的产物合成比速率出现在同一时刻 . 一般来说在这种类型的发酵生产中, 控 一般来说在这种类型的发酵生产中 , 制好最佳生长条件就可获得产物合成的 最适条件. 最适条件.
(3) 分段反应型 其营养成分在转化为产物之前 全部转变为中间物, 全部转变为中间物,或营养成分以优先顺序选 择性地转化为产物. 择性地转化为产物.反应过程是由两个简单反 应段组成,这两段反应由酶诱导调节. 应段组成,这两段反应由酶诱导调节. (4) 串联反应型 是指在形成产物之前积累一 定 程度的中间物的反应 (5) 复合型 大多数发酵过程是一个联合反应, 大多数发酵过程是一个联合反应, 它们的联合可能相当复杂. 它们的联合可能相当复杂.
型发酵〗 〖 Ⅲ型发酵〗 产物的形成和菌体的生长非偶联
p x
2. 根据产物形成与基质消耗的关系分类
(1) 类型Ⅰ 类型Ⅰ
产物的形成直接与基质(糖类 的消耗有关 产物的形成直接与基质 糖类)的消耗有关,产 糖类 的消耗有关, 物合成与利用糖类存在化学计量关系, 物合成与利用糖类存在化学计量关系,糖提供 了生长所需的能量. 了生长所需的能量. 糖耗速度与产物合成速度的变化是平行的,如 糖耗速度与产物合成速度的变化是平行的, 利用酵母菌的酒精发酵和酵母菌的好气生长. 利用酵母菌的酒精发酵和酵母菌的好气生长. 在厌氧条件下, 在厌氧条件下,酵母菌生长和产物合成是平行 的过程;在通气条件下培养酵母时, 的过程;在通气条件下培养酵母时,底物消耗 的速度和菌体细胞合成的速度是平行的. 的速度和菌体细胞合成的速度是平行的.这种 形式也叫做有生长联系的培养. 形式也叫做有生长联系的培养.
第6章 发酵动力学
发酵过程反应速度的描述
X S(底物) ─→ X(菌体) + P(产物)
基质的消耗速度:
ds r dt
X
(g.L-1.s-1)
ds 基质的消耗比速: dt
(h-1.s-1)
单位时间内单位菌体消耗基质或形成产物(菌体)的量称为 比速,是生物反应中用于描述反应速度的常用概念
发酵过程反应速度的描述
的比生长速率µ 保持一定。
连续发酵动力学-发酵装置-细胞回流式
F Se
(1 ) F X
F Xe
F, cX
细胞回流的单级连续发酵示意图
a: 再循环比率(回流比) c: 浓缩因子
连续发酵动力学-发酵装置-塞流式
无菌培养 基流入
发酵罐 d 供给连续接 种再循环
培养物 流出
物料衡算(连续培养的反应器特性)
催化剂
改变条件
温度 酸碱度
破坏平衡
浓度
如何确定高产高效 的最佳条件?
采用反应动力学方法 进行定量研究
发酵动力学研究的几个层次(尺度)
分子层次(酶催化与生物转化) 基于关键生化反应(限速步)及其关键酶的动力学特征 及其影响因素 采用一系列分子水平的方法 细胞层次(代谢网络与细胞工厂) 基于细胞信号传导、代谢网络、细胞物质运输的系列关 键生化反应的综合表现 采用一系列细胞水平的方法,包括细胞群体行为分析 反应器层次(过程工程) 基于细胞群体生长及产物合成对外部环境综合响应 采用一系列优化反应器发酵条件的方法
二、微生物的生长动力学、Monod方程
微生物的生长速度:
μ=f(s,p,T,pH,……,)
在一定条件下(基质限制):
6第六章 发酵动力学
2.随着时间的延长,培养液中微生物细胞的 量c’(X)增加,但细胞的浓度却保持不变,即
dc(X) dt
= 0
3.因而µ≌D
这种微生物细胞的培养状态称为 ——“准恒定状态”
在“ቤተ መጻሕፍቲ ባይዱ恒定状态”下
c(S) ≈ DKs µm - D (4)
c’(X) = c0’(X) + F · Yx/s · c ’0 (S) · t 补料液浓度
动力学方程
c0(S)——开始时培养基中限制性基质的浓度 g/L F——培养基的流速 L/h V——培养基的体积 L F/V=D——稀释率 c0(X)——刚接种时培养液中的微生物细胞浓度 g/L c(X)——某一瞬间培养液中微生物细胞浓度 g/L c(X) = c0(X) + Yx/s [c0 (S) -c (S)]
v =
µ
YG
v =
+ m +
Qp Yp
+
(6)
µ Yx/s
(5)
少量的其他代谢产物和其他忽略 1 Yx/s 1 m + µ (7)
=
YG
YG和m很难直接测定,只要得出细胞在不同 比生长速率下的Yx/s,可根据(7)式用作图法 求出YG和m值。 YG和m值用于衡量发酵时限制性营养基质的 起始最低浓度。
µ µm
b µm/2
c
µ =
a
µm c(S)
Ks + c(S)
c(S)
Ks
Ks的物理意义
Ks的大小表示了微生物对营养物质的吸收亲 和力大小 Ks越大,表示微生物对营养物质的吸收亲 和力越小; Ks越小,表示微生物对营养物质的吸收亲 和力越大
发酵动力学
40
0.31 129
64
0.43 148.8
102
0.53 192.5
S
μ
S/ μ
(mg/L ) (h-1)
122
0.60 203.3
153
0.66 231.8
