锁相环原理及应用

合集下载

什么是电子电路中的锁相环及其应用

什么是电子电路中的锁相环及其应用

什么是电子电路中的锁相环及其应用电子电路中的锁相环(Phase-Locked Loop,简称PLL)是一种广泛应用的反馈控制电路,用于将输入信号的相位与频率与参考信号的相位与频率同步,从而实现信号的稳定性和精确性。

锁相环在通信、计算机、音频处理等领域都有重要的应用。

一、锁相环的工作原理锁相环主要由相位比较器(Phase Detector)、环形数字控制振荡器(VCO)和低通滤波器(LPF)组成。

相位比较器用来比较输入信号和参考信号的相位差,输出一个宽度等于相位差的脉冲信号。

VCO根据相位比较器输出的脉冲信号的宽度和方向来调节输出频率,使其与参考信号的频率和相位同步。

LPF用来滤除VCO输出信号中的高频成分,保证输出的稳定性。

二、锁相环的应用1. 通信领域:在数字通信系统中,锁相环被广泛应用于时钟恢复、时钟生成和时钟变换等方面。

通过锁相环可以实现对时钟信号的稳定传输,提高通信系统的可靠性和容错性。

2. 音频处理:在音频设备中,锁相环被用于时钟同步和抖动消除。

通过锁相环可以实现音频数据的同步传输和精确抖动控制,提高音质和信号稳定性。

3. 数字系统:在数字系统中,锁相环可用于时钟恢复、频率合成和位钟提取等方面。

通过锁相环可以实现对时钟信号的稳定提取和精确合成,确保系统的可靠运行。

4. 频率调制与解调:在调制与解调系统中,锁相环被应用于频偏补偿和相位同步。

通过锁相环可以实现对信号频偏和相位偏移的补偿,保证调制与解调的准确性和稳定性。

5. 频谱分析:锁相环还可以应用于频谱分析仪中,通过锁相环可以实现频率分析的准确性、稳定性和精确性。

三、锁相环的特点1. 稳定性:锁相环可以通过调整VCO的输出频率来实现输入信号和参考信号的同步,从而提高信号的稳定性。

2. 精确性:锁相环可以通过精确的相位比较和频率调节,实现对信号相位和频率的精确控制,提高信号处理的准确性。

3. 自适应性:锁相环可以根据输入信号和参考信号的变化自动调节,适应不同输入条件下的信号同步要求。

锁相环的原理及应用论文

锁相环的原理及应用论文

锁相环的原理及应用论文锁相环是一种控制系统中常用的技术手段,它的原理是通过对输入信号进行相位检测和调节,使得输出信号与参考信号之间始终保持特定的相位关系。

锁相环广泛应用于通信、测量、控制等领域,能够有效地提高系统的稳定性和抗干扰能力。

本文将围绕锁相环的原理和应用展开详细论述。

锁相环的原理基于负反馈控制理论,其基本结构包括相位比较器、低通滤波器、电压控制振荡器(VCO)和分频器等组成。

其中,相位比较器用于比较输入信号和参考信号的相位差,得到控制电压;低通滤波器用于平滑控制电压,避免频率偏移;VCO根据控制电压调节输出信号的频率,使其与输入信号保持一定的相位关系;分频器将输出信号进行分频,得到反馈信号输入到相位比较器,构成闭环控制系统。

通过不断调节VCO的频率,使得输入信号和参考信号之间的相位差保持在一个稳定的范围内,从而实现锁相的目的。

锁相环在通信系统中有着重要的应用。

在数字通信中,接收到的信号往往受到噪声和失真的影响,其相位和频率可能会发生偏移。

利用锁相环技术,可以实现信号的恢复和重构,使得接收到的信号能够与发送端的时钟信号同步,从而实现可靠的数据传输。

此外,锁相环还能够用于频率合成器的设计,通过对参考信号施加锁相环控制,可以获得稳定的输出频率信号,满足系统对时钟信号稳定性和频率准确性的要求。

在测量和控制系统中,锁相环也具有重要的应用价值。

例如,在频谱分析仪中,为了获得更加精确的频率测量结果,可以采用锁相环技术来提高频率测量的准确性和稳定性。

在激光干涉仪中,锁相环可以实现对干涉信号的稳定检测和测量,从而提高仪器的测量精度。

在实时控制系统中,锁相环也可以用于对时间基准信号的稳定提取和跟踪,保证系统的稳定性和精度。

总之,锁相环作为一种重要的控制技术,在通信、测量、控制等领域都有着广泛的应用前景。

通过对锁相环原理的深入理解和应用,可以有效地提高系统的稳定性和可靠性,满足不同领域对于信号同步、频率稳定和相位精度的需求。

锁相环原理及应用

锁相环原理及应用


当N1栅极加上控制电压uc后,它 能改变流过P1,亦即流过P2中的电流,起 到uc控制充电电流的作用。分析可得

uc U TN ED U TP I0 R1 R2
(5-30)
式中UTN 和UTP 分别为N沟道和P 沟道场效应管的阈电压。将(5-30)式代入 (5-29)式,得到
uc U TN ED U TP I0 8R1CT 8R2CT
• • • • • • • • • • •

• •

Pin 3, 9 = VSS VDD = 5V 70 5 55 205 mA VDD = 10V 530 20 410 710 mA VDD = 15V 1500 50 1200 1800 mA VOL LOW Level Output Voltage VDD = 5V 0.05 0 0.05 0.05 V VDD = 10V 0.05 0 0.05 0.05 V VDD = 15V 0.05 0 0.05 0.05 V VOH HIGH Level Output Voltage VDD = 5V 4.95 4.95 5 4.95 V VDD = 10V 9.95 9.95 10 9.95 V VDD = 15V 14.95 14.95 15 14.95 V VIL LOW Level Input Voltage VDD = 5V, VO = 0.5V or 4.5V 1.5 2.25 1.5 1.5 V Comparator and Signal In VDD = 10V, VO = 1V or 9V 3.0 4.5 3.0 3.0 V VDD = 15V, VO = 1.5V or 13.5V 4.0 6.25 4.0 4.0 V VIH HIGH Level Input Voltage VDD = 5V, VO = 0.5V or 4.5V 3.5 3.5 2.75 3.5 V Comparator and Signal In VDD = 10V, VO = 1V or 9V 7.0 7.0 5.5 7.0 V

