初一数学第一次月考模拟试卷6
人教版七年级上册数学第一次月考试卷(完整)
人教版七年级上册数学第一次月考试卷(完整)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元2.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC320n n为( )A.2 B.3 C.4 D.54. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,列方程组正确的是()A.523220x yx y+=⎧⎨+=⎩B.522320x yx y+=⎧⎨+=⎩C.202352x yx y+=⎧⎨+=⎩D.203252x yx y+=⎧⎨+=⎩5.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④6.实数a,b在数轴上对应点的位置如图所示,化简|a|+2a b的结果是()( )A.﹣2a-b B.2a﹣b C.﹣b D.b7.如图,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定a的三条线段能组成一个三角形,则a的值可以是8.若长度分别为,3,5()A.1 B.2 C.3 D.89.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则∠BED 的度数为________.3.分解因式:32x 2x x -+=_________.4.如图,已知直线AB 、CD 、EF 相交于点O ,∠1=95°,∠2=32°,则∠BOE=________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)32316x y x y -=⎧⎨+=⎩(2)25528x y x y -=⎧⎨+=⎩2.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 13分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.3.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.5.育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是 ______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?6.小明同学在A、B两家超市发现他看中的随身听和书包的单价都相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求小明看中的随身听和书包单价各是多少元?(2)假日期间商家开展促销活动,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(购物满100元返购物券30元,购物满200元返购物券60元,以此类推;不足100元不返券,购物券可通用).小明只有400元钱,他能买到一只随身听和一个书包吗?若能,选择在哪一家购买更省钱.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、D5、A6、A7、B8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、55°3、()2 x x1-.4、53°5、2或2.56、2或-8三、解答题(本大题共6小题,共72分)1、(1)5{2xy==;(2)21xy=⎧⎨=-⎩.2、(1)a=5,b=2,c=3 ;(2)±4.3、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤403;(3)两人相遇时间为第8分钟.4、(1)与∠D相等的角为∠DCG,∠ECF,∠B(2)155°(3)25°或155°5、(1)40% , 144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.6、(1)随身听和书包的单价分别是360元和92元;(2)略.。
人教版七年级上册数学第一次月考试卷附答案
人教版七年级上册数学第一次月考试卷附答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<3.若整数x 满足5+19≤x ≤45+2,则x 的值是( )A .8B .9C .10D .114.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .28.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为( )A .10B .9C .8D .7二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=________.2.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.3.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.4.若()2320m n -++=,则m+2n 的值是________.5.分解因式:4ax 2-ay 2=_____________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________. 三、解答题(本大题共6小题,共72分)1.解不等式组,并将解集在数轴上表示出来.273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①②2.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?3.如图,在△ABC 中,∠B=40°,∠C=80°,AD 是BC 边上的高,AE 平分∠BAC ,(1)求∠BAE 的度数;(2)求∠DAE 的度数.4.如图,在△ABC 中,AB=AC,点D 、E 分别在AB 、AC 上,BD=CE ,BE 、CD 相交于点0;求证:(1)DBC ECB ∆≅∆(2)OB OC =5.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小組.要求每人必须参加.并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数.并补全条形统计图(画图后请标注相应的数据);(2)________, ________;m n ==(3)若某校共有1200名学生,试估计该校选择“围棋”课外兴趣小组有多少人?6.某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利120元.(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、C6、C7、C8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1002、10.3、3 44、-15、a(2x+y)(2x-y)6、5三、解答题(本大题共6小题,共72分)1、原不等式组的解集为﹣4<x≤2,在数轴上表示见解析.2、(1)a的取值范围是﹣2<a≤3;(2)当a为﹣1时,不等式2ax+x>2a+1的解集为x<1.3、(1) ∠BAE=30 °;(2) ∠EAD=20°.4、(1)略;(2)略.5、(1)150;补图见解析;(2)36,16;(3)选择“围棋”课外兴趣小组的人数为192人.6、A型42元,B型56元;30台.。
初一数学第一次月考参考答案
初一数学第一次月考测试题参考答案: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 CAADDBBCDCBC二填空题(每空2分,共18分)13. > 14.8-. 15.6 16.百万 17.8或2-/−2或8 18.234 三解答题19.(共4分)正整数:{5+,()7--};··················1分非正数:{0, 2.04-,1--,23-};··················1分负分数:{ 2.04-,23-};··················1分非有理数:{π ,0.1010010001 };··················1分20解:这些数分别化简为:-4,+112,-1.5,0,3,4.5.··················2分 在数轴上表示出来如图所示.··················2分根据这些点在数轴上的排列顺序,从左至右分别用“<”连接为:-4<-1.5<0<+112<|-3|<-(-4.5).··················2分 21.(1)解:原式32172315=-+--53=-;··················4分(2)解:原式11121223535=-+-- 11112223355⎛⎫⎛⎫=--+- ⎪ ⎪⎝⎭⎝⎭()42=-+-6=-;·················4分(3)解:原式1198373636=-+-- 1819373366⎛⎫⎛⎫=--+- ⎪ ⎪⎝⎭⎝⎭()33=-+-6=-;·················4分(4)解:原式459459--++=()()454599-++-+=0=.·················4分22.(1)解:()()3333322224⎛⎫÷-+-⨯-- ⎪⎝⎭=()()3328884⎛⎫÷-+-⨯-- ⎪⎝⎭=468-+-=6-;·················4分 (2)153(36)364⎛⎫-+⨯- ⎪⎝⎭123027=-+-9=-.·················4分(3):原式417643422853555=-+-⨯=-+-=-;·················4分 (4):原式31441646⎡⎤⎛⎫=-⨯----⨯ ⎪⎢⎥⎝⎭⎣⎦53466⎛⎫=----⨯ ⎪⎝⎭29366⎛⎫=---⨯ ⎪⎝⎭329=-+26=.·················4分23.(1)解:()()310722----+---+-310722=-+--4=-;·················4分(2)解:3221140.5|24|1429⎛⎫-+-----⨯ ⎪⎝⎭11274444489⎛⎫=-+-----⨯ ⎪⎝⎭1138442=-+-+162=-.(或 )·················4分213-(3)解:原式1115122227⎛⎫=+-⨯ ⎪⎝⎭7527=⨯ 52=;·················4分 (4)解:原式10.75390.1250.1254⎛⎫=+-+- ⎪⎝⎭49=-5=-.·················4分24.(1)解:()()()5.5 3.21 1.50.81++-++-+-=(km ),·················3分 因为上升记为正,下降记为负,所以这架飞机比起飞点高了1千米.·················4分 (2)解:飞机上升消耗的燃油为:()5.51426+⨯=(升),·················5分 飞机下降消耗的燃油为:()3.2 1.50.8211-+-+-⨯=(升),·················6分 261137+=(升),所以这架飞机在这5个特技动作表演过程中,一共消耗37升燃油.·······8分 25.(1)解:因为53108612100+-+--+-=,·················3分 所以小虫回到了起点P ;·················4分 (2)解:531086121054++-+++-+-+++-=(厘米),·················6分 54227÷=(秒),·················7分 所以小虫共爬行了27秒.·················8分 26.(1)解:因为|-3|=3,0.50.5-=,22-=, 2.5 2.5-=,············2分 又3 2.520.5>>>·················3分 所以这8筐白菜中最接近标准重量的这筐白菜重()300.529.5+-=(千克),···4分 (2)解:由题意得:()()()()()1.5320.5122 2.5 5.5+-++-++-+-+-=-(千克),·················6分 所以与标准重量比较,8筐白菜总计不足5.5千克;·················7分 (3)解:由题意得:()()⨯+-⨯=-⨯=308 5.52240 5.52469⎡⎤⎣⎦(元),·················9分所以若白菜每千克售价2元,则出售这8筐白菜可卖469元.········10分。
七年级数学上册第一次月考试卷(附答案)
1. ﹣1 的相反数是( )3A.1B.﹣1C.3D.﹣33 32.某地连续四天每天的平均气温分别是1℃, ﹣1℃, 0℃, 2℃, 则平均气温中最低的是( )A.1℃B.﹣1℃C.0℃D.2℃3.将算式﹣5-(﹣3)+ (﹣4)写成省略加号的和的形式,正确的是( )A.5+3-4B.﹣5﹣3-4C.﹣5+3-4D.﹣5-3+44.一个数是11 0000,这个数用科学记数法表示为().A.11×104B.1.1×105C.1.1×104D.0.11×1065.下列式子成立的是( )A.﹣|﹣5|>4B.﹣3<|﹣3|C.﹣|﹣4|=4D. |﹣5.5|<56.下列四个图形中能围成正方体的是( )A. B. C. D.7.用一个平面截长方体,五棱柱,圆柱和圆锥,不能截出三角形的是( )A.长方体B.无棱柱C. 圆柱D. 圆锥8.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A. |a |>|b|B.ab<0C.b-a>0D.a+b<0(第8 题图)(第9题图)9.一个几何体的三视图如图所示,这个几何体是( )A.三棱锥B.三棱柱C. 圆柱D.长方体10.用纸片和小棒做成下面的小旗,快速旋转小棒,所形成的图形正确顺序是( )A.①②③④B.③④①②C.①③②④D.④②①③11.如图是小明收支明细,则小明当天的收支情况是( )A.收入128 元B.收入32 元C.支出128 元D.支出32 元(第11 题图)(第12 题图)12.a,b 在数轴上位置如图所示,把a ,﹣a,b ,﹣b 按照从小到大的顺序排列,正确的是( )A.﹣b<﹣a<a<bB.﹣a<﹣b<a<bC.﹣b<a<﹣a<bD.﹣b<b<﹣a<a13.如果水位升高2m 时记作+2m,水位下降2m 记作.14.一个正n 棱柱,它有18 条棱,则该棱柱有个面,个顶点.15.若( )-(﹣2)=3,则括号内的数是.16.小明同学到学到领n 盒粉笔,整齐摞在讲桌上,其三视图如图,则n 的值是.(第16 题图)17.若|a|=3 ,|b|=5,且a-b<0,则a+b 的值是.18.规定一种新运算,对于任意有理数a ,b 有a☆b=2a-b+1,请计算1☆[2☆(﹣3)]的值是.19.(12 分)计算:(1)(﹣11)+7-(﹣14)(2)(﹣5.3)+ (﹣3.2)-(﹣5.3)(3)﹣100÷4×(﹣1)520.(15 分)计算题.(1)(+8)-(﹣15)+ (﹣9)-(﹣12)(2)﹣3×2+ (﹣2)2-5(3)36×(﹣2+1 --5)9 3 1221.(6 分)如图是由6 个相同的小正方体组成的几何体,请在指定的位置画出从正面看,左面看,上面看到的这个几何体的形状图.22.(6 分)如图,数轴上有三个点 A ,B ,C ,完成下列问题.(1)A 点表示的数是 ,B 点表示的数是 ,C 点表示的数是(2)将点 B 向右移动 5 个单位长度到点 D ,D 点表示的数是 . (3)在数轴上找点 E ,使点 E 到 B ,C 两点距离相等, E 点表示的数是 (4)将点 E 移动 2 个单位长度后到 F ,点 F 表示的数是 ,23.(6 分) 一个长方形的长为4cm ,宽为 3cm ,将其绕它的一边所在的直线旋转一周,得到一 个立体图形.(1)得到的几何图形的名称为 ,这个现象用数学知识解释为 . (2)求此几何体的体积.24.(6 分)已知 a 是最大的负整数, b 是﹣2 的相反数, c 和 d 互为倒数,求 a+b -cd 的值.25.(9 分)当你把纸对折一次时,就得到 2 层,对折 2 次时,就得 4 层,照这样折下去. (1)计算当对折 5 次时,层数是 .(2)对折 n 次时,层数 m 和折纸的次数 n 的关系是 . (3)如果纸的厚度是 0.1mm ,对折 8 次时,总厚度是 .26.(9 分)某粮食仓库管理员统计 10 袋面粉的总质量,以 100 千克为标准,超过的记为正, 不足记为负,通过称量记录如下: +3 ,+4.5,﹣0.5,﹣2,﹣5,﹣1 ,+2 ,+1,﹣4 ,+1,请回 答下列问题.,.(1)第几袋面粉最接近100 千克.(2)面粉总计超过或不足多少千克.(3)这10 袋面粉总质量是多少千克.27.(9 分)某冷库一天的冷冻食品进出记录如表(运进用正数表示,运出用负数表示)(1)这天冷库的冷冻食品比原来增加了还是减少了,请说明理由.(2)根据实际情况,有两种方案:方案一:运进每吨冷冻食品费用500 元,运出每吨冷冻食品费用800 元.方案二:不管运进还是运出每吨冷冻食品费用都是600 元,从节约运费的角度考虑,选用哪一种方案比较合适.1. A2.B3.C4.B5.B6.C7.C8.D9.B10.B11.D12.C13.如果水位升高 2m 时记作+2m ,水位下降 2m 记作 ﹣2m .14.一个正 n 棱柱,它有 18 条棱,则该棱柱有 8 个面, 12 个顶点. 15.若( )-(﹣2)=3,则括号内的数是 1 .16.小明同学到学到领 n 盒粉笔,整齐摞在讲桌上,其三视图如图,则 n 的值是 7 .(第 16 题图)17.若|a|=3 ,|b|=5,且 a -b <0,则 a+b 的值是 8 或 2 .18.规定一种新运算, 对于任意有理数 a ,b 有 a ☆b=2a -b+1,请计算 1☆[2☆(﹣3)]的值是 ﹣ 5 . 三.解答题。