170
0.69 246.4
221
0.70 311.3
210
0.73 287.7
44
S/ μ
做S/ μ-S
图
350
300
250
200
150
100
X X 0
m0tdt
X X e ln Xt mt
X0
t
mt
0
05年3月
发酵工艺原理
35
比生长速率的图解计算
ln Xt mt
X0
ln Xt mt ln X 0
几种不同微生物的μ max值
微生物
细菌 酵母 霉菌
培养温度(℃) μmax(h-1)
37
0.6~1.0
控制发酵过程,甚至用计算机来进行控制。
3
■发酵动力学研究内容
发酵动力学是以化学热力学(研究反应方 向)和化学动力学(研究反应速度)为基 础,对发酵过程的物质变化进行描述
4
具体内容
1. 微生物生长,死亡动力学; 2. 基质消耗动力学; 3. 氧消耗动力学; 4. CO2生成动力学; 5. 产物合成和降解动力学; 6. 代谢热生成动力学。
m m S
以1/S为横坐标,1/μ为 纵坐标,得一条直线, 由直线与x轴和y轴相交, 分别求得:
Ks=0.02(kg/m3)
μ m=0.18(h-1)
计算举例
第六章发酵动力学
发酵装置-细胞回流式
F Se
(1 ) F X
F Xe
F , cX
细胞回流的单级连续发酵示意图
a: 再循环比率(回流比) c: 浓缩因子
2.2连续发酵动力学-理论
2.2.1单级恒化器连续发酵
定义: ① 稀释率 将单位时间内连续流入发酵罐中的新鲜培养基体积与 发酵罐内的培养液总体积的比值 D=F/V (h-1) F—流量(m3/h) V—培养液体积(m3) ② 理论停留时间
μ
残留的限制性底物浓度对微生物
比生长率的影响
Ks—底物亲和常数,速度 等于处于1/2μm时的底物浓 度,表征微生物对底物的亲 和力,两者成反比。
酶促反应动力学-米氏方程:
Vm [ s ] v K m [ s]
受单一底物酶促反应限制的微生物 生长动力学方程-Monod方程:
m s
Ks s
克P和每个有效电子所生成的细胞克数; ③ Yx/ATP:消耗每克分子的三磷酸腺苷生成的细胞克数。
基质消耗动力学 产物得率系数:
Yp/s , YP / O2 , YATP / s , YCO2 / s
:
消耗每克营养物(s)或每克分 子 氧 (O2) 生 成 的 产 物 (P) 、 ATP 或
CO2的克数。
细胞生长动力学
Decline(开始出现一种底物不足的限制):
若不存在抑制物时
Monod 模型:
m s
Ks s
m s
Ks s
t
ln x ln x0
t
x x0e
细胞生长动力学
式中: S—限制性基质浓度,mol/m3 Ks—底物亲和常数(也称半饱和速度常数),表示微生 物对底物的亲和力 , mol/m3 ; Ks越大,亲和力越 小, µ 越小。
6.发酵动力学课件
同步培养: 使许多细胞在相同菌令下同步生长的培养方法, 指所有细胞同时开始 分裂, 齐步成长, 并同时结束。同步培养法所得到的培养物为同步培养物。 均衡生长: 随着细胞质量的增加, 菌体组分(蛋白质, RNA, DNA,胞内H2O等….)也 以相同比例增加。 非均衡生长:储存物质的积蓄 (糖原, 油脂等) 使细胞质量增加, 非实质性生长。 生长速率: rX (g /L・h)单位体积培养液中单位时间内生成的干菌体量, 与菌体浓 度X成正比。 rX =μ・ X 或 μ = rX /X 在废水处理中 rX表示污泥生成速率, X表示混合液悬浮物 (MLSS)浓度; 比生长速率 (h - 1) :μ 为比生长速率 (h - 1) --------- (g/g・h) 表示相对单位质量干菌体在单位时间内增加的干菌体质量。 在分批培养的对数期μ一般为常数。生物种的遗传基因是决定比生长速率大小 的决定因素。细胞包含的遗传信息越复杂,细胞越大,即越是高等生物,μ越小,生 长也就越慢。
对这种运动规律的影响。发酵动力学主要包括: 化学热力学 ----- 研究反应的方向; 化学动力学 ----- 研究反应的速度; 酶反应动力学 ----- 发酵是活细胞产生的酶催化的化学反应; 有几个层次; 1) 细胞生长和死亡动力学; 2) 基质消耗动力学; 3) 氧消耗动力学; 4) 二氧化碳生成动力学; 5) 产物合成和降解动力学; 6) 代谢热生成动力学。
葡萄糖作为能源时某些微生物的维持系数---教科书 P105
3. N源的消耗速率以及C/N
氮源的消耗仅次于碳源,可定义氮源的比消耗速率Q N为: QN = rN/X 培养基中碳源与氮源的含量之比,称为碳氮比,记作C/N。C/N对微生物代 谢过程有很大影响,C/N可定量表示为碳源和氮源的消耗速率之比,即: C/N = rc/rN = Qc /QN Qc和 QN分别表示碳原子和氮原子的比消耗速率。C/N高, 有时表示与氮 源相比, 菌体摄取过量的碳源作为储存性物质积累在细胞内。相反, 若使用如 蛋白胨类蛋白质碳源, 则C/N比过低, 这时有可能反应中产生副产物NH4使培 养液的pH上升。可见, C/N比是决定微生物反应状况的一个重要参数。