锁相环pll原理与应用

锁相环pll原理与应用
锁相环pll原理与应用
$number {01}
目 录
• 锁相环PLL的基本原理 • 锁相环PLL的种类与特性 • 锁相环PLL的应用 • 锁相环PLL的发展趋势与挑战 • 锁相环PLL的设计与实现
01
锁相环PLL的基本原理
PLL的基本结构
鉴相器(PD)
用于比较输入信号和反馈信号的相位 差。
压控振荡器(VCO)
相位同步
锁相环PLL用于电力系统的相位同步,确保不同电源之间的相位一 致,提高电力系统的稳定性。
频率跟踪
锁相环PLL用于电力系统的频率跟踪,实时监测电网频率变化,确 保电力系统的正常运行。
故障定位
通过分析电网信号的相位和频率变化,结合锁相环PLL实现电力故 障的快速定位和排查。
其他领域的应用
电子测量
PLL的发展趋势
高速化
随着通信技术的发展, 对信号的传输速率要求 越来越高,锁相环PLL 的频率合成速度和跟踪
速度也在不断加快。
数字化
随着数字信号处理技术 的进步,越来越多的锁 相环PLL开始采用数字 控制方式,提高了系统 的稳定性和灵活性。
集成化
为了减小电路体积和降 低成本,锁相环PLL的 集成化程度越来越高, 越来越多的功能被集成
软件PLL具有灵活性高、可重 构性好等优点,但同时也存在 计算量大、实时性差等缺点。
各种PLL的优缺点比较
1 2
3
模拟PLL
优点是响应速度快、跟踪性能好;缺点是元件参数漂移、温 度稳定性差。
数字PLL
优点是精度高、稳定性好、易于集成;缺点是响应速度慢、 跟踪性能较差。
软件PLL
优点是灵活性高、可重构性好;缺点是计算量大、实时性差 。

锁相环原理及应用PLL

锁相环原理及应用PLL

锁相环原理及应用PLL(Phaze Locked Loop)锁相环自1932年问世以来,其应用领域遍及频率相位跟踪控制的各个领域,如通信、雷达、航天、测量、电视、控制等。

随着集成技术的发展,其应用的重要性已成为从事检测、通信、控制工作人员非常重要的应用工具手段,成为电子设备中常用的一种基本部件。

鉴于上述情况,非常有必要学习和掌握这门技术。

它是什么器件有如此大的威力呢?锁相环:是一个闭环的相位控制系统,它跟踪输入信号的相位,并自动锁定。

实现对输入信号频率和相位的自动跟踪。

它跟踪固定频率的输入信号时无频差,跟踪信号的相位时(锁相控制)精度很高;跟踪信号的频率变化的输入信号时(收音机)精度也很高。

它对输入信号恰似一个窄带跟踪滤波器,能够跟踪淹没在噪声之中的微弱信号。

鉴于上述种种独特功能,它在电子设备中越来越广泛地被采用。

它的窄带跟踪滤波和低门限特性,使它成为从噪声中检测调频调相合调幅信号的最佳方法之一。

§1 锁相环工作原理一、组成:锁相环由三个基本部件组成:鉴相器(PD)、低通滤波器(LF)和压控振荡器(VCO)构成。

与相敏检测器的不同之处在于参考信号由输出的信号闭环形成。

1.鉴相器:是一个相位比较环节,它把输入信号与压控振荡器输出信号的相位进行比较,产生对应两信号相位差的误差电压。

是两信号相位差鉴相器特性可以是多种多样的,有正弦形、方波、三角形、锯齿形特性。

它的电路有各种形式,主要有两类:1)相乘器电路2)序列电路:它的输出电压是输入信号过零点与反馈电压过零点之间时间差的函数。

这类鉴相器的输出只与波形的边沿有关,适用于方波,通常用电路构成。

2.低通滤波器(环路):具有低通特性,滤除中的变频成分和噪声,以保证环路要求的性能,增加环路的稳定性,产生对应的一个直流控制电压。

常用的环路滤波器有:RC积分滤波器、无源比例积分滤波器和有源比较积分滤波器3.VCO(Voltage Controlled Oscillator):它是一个电压—频率转换器,由控制产生相应频率,使其频率朝着输入信号的频率靠拢,由于相位负反馈的作用直至消除频差实现环路锁定。

锁相环原理及应用

锁相环原理及应用

锁相电路(PLL)及其应用自动相位控制(APC)电路,也称为锁相环路(PLL),它能使受控振荡器的频率和相位均与输入参考信号保持同步,称为相位锁定,简称锁相。

它是一个以相位误差为控制对象的反馈控制系统,是将参考信号与受控振荡器输出信号之间的相位进行比较,产生相位误差电压来调整受控振荡器输出信号的相位,从而使受控振荡器输出频率与参考信号频率相一致。

在两者频率相同而相位并不完全相同的情况下,两个信号之间的相位差能稳定在一个很小的范围内。

目前,锁相环路在滤波、频率综合、调制与解调、信号检测等许多技术领域获得了广泛的应用,在模拟与数字通信系统中已成为不可缺少的基本部件。

一、锁相环路的基本工作原理1.锁相环路的基本组成锁相环路主要由鉴频器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分所组成,其基本组成框图如图3-5-16所示。

图1 锁相环路的基本组成框图将图3-5-16的锁相环路与图1的自动频率控制(AFC)电路相比较,可以看出两种反馈控制的结构基本相似,它们都有低通滤波器和压控振荡器,而两者之间不同之处在于:在AFC环路中,用鉴频器作为比较部件,直接利用参考信号的频率与输出信号频率的频率误差获取控制电压实现控制。

因此,AFC系统中必定存在频率差值,没有频率差值就失去了控制信号。

所以AFC系统是一个有频差系统,剩余频差的大小取决于AFC系统的性能。

在锁相环路(PLL)系统中,用鉴相器作为比较部件,用输出信号与基准信号两者的相位进行比较。

当两者的频率相同、相位不同时,鉴相器将输出误差信号,经环路滤波器输出控制信号去控制VCO ,使其输出信号的频率与参考信号一致,而相位则相差一个预定值。

因此,锁相环路是一个无频差系统,能使VCO 的频率与基准频率完全相等,但二者间存在恒定相位差(稳态相位差),此稳态相位差经鉴相器转变为直流误差信号,通过低通滤波器去控制VCO ,使0f 与r f 同步。

2.锁相环路的捕捉与跟踪过程当锁相环路刚开始工作时,其起始时一般都处于失锁状态,由于输入到鉴相器的二路信号之间存在着相位差,鉴相器将输出误差电压来改变压控振荡器的振荡频率,使之与基准信号相一致。