浙江省杭州市2023-2024学年七年级数学上第一次月考模拟检测试卷(解析版)
浙江省杭州市2023-2024学年七年级数学上第一次月考模拟检测试卷一、选择题(10小题,每小题3分,共30分)A .B .c b -<a c >-用来记录孩子1出生后的天数,如图1所示,孩子1出生后的天数是(天),母亲乙按照母亲甲的做法记录孩子2出生后的天数,如图2所示,则孩子2出生后的天数比孩子1 出生后的天数( )A .少41天B .少42天C .多41天D .多42天9.(2023秋·全国·七年级专题练习)如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上,则数轴上表示2017的点与正方形上的数字对应的是( )A .0B .2C .4D .610.(2023春·广西南宁·七年级南宁二中校考开学考试)如图,在探究“幻方”、“幻圆”的活动课上,学生们感悟到我国传统数学文化的魅力.一个小组尝试将数字这12 个数填入“六角幻星”图中,使6条边上四个数之和都相等.部分数字已填入圆圈中,则的值为( )A .B .C .3D .4321017+37+27+47= 508⨯⨯⨯⨯5,4,3,2,1,0,1,2,3,4,5,6-----a 4-3-三、解答题(8小题,共66分)①若点B表示的数为2,则在数轴上点2MN MN(1)直接写出:线段的长度是,线段的中点表示的数为浙江省杭州市2023-2024学年七年级数学上第一次月考模拟检测试卷一、选择题(10小题,每小题3分,共30分)A .B .c b-<a c >-故选:A .【点睛】本题考查了数轴的性质,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.7.(2023秋·江苏·七年级专题练习)用“*”定义一种新运算:对于任何有理数a 和b ,规定,如,则的值为( )A .B .8C .D .4【答案】C【分析】按照新定义进行代值,可得,进行计算即可求解.【详解】解:;故选:C .【点睛】本题主要考查了在新定义下含有乘方的有理数的混合运算,理解新定义是解题的关键.8.(2023·浙江温州·校考二模)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.母亲甲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子1出生后的天数,如图1所示,孩子1出生后的天数是(天),母亲乙按照母亲甲的做法记录孩子2出生后的天数,如图2所示,则孩子2出生后的天数比孩子1 出生后的天数( )A .少41天B .少42天C .多41天D .多42天【答案】A 【分析】根据已知算法求出孩子2出生后的天数,相减即可得到答案.【详解】解:由已知算法可知,孩子2出生后的天数是(天),(天),孩子2出生后的天数比孩子1 出生后的天数少41天,故选A .2*a b ab b =+22*323315=⨯+=4*2-8-4-2422-⨯+4*2-2422=-⨯+4=-321017+37+27+47= 508⨯⨯⨯⨯321017273757467⨯+⨯+⨯+⨯=46750841-=- ∴【点睛】本题考查了含乘方的有理数混合运算,理解题意,掌握“结绳计数”满七进一的计算方法是解题关键.9.(2023秋·全国·七年级专题练习)如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上,则数轴上表示2017的点与正方形上的数字对应的是( )A .0B .2C .4D .6【答案】B 【分析】表示2017的点在﹣1的右侧,从点﹣1到2017共2018个单位长度,根据2018÷8=252……2,是252圈余2个单位长度,所以对应的数字就是2.【详解】解:因为正方形的周长为8个单位长度,所以正方形的边长为2个单位长度.表示2017的点与表示﹣1的点的距离等于2017﹣(﹣1)=2018个单位长度,因为2018÷8=252……2,所以252圈余2个单位长度,所以对应的数字是2.故选:B .【点睛】此题考查了数轴,解题的关键是找出正方形的周长与数轴上的数字的对应关系.10.(2023春·广西南宁·七年级南宁二中校考开学考试)如图,在探究“幻方”、“幻圆”的活动课上,学生们感悟到我国传统数学文化的魅力.一个小组尝试将数字这12 个数填入“六角幻星”图中,使6条边上四个数之和都相等.部分数字已填入圆圈中,则的值为( )5,4,3,2,1,0,1,2,3,4,5,6-----aA .B .C .3D .4【答案】B 【分析】共有个数,每一条边上4个数的和都相等,共有六条边,所以每个数都加了两遍,这个数共加了两遍后和为,所以每条边的和为,然后利用这个原理将剩余的数填入圆圈中,即可得到结果.【详解】解:因为共有个数,每一条边上个数的和都相等,共有六条边,所以每个数都加了两遍,这个数共加了两遍后和为,所以每条边的和为,所以这一行最后一个圆圈数字应填,则所在的横着的一行最后一个圈为,这一行第二个圆圈数字应填,目前数字就剩下,这一行剩下的两个圆圈数字和应为,则取中的,这一行剩下的两个圆圈数字和应为,则取中的,这两行交汇处是最下面那个圆圈,应填,所以这一行第三个圆圈数字应为,则所在的横行,剩余3个圆圈里分别为,要使和为2,则为故选:【点睛】本题主要考查了幻方的应用,找到每一行的规律并正确进行填数是解题的关键.4-3-1212122124121225,1,5--3a 32,1,1--44,3,0,6--1,54-4,3,0,6--4,0-2,2-24,3,0,6--4,6-4-1,50a 2,0,3a 3-B三、解答题(8小题,共66分)(2)根据数轴可知:①若点B表示的数为2,则在数轴上点点N 表示的数为:;点P 表示的数为:;点N 表示的数为:;点P 表示的数为:253-+=51322-=257--=-522--=-2MN MN(1)直接写出:线段的长度是,线段的中点表示的数为。
人教版七年级上册数学第一次月考试卷(带答案)
人教版七年级上册数学第一次月考试卷(带答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若a ≠0,b ≠0,则代数式||||||a b ab a b ab ++的取值共有( ) A .2个 B .3个 C .4个 D .5个2.实数a 在数轴上的位置如图所示,则化简22(4)(11)-+-a a 结果为( )A .7B .-7C .215a -D .无法确定3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .645.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x -=---有正整数解,则满足条件的整数a 的值之积为( ) A .28B .﹣4C .4D .﹣26.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合( )A .0B .1C .2D .37.下列各组数中,能作为一个三角形三边边长的是( ) A .1,1,2B .1,2,4C .2,3,4D .2,3,58.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( ) A .3 B .7 C .3或7 D .1或79.已知23a b=(a ≠0,b ≠0),下列变形错误的是( )A .23a b = B .2a=3b C .32b a = D .3a=2b10.已知a m =3,a n =4,则a m+n 的值为( ) A .7B .12C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.正五边形的内角和等于______度.4.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为______cm.5.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.一个正多边形的一个外角为30°,则它的内角和为________.三、解答题(本大题共6小题,共72分)1.解方程组:23 328 x yx y-=⎧⎨+=⎩2.已知关于x的不等式xa<7的解也是不等式2752x a a->-1的解,求a的取值范围.3.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD,若∠EFG=90°,∠E=35°,求∠EFB的度数.4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图扇形D的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?6.小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物 6 5 1140 第二次购物 3 7 1110 第三次购物9 8 1062(1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、D5、B6、B7、C8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、150°3、5404、225、AC=DF(答案不唯一)6、1800°三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=⎩2、-109≤a<03、20°4、(1)详略;(2)70°.5、(1)补图见解析;(2)27°;(3)1800名6、(1)三;(2)商品A的标价为90元,商品B的标价为120元;(3)6折.。
七年级数学上册第一次月考试卷
七年级数学上册第一次月考试卷为好成绩,知识渊博,创造力多,分秒必争,只为成功,祝你七年级数学月考取得好成绩,期待你的成功!小编整理了关于七年级数学上册第一次月考试卷,希望对大家有帮助!七年级数学上册第一次月考试题一、选择题(每小题3分,共36分)1、在下列各数:,,,,,中,负数有( )A.2个B.3个C.4个D.5个2、水池中的水位在某天八个不同时间测得的记录如下:(规定与前一天相比上升为正,单位:cm)+3,-6,-1,+5,-4,+2,-3,-2,那么这天水池中水位的最终变化情况是( )A.上升6cmB.下降6cmC.没升没降D.下降26cm3、下列各式中,一定成立的是( )A. B. C. D.4、下列说法正确的是( )A.有理数包括正整数、零和负分数B. 不一定是整数C.-5和+(-5)互为相反数D.两个有理数的和一定大于每一个加数5、如图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C,若点C表示的数为1,则点A表示的数是( )A.7B.3C.-3D.-26、下列结论正确的是( )A.若,则B.若,则C.若,则D. 一定是负数7、若是有理数,则一定是( )A.零B.非负数C.正数D.负数8、小于2014且不小于-2013的所有整数的和是( )A.0B.1C.2013D.20149、下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③ ;④(-36)÷(-9)=-4. 其中正确的个数是( )A.1个B.2个C.3个D.4个10、下列各式中的大小关系成立的是( )A. B. C. D.11、按下面的程序计算,若开始输入的值为正数,最后输出的结果为656,则满足条件的的不同值最多有( )A.2个B.3个C.4个D.5个12、在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A.1,2B.1,3C.4,2D.4,3二、填空题(每小题3分,共21分)13、的绝对值的倒数是 .14、 = .15、若是-9的相反数,则 = .16、若,则 = .17、若,则在,,,,0这五个数中,最大的数是 .18、已知,化简 = .19、绝对值比2大并且比6小的整数共有个.20、已知,,且,那么 = .21、如图是一个由六个小正方体堆积而成的几何体,每个小正方体的六个面上都分别写着-1,2,3,-4,5,-6六个数字,那么图中所有看不见的面上的数字和是 .22、从-3,-2,-1,4,5中取3个不同的数相乘,可得到的最大乘积为,最小乘积为,则 = .23、在计算机程序中,二叉树是一种表示数据结构的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点的总数为3,三层二叉树的结点总数为7,四层二叉树的结点总数为15…,照此规律,七层二叉树的结点总数为 .三、解答题24、计算(每小题5分,共15分)(1) (2)25、(6分)把,,4,-3,5分别表示在数轴上,并用“<”号把它们连接起来.26、(4分)(探究题)①若数轴上点AB对应的数分别是-1、-4,则线段AB的中点C对应的数是 ;②若数轴上点AB对应的数分别是2、4,则线段AB的中点C对应的数是 ;③若数轴上点AB对应的数分别是-2、3,则线段AB的中点C对应的数是 ;④若数轴上点AB对应的数分别是a、b,则线段AB的中点C对应的数是 .27、(6分)阅读下列材料并解决有关问题.我们知道,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x-2|时,可令x+1=0和x-2=0,分别求得x=-1,x=2(称-1,2分别为|x+1|与|x-2|的零点值).在实数范围内,零点值x=-1和x=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)x<-1;(2)-1≤x<2;(3)x≥2.从而化简代数式|x+1|+|x-2|可分以下3种情况:(1)当x<-1时,原式=-(x+1)-(x-2)=-2x+1;(2)当-1≤x<2时,原式=x+1-(x-2)=3;(3)当x≥2时,原式=x+1+x-2=2x-1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x+3|和|x-5|的零点值;(2)化简|x+3|+|x-5|.七年级数学上册第一次月考试卷参考答案一、选择题1 2 3 4 5 6 7 8 9 10 11 12C B A BD B B A B D C A二、填空题13、14、-815、416、-2717、618、-119、620、-2或-821、-1322、23、127三、解答题24、(1)6 (2)-31 (3)25、-3< < <4<526、①-2.5 ②3 ③0.5 ④27、(1)|x+3|和|x-5|的零点值分别为-3、5.(2)当x<-3时,原式=2x+2;当-3≤x<5时,原式=8;当x≥5时,原式=2x-2.。
2023-2024西工大附中七年级上学期数学第一次月考试卷附详细答案
2023-2024西工大附中七年级上学期数学第一次月考试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个选项符合题意)1.−23的相反数是( )A.23B.−23C.32D.−322.某药品说明书上标有该药品保存的适宜温度是(20±2)℃,下列温度适合保存该药品的是( )A.15℃B.16℃C.17℃D.21℃ 3.下列几何体中,从正面看和从左面看形状相同的几何体有( )A.1个B.2个C.3个D.A 个4.下面说法中正确的是( )A.有理数的绝对值一定比0大B.互为相反数的两个数的绝对值相等C.如果两个数的绝对值相等,那么这两个数相等D.有理数的相反数一定比0小 5.将一个正方体的表面沿某些棱剪开,表面展开图不可能是( )6.下列计算正确的是( )A.(−1)+(−3)=4B.(−1) −(−3)= −2C.(−1)×(−3)=3D.(−1)÷(−3)= −3 7.已知|x −5|+|y+4|=0,则x y 的值为( )A.20B.−20C.−9D.9A. B. C. D.8.某棱柱共有14个顶点,用一个平面去截该棱柱,截面不可能是( ) A.十一边形 B.五边形 C.三角形 D.九边形9.已知有理数a ,b 在数轴上对应的位置如图所示,下列式子计算结果为正数的是( )A.a+bB.a −bC.abD.−a −b 10.已知|x |=3,|y|=7,且|x +y|=x +y ,则y −x 的值为( )A.10B.−4C.10或4D.−10或−4二、填空题(本大题共6小题,每小题3分,共18分) 11.比较大小:−23______−34(填“<”或“>”)。
12.在−0.5,3.75,−201,|− 43|,−0.83这些数中,负分数有______个。
13.在数轴上点A 表示的数为−2,点B 在点A 的右侧,且与点A 相距3个单位长度,则点B 表示的数为______。
2024年江苏南京七年级数学下学期第一次月考模拟练习试卷
2024年江苏省南京市七年级数学下学期第一次月考模拟练习试卷
(测试内容:第7-8章满分:100分)
学校:___________姓名:___________班级:___________考号:___________
.如图所示的图案分别是四种汽车的车标,其中可以看作是由基本图案”经过平移得到的是(....