(发酵工程课件)6第六章发酵动力学
dt Yx/s
Yp/s
显而易见,碳源(一般是培养基组分中成 本最高的)被用于细胞的合成和生命活动 的维持以及产物的合成中。重排上式得
X 1ddStqs
Yx/s
mqp Yp/s
q s —基质利用的比速率
第二节 微生物生长和分批发酵动力学
微生物生长曲线
延迟期:
dx 0 dt
指数生长期: max
max
S Ks S
Monod研究了基质浓度与生长速度的关系 ———Monod方程(1949)
V V
1.2
μV1m
0.8 0.6
0μV.m4/2
0.2 0
0KKms 200
400 S 600
800 1000
1.2 V1m
0.8 0.6 0V.m4/2 0.2
0 0K m 200
400 S 600
(发酵工程课件)6第六章发酵动力学
本章学习要点
1、掌握分批培养、补料分批培养、连续培养的基本概念、特 点和应用。理解分批培养微生物生长和产物形成动力学;掌握 补料分批培养技术的应用。 2、了解其微生物生长和产物形成动力学;比生长速率、产物 比生产速率、得率系数基本概念;理解分批培养微生物生长过 程与特点以及细胞、产物得率得计算。 3、了解连续培养、补料分批培养微生物生长动力学。
产物得率(生产率):消耗单位数量的基 质所得到的产物量,即基质的产物得率。 Yp/s = 产物增加的量/消耗基质的量 =p-p0/s0-s
分批培养发酵生产率
生产率:单位时间内菌体细胞浓度或代谢 产物浓度的生成量。 P = 菌体增加的量/发酵时间 =x-x0/t-t0 P = 产物增加的量/发酵时间 =p-p0/t-t0
2、反应器动力学 (又称宏观动力学)
发酵动力学名词解释
发酵动力学名词解释
发酵动力学是研究微生物在发酵过程中的生长、代谢和动力学行为的学科。
以下是一些常见的发酵动力学名词解释:
1. 比生长速率 (μ):每小时单位质量的菌体所增加的菌体量,是表征微生物生长速率的一个参数,也是发酵动力学中的一个重要参数。
2. 基质消耗动力学:指消耗单位营养物所生产的产物或细胞数量,可以通过确定菌体和基质之间的动力学关系来研究。
3. 最大比生长速率 (μmax):微生物在最优生长条件下的最大比生长速率。
4. 饱和常数 (Ks):表示微生物细胞浓度达到最大值时的营养物浓度。
5. 动力学参数 (kinetic parameters):用于描述微生物生长和代谢过程的一些参数,如比生长速率、饱和常数等。
6. 发酵热 (fermentative heat):在发酵过程中产生的热能,可以用于加热发酵液或产生蒸汽。
7. 非竞争性抑制剂 (non-competitive inhibitor):一种能够
与酶结合并抑制其活性的抑制剂,但其结合常数小于竞争性抑制剂。
8. 群体动力学 (population dynamics):研究微生物种群数量
的动态变化,包括菌落形成和灭绝、种群增长和衰退等。
这些名词解释可以帮助读者更好地理解发酵动力学的基本概念
和应用。
发酵动力学
减速期: d 0
dt
静止期: dx 0
dt
; X Xmax
衰亡期: dx 0
dt
二、微生物的生长动力学、Monod方程
微生物的生长速度:
μ=f(s,p,T,pH,……,)
在一定条件下(基质限制):
μ=f(S)
Monod研究了基质浓度与生长速度的关系 ———Monod方程(1949)
1.2 V1m
td=ln2/ μmax=0.64 h
基质消耗动力学的基本概念
S1 菌体
维持消耗(m) :
S
S2 产物
指维持细胞最低活性所 需消耗的能量,一般来
讲,单位重量的细胞在
S3 维持
单位时间内用于维持消 耗所需的基质的量是一
个常数。
X S(底物) ─→ X(菌体) + P(产物)+维持
X S(底物) ─→ X(菌体) + P(产物)+维持
p x
〖二类发酵〗 产物的形成和菌体的生长部分偶联
p x
〖三类发酵〗 产物的形成和菌体的生长非偶联偶联
〖Pirt方程〗
π=a + bμ
a=0、b≠0: 可表示一类发酵 a≠0、b=0: 可表示二类发酵 a≠0、b≠0:可表示三类发酵
产物的生成动力学
发酵类型Ⅰ: 发酵类型Ⅱ 发酵类型Ⅲ=
dP
dX
YP / X
dt
dt
dP dX X
dt dt
dP X
dt
Ⅱ
Ⅰ
Ⅲ
分批发酵的优缺点
➢ 优点:
操作简单、周期短、染菌机会减少、生产过程及产品 容易控制。
➢ 缺点:
不利于测定生长动力学。
第二节 连续发酵动力学
6 微生物工程 第六章 发酵动力学2
1 KS 1 1
max S max
1
1 KS
KS
斜率 max
1
max
1 S
Monod方程式双倒数图
求μm和 Ks。
解:将Monod方程变形:
1 1 Ks 1
m m S
以1/S为横坐标,1/μ为 纵坐标,得一条直线, 由直线与x轴和y轴相交, 分别求得:
分批发酵动力学-产物形成动力学
生长部分相关→生长部分偶联型:
柠檬酸、氨基酸发酵
dP dt
dX dt
X
qP
α: 与菌体生长相关的产物生成系数
β: 与菌体浓度相关的产物生成系数
产物间接由能量代谢生成,不是底物的 直接氧化产物,而是菌体内生物氧化过 程的主流产物(与初生代谢紧密关联)。
相关型
部分相关型
非相关型
产物合成相关、部分相关、非相关模型动力学示意图
分批培养中的产物形成:
Ⅰ型:生长偶联产物生成 ——菌体生长、碳源利 用和产物形成几乎在相同时间出现高峰。产物形 成直接与碳源利用有关。
Ⅱ型:生长与产物生成部分偶联——在生长开始后 并无产物生成,在生长继续进行到某一阶段才有 产物生成。产物形成间接与碳源利用有关。
分批发酵动力学-产物形成动力学
与生长不相关→无关联:抗生素发酵
dP X
dt
qp
若考虑到产物可能存在分解时,则
dP dt
X
kd P
qp X
kd P
产物生成与能量代谢不直接相关,通过细 胞进行的独特的生物合成反应而生成。
发酵动力学
第八章发酵动力学发酵动力学是研究各种环境因素与微生物代谢活动之间的相互作用随时间变化的规律的科学。
fermentation kinetics生化反应工程的基础内容之一,以研究发酵过程的反应速率和环境因素对速率的影响为主要内容。
通过发酵动力学的研究,可进一步了解微生物的生理特征,菌体生长和产物形成的合适条件,以及各种发酵参数之间的关系,为发酵过程的工艺控制、发酵罐的设计放大和用计算机对发酵过程的控发酵动力学制创造条件。
研究发酵过程中菌的生长速率、培养基的消耗速率和产品形成速率的相互作用和随时间变化的规律。
发酵动力学包括化学热力学(研究反应的方向)和化学动力学(研究反应的速度)并涉及酶反应动力学和细胞生长动力学。
它为发酵过程的控制、小罐试验数据的放大以及从分批发酵过渡到半连续发酵和连续发酵提供了理论基础。
发酵动力学也是计算机模拟发酵过程研究及发酵过程计算机在线控制的基础。
在发酵中同时存在着菌体生长和产物形成两个过程,它们都需要消耗培养基中的基质,发酵动力学因此有各自的动力学表达式,但它们之间是有相互联系的,都是以菌体生长动力学为基础的。
所谓菌体生长动力学是以研究菌体浓度、限制性基质(培养基中含量最少的基质,其他组分都是过量的)浓度、抑制剂浓度、温度和pH等对菌体生长速率的影响为内容的。
在分批发酵中,菌体浓度X,产物浓度P和限制性基质浓度S均随时间t变化菌体生长可分迟滞、对数、减速、静止、衰退等五个时期。
其中菌体的主要生长期是对数期,它的特点是:随着基质浓度继续下降,菌体的衰老死亡逐步与生长平衡以至超过生长,也即进入静止和衰退期。
发酵动力学J.莫诺于1949年提出了一个μ与S间的经验关联式,此式被称莫诺方程式:μm为最大比生长速率, 即不因基质浓度变化而改变的最大μ值;Ks为饱和常数,即在数量上相当于μ=0.5μm时的S值。
Ks值愈小,说明在低基质浓度范围中,S对μ愈为敏感,而保持μm的临界S值愈低。
发酵动力学
• 把它们随时间变化的过程绘制成图,就
成为所说的代谢曲线。
• 比生长速率μ
每小时(单位时间)单位质量的菌体所
增加的菌体量称为菌体比生长速率。
它是表征微生物生长速率的一个参数 ,也是发酵动力学中的一个重要参数。
发酵过程
• 微生物生长
• 底物消耗
• 代谢产物合成
• Gaden's fermentation classification(按照菌体生长,
产物直接来源于产能的初级
第 一 类 型 ( 生 长 关 联 型 )
代谢(自身繁殖所必需的代 谢),菌体生长与产物形成
■
不分开。
例如单细胞蛋白和葡萄糖酸
的发酵
dP dt
x 或
P
Q
dP Xdt
:生长关联型产物的形 成比例(g产物 / g菌体)
Q :产物合成的比速率
P
■
第 二 类 型 ( 部 分 生 长 关 联 型 )
产物合成动力学
• Gaden根据产物生成速率和细胞生长速率之间的 关系,将产物形成区分为三种类型 • 类型Ⅰ∶也称为偶联模型(醇类、葡萄糖酸、乳 酸)
rP YP / X rX YP / X X
• 类型Ⅱ∶也称部分偶联模型(柠檬酸、氨基酸)
rP rX X
• 类型Ⅲ∶也称为非偶联模型(抗生素、酶、维生
补料分批发酵(Fed-batch fermentation) 连续发酵(Continuous fermentation)
分批发酵
分批发酵:指在一封闭系统内含有初
始限量基质的发酵方式。在这一过程
中,除了氧气、消泡剂及控制pH的酸 或碱外,不再加入任何其它物质。发 酵过程中培养基成分减少,微生物得 到繁殖。
发酵工程_6发酵动力学
首先研究微生物生长和产物合成限制因子;
建立细胞生长、基质消耗、产物生成模型;
确定模型参数;
实验验证模型的可行性与适用范围;
根据模型实施最优控制。
本章主要内容
分批发酵动力学 连续发酵动力学 补料分批发酵动力学
什么是分批发酵?