锁相环工作原理

锁相环工作原理

锁相环工作原理锁相环是一种常用的电子反馈控制系统,主要用于同步信号的生成和相位跟踪。

它在许多领域中都有广泛的应用,如通信、雷达、测量仪器等。

本文将详细介绍锁相环的工作原理及其应用。

一、锁相环的基本组成部分锁相环通常由相位比较器、低通滤波器、电压控制振荡器(VCO)、分频器和反馈回路组成。

1. 相位比较器(Phase Comparator):用于比较输入信号和VCO输出信号的相位差,并产生一个误差信号。

2. 低通滤波器(Low Pass Filter):将相位比较器输出的误差信号进行滤波,得到一个平滑的控制电压。

3. 电压控制振荡器(Voltage Controlled Oscillator,VCO):根据控制电压的大小,产生相应频率的输出信号。

4. 分频器(Divider):将VCO输出的信号进行分频,得到一个与输入信号频率相同但相位差较小的信号,作为反馈信号输入到相位比较器。

5. 反馈回路(Feedback Loop):将分频器输出的信号反馈给相位比较器,形成一个闭环控制系统。

二、锁相环的工作原理锁相环的工作原理可以分为两个阶段:捕获阶段和跟踪阶段。

1. 捕获阶段:在捕获阶段,锁相环通过调节VCO的频率和相位,使其与输入信号保持同频同相。

首先,相位比较器将输入信号和VCO输出信号进行相位比较,产生一个误差信号。

该误差信号经过低通滤波器滤波后,得到一个控制电压,该电压决定了VCO的频率和相位的调整方向。

VCO根据控制电压的大小,调整自身的频率和相位,使其逐渐与输入信号同步。

当VCO的频率和相位与输入信号达到同步状态时,进入跟踪阶段。

2. 跟踪阶段:在跟踪阶段,锁相环通过持续调整VCO的频率和相位,使其能够跟踪输入信号的变化。

当输入信号的频率或相位发生变化时,相位比较器会再次产生误差信号,并通过低通滤波器得到相应的控制电压。

VCO根据控制电压的变化,调整自身的频率和相位,以保持与输入信号的同步。

三、锁相环的应用锁相环在许多领域中都有广泛的应用,以下列举几个典型的应用场景:1. 通信系统:锁相环可用于时钟恢复、频率合成、时钟同步等方面。

锁相环PLL原理与应用

锁相环PLL原理与应用
"2 "
V V
2—9KHZ频率合成器
9V 100K 10K 47n
16 13 9
晶振
14
40 46
Uo 4
1K Hz
3
11
67 5 8
10 0K
1n
9V
3 16 RE SET
14
15
40 17
8
13
2 4 7 10 1 5 6 9 11
X2 X4 X6 X8 X1 X3 X5 X7 X9
3)拨盘开关式1—999KHZ
百位
A VD D
4X 100 K
8421
十位
A VD D
4X 100 K
8421
个位
A VD D
4)健盘置数式1—999KHZ频率合 成器 (P12)
• 就是用数字健盘以及某些数字IC替代拨盘 V开关构成1——999KHZ频率合成器。最终
应做到:当顺序按键盘旳任意三个健(如 5.9.2)时,则输出信号旳频率就为592KHz。 置数部分旳框图如图
捕获带旳测量
• 环路失锁后,缓慢变化信号源频率, 从高端或低端向4046A旳中心 频率接近,当信号源频率分别为fP H和fPL时,环路又锁定。则环路捕 获带ΔfP = fPH-fPL。
f H f P fL f o L P f H H f H
ωn、ξ旳测量 P(8)
9V
9V
10K
W1
10K
16 15 14 13 12 11 10
9
晶振
14
4
OU T
1K Hz
PD 2
40 46
VC O
3
8
5 11 6
7

锁相环的基本原理和应用

锁相环的基本原理和应用

锁相环的基本原理和应用1. 什么是锁相环锁相环(Phase-Locked Loop,简称PLL)是一种电路模块,其基本原理是通过对输入信号和参考信号的相位进行比较和调节,以使输出信号与参考信号保持稳定的相位差。

锁相环广泛应用于通信、测量、频率合成等领域,因其能够实现信号调频、时钟控制等功能而备受关注。

2. 锁相环的基本结构锁相环由相位比较器(Phase Comparator)、环路滤波器(Loop Filter)、振荡器(VCO)和分频器(Divider)组成。

其基本结构如下所示:•相位比较器:相位比较器用于比较输入信号和参考信号的相位差,并产生一个与相位差成正比的控制电压。

•环路滤波器:环路滤波器用于平滑相位比较器输出的控制电压,并将其转换成稳定的直流电压。

•振荡器:振荡器根据环路滤波器输出的控制电压来调节其输出频率,使其与参考信号频率保持一致。

•分频器:分频器将振荡器输出的信号进行频率分频,以产生一个与参考信号频率一致且稳定的输出信号。

3. 锁相环的工作过程锁相环的工作过程可以分为四个阶段:捕获(Capture)、跟踪(Track)、保持(Hold)和丢失(Lose)四个阶段。

•捕获阶段:在捕获阶段,锁相环通过不断调节VCO的频率,使其与参考信号频率逐渐接近,并将相位差逐渐减小。

•跟踪阶段:当锁相环的输出频率与参考信号频率相等时,进入跟踪阶段。

在该阶段,VCO的频率和相位与输入信号保持一致。

•保持阶段:在保持阶段,锁相环维持着与输入信号相同的相位和频率。

任何相位和频率的变化都会通过反馈回路进行补偿。

•丢失阶段:如果输入信号的频率超出锁相环的捕获范围,锁相环无法跟踪该信号,进入丢失阶段。

在该阶段,锁相环输出的信号频率与输入信号频率不一致。

4. 锁相环的应用锁相环在各个领域有着广泛的应用,下面列举几个常见的应用:•频率合成器:锁相环可以将稳定的参考频率合成为其他频率,广泛用于通信、雷达、测量等领域。

锁相环技术原理及其应用

 锁相环技术原理及其应用

锁相环技术原理及其应用一、锁相环技术原理1.1 基本概念锁相环(Phase-Locked Loop,PLL)是一种调节电路,能够通过控制其输出信号相位与参考信号相位之间的差值,使输出信号频率与参考信号频率一致,并且其输出信号相位与参考信号精确同步。

锁相环可以用于频率合成、时钟恢复、数字信号处理、射频通信等领域。

1.2 工作原理锁相环主要由相位比较器、低通滤波器、时钟发生器、可变增益放大器和电压控制振荡器等组成。

其中,相位比较器的作用是将参考信号和反馈信号进行比较,然后得到相位误差信号。

低通滤波器的作用是将相位误差信号进行平滑处理,得到直流误差信号。

时钟发生器的作用是产生参考信号。

可变增益放大器的作用是将误差信号放大后作为电压控制振荡器的控制电压。

电压控制振荡器的作用是产生锁相环输出信号,并且通过调节电压来控制输出信号的频率和相位。

1.3 稳定性分析锁相环的稳定性与参考信号的稳定性和相位比较器的带宽以及低通滤波器的截止频率等因素有关。

稳定性分析主要是评估锁相环输出信号的频率精度和相位噪声。

二、锁相环技术应用2.1 频率合成频率合成是利用锁相环技术将一个较低频率信号转换为高频率信号。

其中,参考信号是一个较低频率信号,产生参考信号的时钟发生器经过倍频器将参考信号的频率增加到所需的合成频率,然后经过相位比较器和滤波器控制电压控制振荡器的输出频率。