2.如图,∠1和∠2是同位角的图形有( )
A.1个B.2个C.3个D.4个
A.CF B.BE C.AD
第3题第6题
.下列运算中,正确的是()
∠的度数为.
则DAE
第12题第13题第14题
13.如图,将一副三角尺按如图所示的方式摆放,则∠AED的大小为
∠的度数为
52
∠=°.已知AM与CB平行,则MAC
BAC
图1 图2
条件的t的值为.
三、解答题(本大题10个小题,共68分.)
17.计算:
′′的面积为______.
AA B B
∴∥.(________________________
AD BC
20.如图,已知∥
DE AC,CD
(1)求证:CD EF
∥.
α
DC边上,且∠1=∠2.
(3)在(2)的条件下,若FH⊥BC,∠C=30°,求∠F的度数.为。
山西省太原市太原师范学院附属中学2022-2023学年七年级上学期第一次月考数学试卷(含答案)
出题人:陈潇 校对人:李佳太原师范学院附属中学2022-2023学年第一学期初一年级数学限时训练一、选择题(每题3分,共30分) 1.7-的绝对值是( ) A .17-B .17C .7-D .72.若向北走10m 记作10m +,则向南走3m 记作( ) A .3m +B .3m -C .7m +D .7m -3.在如图所示的几何体中,俯视图和左视图相同的是( )4.在数5-.2,0,23,2011,71-,3.14中,非负整数的个数是( ) A .2B .3C .4D .55.如图所示的立方体,如果把它展开,可以是下列图形中的( )6.有理数a ,b 在数轴上对应的位置如图所示,则下列选项正确的是( )A .0a b +<B .0a b +>B .0b a -=D .0b a ->7.下列四个选项绕直线旋转一周可以得到如图立体图形的是( )8.在0,1-,12-,5-这四个数中,比2-小的数是( ) A .0B .1-C .12-D .5-9.如图,已知骰子相对两面的点数之和为7,下列图形为该骰子表面展开图的是( )10.如图,将3-,2-,1-,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a ,b ,c 分别表示其中的一个数,则b a c -+的值为( )A .5-B .1-C .0D .1二、填空题(每题2分,共16分) 11.比2-大3的数是____________. 12.比较大小:23-____________12-(填“>”或“<”).13.诗人张协在《杂诗十首》中用“腾云似涌烟,密雨如散丝”描写雨的细密。
其中“细雨如散丝”表现的数学原理是____________.14.已知图1的小正方形和图2中所有的小正方形边长都相等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是能围成一个正方体的.那么安放的位置不能是____________.15.某粮店出售的三种品牌的面粉袋上,分别标有质量为()250.1kg ±,()250.2kg ±、()250.3kg ±的字样,从中任意拿出两袋,它们的质量最多相差____________kg .16.如图所示,用经过A 、B 、C 三点的平面截去正方体的一角,变成一个新的多面体,若这个多面体的面数为m ,棱数为n ,则m n +=____________17.数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a 和b ,有a ☆2b a b =-,请你根据新运算,计算(2☆3)☆2的值是____________.18.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将数轴向右对折,若点A 对应的点A '落在点B 的右边,并且2A B '=,则C 点表示的数是____________.三、解答题(本题共6个小题,共54分) 计算(每题4分,共16分) 191.()()6139---+-192.()8115+--- 193.1443512365757⎛⎫⎛⎫⎛⎫⎛⎫----+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭194.()110.5 2.7542⎛⎫+---+ ⎪⎝⎭200.(5分)请根据图示的对话解答下列问题.(1)a =____________,b = ____________,c = ____________; (2)请你帮助小颖完成这个问题:求46a b c -+-+-的值. 210.(7分)在数轴上表示下列各数:3-,122, 1.5-,0,35+.,4.并按照从大到小的顺序排列,用“>”连接起来.220.(9分)如图是由棱长都为1cm 的6块小正方体组成的简单几何体.请在方格中画出该几何体的三个视图.23.(8分)2020年12月,太原市第一条地铁线——2号线全线开通运营,太原成为我省第一座开通地铁的城市。
苏教版七年级数学上册第一次月考测试卷及答案【可打印】
苏教版七年级数学上册第一次月考测试卷及答案【可打印】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,12.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等4.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45°B .60°C .75°D .85°5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A.122°B.151°C.116°D.97°6.如图,下列条件:①,②,③,④,⑤中能判13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠l l的有()断直线12A.5个B.4个C.3个D.2个7.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠38.比较2,5,37的大小,正确的是()A.3<<275257<<B.3C.3725<<<<D.37529.如图,已知AE是ΔABC的角平分线,AD是BC边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE的大小是()A.5°B.13°C.15°D.20°10.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm2二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P 从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B 运动.若设点P运动的时间是t秒,那么当t=_______________,△APE的面积等于6.3.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.4.如果一个数的平方根是a+6和2a﹣15,则这个数为________.5.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为________ cm.6.如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=34°,则∠BOD为________.三、解答题(本大题共6小题,共72分)1.解方程组:23328x y x y -=⎧⎨+=⎩2.设m 为整数,且关于x 的一元一次方程(5)30m x m -+-=(1)当2m =时,求方程的解;(2)若该方程有整数..解,求m 的值.3.如图1,BC ⊥AF 于点C ,∠A +∠1=90°.(1)求证:AB ∥DE ;(2)如图2,点P 从点A 出发,沿线段AF 运动到点F 停止,连接PB ,PE .则∠ABP ,∠DEP ,∠BPE 三个角之间具有怎样的数量关系(不考虑点P 与点A ,D ,C 重合的情况).并说明理由.4.尺规作图:校园有两条路OA 、OB ,在交叉路口附近有两块宣传牌C 、D ,学校准备在这里安装一盏路灯,要求灯柱的位置P 离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P .(不写画图过程,保留作图痕迹)5.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、C5、B6、B7、C8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-22、1.5或5或93、04、815、556、56°三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=⎩2、(1)13x=-;(2)6m=或4m=,7m=或3m=3、(1)略(2)∠BPE=∠DEP﹣∠ABP,略.4、略.5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、略。
2022年人教版数学七年级上册第一次月考试卷含答案
七年级数学第一次月考试卷满分:120分时间:90分钟一.选择题(每小题3分,共30分)1.若气温上升2℃记作+2℃,则气温下降3℃记作( )A.-2℃B.+2℃C.-3℃D.+3℃2.下列各对关系中,不具有相反意义的量是( ) A.收入100元与支出50元 B.气温上升3℃与下降2℃ C.前进5m 与后退5mD.身高增加2cm 与体重减少2kg3.在数−12,π,−3.4,0,+3,−73 中,属于非负整数的个数是( )A.4B.3C.2D.14.如图,数轴上的两个点分别表示数a 和-2,则a 可以是( )A.-3B.-1C.1D.25.下列比较大小错误的是( )A.-0.02<1B.-0.5>-0.6C.−(−34)>−|−0.75| D.−227>−3.146.若|a-1|+|b-2|=0,则a+b 的相反数是( )A.1B.3C.-3D.-27.在数轴上与表示-2的点距离等于3的点所表示的数是( )A.1B.5C.1或5D.1或-58.已知|2x-1|=7,则x 的值为( )A.x=4或x=-3B.x=4C.x=3或x=-4D.x=-39.如果|-a|=-a,下列成立的是( )A.a<0B.a≤0C.a>0D.a≥010.如果x 为有理数,式子2020-|x-3|存在最大值,那么这个最大值是( )A.2017B.2018C.2020D.2023二.填空题(每小题4分,共28分)11.在-2,+3,5,0,-23,−0.7,11中,负数有 个.12.A 、B 、C 三地的海拔高度分别是﹣102米、﹣80米、﹣25米,则最高点比最低点高 米. 13.-3的倒数是 ,-76的绝对值是 ,-123的倒数的相反数是 . 14.绝对值不大于2的整数有 .15.已知a,b 在数轴上的位置如图所示,则化简|a-b|+|a+b|的结果是 .16.定义一种新运算:ab =(a +1)÷b 2,则2△(-3△4)= .17.设[x]表示不超过x 的整数中最大的整数,如:[1.99]=1,[-1.02]=-2,根据此规律计算:[-3.4]-[-0.6]= .三、解答题(一)(本大题3小题,每小题6分,共18分) 18.把下列各数分别填入相应的集合:+26,0,−8,π,−4.8,−17,227,0.6,−58.负有理数集{ ……}; 非负数集{ ……}; 分数集{ ……}.19.计算:(1)43×(−52+34)÷(−73) (2)−24×(−56+38−112)20.把下列各数表示在数轴上,然后把这些数按从大到小的顺序用“>”连接起来.−2,−|−34|,−(−1.5),+(−313).四、解答题(二)(本大题3小题,每小题8分,共24分)21.求值题:已知|x|=2,|y|=5,且xy<0,求2x-3y的值.22.已知a,b互为相反数,c,d互为倒数,m的绝对值为4,求5(a+b)+6−7m的值..cd23.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:km):+14、-9、+8、–7、+13、–6、+10、-5.(1)通过计算说明:B地在A地的 (选填“东边”或“西边”)方向,与A地相距千米?(2)救灾过程中,最远处离出发点A是 km;(3)若冲锋舟每千米耗油0.5L,油箱容量为29L,求途中还需补充多少升油.五、解答题(三)(本大题2小题,每小题10分,共20分)24.【阅读材料】问题:如何计算11×2+12×3+13×4+⋯+119×20呢?小红带领的数学兴趣小组通过探索完成了这道题的计算.他们的解法如下:解:原式(119−120)=(1−12)+(12−13)+⋯+(119−120)=1−120=1920.根据材料,请你完成下列计算:(1)计算:21×3+23×5+25×7+⋯+221×23;(2)直接写出结果:13+115+135+163+199=¯;(3)计算:11×5+15×9+19×13+⋯+12015×201925.问题探索:如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30:若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为 cm.(2)图中点A所表示的数是 ,点B所表示的数是 .实际应用:由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:(3)一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要32年才出生;你若是我现在这么大,我就106岁啦!”请问妙妙现在多少岁了?七年级数学第一次月考试卷答案满分:120分时间:90分钟一.选择题(每小题3分,共30分)1.若气温上升2℃记作+2℃,则气温下降3℃记作( )A.-2℃B.+2℃C.-3℃D.+3℃ 【答案】C2.下列各对关系中,不具有相反意义的量是( ) A.收入100元与支出50元 B.气温上升3℃与下降2℃ C.前进5m 与后退5mD.身高增加2cm 与体重减少2kg 【答案】D3.在数−12,π,−3.4,0,+3,−73中,属于非负整数的个数是( )A.4B.3C.2D.1 【答案】C4.如图,数轴上的两个点分别表示数a 和-2,则a 可以是( )A.-3B.-1C.1D.2 【答案】A5.下列比较大小错误的是( )A.-0.02<1B.-0.5>-0.6C.−(−34)>−|−0.75|D.−227>−3.14【答案】D6.若|a-1|+|b-2|=0,则a+b 的相反数是( )A.1B.3C.-3D.-2 【答案】C7.在数轴上与表示-2的点距离等于3的点所表示的数是( )A.1B.5C.1或5D.1或-5 【答案】D8.已知|2x-1|=7,则x 的值为( )A.x=4或x=-3B.x=4C.x=3或x=-4D.x=-3 【答案】A9.