分批发酵:准封闭培养,指一次性投料、接种 直到发酵结束,属典型的非稳态过程。 分批发酵过程中,微生物生长通常要经历延滞 期、对数生长期、衰减期、稳定期(静止期) 和衰亡期五个时期。
菌体浓度X t1
dx 0, 0, x xmax dt
(浓度最大)
t5
t2
t3 时间 t
t4
图6-1 分批发酵时典型的微生物生长动力学曲线
此阶段次级代谢活跃,次级代谢物大量合成。
dying:
a
(比死亡速率 ,s-1)
假定整个生长阶段无抑制物作用存在,则微生物生长动 力学可用阶段函数表示如下:
反应器层次(过程工程)
基于细胞群体生长及产物合成对外部环境综合响应
采用一系列优化反应器发酵条件的方法
针对微生物发酵的表观动力学,通过研究微生物群 体的生长、代谢,定量反映细胞群体酶促反应体 系的宏观变化速率,主要包括:
细胞生长动力学 底物消耗动力学 产物合成动力学
发酵动力学研究的基本过程
Y*X/S表示底物的细胞绝对得率,也称理论细胞得率; m为细胞维持系数
扣除细胞量的影响,
qS
将qS用µ表示,可得
1 Y
* X /S
m
YX / S
1 Y
* X /S
m
1 YX / S
发酵动力学的概念和研究内容
发酵动力学的概念和研究内容
发酵动力学是研究发酵过程中微生物生长和代谢的速率和规律
的科学,是微生物发酵工程的重要组成部分。
发酵动力学的研究内容包括发酵过程中的微生物生长动力学、底物代谢动力学和产物生成动力学。
微生物生长动力学是研究微生物在发酵过程中生长的速率和规律。
在发酵过程中,微生物对培养基中的营养物质进行吸收和利用,生长并繁殖。
微生物的生长速率受到多种因素的影响,如温度、pH值、氧
气浓度、营养物质浓度等。
通过实验和数学模型,可以了解微生物的生长速率与这些因素之间的关系,为优化发酵过程提供理论依据。
底物代谢动力学是研究微生物在发酵过程中对底物的利用速率和规律。
微生物通过代谢途径将底物转化为产物,同时产生能量和细胞所需的物质。
底物的利用速率受到微生物的生长速率和代谢途径的调控。
通过研究底物代谢动力学,可以了解微生物对底物的利用效率,为优化底物供应策略和产物生成提供指导。
产物生成动力学是研究发酵过程中产物的生成速率和规律。
在发酵过程中,微生物通过代谢途径将底物转化为产物。
产物的生成速率受到微生物的生长速率和底物的利用速率的影响,同时也受到产物对微生物生长的抑制效应。
通过研究产物生成动力学,可以了解产物的积累
速率和抑制效应,为优化发酵过程和产物纯化提供理论指导。
综上所述,发酵动力学的研究内容涵盖微生物生长动力学、底物代谢动力学和产物生成动力学三个方面,通过研究这些内容,可以深入了解发酵过程中微生物的生长和代谢规律,为优化发酵工艺和提高产物产量提供理论支持。
发酵动力学
dP dt
YP / X
dX dt
YP / X X
或
QP YP / X
根据细胞生长与产物形成的关系
非相关型
细胞生长时无产物;细胞停止生长后,则有大量
产物积累。产物的形成速率只与细胞积累量有关, 产物的合成发生在细胞停止生长之后,习惯上把这 类与细胞生长无关联的产物称为次级代谢产物。如 大多数抗生素和微生物毒素的发酵。
Contois方程式 前面的方程中都没有出现X,即菌体浓度。 当菌浓很高,发酵液黏度很大时,采用如下 方程 :
u um s KX X s
其中KX是考虑了菌浓的饱和常数
多种底物现象
同时使用型 优先使用型
其它
K1s K2s
K1s s K2s s
K1
maxs1 s2
s1K2
s2
dX X
dt
营养物质限制生长微生物的典型生长形式 符合Monod方程
u um s Ks s
Monod方程
u um s Ks s
μ 为比生长速率(s-1); μmax为最大比生长速率(s-1), s为限制性底物浓度(g/L)。 Ks为饱和常数(g/L),其值等于比生长速率恰为最大比生长
max
s1 Ka1
s1Biblioteka s2 Ka2 s2
分批发酵-底物消耗动力学
实际产物得率与菌体生长得率的关系
-ΔS = (-ΔS)M + (-ΔS)G + (-ΔS)P
生长得率
YX / S
X S
理论生长得率
Ygs
X (S )G
同样,对于产物得率
实际产物得率
P YP / S S
理论产物得率 (产物最大得率)
《发酵工程》第6章 发酵动力学
在厌气条件下,厌氧微生物进行的是基质水平磷酸化。 以同型乳酸发酵为例:
所以,厌气发酵时,基质水平磷酸化所产生的ATP要比 当发酵过程充分供氧时氧化磷酸化产生的ATP少的多.