频率合成广泛应用于通信、广播、雷达、卫星导航等领域。

2.2 时钟恢复时钟恢复是一种将时钟信号从数据信号中恢复出来的技术。

锁相环可以通过将数据信号作为反馈信号,将时钟信号从数据信号中恢复出来。

时钟恢复广泛应用于数字通信和数字音频领域。

2.3 数字信号处理锁相环可以通过将输入信号与锁相环输出信号相比较,将输入信号变换的频率和相位误差降到很小,从而使输入信号的相位和频率与输入信号一致。

锁相环广泛应用于数字信号处理,例如数字滤波器、数字混频器、数字降噪器等。

2.4 射频通信锁相环在射频通信中的应用非常广泛,主要用于频率合成、时钟恢复等领域。

锁相环原理及应用

锁相环原理及应用

锁相环原理及应用嘿,朋友们!今天咱来聊聊锁相环原理及应用,这可有意思啦!你看啊,锁相环就像是一个超级有耐心的协调大师。

它能让两个本来不太合拍的东西,变得和谐一致,就好比让两个舞步不太协调的人慢慢找到节奏,一起跳出优美的舞蹈。

锁相环主要由相位比较器、环路滤波器和压控振荡器这几个部分组成。

相位比较器就像是一双敏锐的眼睛,时刻盯着输入信号和反馈信号的相位差异。

环路滤波器呢,则像一个温柔的缓冲器,把那些比较器发现的小波动给抚平啦。

而压控振荡器,那可是关键角色呀,它能根据滤波器的调整,乖乖地改变自己的频率和相位,努力去和输入信号保持一致。

那锁相环都有啥用呢?哎呀,用处可多啦!在通信领域,它就像个默默无闻的幕后英雄。

比如说,手机信号的接收和发送,没有锁相环可不行呢。

它能让手机准确地锁定信号频率,让我们能清晰地通话、流畅地上网。

再想想那些高级的音响设备,锁相环在里面也发挥着大作用呢!它能让声音更加稳定、清晰,不会有那种让人不舒服的杂音。

就好像给声音穿上了一件合身的衣服,让它变得更加好听。

还有啊,在一些精密的测量仪器中,锁相环也是不可或缺的。

它能让测量结果更加准确可靠,就像给测量加上了一把精准的锁。

咱就说,这锁相环是不是很神奇?它就像一个小小的魔法盒子,里面蕴含着大大的能量。

它能让各种电子设备变得更加出色,给我们的生活带来那么多的便利。

而且啊,随着科技的不断发展,锁相环的应用也会越来越广泛。

说不定以后我们生活中的方方面面都离不开它呢!难道你不觉得这很令人期待吗?总之呢,锁相环原理虽然有点复杂,但它的应用真的是无处不在。

我们享受着它带来的便利,却可能都没意识到它的存在。

所以啊,大家可得好好了解了解它,感受一下这个小小的东西背后的大魅力呀!。

锁相环的组成和原理及应用

锁相环的组成和原理及应用

锁相环的组成和原理及应用一.锁相环的基本组成许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。

锁相环路是一种反馈控制电路,简称锁相环(PLL)。

锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。

因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。

锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。

锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。

锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。

二.锁相环的工作原理锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。

鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为:(8-4-1)(8-4-2)式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。

则模拟乘法器的输出电压uD 为:用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压uC(t)。

即uC(t)为:(8-4-3)式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:即(8-4-4)则,瞬时相位差θd为(8-4-5)对两边求微分,可得频差的关系式为(8-4-6)上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,uc(t)为恒定值。

一文让你彻底明白“什么是锁相环PLL及其工作原理”

一文让你彻底明白“什么是锁相环PLL及其工作原理”

一文让你彻底明白“什么是锁相环PLL及其工作原理”锁相环(Phase-Locked Loop,简称PLL)是一种广泛应用于通信、数据传输、时钟同步等领域的电子电路。

它在这些应用中起着重要的作用,可以解决信号同步、频率合成、相位调制等问题。

本文将详细介绍什么是锁相环、它的工作原理,以及一些常见的应用场景。

一、什么是锁相环锁相环是一种反馈控制系统,通过比较输入信号的相位与参考信号的相位之间的差异来调整输出信号的相位和频率,使得输出信号与参考信号保持相位和频率的一致。