如果|-a|=-a,下列成立的是( )A.a<0B.a≤0C.a>0D.a≥0 【答案】B10.如果x 为有理数,式子2020-|x-3|存在最大值,那么这个最大值是( )A.2017B.2018C.2020D.2023 【答案】C二.填空题(每小题4分,共28分)11.在-2,+3,5,0,-23,−0.7,11中,负数有 个.【答案】312.A 、B 、C 三地的海拔高度分别是﹣102米、﹣80米、﹣25米,则最高点比最低点高 米. 【答案】13.-3的倒数是 ,-76的绝对值是 ,-123的倒数的相反数是 . 【答案】-13763514.绝对值不大于2的整数有 . 【答案】-2,-1,0,1,215.已知a,b 在数轴上的位置如图所示,则化简|a-b|+|a+b|的结果是 .【答案】-2a16.定义一种新运算:ab =(a +1)÷b2,则2△(-3△4)= .【答案】-617.设[x]表示不超过x 的整数中最大的整数,如:[1.99]=1,[-1.02]=-2,根据此规律计算:[-3.4]-[-0.6]= . 【答案】-3三、解答题(一)(本大题3小题,每小题6分,共18分) 18.把下列各数分别填入相应的集合:+26,0,−8,π,−4.8,−17,227,0.6,−58.负有理数集{ ……}; 非负数集{ ……}; 分数集{ ……}. 【答案】−8,−4.8,−17,−58+26,0,π,227,0.64.8,227,0.6,−58.19.计算:(1)43×(−52+34)÷(−73) (2)−24×(−56+38−112)【答案】1 1320.把下列各数表示在数轴上,然后把这些数按从大到小的顺序用“>”连接起来. −2,−|−34|,−(−1.5),+(−313).【答案】图略 −(−1.5)>−|−34| >−2 >+(−313)四、解答题(二)(本大题3小题,每小题8分,共24分)21.求值题:已知|x|=2,|y|=5,且xy<0,求2x-3y的值.【答案】-1922.已知a,b互为相反数,c,d互为倒数,m的绝对值为4,求5(a+b)+6−7m的值..cd【答案】-22或3423.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:km):+14、-9、+8、–7、+13、–6、+10、-5.(1)通过计算说明:B地在A地的 (选填“东边”或“西边”)方向,与A地相距千米?(2)救灾过程中,最远处离出发点A是 km;(3)若冲锋舟每千米耗油0.5L,油箱容量为29L,求途中还需补充多少升油【答案】()东边 18 (2)23 (3)7.五、解答题(三)(本大题2小题,每小题10分,共20分)24.【阅读材料】问题:如何计算11×2+12×3+13×4+⋯+119×20呢?小红带领的数学兴趣小组通过探索完成了这道题的计算.他们的解法如下:解:原式(119−120)=(1−12)+(12−13)+⋯+(119−120)=1−120=1920.根据材料,请你完成下列计算:(1)计算:21×3+23×5+25×7+⋯+221×23;(2)直接写出结果:13+115+135+163+199=¯;(3)计算:11×5+15×9+19×13+⋯+12015×2019+12019×2023【答案】(1)2223(2)511(3)1011404625.问题探索:如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30:若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为 cm.(2)图中点A所表示的数是 ,点B所表示的数是 .实际应用:由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:(3)一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要32年才出生;你若是我现在这么大,我就106岁啦!”请问妙妙现在多少岁了?【答案】(1)8 (2)14 22 (3)14。
2021-2022学年-有答案-浙江省杭州市某校七年级(上)第一次月考模拟数学试卷
2021-2022学年浙江省杭州市某校七年级(上)第一次月考模拟数学试卷一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1. 太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为( ) A.1.5×108 B.1.5×109 C.0.15×109 D.15×1072. 若有理数a 、b 满足ab >0,且a +b <0,则下列说法正确的是( ) A.a ,b 可能一正一负 B.a ,b 都是正数C.a ,b 都是负数D.a ,b 中可能有一个为03. 如果一个数的平方等于它的倒数,那么这个数一定是( ) A.0 B.1 C.−1 D.±14. 一种商品每件进价为a 元,按进价增加25%定出售价,后因库存积压降价,按售价的九折出售,每件还能盈利( ) A.0.125a 元 B.0.15a 元 C.0.25a 元 D.1.25a 元5. 在下列说法中,正确的个数是( )①任何一个有理数都可以用数轴上的一个点来表示; ②数轴上的每一个点都表示一个有理数; ③任何有理数的绝对值都不可能是负数; ④每个有理数都有相反数. A.1 B.2 C.3 D.46. 用四舍五入法按要求对0.05019分别取近似值,其中错误的是( ) A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050 2(精确到0.0001)7. 如果一对有理数a ,b 使等式a −b =a ⋅b +1成立,那么这对有理数a ,b 叫做“共生有理数对”,记为(a, b),根据上述定义,下列四对有理数中不是“共生有理数对”的是( ) A.(3, 12) B.(2, 13)C.(5, 23)D.(−2, −13)8. 把前2018个数1,2,3,4,…,2018的每一个数的前面任意填上“+”号或“-”号,然后将它们相加,则所得之结果为( )A.偶数B.奇数C.正数D.有时为奇数,有时为偶数9. 如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2018次输出的结果为()A.3B.6C.322009D.321009+3×100910. 把棱长为1的正方体摆成如图所示的形状,从上向下数,第一层1个,到第二层有3个,第三层6个,第四层10个…按这种规律摆放,到第2018层的正方体个数是()A.2036162B.4074342C.2037171D.2038180二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!两个有理数之积是−1,已知一个数是−217,则另一个数是________.观察一组数2,5,10,17,26,37,…,则第100个数是________.有理数a在数轴上离开原点的距离为5,有理数b在数轴上离开原点的距离为3,则a+ b=________.现定义两种运算“⊗”、“⊕”(其余符号定义如常),对于任意两个数a,b,a⊕b=|2a+b|−2,a⊗b=|2a×b|−2,则−3⊗(2⊕3)的值是________.观察下列等式,找出规律然后空格处填上具体的数字.1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,1+3+5+7+9+11=________=________.根据规律填空:1+3+5+7+9+...+99=________=________.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是________.三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!计算下列各式:(1)999×11845+999×(−15)−999×1835(2)23×(1−14)×0.5−14×(−3)÷(−12)3(3)−12+3×(−2)3+|−6|÷(−13)2(4)2.75−1×[−512−(−0.5)+(−314)]在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.已知数轴上有A,B,C三点,它们表示的有理数分别为6,−4,x.(1)若x=−10,求AC+BC的值;(2)若AC=3BC,求x的值.(1)如果|m−5|+(n+6)2=0,求(m+n)2008+m3的值;(2)已知实数a,b,c,d,e,且ab互为倒数,c,d互为相反数,e的绝对值为2,求1 2×ab+c+d5+e2的值.对于任意有理数a和b,我们规定:a∗b=a2−2ab,如3∗4=32−2×3×4=−15.(1)求5∗6的值;(2)若(−3)∗(x+2)=10,求x的值.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是________数(填“无理”或“有理”),这个数是________;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是________;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,−1,+3,−4,−3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?出租车司机李师傅从上午8:00∼9:15在厦大至会展中心的环岛路上营运,共连续运载十批乘客.若规定向东为正,向西为负,李师傅营运十批乘客里程如下:(单位:千米)+8,−6,+3,−7,+8,+4,−9,−4,+3,+3(1)将最后一批乘客送到目的地时,李师傅距离第一批乘客出发地的位置怎样?距离多少千米?(2)上午8:00∼9:15李师傅开车的平均速度是多少?(3)若出租车的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则李师傅在上午8:00∼9:15一共收入多少元?参考答案与试题解析2021-2022学年浙江省杭州市某校七年级(上)第一次月考模拟数学试卷一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.【答案】A【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:由题意得,将150 000 000用科学记数法表示为:1.5×108.故选A.2.【答案】C【考点】有理数大小比较有理数的乘法有理数的加法【解析】根据有理数的性质,因为ab>0,且a+b<0,可得a,b同号且两者都为负数可排除求解.【解答】若有理数a、b满足ab>0,则a,b同号,排除A,D选项;且a+b<0,则排除a,b都是正数的可能,排除B选项;则说法正确的是a,b都是负数,C正确.3.【答案】B【考点】有理数的乘方倒数【解析】根据倒数的定义可知.【解答】一个数的平方等于它的倒数,那么这个数一定1.4.【答案】A【考点】列代数式【解析】依题意列出等量关系式:盈利=售价-成本.解答时按此关系式直接求出结果.【解答】依题意可得,a×(1+25%)×0.9−a=0.125a元.5.【答案】C【考点】有理数的概念及分类绝对值【解析】根据有理数与数轴的关系,可判断(1)、(2),根据绝对值的意义,可判断(3),根据相反数的意义,可判断(4).【解答】解:①由数轴与有理数的关系可知,所有的有理数都可以用数轴上的点表示出来,故①正确;②数轴上的每一个点都表示一个实数,故②错误;③一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,所以绝对值不可能为负数,故③正确;④每个有理数都有相反数,故④正确.故选C.6.【答案】C【考点】近似数和有效数字【解析】A、精确到0.1就是保留小数点后一位,因为小数点后第二位是5,进一得0.1;B、精确到百分位,就是保留小数点后两位,因为小数点后第三位是0,舍,得0.05;C、精确到千分位,就是保留小数点后三位,因为小数点后第四位是1,舍,得0.050;D、精确到0.0001,就是保留小数点后四位,因为小数点后第五位是9,进一,得0.0502;【解答】解:A,0.05019≈0.1(精确到0.1),所以此选项正确;B,0.05019≈0.05(精确到百分位),所以此选项正确;C,0.05019≈0.050(精确到千分位),所以此选项错误;D ,0.05019≈0.0502(精确到0.0001),所以此选项正确. 故选C . 7. 【答案】 D【考点】有理数的概念及分类 【解析】利用题中的新定义判断即可. 【解答】A 、由(3, 12),得到a −b =52,a ⋅b +1=32+1=52,不符合题意; B 、由(2, 13),得到a −b =53,a ⋅b +1=23+1=53,不符合题意;C 、由(5, 23),得到a −b =133,a ⋅b +1=103+1=133,不符合题意;D 、由(−2, −13),得到a −b =−53,a ⋅b +1=23+1=53,符合题意, 8. 【答案】 B【考点】规律型:数字的变化类 规律型:点的坐标 规律型:图形的变化类 【解析】由两个数的和与差的奇偶性相同可知,本题只需将前2018个数1,2,3,4,…,2018相加,根据结果的奇偶性判断即可. 【解答】∵ 1+2+3+ (2018)2018×(1+2018)2=1009×2019,结果是奇数,∴ 把前2018个数1,2,3,4,…,2018的每一个数的前面任意填上“+”号或“-”号,然后将它们相加,则所得之结果为奇数. 9. 【答案】 A【考点】规律型:数字的变化类 规律型:点的坐标 列代数式求值 规律型:图形的变化类 【解析】先依次求出输出的值,再找出规律,最后得出答案即可.【解答】当输入的x值为48时,输出的结果依次为24、12、6、3、6、3、6、3、…,∵2018−2=2016,∴第2018次输出的结果为3,10.【答案】C【考点】规律型:数字的变化类规律型:点的坐标规律型:图形的变化类认识立体图形【解析】根据每层的小立方体的个数规律,得出第2018层的个数用1+2+3+……+2018进行计算即可.【解答】第一层1个=1,第二层3个=1+2,第三层6个=1+2+3,第四层10个=1+2+3+4…按这种规律摆放,第2018层有:1+2+3+4+……+2018=(1+2018)×20182= 2037171,二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!【答案】715【考点】有理数的乘法【解析】已知积和其中的一个因数,求另一个因数用除法.根据题意先列出除法算式,再计算出结果.【解答】−1÷(−21 7 )=−1÷(−157)=7 15【答案】10001【考点】规律型:图形的变化类【解析】根据数列得出每个数即为序数的平方与1的和,据此可得.