3.微生物生长代谢过程中的氧平衡
有机物完全氧化最终会被分解成二氧化碳和水。根据单一碳 源培养基内微生物生长代谢的基质和产物完全氧化的需氧量, 可建立下列平衡式:
QGO:即QO2微生物生长(无非细胞产物生成)时的比耗氧率(g 或molO2·-1菌体·-l): g h 氧的消耗比速(见P134式8-10)
对于特定的菌株和特定的基质,纯生长得率是一常数,故又称 为生长得率常数。为区别于纯生长得率,可以把生长得率称为毛生 长得率。和各种培养条件下的毛生长得率相比,纯生长得率为生长 得率中的最大值,故也称为最大生长得率。这是一种理论生长得率, 是生长得率的极限值。
维持因数的大小代表细胞能量代谢效率的高低:维持因 数越大,表示能量效率越低;维持因数越小,则能量效率越 高。
对于特定的微生物菌株,在一定的培养条件和营养基质下, 维持因数是一个常数,它不因基质浓度、细胞浓度、细胞生长 速率和产物合成速率的不同而变化,
维持因数多种表示法:
基质维持因数mS:以基质消耗为基准 氧维持因数mO:以耗氧为基准 能量维持因数mkcal:以分解代谢热表示 ATP维持因数mATP:以ATP消耗表示。
S= (S)G+ (S)m+ (S)P+…
设:
YG:表示用于菌体生长的碳源对菌体的得率常数, m:表示微生物的碳源维持常数, Ym:表示碳源对代谢产物的得率常数。
则:
在以生产细胞物质为目的的发酵过程中(如面包酵母生产和 SCP),代谢产物的积累可以忽略不计,上式可简化为:
发酵动力学
• 如柠檬酸、谷氨酸、赖氨酸、依康酸、丙酮、丁醇发酵
(3)生产与产物合成非偶联类型:Ⅲ型
特点
• 多数次生代谢产物的发酵属这种类型,如各种抗生素和
微生物毒素等物质的生产速率很难与生长相联系。产物
• 产物的形成与生长是平行的。
• 产物合成速度与微生物生长速度呈线性关系,而且生长与
营养物的消耗成准定量关系。
• 这种类型的产物主要是葡萄糖代谢的初级中间产物, • 如酒精、葡萄糖酸、乳酸发酵就属于此类型。
(2)生长产物合成半偶联类型:亦称Ⅱ型
特点
• 它是介于生长产物合成偶联型与生长产物合成非偶联之间
dying:
a
x xme
(比死亡速率 ,s-1)
ln x ln xm at
at
分批发酵动力学-细胞生长动力学
假定整个生长阶段无抑制物作用存在,则微生物生长 动力学可用阶段函数表示如下:
0 µm µ=
m s
K0 s s
x0 (0<t<t1) x0e µm t (t1<t<t2) x= x0e µ (t -t ) e µt
(3) 类型Ⅲ • 产物的形成显然与基质 (糖类)的消耗无关,例如青霉
素、链霉素等抗生素发酵。
• 即产物是微生物的次级代谢产物,其特征是产物合成
与利用碳源无定量关系。产物合成在菌体生长停止及
底物被消耗完以后才开始。此种培养类型也叫做无生 长联系的培养。
3.
根据反应形式分类
(1) 简单反应型
• 营养成分以固定的化学量转化为产物,没有中间物积聚。
发酵工程第6章 发酵动力学
则表明通风不足,有部分电子没有传递给
氧,氧化不彻底。
第三节 细胞反应本征动力学
➢反应动力学:研究反应速度变化规律
(反应速度影响因素)的学科。包括:
➢本征动力学(反映生物催化剂内在性
能):又称微观动力学,指没有传递等
工程因素影响时,生化固有的速率。
➢宏观动力学(反映反应器特性):又称
反应器动力学,指在一定反应器内所测
葡萄糖
微生物细胞
(1)试确定计量系数a、b、c、d、e;
(2)试计算其细胞对底物的得率YX / S ;
(3)试计算呼吸商RQ。
解:(1)细胞反应的方程式系数的计算
1mol葡萄糖所含有的C元素为72g,根据题
意1mol葡萄糖转化为微生物细胞的C元素为:
g
72 2 / 3 48
则有:
48
c
(2)细胞反应的比速率:单位时间内单位
菌体消耗基质或形成产物(菌体)的量称为比速
率,是生物反应中用于描述反应速度的常用概念
(不同反应间的对比,消除细胞量的效应)在细
胞反应中主要的反应的比速率有:
① 细胞的比生长速率
1 dC X
CX
dt
(1/h)
② 底物的比消耗速率
1 dC S
qS
0.909
4.4 12
转化为CO2的C元素为:
72 48 24 g
则:
24 12e
e2
,
对N元素平衡,有:
a 0.86c 0.782
对H元素平衡,有:
,
12 3a 7.3c 2d
12 3a 7.3c
d
2
12 3 0.782 7.3 0.909
发酵动力学
在连续培养系统中,微生物细胞的浓度、比生 长速率和环境条件(如营养物质浓度和产物浓 度),均处于不随时间而变化的稳定状态之下
在连续培养技术中被称为稀释速率,用符号“D”表示
(等于培养液在罐中平均停留时间的倒数)