原理上,锁相环通过不断采样输入信号,并将其与参考信号进行比较,然后根据比较结果调整输出信号的相位和频率。

通过这种方式,锁相环可以将输入信号的频率和相位稳定在与参考信号一致的状态下。

一般来说,锁相环由锁相检测器、低通滤波器、电压控制振荡器和频率分割器等主要组成。

二、锁相环的工作原理1. 锁相检测器(Phase Detector):锁相检测器是锁相环的核心部分。

它用于比较输入信号的相位差异,并产生一个误差信号。

常见的锁相检测器有相位比较器、采样比较器等。

相位比较器将输入信号和参考信号进行比较,并输出一个高电平或低电平的信号,表示输入信号相位与参考信号的相位关系。

2. 低通滤波器(Low Pass Filter):低通滤波器用于平滑锁相检测器输出的误差信号,减小噪声的影响。

它通过将误差信号经过滤波器,然后输出平滑后的信号给电压控制振荡器。

3. 电压控制振荡器(Voltage-Controlled Oscillator,简称VCO):电压控制振荡器是锁相环的另一个关键组件。

它的输出频率与输入电压成线性关系,即输出频率随着输入电压的变化而变化。

通过改变电压控制振荡器的输入电压,即通过低通滤波器输出的信号,可以调整输出信号的频率,从而使得输出信号与参考信号的频率一致。

4. 频率分割器(Frequency Divider):频率分割器用于将电压控制振荡器的输出频率分割成较低的频率。

锁相环PLL原理与应用

锁相环PLL原理与应用

锁相环PLL原理与应用锁相环(Phase-Locked Loop, PLL)是一种常用的控制系统,广泛应用于电子和通信领域。

它可以用于频率合成、时钟恢复以及相位同步等应用中。

本文将对PLL的原理和常见的应用进行详细介绍。

PLL的原理:首先,参考信号经过相位比较器与VCO的输出信号进行比较。

相位比较器的输出为一个控制电压,表示两个信号之间的相位差。

这个控制电压经过低通滤波器进行滤波处理,得到一个平滑的控制电压,该电压用于调节VCO的频率。

VCO产生的频率与输入的控制电压成正比,通过调节控制电压,可以改变VCO的输出频率。

通过反馈控制的方式,当VCO的频率与参考信号接近时,相位比较器的输出误差会减小,最终收敛到零,实现了锁相环的目标。

在PLL中,分频器的作用是将VCO的高频输出信号分频得到一个相位稳定的低频信号,用作相位比较器的参考信号。

通过适当选择分频比,可以实现对VCO输出频率的精确控制。

PLL的应用:1.频率合成器:PLL经常被用于频率合成器的设计。

通过选择适当的参考频率和分频比,可以实现对输出频率的精确控制。

例如,在通信系统中,PLL被用于合成不同的载波频率用于不同用户之间的信号传输。

2.时钟恢复:在数字通信中,接收端需要从接收到的数据中恢复时钟信号。

PLL可以通过将接收到的数据作为参考信号,并控制VCO的频率,使得输出的时钟信号与发送端时钟同步。

3.数字时钟锁定:在数字系统中,不同的模块可能具有不同的时钟源,为了实现数据的正确和稳定传输,需要将不同的时钟源进行同步。

PLL可以用于将这些时钟同步,并控制其频率和相位,以便实现正确的数据传输。

4.相位同步:在通信系统中,要求不同的发送端和接收端之间的信号具有相同的相位特性,以便实现正确的信号传输。

PLL可以用于将这些信号进行相位同步,确保信号的准确传输。

在实际应用中,PLL还可用于频率测量、频率锁定等领域。

它的具体应用取决于实际需求。

在总结,锁相环是一种基于反馈控制的系统,通过将参考信号的相位与振荡器的输出信号进行比较,以实现对输出信号的频率和相位的稳定控制。

锁相环原理及应用

锁相环原理及应用

锁相环原理及应用锁相环(Phase-Locked Loop,PLL)是一种电子电路,主要用于调整频率和相位,使其与输入信号同步,并用来提供高精度的时钟和频率合成。

锁相环的原理是通过不断比较参考信号和输出信号的相位差,并通过反馈控制来调整输出信号的频率和相位,使输出信号与参考信号保持稳定的相位关系。

锁相环通常由相位比较器、低通滤波器、控制电压发生器、振荡器等组成。

锁相环的工作过程可以简单描述为以下几个步骤:1.相位比较:输入信号与参考信号经过相位比较器,比较它们之间的相位差。

2.滤波调整:比较结果经过低通滤波器,得到一个控制电压,该控制电压用于调整振荡器的频率和相位。

3.振荡器反馈:通过控制电压调整振荡器的频率和相位,使输出信号与参考信号保持稳定的相位关系。

4.输出信号:输出信号作为锁相环的输出,可以用于时钟同步、频率合成等应用。

锁相环具有许多应用。

以下是一些常见的应用案例:1.时钟同步:在数字系统中,锁相环常用于同步时钟信号,确保各个子系统的时钟一致,避免数据传输错误和时序问题。

2.频率合成:通过锁相环可以将一个低频信号合成为一个高频信号,常用于通信系统、雷达、音视频处理等领域。

3.相位调制和解调:锁相环可以用于实现相位调制和解调,常用于无线通信系统和调制解调器等。

4.频率跟踪和捕获:锁相环可以自动跟踪输入信号的频率变化并调整输出信号的频率,用于跟踪和捕获频率变化较快的信号。

锁相环的优点是可以实现高精度的频率和相位调整,对于精密测量、通信系统等需要高稳定性、高精度的应用非常重要。

然而,锁相环也存在一些局限性,比如锁定时间相对较长,对噪声和干扰较敏感,需要合适的滤波器和设计来提高性能。

综上所述,锁相环是一种基于反馈控制的电子电路,通过比较输入信号和参考信号的相位差来调整输出信号的频率和相位。

它在时钟同步、频率合成、相位调制解调、频率跟踪捕获等应用中起到重要作用。

锁相环的原理和应用对于理解和设计高精度的电子系统非常关键。

锁相环的基本原理锁相环基本原理及其应用

锁相环的基本原理锁相环基本原理及其应用

锁相环的基本原理锁相环基本原理及其应用锁相环的基本原理锁相环基本原理及其应用锁相环及其应用所谓锁相环路,实际是指自动相位控制电路(APC),它是利用两个电信号的相位误差,通过环路自身调整作用,实现频率准确跟踪的系统,称该系统为锁相环路,简称环路,通常用PLL表示。

锁相环路是由鉴相器(简称PD)、环路滤波器(简称LPF或LF)和压控振荡器(简称VCO)三个部件组成闭合系统。

这是一个基本环路,其各种形式均由它变化而来PLL概念设环路输入信号v= Viomimsin(ωit+φi)环路输出信号v= Vosin(ωot+φo)——其中ωo=ωr+△ωo通过相位反馈控制,最终使相位保持同步,实现了受控频率准确跟踪基准信号频率的自动控制系统称为锁相环路。

PLL构成由鉴相器(PD)环路滤波器(LPF)压控振荡器(VCO)组成的环路。

PLL原理从捕捉过程→锁定A.捕捉过程(是失锁的)a. b.φi┈φi均是随时间变化的,经相位比较产生误差相位φe=φi-φo,也是变化的。

φe(t)由鉴相器产生误差电压v(t)=f(φde)完成相位误差—电压的变换作用。

v(t)为交流电压。

dc.v(t)经环路滤波,滤除高频分量和干扰噪声得到纯净控制电压,由VCO产生d控制角频差△ω0,使ω0随ωi变化。

B.锁定(即相位稳定)a. b.一旦锁定φe(t)=φe∞(很小常数)v(t)= V(直流电压)ddω0≡ωi输出频率恒等于输入频率(无角频差,同时控制角频差为最大△ω0max, 即ω0=ωr+△ω0max。

ωr为VCO固有振荡角频率。

)锁相基本组成和基本方程(时域)各基本组成部件鉴相器(PD)数学模式v(t)=AsinφdDe(t)相位模式环路滤波器(LPF) 数学模式v(t)=A(P) v(t)cFd相位模式压控振荡器(VCO)数学模式相位模式环路模型相位模式:指锁相环(PLL)输入相位和输出相位的反馈调节关系。

相位模型:把鉴相器,环路滤波器和压控振荡器三个部件的相位模型依次级联起来就构成锁相相位模型。

锁相环工作原理

锁相环工作原理

锁相环工作原理锁相环是一种常用于频率合成和时钟恢复的电路,它能够将输入信号的相位和频率与参考信号同步。

在本文中,我们将详细介绍锁相环的工作原理及其应用。

一、锁相环的基本组成部分锁相环主要由相位比较器、环路滤波器、电压控制振荡器(VCO)以及分频器组成。

1. 相位比较器(Phase Detector)相位比较器是锁相环的核心部分,其作用是将输入信号与参考信号进行相位比较,并输出一个误差信号。

常见的相位比较器有边沿比较器、乘法器和加法器等。

2. 环路滤波器(Loop Filter)环路滤波器的作用是对相位比较器输出的误差信号进行滤波和放大,以产生稳定的控制电压。

通常,环路滤波器由低通滤波器和放大器组成。

3. 电压控制振荡器(Voltage Controlled Oscillator,VCO)电压控制振荡器是一种根据输入电压的变化而改变输出频率的电路。

在锁相环中,VCO的输出频率受到环路滤波器输出的控制电压的调节。

4. 分频器(Divider)分频器将VCO的输出信号进行分频,以产生参考信号。

分频器通常使用可编程分频器,可以根据需要选择不同的分频比。

二、锁相环的工作原理锁相环的工作原理可以简单地描述为以下几个步骤:1. 初始状态锁相环的初始状态是未锁定状态,VCO的输出频率与参考信号的频率存在差异,相位比较器输出的误差信号不为零。