【解答】∵第1个数2=12+1,第2个数5=22+1,第3个数10=32+1,…∴第n个数为n2+1,当n=100时,n2+1=1002+1=10001,【答案】【考点】数轴【解析】先根据有理数a在数轴上离开原点的距离为5,有理数b在数轴上离开原点的距离为3,分别得出a和b的可能值,分别两两相加即可得答案.【解答】∵有理数a在数轴上离开原点的距离为5,∴a=±5∵有理数b在数轴上离开原点的距离为3∴b=±3∴a+b=5+3=8或a+b=5+(−3)=2或a+b=−5+3=−2或a+b=−5+(−3)=−8【答案】28【考点】有理数的混合运算【解析】根据a⊕b=|2a+b|−2,a⊗b=|2a×b|−2,代入计算即可.【解答】∵a⊕b=|2a+b|−2,a⊗b=|2a×b|−2,∴−3⊗(2⊕3)=−3⊗(|2×2+3|−2),=−3⊗5,=|2×(−3)×5|−2,=28,【答案】36,62,2500,502【考点】规律型:数字的变化类【解析】根据已知等式知,从1开始的连续n个奇数的和等于序数加1和的平方,据此可知第49个等式的和为502,第n个等式的和为(n+1)2.【解答】∵第1个等式:1+3=4=22;第2个等式:1+3+5=9=32;第3个等式:1+3+5+7=16=42;第4个等式:1+3+5+7+9=25=52;…∴第5个等式:1+3+5+7+9+11=36=62第n个等式:1+3+5+7+9+...+(2n+1)=(n+1)2,当2n+1=99,即n=49时,1+3+5+7+...+99=502=2500,【答案】12【考点】有理数的加法【解析】根据三角形的每条边上的三个数的和S都相等,把1到6这6个数较大的三个数放在三个顶点处即可求解.【解答】将4、5、6填入三角形的三个顶点处,5+1+6=4+3+5=4+2+6=12三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!【答案】原式=9995(594−1−93)=9995×500=99900;原式=8×(−98)×(−8)=72;原式=−1−24+6×9=−25+54=29;原式=411×(−112+12−134)=−2+211−1311=−2−1=−3.【考点】零指数幂、负整数指数幂实数的运算【解析】(1)直接利用有理数的乘法运算法则计算得出答案;(2)直接利用有理数的混合运算法则计算得出答案;(3)直接利用有理数的混合运算法则计算得出答案;(4)直接利用有理数的乘法运算法则计算得出答案.【解答】原式=9995(594−1−93)=9995×500=99900;原式=8×(−98)×(−8)=72;原式=−1−24+6×9=−25+54=29;原式=411×(−112+12−134)=−2+211−1311=−2−1=−3.【答案】若以B为原点,则C表示1,A表示−2,∴p=1+0−2=−1;若以C为原点,则A表示−3,B表示−1,∴p=−3−1+0=−4;若原点O在图中数轴上点C的右边,且CO=28,则C表示−28,B表示−29,A表示−31,∴p=−31−29−28=−88.【考点】两点间的距离数轴【解析】(1)根据以B为原点,则C表示1,A表示−2,进而得到p的值;根据以C为原点,则A表示−3,B表示−1,进而得到p的值;(2)根据原点O在图中数轴上点C的右边,且CO=28,可得C表示−28,B表示−29,A表示−31,据此可得p的值.【解答】若以B为原点,则C表示1,A表示−2,∴p=1+0−2=−1;若以C为原点,则A表示−3,B表示−1,∴p=−3−1+0=−4;若原点O在图中数轴上点C的右边,且CO=28,则C表示−28,B表示−29,A表示−31,∴p=−31−29−28=−88.【答案】如图1所示:AC+BC=(6+10)+(−4+10)=22;如图2所示:当C在B点左侧时,则6−x=3(−4−x),解得:x=−9;当C在B点右侧时,则6−x=3(x+4),解得:x=−1.5,综上所述:x的值为−1.5或−9.【考点】有理数的混合运算在数轴上表示实数数轴实数【解析】(1)直接利用数轴上两点之间的距离求法得出答案;(2)利用当C在B点左侧时以及当C在B点右侧时,分别得出答案.【解答】如图1所示:AC+BC=(6+10)+(−4+10)=22;如图2所示:当C在B点左侧时,则6−x=3(−4−x),解得:x=−9;当C在B点右侧时,则6−x=3(x+4),解得:x=−1.5,综上所述:x的值为−1.5或−9.【答案】∵|m−5|+(n+6)2=0,而|m−5|≥0,(n+6)2≥0,∴m−5=0,n+6=0∴m=5,n=−6∴(m+n)2008+m3=(−6+5)2008+53=(−1)2008+125=1+125=126;∵ab互为倒数,∴ab=1∵c,d互为相反数,∴c+d=0∵e的绝对值为2,∴e2=4∴12×ab+c+d5+e2=12×1+05+4=12+4=92.【考点】非负数的性质:算术平方根非负数的性质:偶次方实数的运算非负数的性质:绝对值【解析】(1)直接利用绝对值的性质以及偶次方的性质得出m,n的值进而计算得出答案;(2)直接利用倒数以及相反数的定义得出各式的值,进而求出答案.【解答】∵|m−5|+(n+6)2=0,而|m−5|≥0,(n+6)2≥0,∴m−5=0,n+6=0∴m=5,n=−6∴(m+n)2008+m3=(−6+5)2008+53=(−1)2008+125=1+125=126;∵ab互为倒数,∴ab=1∵c,d互为相反数,∴c+d=0∵e的绝对值为2,∴e2=4∴12×ab+c+d5+e2=12×1+05+4=12+4=92.【答案】5※6=52−2×5×6=25−60=−35由题意:(−3)2−2×(−3)×(x+2)=10解得:x=−116【考点】解一元一次方程有理数的混合运算【解析】(1)原式利用已知的新定义计算即可求出值;(2)已知等式利用已知的新定义化简,求出x的值即可;【解答】5※6=52−2×5×6=25−60=−35由题意:(−3)2−2×(−3)×(x+2)=10解得:x=−116【答案】无理,−2π4π或−4π(3)①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,−1,+3,−4,−3,∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远;②∵|+2|+|−1|+|+3|+|−4|+|−3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(−1)+(+3)+(−4)+(−3)=−3,(−3)×2π=−6π,∴此时点A所表示的数是:−6π.【考点】数轴正数和负数的识别【解析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.【解答】解:(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是−2π;故答案为:无理数;−2π.(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或−4π;故答案为:4π或−4π.(3)①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,−1,+3,−4,−3,∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远;②∵|+2|+|−1|+|+3|+|−4|+|−3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(−1)+(+3)+(−4)+(−3)=−3,(−3)×2π=−6π,∴此时点A所表示的数是:−6π.【答案】由题意得:向东为“+”,向西为“-”,则将最后一批乘客送到目的地时,李师傅距离第一批乘客出发地的距离为:(+8)+(−6)+(+3)+(−7)+(+8)+(+4)+(−9)+(−4)+(+3)+(+3)=3(千米),所以,将最后一批乘客送到目的地时,李师傅在距离第一批乘客出发地的东方,距离是3千米;上午8:00∼9:15李师傅开车的距离是:|+8|+|−6|+|+3|+|−7|+|+8|+|+4|+|−9|+|−4|+|+3|+|+3|=55(千米),上午8:00∼9:15李师傅开车的时间是:1小时15分=1.25小时;所以,上午8:00∼9:15李师傅开车的平均速度是:55÷1.25=44(千米/小时);一共有10位乘客,则起步费为:8×10=80(元).超过3千米的收费总额为:[(8−3)+(6−3)+(3−3)+(7−3)+(8−3)+(4−3)+(9−3)+(4−3)+(3−3)+(3−3)]×2=50(元).则李师傅在上午8:00∼9:15一共收入:80+50=130(元).【考点】正数和负数的识别【解析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】由题意得:向东为“+”,向西为“-”,则将最后一批乘客送到目的地时,李师傅距离第一批乘客出发地的距离为:(+8)+(−6)+(+3)+(−7)+(+8)+(+4)+(−9)+(−4)+(+3)+(+3)=3(千米),所以,将最后一批乘客送到目的地时,李师傅在距离第一批乘客出发地的东方,距离是3千米;上午8:00∼9:15李师傅开车的距离是:|+8|+|−6|+|+3|+|−7|+|+8|+|+4|+|−9|+|−4|+|+3|+|+3|=55(千米),上午8:00∼9:15李师傅开车的时间是:1小时15分=1.25小时;所以,上午8:00∼9:15李师傅开车的平均速度是:55÷1.25=44(千米/小时);一共有10位乘客,则起步费为:8×10=80(元).超过3千米的收费总额为:[(8−3)+(6−3)+(3−3)+(7−3)+(8−3)+(4−3)+(9−3)+(4−3)+(3−3)+(3−3)]×2=50(元).则李师傅在上午8:00∼9:15一共收入:80+50=130(元).。
2022——2023学年江苏省无锡市七年级下学期数学第一次月考模拟卷AB卷(含答案)
2022-2023学年江苏省无锡市七年级下册数学第一次月考模拟卷(A 卷)一、选一选(共8小题,每小题3分,满分24分)1.给出以下命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两条直线平行;③相等的角是对顶角;④内错角相等.其中假命题有()A.1个 B.2个 C.3个 D.4个2.点P 是直线l 外一点,PA 垂直于直线l ,垂足为A ,且PA=4cm ,则点P 到直线l 的距离()A.小于4cm B.等于4cm C.大于4cm D.没有确定3.如图所示的四个图形中,∠1和∠2是同位角...的是()A.②③B.①②③C.①②④D.①④4.如图,点E 在BC 的延长线上,下列条件没有能...判断//AB CD 的是()A.5B ∠=∠B.12∠=∠C.180B BCD ∠+∠=︒D.34∠=∠5.如图,若∠1=70°,∠2=110°,∠3=70°,则有().A.a ∥bB.c ∥dC.a ⊥dD.任两条都无法判定是否平行6.如图,已知直线AB ∥CD ,∠C =125°,∠A =45°,那么∠E 的大小为()A .70° B.80° C.90° D.100°7.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大54°,则∠2=()A.18°B.54°C.72°D.70°8.如图,能判定//EB AC 的条件是()A.A ABE ∠=∠B.A EBD ∠=∠C.C ABC ∠=∠D.C ABE∠=∠二、填空题(共8小题,每小题3分,满分24分)9.如图,直线a 、b 相交,∠1=72°,则∠2=____________.10.如图,当剪子口AOB ∠增大15 时,COD ∠增大______度.11.如图,计划把河中的水引到水池M 中,可以先过M 点作MC ⊥AB ,垂足为C ,然后沿MC 开渠,则能使所开的渠最短,这种设计的根据是____.12.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.13.如图,D是AB上一点,CE∥BD,CB∥ED,EA⊥BA于点A,若∠ABC=38°,则∠AED= ____.AB CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°, 则∠2=____.14.如图,//15.如图,直线a∥b,则∠ACB=______16.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.三、解答题(共6小题,满分46分)17.如图,直线CD与直线AB相交于C,根据下列语句画图、解答.(1)过点P作PQ CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由18.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1=25°,求∠2的度数?19.如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.20.如图,AB∥CE,CE平分∠DCB,求证∠A=∠B21.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.22.根据下列证明过程填空:如图,已知BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C证明:∵BD⊥AC,EF⊥AC∴∠2=∠3=90°()∴BD∥EF()∴∠4=_____()∵∠1=∠4∴∠1=_____()∴DG∥BC()∴∠ADG=∠C()23.如图,直线EF分别与直线AB,CD相交于点P和点Q,且AB//CD,PG平分∠APQ,QH 平分∠DQP,求证:PG//QH.2022-2023学年江苏省无锡市七年级下册数学第一次月考模拟卷(A卷)一、选一选(共8小题,每小题3分,满分24分)1.给出以下命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两条直线平行;③相等的角是对顶角;④内错角相等.其中假命题有()A.1个B.2个C.3个D.4个【正确答案】B【分析】根据对顶角的性质、平行线的判定和性质进行判断即可.【详解】解:①对顶角相等,是真命题;②在同一平面内,垂直于同一条直线的两条直线平行,是真命题;③相等的角没有一定是对顶角,原命题是假命题;④两直线平行,内错角相等,原命题是假命题.故选:B.考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的判定和性质,难度较小.2.点P是直线l外一点,PA垂直于直线l,垂足为A,且PA=4cm,则点P到直线l的距离()A.