在稳定状态下,细胞的比生长速率等于稀释速率。
连续培养过程中的主要问题
杂菌污染问题 生产菌株突变问题
程中,需要长时间连续不断地向 发酵系统供给无菌的新鲜空气和培养基,这就 不可避免地发生杂菌污染问题。 杂菌污染问题是连续培养中难以解决的问题。
要了解污染的杂菌在什么样的条件下会在系统 中发展成为主要的微生物群体。
2. 生产菌株突变问题
微生物在复制过程中难免会出现差错引起突变, 一旦在连续培养系统中的生产菌细胞群体中某 一个细胞发生了突变,而且突变的结果使这一 细胞获得在给定条件下高速生长的能力,那么 它就有可能像杂菌Z一样,取代系统中原来的 生产菌株,而使连续发酵过程失败。
3、产物的形成
K
产物形成的速率 = 产物合成速率-产物移去速率-产物被 破坏速率
二、代谢产物形成的动力学模型
Gaden根据产物生成速率与细胞生长速率之间 的关系,将其分为三种类型:
类型Ⅰ称为相关模型,或称伴随生长的产物形 成模型; 类型Ⅱ称为部分相关模型,或称不完全伴随生 长的产物形成模型; 类型Ⅲ称为非相关模型或称不伴随生长的产物 形成模型。
类型Ⅰ是指产物的生成与细胞的生长相关的过程, 此时产物通常是基质的分解代谢产物,代谢产物的 生成与细胞的生长是同步的。
动力学方程为:
或
类型Ⅱ反应产物的生成与细胞生长仅有间接关系。 在细胞生长期内,基本无产物生成。 动力学方程为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 用中间代谢反应来形成的,即产物的形成和
分 初级代谢是分开的。
批 发
如抗生素发酵。
酵
动
力
学
发酵动力学
产物生成速率为
dp X或:dp X
一 dt
dt
分 β 非生长关联的生长比速
批
发 酵
dp 1 dp X kP
动 dt x dt
力 学
dp dt
qp
X
kP
P 产物失活常数
发酵动力学
一 分 批 发 酵 动 力 学
3. 产物合成动力学;
发酵动力学
发酵动力学涉及的常规参数
符号
参数
测量方法
X
生物量
细胞干重,浊度,细胞数
一
S
底物
酶法分析,化学法,色谱法
分 批
P
产物
酶法分析、HPLC 或特殊方法
发 酵
O
氧
PO-专用电极分析
动
C 二氧化碳
力 学
Hv
发酵热
PCO2-专用电极分析 温度、热平衡
发酵动力学
细胞生长的比速率 :
学
当 S →∞时,μ→μm,说明 μm只是理论上
的最大生长潜力,实际上是不可能达到的。
发酵动力学
基质消耗动力学
基质包括细胞生长与代谢所需的各种营养成
一 分,其消耗分为三个方面:
分 批
细胞生长,合成新细胞;
发 酵
细胞维持生命所消耗能量的需求;
动
力 合成代谢产物。
学
发酵动力学
得率系数(Yi/j)
Yi/j是化学计量学中一种非常重要的参数,常
恒化器 具有恒定化学环境的反应器;恒化指 明了操作的稳定状态特征。恒化器的基本操 二 作模式如下图。
连 续 发 酵 动 力 学
发酵动力学
对于菌体:
积累的细胞=(进入-流出)的细胞 +(生 二 长-死亡)的细胞
连 续 发 酵 动 力 学
发酵动力学
因①流入反应器的菌体浓度 x0 为零;②μ> >ε;③培养液体积不变;
增时间,用 td 表示。则:
一
分
批
发
酵
动
力 学
该式即是微生物在对数生长期的增殖模式
发酵动力学
μ因菌体所处的环境条件而改变;环境的恶 化,菌体增殖进入减数期。
一 1949年,莫诺发现细菌的比生长速率与单一
分 限制性基质之间存在一定关系;借助郎格谬
批 发 酵
尔方程,莫诺建立了被称为莫诺方程的经验 公式:
发
酵
动
力
学
发酵动力学
三 分批补料发酵
补料分批发酵是指在发酵过程中,连续或间
三 歇补加一种或几种培养基成分,但发酵过程
分 批
中不取出发酵液的发酵方法。又称半连续培
补 养,是介于分批培养过程与连续培养过程之
料 发
间的一种过渡培养方式。
酵
发酵动力学
与分批培养方式比较
1.可以解除培养过程中的底物抑制、产物的反
s
力
学 式中:m为碳源维持常数
m 1 dS X dt M
发酵动力学
于是
一
1 rs Yx
m
1
Y
p
qp
s
s
分
批
发 酵
qs :基质消耗比速
1 ds qs X dt
动
力
学
发酵动力学
在以微生物细胞为目的的培养过程中,
代谢产物的积累可以忽略不计,这样上 式就可简化为:
一 分 批 发
1
qs
Y
氧等都保持恒定,并从系统外部予以调控。
二 这样就大大提高了设备利用率。
连 续
与分批发酵相比较,连续发酵具有单位产
发 酵 动
量的反应器容积小,人工费用低,产品质 量稳定及发应速率容易控制的优点。
力
学 连续培养方法 从设备分类、从控制方法
分类、从菌种循环角度分类、从培养级数