2. 相位比较相位比较器将输入信号与参考信号进行相位比较,产生一个误差信号。

误差信号的幅度和相位表示了输入信号与参考信号之间的差异。

3. 环路滤波误差信号经过环路滤波器进行滤波和放大,产生一个稳定的控制电压。

该控制电压的大小和极性取决于输入信号与参考信号之间的相位差。

4. 控制VCO控制电压作用于VCO,调节其输出频率。

当控制电压为正时,VCO的输出频率增加;当控制电压为负时,VCO的输出频率减小。

5. 反馈VCO的输出信号经过分频器进行分频,产生一个参考信号。

该参考信号与输入信号进行比较,形成反馈回路。

锁相环的原理及应用

锁相环的原理及应用

锁相环的原理及应用一、基本工作原理1、环路的基本构成2、建立鉴相器、环路滤波器和压控振荡器的数学模型二、工作过程的定性分析1、锁定2、跟踪3、捕获4、失锁三、锁相环路的应用1、器件选型锁相频率合成器的分类HYT常用锁相频率合成芯片性能比较2、关键性指标分析相位噪声锁定时间环路带宽压控灵敏度一、基本工作原理锁相环是一种以消除频率误差为目的的反馈控制电路。

它的基本原理是利用相位误差去消除频率误差,所以当电路达到平衡状态时,虽然有剩余相位误差存在,但频率误差可以降低到零,从而实现无频率误差的频率跟踪和相位跟踪。

1、环路的基本构成锁相环是一个相位负反馈控制系统。

主要由鉴相器(PD )、环路滤波器(LF )和电压控制振荡器(VCO )三个基本部件组成,如下图所示:鉴相器是相位比较器,它把输出信号)(t u o 和参考信号)(t u r 的相位进行比较,产生对应于两信号相位差的误差电压)(t u d 。

环路滤波器的作用是滤除误差电压)(t u d 中的高频成分和噪声,以保证环路所要求的性能,提高系统的稳定性。

压控振荡器受控制电压)(t u c 控制,频率向参考信号的频率靠近,于是两者频率之差越来越小,直至频差消除而被锁定。

2、建立鉴相器、环路滤波器和压控振荡器的数学模型 ➢ 鉴相器鉴相器(PD )又称为相位比较器,它是用来比较两个输入信号之间的相位差)(t e 。

按鉴相特性来分,鉴相器可分为正弦型、三角型和锯齿型等,常用来分析的是正弦鉴相器,可用模拟乘法器与低通滤波器构成。

)(t u i )(t)(t u o图2 正弦鉴相其模型图1 锁相环的基本组成其数学模型为:) )(t o图3 鉴相器的数学模型➢ 环路滤波器环路滤波器(LF )是一个线性低通滤波器,用来滤除误差电压)(t u d 中的高频分量和噪声,更重要的是它对环路参数调整起到决定性的作用。

常用的有:RC 积分滤波器 无源比例积分滤波器* 有源比例积分滤波器 ➢ 压控振荡器压控振荡器(VCO )是一个电压-频率的变换器,在环路中作为被控振荡器,它的振荡频率应随输入控制电压)(t u c 线性的变化,即)()(00t u K t c v +=ωω其中,)(t v ω是VCO 的瞬时角频率,0K 是线性特性斜率,又称压控灵敏度或增益系数。

锁相环工作原理

锁相环工作原理

锁相环工作原理引言概述:锁相环(Phase-Locked Loop,简称PLL)是一种常见的电子电路,用于同步信号的频率和相位。

它在通信系统、数字信号处理、时钟同步等领域被广泛应用。

本文将详细介绍锁相环的工作原理,包括基本原理、主要组成部分、工作过程以及应用场景。

一、基本原理:1.1 反馈环路:锁相环的核心是一个反馈环路,通过不断调整输入信号的频率和相位,使其与参考信号保持同步。

这个环路由比较器、低通滤波器和控制电路组成。

1.2 相位检测器:相位检测器用于比较输入信号和参考信号的相位差,产生一个误差信号。

根据误差信号的大小和方向,控制电路将调整输入信号的相位和频率。

1.3 数字控制:现代锁相环通常采用数字控制,通过数字控制器和数字控制电路,实现对反馈环路的精确控制。

数字控制还可以实现自适应调整,提高锁相环的性能。

二、主要组成部分:2.1 振荡器:振荡器是锁相环的基础,它产生一个参考信号,用于与输入信号进行比较。

常见的振荡器有晶体振荡器和压控振荡器,前者具有稳定的频率,适用于需要高精度的应用,而后者可以通过调节电压来改变频率,适用于需要频率可调的应用。

2.2 分频器:分频器用于将输入信号的频率降低到与参考信号相匹配的频率。

它可以将输入信号分成若干个相等的周期,用于和参考信号进行比较。

2.3 低通滤波器:低通滤波器用于滤除相位检测器输出中的高频噪声,保留误差信号中的低频成分。

它可以使锁相环的输出更加稳定。

三、工作过程:3.1 初始状态:锁相环初始状态下,输入信号和参考信号的频率和相位存在差异。

相位检测器会检测到相位差,并产生一个误差信号。

3.2 调整过程:控制电路根据误差信号的大小和方向,调整输入信号的相位和频率。

通过不断调整,误差信号逐渐减小,直到达到稳定状态。

3.3 稳定状态:当输入信号和参考信号的频率和相位完全一致时,锁相环进入稳定状态。

此时,输出信号与参考信号保持同步,相位差为零。

四、应用场景:4.1 通信系统:锁相环在通信系统中用于频率合成、时钟恢复和信号调制等方面。

锁相环放大器的原理及应用

锁相环放大器的原理及应用

锁相环放大器的原理及应用一、什么是锁相环放大器锁相环(Phase-Locked Loop,PLL)放大器是一种电子放大器,它能够通过采样输入信号的相位信息,并根据参考信号进行调整,从而实现输入信号的放大、补偿和同步。