小于4cmB.等于4cmC.大于4cmD.没有确定【正确答案】B【详解】根据点到直线的距离为点到直线的垂线段长(垂线段最短),所以,点P到直线l的距离等于4cm,故选B.3.如图所示的四个图形中,∠1和∠2是同位角...的是()A.②③B.①②③C.①②④D.①④【正确答案】C【分析】根据同位角的定义逐一判断即得答案.【详解】解:图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2没有是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C .本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.4.如图,点E 在BC 的延长线上,下列条件没有能...判断//AB CD 的是()A.5B∠=∠ B.12∠=∠ C.180B BCD ∠+∠=︒ D.34∠=∠【正确答案】D 【分析】直接利用平行线的判定方法分别判断得出答案.【详解】解:A 、当∠5=∠B 时,AB ∥CD ,没有合题意;B 、当∠1=∠2时,AB ∥CD ,没有合题意;C 、当∠B +∠BCD =180°时,AB ∥CD ,没有合题意;D 、当∠3=∠4时,AD ∥CB ,符合题意;故选:D .此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.5.如图,若∠1=70°,∠2=110°,∠3=70°,则有().A.a ∥bB.c ∥dC.a ⊥dD.任两条都无法判定是否平行【正确答案】A 【详解】解:∵∠4=∠1=70°,∠2=110°,∴∠4+∠2=180°;∴a∥b.∵∠2≠∠3,∴c与d没有平行.故选A.6.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°【正确答案】B【分析】根据两直线平行,同位角相等,及邻补角的定义求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.【详解】解:如图所示,∵AB∥CD,∠C=125°,∴∠C=∠EFB=125°,∴∠EFA=180-125=55°,∵∠A=45°,∴∠E=180°-∠A-∠EFA=180°-45°-55°=80°.故选:B.本题应用的知识点为:根据两直线平行,同位角相等,邻补角的定义,三角形内角和定理.7.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大54°,则∠2=()A.18°B.54°C.72°D.70°【正确答案】A 【分析】根据题意图形列出方程组,解方程组即可.【详解】解:由题意得,12901254∠+∠︒⎧⎨∠-∠︒⎩==,解得∠1=72°,∠2=18°,故选A .本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.8.如图,能判定//EB AC 的条件是()A.A ABE ∠=∠B.A EBD ∠=∠C.C ABC ∠=∠D.C ABE∠=∠【正确答案】A【分析】根据平行线的判定定理即可依次判断.【详解】A.A ABE ∠=∠,根据同位角相等,两直线平行可以判定//EB AC ;B.A EBD ∠=∠,没有判定//EB AC ;C.C ABC ∠=∠,没有判定//EB AC ;D .C ABE ∠=∠,没有判定//EB AC ;故选A .此题主要考查平行线的判定定理,解题的关键是熟知同位角相等,两直线平行.二、填空题(共8小题,每小题3分,满分24分)9.如图,直线a 、b 相交,∠1=72°,则∠2=____________.【正确答案】108°【详解】试题解析:∵直线a ∥b ,∴∠2=∠3,∵∠1=72°,∴∠3=108°,∴∠2=108°,故答案为108°.10.如图,当剪子口AOB ∠增大15 时,COD ∠增大______度.【正确答案】15【详解】分析:根据对顶角的定义和性质求解.详解:因为∠AOB 与∠COD 是对顶角,∠AOB 与∠COD 始终相等,所以随∠AOB 变化,∠COD 也发生同样变化.故当剪子口∠AOB 增大15°时,∠COD 也增大15°.点睛:互为对顶角的两个角相等,如果一个角发生变化,则另一个角也做相同的变化.11.如图,计划把河中的水引到水池M 中,可以先过M 点作MC ⊥AB ,垂足为C ,然后沿MC 开渠,则能使所开的渠最短,这种设计的根据是____.【正确答案】垂线段最短【分析】根据垂线段的性质:垂线段最短,进行判断即可.【详解】解:∵从直线外一点到这条直线上各点所连线段中,垂线段最短,∴过M点作MC⊥AB于点C,则MC最短,这样做的依据是垂线段最短.故垂线段最短.本题考查了垂线段的性质,从直线外一点到这条直线上各点所连线段中,垂线段最短,掌握基本性质是解题关键.12.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.【正确答案】如果两个角互为对顶角,那么这两个角相等【分析】根据命题的形式解答即可.【详解】将“对顶角相等”改写为“如果...那么...”的形式,可写为如果两个角互为对顶角,那么这两个角相等,故如果两个角互为对顶角,那么这两个角相等.此题考查命题的形式,可写成用关联词“如果...那么...”连接的形式,准确确定命题中的题设和结论是解题的关键.13.如图,D是AB上一点,CE∥BD,CB∥ED,EA⊥BA于点A,若∠ABC=38°,则∠AED= ____.【正确答案】52°【详解】∵EA⊥BA,∴∠EAD=90°,∵CB∥ED,∠ABC=38°,∴∠EDA=∠ABC=38°,∴∠AED=180°-∠EAD-∠EDA=52°,故答案为52°.本题考查了平行线的性质、垂直的定义等,准确识图是解题的关键.14.如图,//AB CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°, 则∠2=____.【正确答案】54°【分析】两直线平行,同旁内角互补,可求出∠FEB,再根据角平分线的性质,可得到∠BEG,然后用两直线平行,内错角相等求出∠2.【详解】解:∵AB∥CD,∴∠BEF=180°−∠1=180°−72°=108°∠2=∠BEG,又∵EG平分∠BEF,∴∠BEG=12∠BEF=12×108°=54°∴∠2=∠BEG=54°.故54°.15.如图,直线a∥b,则∠ACB=______【正确答案】78°##78度【详解】如图,延长BC与a相交,已知a∥b,根据两直线平行,内错角相等可得∠1=∠50°;再由三角形的外角的性质可得∠ACB=∠1+28°=50°+28°=78°.故78°.点睛:本题主要考查平行线的性质和三角形外角性质,较为简单,属于基础题.16.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.【正确答案】65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,由题意知AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故65.本题考查了平行线的性质和折叠的知识,根据折叠得出∠1=∠2是解题的关键.三、解答题(共6小题,满分46分)17.如图,直线CD与直线AB相交于C,根据下列语句画图、解答.(1)过点P作PQ CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由【正确答案】(1)见解析;(2)见解析;(3)∠PQC=60°,理由见解析【详解】解:如图所示:(1)画出如图直线PQ(2)画出如图直线PR(3)∠PQC=60°理由是:因为PQ CD所以∠DCB+∠PQC=180°又因为∠DCB=120°所以∠PQC=180°-120°=60°18.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1=25°,求∠2的度数?【正确答案】65°【详解】试题分析:直接利用邻补角的定义得出∠BOE=65°,再根据对顶角相等,即可得出答案.试题解析:∵直线AB,CD,EF相交于点O,且AB⊥CD∴∠BOC=90°,∵∠1=25°,∴∠BOE=65°,∴∠2=∠BOE=65°.19.如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.【正确答案】40°【分析】根据平行线的性质可得∠ACB=∠AED=80°,∠EDC=∠BCD,然后根据角平分线的定义可得∠BCD=12∠ACB=40°,从而求出结论.【详解】解:∵DE∥BC,∠AED=80°∴∠ACB=∠AED=80°,∠EDC=∠BCD ∵CD平分∠ACB,∴∠BCD=12∠ACB=40°∴∠EDC=40°此题考查的是平行线的性质和角平分线的定义,掌握平行线的性质是解决此题的关键.20.如图,AB ∥CE ,CE 平分∠DCB ,求证∠A=∠B【正确答案】见解析【详解】试题分析:由AB ∥CE ,根据两直线平行,内错角相等,同位角相等,即可证得∠DCE=∠A ,∠BCE=∠B ,又由CE 平分∠DAC ,即可得∠A=∠B .试题解析:∵AB ∥CE ,∴∠DCE=∠A ,∠BCE=∠B ,∵CE 平分∠DAC ,∴∠DCE=∠BCE ,∴∠A=∠B .21.如图,已知∠ACD =70°,∠ACB =60°,∠ABC =50°.试说明:AB ∥CD .【正确答案】证明见解析【分析】根据同旁内角互补,两直线平行即可判定.【详解】证明:7060ACD ACB ∠=︒∠=︒ ,,130BCD ACB ACD ,∴∠=∠+∠=︒50ABC ∠=︒ ,180ABC BCD ∴∠+∠=︒,AB ∴∥CD .22.根据下列证明过程填空:如图,已知BD ⊥AC ,EF ⊥AC ,D 、F 分别为垂足,且∠1=∠4,求证:∠ADG =∠C证明:∵BD⊥AC,EF⊥AC∴∠2=∠3=90°()∴BD∥EF()∴∠4=_____()∵∠1=∠4∴∠1=_____()∴DG∥BC()∴∠ADG=∠C()【正确答案】答案见解析【详解】解:∵BD⊥AC,EF⊥AC(已知),∴∠2=∠3=90°,∴BD∥EF(同位角相等,两直线平行),∴∠4=∠5(两直线平行,同位角相等);∵∠1=∠4(已知),∴∠1=∠5(等量代换),∴DG∥BC(内错角相等,两直线平行),∴∠ADG=∠C(两直线平行,同位角相等).本题考查平行线的性质与判定,解决问题要熟悉平行线的性质和判定,能正确运用语言叙述理由,还要注意平行线的性质和判定的综合运用.23.如图,直线EF分别与直线AB,CD相交于点P和点Q,且AB//CD,PG平分∠APQ,QH 平分∠DQP,求证:PG//QH.【正确答案】见解析【详解】先根据角平分线的性质可得∠1=∠GPQ=12∠APQ,∠2=∠PQH=12∠EQD,根据条件AB//CD,可得∠APQ=∠PQD,∠GPQ=∠PQH,根据内错角相等两直线平行可证明PG∥QH.试题解析:∵PG平分∠APQ,QH平分∠DQP,∴∠GPQ=∠1=12∠APQ,∠PQH=∠2=12∠EQD,∵AB//CD,∴∠APQ=∠EQD ∴∠GPQ=∠PQH ∴PG∥QH.2022-2023学年江苏省无锡市七年级下册数学第一次月考模拟卷(B 卷)一、选一选(每题3分,共24分)1.下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,没有属于平移的有()A.4个 B.3个 C.2个 D.1个2.如图,点E 在BC 的延长线上,下列条件没有能...判断//AB CD 的是()A.5B ∠=∠B.12∠=∠ C.180B BCD ∠+∠=︒ D.34∠=∠3.下列图形中,正确画出AC 边上的高的是()A. B.C. D.4.下列运算正确的是()A.5510a a a += B.6424a a a ⨯= C.01a a a -÷= D.440a a a -=5.如果三角形有两个外角的和为270°,则此三角形一定是()A.锐角三角形B.等边三角形C.直角三角形D.钝角三角形6.若a=-0.3-2,b=-3-2,c=(-13)-2,d=(-13)0,则()A .a<d<c<b B.b<a<d<c C.a<d<c<bD.a<b<d<c 7.如图,在四边形ABCD 中,∠A+∠D=α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P=()A.90°-12αB.90°+12αC.2αD.360°-α8.定义:直线a 与直线b 相交于点O ,对于平面内任意一点M ,点M 到直线a 与直线b 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1 B.2 C.3 D.4二、填空题(每题3分,共30分)9.计算:22(2)a b -=_______.10.某种感冒的直径是0.000000712米,用科学记数法表示为_____米.11.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是_____.12.若()()2x a x ++的结果中没有含关于字母x 的项,则=a ________.13.如果2(2)9x m x +-+是一个完全平方式,那么m 的值是__________.14.已知x a =3,x b =5,则x 3a-2b =______________.15.如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是_____.16.若3,2m n mn +==,则m n -=__________.17.如图,在△ABC 中,已知点D E F 、、分别为BC AD CE 、、的中点,若△ABC 的面积为24cm ,则阴影部分的面积为_________2cm 18.规定:log a b (a>0,a≠1,b>0)表示a ,b 之间的一种运算.现有如下的运算法则:log a n n =a ,log N M=log log n n M N (n>0,n≠1,N>0,N≠1,M>0).例如:log 223=3,log 25=1010log 5log 2,则100log 1000=_________.三、解答题(本大题共10小题,共96分)19.(1)101((5)322π-----+(2)23327(-3(4)a a a a ⋅+-⋅)(3)(3a+2b )(3a ﹣2b )(9a 2﹣4b 2)(4)用简便方法计算:20152﹣2014×201620.规定一种新运算:a bc d =ad -bc.例如,3546=3×6-4×5=-2,x 324-=4x +6.按照这种运算规定,当x 等于多少时,x 1x 3x 2x 1++--=0.21.先化简,再求值:(y+1)(2y ﹣3)﹣(y+1)2﹣2(y ﹣1)(其中y 2﹣5y=20)22.