分类。
发酵动力学
单级连续培养
但这些变量中D是最基本的变量,这不仅因
为D可以通过加料量 F 而任意调节,更重要
二 的D一旦变化,就会引起 x、S、μ等一系列
连 续
变化,直至达到新的稳定状态。
发
酵 动
当流速低,即 D 较小时,营养物质全部被
力 学
细胞利用,S →0,细胞浓度 x = S0·Yx/s ;
发酵动力学
如果D增加,开始x呈线性慢慢下降,然后,
二
连 续
可见,单级恒化器连续培养菌体的稳态操作
发 酵
必须有D<Dc;
动 力
如果D>Dcrit ,反应器中的菌体终将被冲出;
学 如果 D 只稍微低于 Dc ,那么整个系统对外
界环境的变化是非常敏感的,随D的微小变
化,x 将发生巨大的变化。
发酵动力学
连续培养中存在的问题
污染杂菌
二
连 续
菌种的遗传稳定性
X0 X
t0
发酵动力学
X1 1 dx t1 dx (4)
X0 X
t0
一
X X ln
ln
1
0 (t1 t0 )
(5)
分 批 发 酵
ln
X1 X0
(t1 t0 )
(6)
动
力 学
X1 X0e t1t0
(7)
发酵动力学
当 X =2X0 时,即细胞通过分裂繁殖一代, 数量增加一倍所用的时间叫世代时间或倍
二 连 续 发 酵 动 力 学
发酵动力学
在恒定条件下:
二 连 续 发 酵 动 力 学
发酵动力学
上面的几个平衡式即是单级恒化器在达到平 衡时的基本特征,式中均涉及到稀释率。
稀释率与细胞浓度、营养物质浓度之间存在 二 相互关系的关系。
连 续 发 酵 动 力 学
发酵动力学
连续培养中,变量很多,如 x、S、D及μ等,
分批发酵的特点
其优点是: ① 对温度的要求低,工艺操作
一 分 批
简单; ② 比较容易解决杂菌污染和菌种退 化等问题; ③ 对营养物的利用效率较高,
发 酵
产物浓度也比连续发酵要高。
动 力
缺点是: ① 人力、物力、动力消耗较大;
学 ② 生产周期较长; ③ 非发酵时间长,生产
效率低;
发酵动力学
二 连续培养动力学
分 批
复杂的过程,目前大多数研究只限于以宏
发 酵 动
观过程变量描述的模型,应用上有一定的 局限性。
力
学
发酵动力学
根据培养中过程中菌体的生长,发酵参数
(培养基,培养条件等)和产物形成速率三
一 者间的关系将发酵过程划分为不同的类型。
分
批 发
分批发酵类型分为:
酵 第一类型 第二类型 第三类型
动
力
学
发酵动力学
发酵动力学
分批发酵的分类对发酵实践具有指导意义
如果生产的产品是生长关联型(如菌体与初
一 级代谢产物),宜采用有利于细胞生长的培
分 批
养条件,延长与产物合成有关的对数生长期;
发 酵
如果产品是非生长关联型(如抗生素),则
动 宜缩短对数生长期,并迅速获得足够量的菌
力 学
体细胞后延长平衡期,以提高产量。
发酵动力学
第一类型(生长关联型)
产物直接来源于初级代谢,菌体生长与产物
一 形成不分开。
分 批
例如单细胞蛋白和葡萄糖酸的发酵
发
酵 动
产物生成速率为
力
学
dp dt
YP
X
dX dt
发酵动力学
一 分 批 发 酵 动 力 学
发酵动力学
第二类型(部分生长关联型)
产物也来源于能量代谢所消耗的基质(与碳
一 源消耗部分关联在一起),但其形成在菌体 分 增殖的后期;
一 殖的主要时期;在讨论微生物生长动力学时,
分 批
以生长曲线的对数期为基础建立其生长模型。
发
酵
动
力
学
发酵动力学
在对数生长期,菌体生长比速μ为常数:
1 dX 1
一
X dt
1 dX dt (2)
X
分
批 发
在t0时,菌体浓度为X0;t1时,为X1,则(2)
酵 式变为:
动
力
学
X1 1 dx t1dx 3
x
m
s
酵 动
就 qs 与μ的关系来看,该式是一条直线
力 学
方程,其截距为碳源维持常数 m,其斜
率为 1/Y*x/s
发酵动力学
qs(mol/g.h)
一
分
批
发酵动Fra bibliotek力 学
m
斜率=1/Y*x/s
μ 对 qs 作图
μ(h-1)
发酵动力学
产物合成动力学
产物的合成(指除细胞以外的产品),特
一 别是次级代谢产物的生物合成是一个非常
1 dx
x dt
一
分 批 发 酵 动
底物消耗的比速率qs∶
1 ds qs x dt
力
学 产物形成的比速率qp:
1 dp qp x dt
发酵动力学
生长曲线 延迟期 对数生长期 静止期 减数期 衰亡期
一 分 批 发 酵 动 力 学
丝状真菌和放线菌
发酵动力学
细胞生长动力学模型
在一个间隙培养的周期中,对数期是菌体增
并以数学语言进行描述。
发酵动力学
研究发酵动力学的目的
通过动力学研究,优化发酵的工艺条件及调
控方式;
一 建立反应过程的动力学模型来模拟最适当的