锁相环放大器通常由相位比较器、低通滤波器、振荡器和放大器组成。

它主要应用于通信系统、数字信号处理、频率合成器、时钟恢复和频率分析等领域。

二、锁相环放大器的原理锁相环放大器的原理基于反馈控制系统的理论,在输入信号和参考信号之间建立一个反馈环路。

以下是锁相环放大器的工作原理:1.相位比较器–锁相环放大器首先进行相位比较,它将输入信号和参考信号进行比较得到一个相位差值。

–相位比较器可以选择不同的算法,例如边沿比较、比较电压或比较频率等方式。

2.低通滤波器–相位差信号通过相位比较器得到后,会进入一个低通滤波器。

–低通滤波器用于滤除高频噪声和干扰,通过滤波器的输出得到一个平稳的控制信号。

3.振荡器–控制信号经过低通滤波器后,被输入到一个振荡器。

–振荡器产生一个基准信号,用于与输入信号同步,以实现输入信号的相位补偿。

4.放大器–最后,基准信号通过放大器进行放大,然后与输入信号进行合并。

–放大器起到放大和加强输入信号的作用,使其功能得以实现。

三、锁相环放大器的应用锁相环放大器具有广泛的应用领域,以下列举几个主要应用:1.通信系统–锁相环放大器在通信系统中广泛用于时钟恢复、同步信号恢复和频率合成等方面。

–通过锁相环放大器,可以调整和稳定时钟信号,使得不同设备之间的通信更加可靠和稳定。

2.频率合成器–频率合成器是一种将多个频率进行合成的电路。

–锁相环放大器可以用于频率合成器中,通过控制输入信号和参考信号的相位差,实现输出信号的相位和频率调整。

3.数字信号处理–锁相环放大器在数字信号处理中也有广泛应用。

–通过锁相环放大器,可以实现数字信号的频率补偿和相位补偿,提高信号的质量和稳定性。

4.时钟恢复–锁相环放大器被广泛应用于时钟恢复电路中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锁相电路(PLL)及其应用自动相位控制(APC)电路,也称为锁相环路(PLL),它能使受控振荡器的频率和相位均与输入参考信号保持同步,称为相位锁定,简称锁相。

它是一个以相位误差为控制对象的反馈控制系统,是将参考信号与受控振荡器输出信号之间的相位进行比较,产生相位误差电压来调整受控振荡器输出信号的相位,从而使受控振荡器输出频率与参考信号频率相一致。

在两者频率相同而相位并不完全相同的情况下,两个信号之间的相位差能稳定在一个很小的范围内。

目前,锁相环路在滤波、频率综合、调制与解调、信号检测等许多技术领域获得了广泛的应用,在模拟与数字通信系统中已成为不可缺少的基本部件。

一、锁相环路的基本工作原理1.锁相环路的基本组成锁相环路主要由鉴频器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分所组成,其基本组成框图如图3-5-16所示。

图1 锁相环路的基本组成框图将图3-5-16的锁相环路与图1的自动频率控制(AFC)电路相比较,可以看出两种反馈控制的结构基本相似,它们都有低通滤波器和压控振荡器,而两者之间不同之处在于:在AFC环路中,用鉴频器作为比较部件,直接利用参考信号的频率与输出信号频率的频率误差获取控制电压实现控制。

因此,AFC系统中必定存在频率差值,没有频率差值就失去了控制信号。

所以AFC系统是一个有频差系统,剩余频差的大小取决于AFC系统的性能。

在锁相环路(PLL)系统中,用鉴相器作为比较部件,用输出信号与基准信号两者的相位进行比较。

当两者的频率相同、相位不同时,鉴相器将输出误差信号,经环路滤波器输出控制信号去控制VCO ,使其输出信号的频率与参考信号一致,而相位则相差一个预定值。

因此,锁相环路是一个无频差系统,能使VCO 的频率与基准频率完全相等,但二者间存在恒定相位差(稳态相位差),此稳态相位差经鉴相器转变为直流误差信号,通过低通滤波器去控制VCO ,使0f 与r f 同步。

2.锁相环路的捕捉与跟踪过程当锁相环路刚开始工作时,其起始时一般都处于失锁状态,由于输入到鉴相器的二路信号之间存在着相位差,鉴相器将输出误差电压来改变压控振荡器的振荡频率,使之与基准信号相一致。

锁相环由失锁到锁定的过程,人们称为捕捉过程。

系统能捕捉的最大频率范围或最大固有频带称为捕捉带或捕捉范围。

当锁相环路锁定后,由于某些原因引起输入信号或压控振荡器频率发生变化,环路可以通过自身的反馈迅速进行调节。

结果是VCO 的输出频率、相位又被锁定在基准信号参数上,从而又维持了环路的锁定。

这个过程人们称为环路的跟踪过程。

系统能保持跟踪的最大频率范围或最大固有频带称为同步带或同步范围,或称锁定范围。

捕捉过程与跟踪过程是锁相环路的两种不同的自动调节过程。

由此可见,自动频率控制(AFC )电路,在锁定状态下,存在着固定频差。

而锁相环路控制(PLL )电路,在锁定状态下,则存在着固定相位差。

虽然锁相环存在着相位差,但它和基准信号之间不存在频差,即输出频率等于输入频率.这也表明,通过锁相环来进行频率控制,可以实现无误差的频率跟踪.其效果远远优于自动频率控制电路.3.锁相环路的基本部件1)鉴相器(PD —Phase Detector )鉴相器是锁相环路中的一个关键单元电路,它负责将两路输入信号进行相位比较,将比较结果从输出端送出。

鉴相器的电路类型很多,最常用的有以下三种电路.(1)模拟乘法器鉴相器,这种鉴相器常常用于鉴相器的两路输入信号均为正弦波的锁相环电路中。

(2)异或门鉴相器,这种鉴相器适合两路输入信号均为方波信号的锁相环电路中,所以异或门鉴相器常常应用于数字电路锁相环路中。

(3)边沿触发型数字鉴相器,这种鉴相器也属于数字电路型鉴相器,对输入信号要求不严,可以是方波,也可以是矩形脉冲波.这种电路常用于高频数字锁相环路中。

图2 是异或门鉴相器的鉴相波形与鉴相特性曲线。

图2 异或门鉴相器的鉴相波形与鉴相特性曲线a) 异或门鉴相器 b) 鉴相器输出波形 C) 鉴相特性2)环路滤波器(LF-Loop Filter )鉴相器输出的电压信号是交流电压,它并不能直接控制压控振荡(VCO )电路,鉴相器输出的电压信号必须经过环路滤波器平滑滤波后,才能用于控制VCO 电路。

环路滤波器从实质上讲也是低通滤波,其作用主要是滤除鉴相器输出误差电压中的高频及干扰成分,得到控制电压d U ,因为控制电压d U 是决定VCO 工作频率的电压,因此它的变化对锁相环路的性能参数有很大的影响关系。