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△A′B′C′的高C′D′,(3)写出图中与线段AC 平行的线段______.并求出△ABC的面积.23.如图,在△BCD 中,BC=4,BD=5.(1)求CD 的取值范围;(2)若AE ∥BD ,∠A=55°,∠BDE=125°,求∠C 的度数.24.在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)如图,已知AB∥CD,BE、CF分别平分∠ABC和∠DCB,求证:BE∥CF.证明:∵AB∥CD,(已知)∴∠=∠.()∵,(已知)∴∠EBC=∠ABC,(角的平分线定义)同理,∠FCB=∠BCD.∴∠EBC=∠FCB.(等式性质)∴BE∥CF.()25.已知,如图,在△ABC,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠DAE的度数.26.如图,CD是△ABC的高,点E、F、G分别在BC、AB、AC上,且EF⊥AB,DG∥BC.试判断∠1、∠2的数量关系,并说明理由.27.问题情境:如图1,AB ∥CD ,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:过P 作PE ∥AB ,通过平行线性质来求APC ∠.(1)按小明的思路,易求得APC ∠的度数为__________度:(直接写出答案)(2)问题迁移:如图2,AB ∥CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点没有重合),请直接写出APC ∠与α、β之间的数量关系.28.若∠C=α,∠EAC+∠FBC=β(1)如图①,AM 是∠EAC 的平分线,BN 是∠FBC 的平分线,若AM ∥BN ,则α与β有何关系?并说明理由.(2)如图②,若∠EAC 的平分线所在直线与∠FBC 平分线所在直线交于P ,试探究∠APB 与α、β的关系是______.(用α、β表示)(3)如图③,若α≥β,∠EAC 与∠FBC 的平分线相交于P 1,∠EAP 1与∠FBP 1的平分线交于P 2;依此类推,则∠P 5=______.(用α、β表示)2022-2023学年江苏省无锡市七年级下册数学第一次月考模拟卷(B卷)一、选一选(每题3分,共24分)1.下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,没有属于平移的有()A.4个B.3个C.2个D.1个【1题答案】【正确答案】C【详解】试题解析:①荡秋千,是旋转,没有是平移;②钟摆的摆动,是旋转,没有是平移;③拉抽屉时的抽屉,是平移;④工厂里的输送带上的物品,是平移;故选C.点睛:平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.2.如图,点E 在BC 的延长线上,下列条件没有能...判断//AB CD 的是()A.5B∠=∠ B.12∠=∠ C.180B BCD ∠+∠=︒ D.34∠=∠【2题答案】【正确答案】D 【分析】直接利用平行线的判定方法分别判断得出答案.【详解】解:A 、当∠5=∠B 时,AB ∥CD ,没有合题意;B 、当∠1=∠2时,AB ∥CD ,没有合题意;C 、当∠B +∠BCD =180°时,AB ∥CD ,没有合题意;D 、当∠3=∠4时,AD ∥CB ,符合题意;故选:D .此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.3.下列图形中,正确画出AC 边上的高的是()A. B.C. D.【3题答案】【正确答案】D【分析】根据高的定义即可求解.【详解】解:根据锐角三角形和钝角三角形的高线的画法,可得D 选项中,BE 是△ABC 中BC 边长的高,故选:D.【点晴】此题主要考查高的作法,解题的关键是熟知高的定义.4.下列运算正确的是()A.5510a a a += B.6424a a a ⨯= C.01a a a -÷= D.440a a a -=【4题答案】【正确答案】C【详解】A.555102a a a a +=≠,原式计算错误,故本选项错误;B.641024a a a a ⨯=≠,原式计算错误,故本选项错误;C.01a a a -÷=,计算正确,故本选项正确;D.4400a a a -=≠,原式计算错误,故本选项错误.故选C.5.如果三角形有两个外角的和为270°,则此三角形一定是()A.锐角三角形B.等边三角形C.直角三角形D.钝角三角形【5题答案】【正确答案】C 【分析】三角形的外角和为360°,据此进行解答即可.【详解】解:由题意可知另一个外角为360°-270°=90°,则与之相邻的内角为90°.故选C.本题考查了三角形的外角和,牢记其外角和为360°是解题关键.6.若a=-0.3-2,b=-3-2,c=(-13)-2,d=(-13)0,则()A.a<d<c<bB.b<a<d<cC.a<d<c<bD.a<b<d<c 【6题答案】【正确答案】B 【详解】根据有理数的乘方、负整数指数幂、零指数幂的意义化简a 、b 、c 、d 的值,然后比较大小.由a=−0.09,b=−19,c=9,d=1,得到:c>d>a>b ,故选B.7.如图,在四边形ABCD 中,∠A+∠D=α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P=()A.90°-12α B.90°+12α C.2D.360°-α【7题答案】【正确答案】C【详解】试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=12(360°﹣α)=180°﹣12α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣12α)=12α.故选C.考点:1.多边形内角与外角2.三角形内角和定理.8.定义:直线a与直线b相交于点O,对于平面内任意一点M,点M到直线a与直线b的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1B.2C.3D.4【8题答案】【正确答案】D【分析】画出两条相交直线,到a的距离为1的直线有2条,到b的距离为2的直线有2条,看所画的这些直线的交点有几个即为所求的点的个数.【详解】解:如图所示,所求的点有4个,故选D .综合考查点的坐标的相关知识;得到点直线的距离为定值的直线有2条是解决本题的突破点.二、填空题(每题3分,共30分)9.计算:22(2)a b -=_______.【9题答案】【正确答案】424a b 【详解】试题解析:()222a b-=4a 4b 2.故答案为4a 4b 2.10.某种感冒的直径是0.000000712米,用科学记数法表示为_____米.【10题答案】【正确答案】77.1210-⨯.【详解】试题解析:0.000000712=7.12×10-7.考点:科学记数法—表示较小的数.11.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是_____.【11题答案】【正确答案】5【详解】解:∵多边形的每一个内角都等于108°∴每一个外角为72°∵多边形的外角和为360°∴这个多边形的边数是:360÷72=5故512.若()()2x a x ++的结果中没有含关于字母x 的项,则=a ________.【12题答案】【正确答案】﹣2【分析】原式先根据多项式的乘法法则计算,由结果中没有含关于字母x 的项可得关于a 的一元方程,解方程即得结果.【详解】解:()()()2222x a x x a x a ++=+++,由结果中没有含关于字母x 的项,可得:20a +=,解得:2a =-.故﹣2.本题考查了多项式的乘法,属于基本题型,正确理解题意、熟练掌握多项式乘以多项式的运算法则是解题关键.13.如果2(2)9x m x +-+是一个完全平方式,那么m 的值是__________.【13题答案】【正确答案】8或4-【分析】利用完全平方公式的结构特征判断即可求出m 的值.【详解】解:∵2(2)9x m x +-+是一个完全平方式,∴26m -=±,∴8m =或4m =-.故8或4-.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.已知x a =3,x b =5,则x 3a-2b =______________.【14题答案】【正确答案】2725【详解】分析:根据同底数幂的除法,即可解答.详解:x 3a ﹣2b =x 3a ÷x 2b =(x a )3÷(x b )2=33÷52=27÷25=2725.故答案为27 25.点睛:本题考查了同底数幂的除法,解决本题的关键是熟记同底数幂的除法法则.15.如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是_____.【15题答案】【正确答案】相等或互补.【详解】试题分析:此题可以通过两个图形得出这两个角的关系相等或互补.解:如图:图1中,根据垂直的量相等的角都等于90°,对顶角相等,所以∠1=∠2,图2中,同样根据垂直的量相等的角都等于90°,根据四边形的内角和等于360°,所以∠1+∠2=360°﹣90°﹣90°=180°.所以如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是相等或互补,故答案为相等或互补.考点:垂线.16.若3,2m n mn +==,则m n -=__________.【16题答案】【正确答案】1±【详解】试题解析:(m-n )2=(m+n )2-4mn ,当m+n=3,mn=2,原式=32-4×2=1.∴m-n=±1故答案为±1.17.如图,在△ABC 中,已知点D E F 、、分别为BC AD CE 、、的中点,若△ABC 的面积为24cm ,则阴影部分的面积为_________2cm 【17题答案】【正确答案】1【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【详解】解:∵点E 是AD 的中点,∴S △ABE =12S △ABD ,S △ACE =12S △ADC ,∴S △ABE +S △ACE =12S △ABC =12×4=2cm 2,∴S △BCE =12S △ABC =12×4=2cm 2,∵点F 是CE 的中点,∴S △BEF =12S △BCE =12×2=1cm 2.故1.本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.18.规定:log a b (a>0,a≠1,b>0)表示a ,b 之间的一种运算.现有如下的运算法则:log an n =a ,log N M=log log n n M N (n>0,n≠1,N>0,N≠1,M>0).例如:log 223=3,log 25=1010log 5log 2,则100log 1000=_________.【18题答案】【正确答案】32【详解】100log 1000=1010log 1000log 100=310210log 10log 10=32,故32.三、解答题(本大题共10小题,共96分)19.(1)101((5)322π-----+(2)23327(-3(4)a a a a ⋅+-⋅)(3)(3a+2b )(3a ﹣2b )(9a 2﹣4b 2)(4)用简便方法计算:20152﹣2014×2016【19题答案】【正确答案】(1)0(2)911a -(3)4224817216a a b b -+(4)1【详解】试题分析:(1)根据有理数的混合运算进行计算即可;(2)根据整式的混合运算进行计算即可;(3)先运用平方差公式,再运用完全平方公式即可得解;(4)运用平方差公式进行计算即可.试题解析:(1)原式==2-1-3+2=0;(2)原式=-27a 9+16a 9=-11a 9;(3)原式=(9a 2﹣4b 2)2=4224817216a a b b -+;(4)原式=20152-(2015-1)(2015+1)=20152-20152+1=1.20.规定一种新运算:a bc d =ad -bc.例如,3546=3×6-4×5=-2,x 324-=4x +6.按照这种运算规定,当x 等于多少时,x 1x 3x 2x 1++--=0.【20题答案】【正确答案】5【分析】根据新运算法则可得(x+1)(x-1)-(x+3)(x-2)=0,解方程可得.【详解】根据运算法则可得:(x+1)(x-1)-(x+3)(x-2)=0整理得,x 2-1-x 2-x+6=0x=5故答案为5理解新运算法则,根据法则列出方程.21.先化简,再求值:(y+1)(2y ﹣3)﹣(y+1)2﹣2(y ﹣1)(其中y 2﹣5y=20)【21题答案】【正确答案】25218y y --=【详解】试题分析:原式利用多项式乘以多项式,完全平方式化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.试题解析:原式=2y 2-3y+2y-3-y 2-2y-1-2y+2=y 2-5y-2,把y 2-5y=20代入得:原式=20-2=18.22.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△A′B′C′的高C′D′,(3)写出图中与线段AC 平行的线段______.并求出△ABC 的面积.【22题答案】【正确答案】A′C′【详解】试题解析:(1)根据网格结构找出点A、B、C平移后的对应点A′、B′、C′的位置,然后顺次连接即可;(2)根据三角形的高线的定义作出即可;(3)根据平移的性质找出与线段AC平行的线段,再根据三角形的面积公式列式计算即可得解.试题解析:(1)△A′B′C′如图所示;(2)△A′B′C′的高C′D′如图所示;(3)△ABC的面积=12×4×4=8.23.如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.【23题答案】【正确答案】(1)1<DC<9;(2)∠C=70°.【分析】(1)根据三角形三边关系进行求解即可得;(2)根据平行线的性质求得∠AEC的度数,继而根据三角形内角和定理即可求得答案.【详解】(1)在△BCD中,BD-BC<CD<BD+BC,又∵BC=4,BD=5,∴5-4<CD<5+4,即1<DC<9;(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-∠BDE=55°,又∵∠A+∠C+∠AEC=180°,∠A=55°,∴∠C=70°.本题考查了三角形三边关系,三角形内角和定理,熟练掌握相关知识是解题的关键.24.在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)如图,已知AB∥CD,BE、CF分别平分∠ABC和∠DCB,求证:BE∥CF.证明:∵AB∥CD,(已知)∴∠=∠.