图3是目前比较常用的三种环路滤波器电路。

从图中可以看出,三种电路的复杂程度不一样。

第一种简单的滤波器所用元件最少,电路也最简单。

有源比例积分滤波器,使用元件最多,电路也比较复杂。

图3 环路滤波器a)简单RC 滤波器 b)RC 比例积分滤波器 c) 有源比例积分滤波器但从滤波效果的角度来衡量,有源比例积分滤波器的滤波效果最好,简单RC 滤波器滤波效果最差,RC 比例积分滤波器的滤波效果介于二者之间。

设计电路时,可以根据锁相环路的要求选择不同的环路滤波器。

3)压控振荡器(VCO-Voltage Controlled Oscillator )压控振荡器(VCO )是锁相环(PLL )的被控对象。

压控振荡器是一个电压—频率变换装置,在环路中作为频率可调振荡器,其振荡频率应随输入控制电压线性地变化。

它输出的信号根据锁相环的不同要求,可分为正弦波压控振荡器与非正弦波压控振荡器两大类.正弦波压控振荡器一般由LC点式振荡器与变容二极管组成.它的工作原理与计算公式和电容三点式正弦波振荡器完全一样。

由于正弦波VCO受到变容二极管结电容变化范围的限制,因此一般振荡频率变化范围都不是太大。

非正弦波压控振荡器的种类较多,由于它的频率变化范围大,控制线性好,所以应用比较广泛。

这类压控振荡器常见的几种电路有射极定时压控多谐振荡器、积分型施密特压控振荡器、数字门电路压控振荡器。

图4是两种方波压控振荡器电路。

图4两种方波压控振荡器电路a) 积分施密特VCO电路 b) CMOS门电路VCO电路二、锁相环路的基本特性1.良好的载波跟踪特性。

无论输入锁相环的信号是已调制或未调制的,只要信号中包含有载波成分,就可将环路设计成一个窄带跟踪滤波器,跟踪输入信号载波成分的频率与相位变化,环路输出信号就是需要提取的载波信号。

载波跟踪特性包含窄带、跟踪和弱输入载波信号的放大三重含意。

2.调制跟踪特性。

当环路具有适当宽度的低频通带时,压控振荡器输出信号的频率与相位就能跟踪输入调频或调相信号的频率与相位的变化。

3.窄带滤波特性。

锁相环路通过环路滤波器的作用,具有窄带滤波器特性,当压控振荡器的输出频率锁定在输入参考频率上时,位于信号频率附近的干扰成分将以低频干扰的形式进入环路,绝大部分的干扰会受到环路滤波器低通特性的抑制,从而将混进输入信号中的噪声和杂散干扰滤除掉。

在设计较好时,这个通带能做得极窄,例如在几十兆赫的频率范围内,实现几十赫甚至几赫的窄带滤波。

这种窄带滤波特性是任何LC、RC及石英晶体等滤波器均难以达到的。

4.低门限特性。

锁相环路也是一个非线性器件,用作鉴频器时同样存在门限效应,但锁相环路的门限并不取决于输入信噪比而取决于环路信噪比,由于环路的窄带特性,环路信噪比明显高于输入信噪比,环路能在低输入信噪比条件下工作,即具有低门限的优良特性。

5.锁定状态无剩余频差,易于集成化等。

三、集成锁相环74HC4046单片锁相环集成电路74HC4046是一种高速CMOS混合电路,含有锁相环路全部功能的单片集成锁相环电路,其最高工作频率可达18MHz。

它的内部功能框图及标准应用电路,如图5所示。

从图5中74HC4046的外接元件可以看出,集成锁相环只需外接极少的元件,即可组成一个完整的锁相电路。

以图5的电路为基准,根据各种用途对电路的不同要求,在锁相环电路中若配不同的应用电路,即可组成各种类型的应用电路。

例如,在74HC4046的3脚、4脚之间插人N分频电路,就可以组成频率合成器电路。

图5 74HC4046内部功能框图及标准应用电路四、锁相环路的应用1.在空间技术中的应用——窄带跟踪接收机(锁相接收机)锁相接收机是一种具有窄带跟踪性能的接收机。

主要用于空间技术中的测速与测距,来确定飞行器的运行轨道。

由于飞行器发射功率小,通信距离远,所以收到的信号极其微弱。

另外,考虑到信号有多普勒频移以及振荡器产生的频率漂移,接收机的中频通带又必须足够宽,这样,接收机解调器前的信噪功率比必然相当低,一般在-10~-30dB左右。

采用窄带锁相跟踪接收机由于它的带宽很窄,又能跟踪信号,因此,能大大提高接收机的信噪比。

—般说来,可比普通接收机信噪比提高30~40dB,这一优点是很重要的。

图6是锁相接收机的简化框图。

其工作过程如下:图6 锁相接收机的简化框图混频器输入信号电压为1()u t ,它是调频高频信号,中心频率为1ω,,它与外差本振信号2()u t 相混频,2()u t 频率为2ω,它是由压控振荡器频率2/M ω经M 次倍频后得到的。

混频后输出的中频信号3()u t ,其中频频率为3ω,312ωωω=-,经中频放大器放大后在鉴相器内与下一个频率稳定的本地标准中频参考信号4()u t 进行相位比较,4()u t 的频率为4ω。

如果两者的频率有偏差,鉴相器的输出电压()d u t 经环路滤波器滤波后就去调整压控振荡器的振荡频率,使混频器的输出频率被锁定在本地标准中频上,即34ωω=。

由图可见,接收机的中频放大器设置在环路内部,依靠环路的跟踪作用,中频信号的频率将保持在调谐回路的中心。

这样,中频放大器的通频带可以做得很窄(例如3~300Hz ),只需覆盖调频信号在载波频率固定情况下的占据频宽就够了。

在载频因多普勒频移等原因产生较大漂移的情况下,由于窄带跟踪环路的作用,将使载频有漂移的已调信号频谱,经混频后仍能准确地落在中频通频带的中央,这就实现了窄带跟踪。

在实际空间通信中,飞行器实际的多普勒频移产生的频率变化要比调频信号本身占据的频宽大得多,因而必须采用锁相环构成的窄带跟踪滤波器,才能使这种空间通信有满意的结果,这种窄带跟踪接收机的灵敏度很高,接收微弱信号的能力很强。

2.在调制解调技术中的应用(1)锁相调频电路应用图7所示的锁相环路调频器电路,可以获得载波频率稳定度很高的调频信号。

实现PLL 调频的条件是,调制信号的频谱要处于环路低通滤波器通带之外,并且调制指数不能太大。

这样,锁相环路实际上是载波跟踪环,调制信号不能通过低通滤波器,也就不能参与环路的交流反馈,因而调制信号对锁相环路没有影响,压控振荡器的中心频率被锁定在晶体振荡频率上。

同时,调制信号加在压控振荡器上,对其中心频率进行调制,因此,输出调频信号的中心频率稳定度与晶振频稳度有相同的数量级,而调频灵敏度则与VCO 的电压控制灵敏度相同,克服了直接调频中心频率稳定度不高的缺点。

相关文档
最新文档