()∵,(已知)∴∠EBC=∠ABC,(角的平分线定义)同理,∠FCB=∠BCD.∴∠EBC=∠FCB.(等式性质)∴BE∥CF.()【24题答案】【正确答案】ABC,BCD,两直线平行,内错角相等;BE平分∠ABC;∠BCD;内错角相等,两直线平行【详解】试题分析:由于AB∥CD,根据两直线平行,内错角相等得到∠ABC=∠BCD,再由角平分线的定义得到∠EBC=∠ABC,∠FCB=∠BCD,则∠EBC=∠FCB,然后根据内错角相等,两直线平行得到BE∥CF.证明:∵AB∥CD,∴∠ABC=∠BCD,∵BE、CF分别平分∠ABC和∠DCB,∴∠EBC=∠ABC,∠FCB=∠BCD,∴∠EBC=∠FCB,∴BE∥CF.故答案为ABC,BCD,两直线平行,内错角相等;BE平分∠ABC;∠BCD;内错角相等,两直线平行.考点:平行线的判定与性质.25.已知,如图,在△ABC,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠DAE的度数.【25题答案】【正确答案】∠DAE°=25°.【分析】由AD⊥BC可得∠BDA=90°,由直角三角形两个锐角互余,得到∠BAD=30°,即可求得∠DAC=50°,再由AE平分∠DAC可得∠DAE=25°.【详解】∵AD⊥BC,∴∠BDA=90°,∵∠B=60°,∴∠BAD=90°-∠B=90°-60°=30°,∵∠BAC=80°,∴∠DAC=∠BAC-∠BAD=80°-30°=50°,∵AE平分∠DAC,∴∠DAE=12∠DAC=12×50°=25°.本题考查了直角三角形的定义,折叠的性质,平行线的性质,熟练掌握折叠的性质是解题的关键.26.如图,CD是△ABC的高,点E、F、G分别在BC、AB、AC上,且EF⊥AB,DG∥BC.试判断∠1、∠2的数量关系,并说明理由.【26题答案】【正确答案】∠1="∠2………………………………………………………………………"(1分)理由:∵CD 是△ABC 的高,且EF ⊥AB∴∠EFB =∠CDB =90°∴EF ∥CD …………………………………(3分)∴∠1=∠3(图中∠BCD )……………………………………………(4分)又∵DG ∥BC ,∴∠2=∠3……………………………………………(5分)∴∠1="∠2"………………………………………………………………(6分)【详解】由CD 是高且EF ⊥AB 可知,CD ∥EF ,所以∠DCB=∠1,再由DG ∥BC .知∠DCB=∠2,所以∠1=∠2.27.问题情境:如图1,AB ∥CD ,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:过P 作PE ∥AB ,通过平行线性质来求APC ∠.(1)按小明的思路,易求得APC ∠的度数为__________度:(直接写出答案)(2)问题迁移:如图2,AB ∥CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点没有重合),请直接写出APC ∠与α、β之间的数量关系.【27题答案】【正确答案】(1)110;(2)∠APC=α+β,理由见解析;(3)见解析【分析】(1)过P作PE∥AB,通过平行线性质求∠APC即可;(2)过P作PE∥AB交AC于E,推出AB∥PE∥DC,根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案.【详解】解:(1)如图1,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.(2)∠APC=α+β,理由:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)如图所示,当P在BD延长线上时,过点P作PE∥CD交ON于E,则PE∥AB,∴∠APE=α,∠CPE=β,∴∠CPA=∠APE-∠CPE=α-β;如图所示,当P在DB延长线上时,过点P作PE∥CD交ON于E,则PE∥AB,∴∠CPE=β,∠APE=α,∴∠CPA=∠CPE-∠APE=β-α.本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.28.若∠C=α,∠EAC+∠FBC=β(1)如图①,AM是∠EAC的平分线,BN是∠FBC的平分线,若AM∥BN,则α与β有何关系?并说明理由.(2)如图②,若∠EAC的平分线所在直线与∠FBC平分线所在直线交于P,试探究∠APB与α、β的关系是______.(用α、β表示)(3)如图③,若α≥β,∠EAC与∠FBC的平分线相交于P1,∠EAP1与∠FBP1的平分线交于P2;依此类推,则∠P5=______.(用α、β表示)。
江苏省苏州市2023-2024学年七年级数学上第一次月考模拟检测试卷(解析版)
江苏省苏州市2023-2024学年七年级数学上第一次月考模拟检测试卷一、选择题(本大题共8小题,每小题2分,共16分)1.下列各数:﹣(+2),﹣32,(﹣)4,﹣,﹣(﹣1)2015,﹣|﹣3|中,负数的个数是( )A.2个B.3个C.4个D.5个2.把向北移动记作“+”,向南移动记作“﹣”,下列说法正确的是( )A.﹣5米表示向北移动了5米B.+5米表示向南移动了5米C.向北移动﹣5米表示向南移动5米D.向南移动5米,也可记作向南移动﹣5米3.(2019秋•路南区校级月考)倒数等于它本身的数是( )A.1B.0、1C.﹣1、1D.﹣1、0、1 4.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记水位比前一日下降数)(单位:m):星期一二三四五六日水位变化0.12﹣0.02﹣0.13﹣0.20﹣0.08﹣0.020.32则下列说法正确的有( )①这个星期的水位总体下降了0.01m;②本周中星期一的水位最高;③本周中星期六的水位比星期二下降了0.43m.A.0个B.1个C.2个D.3个5.(2020秋•镇海区期末)数轴上,点A对应的数是﹣6,点B对应的数是﹣2,点O对应的数是0.动点P、Q从A、B同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A.PQ=2OQ B.OP=2PQ C.3QB=2PQ D.PB=PQ 6.(2023•双阳区二模)算式﹣3﹣5的结果对应图中的( )A.a B.b C.c D.d7.(2020秋•沂水县期中)点M,N在数轴上的位置如图所示,其对应的数分别是m和n.对于以下结论:①n﹣m>0,②mn>0,③|m|>|n|,④﹣m>n.其中正确的个数是( )A.1B.2C.3D.48.(2021秋•海门市校级月考)设abc≠0,且a+b+c=0,则+++的值可能是( )A.0B.±1C.±2D.0或±2二、填空题(本大题共10小题,每小题2分,共20分)请把答案直接填写在横线上9.(2020秋•丹徒区月考)﹣5的相反数等于 .10.(2022秋•安乡县期中)比较大小:﹣(﹣1) ﹣|﹣1.35|.(填“<”、“>”或“=”)11.(2020秋•西固区校级月考)把(﹣12)﹣(﹣13)+(﹣14)统一成加法的形式是 ,写成省略加号的形式是 .12.(2021•江西模拟)= .13.(2020秋•成都期末)两个数a与2在数轴上对应的点之间的距离为3,已知b2=4,且a<b,则a﹣b的值为 .14.(2018秋•道里区校级期中)甲数相当于乙数的,甲数是30,则乙数是 .15.(2021秋•碑林区校级期末)若|x|=5,|y|=4,且xy<0,则x﹣y的值为 .16.(2020秋•武昌区期中)已知x,y互为相反数,a,b互为倒数,c的绝对值为3,则x+y+ab+|c|的值是 .17.(2020秋•门头沟区期末)如图,是北京S1线地铁的分布示意图,其中桥户营、四道桥、金安桥、苹果园四站在同一条直线上.如果在图中以正东为正方向建立数轴,桥户营站、苹果园站表示的数分别是﹣4,2,那么金安桥站表示的数是 .18.(2020春•香坊区校级月考)已知:如图所示,A、B是数轴上的两个点,点A所表示的数为﹣5,动点P以每秒4个单位长度的速度从点B向左运动,同时,动点Q、M从点A向右运动,且点M的速度是点Q速度的,当运动时间为2秒和4秒时,点M和点P 的距离都是6个单位长度,则当点P运动到点A时,动点Q所表示的数为 .评卷人得分三.解答题(本大题共8小题,共64分).解答时应写出文字说明、证明过程或演算步骤. 19.(8分)(2015秋•句容市校级期末)计算:(1)()×45(2)(﹣8)÷(﹣23)×()+1.20.(8分)(2022秋•滕州市校级期末)如果x n=y,那么我们记为:(x,y)=n.例如32=9,则(3,9)=2.(1)根据上述规定,填空:(2,8)= ,(﹣5,25)= ;(2)若(x,16)=2,则x= ;(3)若(4,a)=2,(b,8)=3,求(b,a)的值.21.(6分)(2017秋•子长市期中)世界最高峰珠穆朗玛峰的海拔高度是8 844.43米,死海湖面的海拔高度是﹣416米,我国吐鲁番盆地的海拔高度比死海湖面高262米,珠穆朗玛峰的海拔高度比吐鲁番盆地的海拔高度高多少米?22.(8分)(2021秋•江夏区期末)如图,在数轴上有A,B两点,其中点A在点B的左侧,已知点B对应的数为4,点A对应的数为a.(1)若a=×72,则线段AB的长为 (直接写出结果).(2)若点C在射线AB上(不与A,B重合),且2AC﹣3BC=6,求点C对应的数(结果用含a的式子表示).(3)若点M在线段AB之间,点N在点A的左侧(M、N均不与A、B重合),且AM﹣BM=2.当=3,BN=6BM时.求a的值.23.(8分)(2021秋•昭阳区期中)一个外卖小哥骑摩托车从沃尔玛出发,在东西向的大道上送外卖.如果规定向东行驶为正,向西行驶为负,一天中外卖小哥的七次行驶记录如下(单位:km):﹣7,+8,﹣4,+6,+5,﹣2,﹣9(1)填空:第 次送外卖时距沃尔玛最远.(2)求七次外卖送完时小哥在沃尔玛的什么方向?距沃尔玛多远?(3)若每千米耗油0.2升,问这七次送外卖共耗油多少升?24.(8分)(2021秋•李沧区期中)把下列各数分别在数轴上表示出来,并用“<”连接起来:﹣,2,0,﹣3,|﹣0.5|,﹣(﹣4) < < < < < .25.(8分)(2022秋•京山市期中)已知买入股票与卖出股票均需支付成交金额的0.5%的交易手续费,李先生上周在股市以收盘价每股20元买进某公司的股票1000股,如表为在本周交易日内,该股票每股的涨跌情况:时间星期一星期二星期三星期四星期五每股涨跌/元+2+3﹣2.5+3﹣2注:①涨记作“+”,跌记作“﹣”;②表中记录的数据为每天收盘价格相比前一天收盘价格的变化.(1)直接判断本周内价格最高的是星期 .(2)求本周三收盘时,该股票每股多少钱?(3)若李先生在本周五以收盘价将全部股票卖出,李先生周五当天需要支付多少元的交易手续费?26.(10分)(2021秋•慈溪市期中)如图:在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,b 是最小的正整数,且a ,c 满足|a +2|+(c ﹣7)2=0.(1)a = ,b = ,c = ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,则AB= ,AC= ,BC = .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.江苏省苏州市2023-2024学年七年级数学上第一次月考模拟检测试卷一、选择题(本大题共8小题,每小题2分,共16分)1.下列各数:﹣(+2),﹣32,(﹣)4,﹣,﹣(﹣1)2015,﹣|﹣3|中,负数的个数是( )A.2个B.3个C.4个D.5个解:∵﹣(+2)=﹣2,﹣32=﹣9,=,=,﹣(﹣1)2015=1,﹣|﹣3|=﹣3,∴负数有﹣(+2),﹣32,,﹣|﹣3|,共4个.故选:C.2.把向北移动记作“+”,向南移动记作“﹣”,下列说法正确的是( )A.﹣5米表示向北移动了5米B.+5米表示向南移动了5米C.向北移动﹣5米表示向南移动5米D.向南移动5米,也可记作向南移动﹣5米解:A、﹣5米表示向南移动了5米,故本选项不合题意;B、+5米表示向北移动了5米,故本选项不合题意;C、向北移动﹣5米表示向南移动5米,故本选项符合题意;D、向南移动5米,也可记作向北移动﹣5米,故本选项不合题意;故选:C.3.(2019秋•路南区校级月考)倒数等于它本身的数是( )A.1B.0、1C.﹣1、1D.﹣1、0、1解:倒数等于它本身的数是﹣1、1,故选:C.4.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记水位比前一日下降数)(单位:m):星期一二三四五六日水位变化0.12﹣0.02﹣0.13﹣0.20﹣0.08﹣0.020.32则下列说法正确的有( )①这个星期的水位总体下降了0.01m;②本周中星期一的水位最高;③本周中星期六的水位比星期二下降了0.43m.A.0个B.1个C.2个D.3个解:①0.12﹣0.02﹣0.13﹣0.20﹣0.08﹣0.02+0.32=﹣0.01,所以,这个星期的水位总体下降了0.01m,故①正确;②星期一:0.12,星期二:0.12﹣0.02=0.1,星期三:0.1﹣0.13=﹣0.03,星期四:﹣0.03﹣0.2=﹣0.23,星期五:﹣0.23﹣0.08=﹣0.31,星期六:﹣0.31﹣0.02=﹣0.33,星期天:﹣0.33+0.32=﹣0.01,所以本周内星期一的水位最高,故②正确.③本周内星期六的水位比星期二下降了0.1﹣(﹣0.33)=0.43m,故③正确;综上所述,说法正确的有3个.故选:D.5.(2020秋•镇海区期末)数轴上,点A对应的数是﹣6,点B对应的数是﹣2,点O对应的数是0.动点P、Q从A、B同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A.PQ=2OQ B.OP=2PQ C.3QB=2PQ D.PB=PQ解:设运动的时间为t秒,则运动后点P所表示的数为﹣6+3t,点Q表示的数为﹣2+t,PQ=|﹣6+3t﹣(﹣2+t)|=2|t﹣2|,OQ=|﹣2+t﹣0|=|t﹣2|,OP=|﹣6+3t﹣0|=3|t﹣2|,BQ=t,PB=|﹣2﹣(﹣6+3t)|=|4﹣3t|,∴PQ=2OQ,OP=PQ,所以数量关系一定成立的是PQ=2OQ.故选:A.6.(2023•双阳区二模)算式﹣3﹣5的结果对应图中的( )A.a B.b C.c D.d解:﹣3﹣5=﹣3+(﹣5)=﹣8,观察数轴可知a表示的数是﹣8,故选:A.7.(2020秋•沂水县期中)点M,N在数轴上的位置如图所示,其对应的数分别是m和n.对于以下结论:①n﹣m>0,②mn>0,③|m|>|n|,④﹣m>n.其中正确的个数是( )A.1B.2C.3D.4解:由数轴知m<0<n,|m|>|n|,∴n﹣m>0,mn<0,﹣m>n∴①③④3个正确.故选:C.8.(2021秋•海门市校级月考)设abc≠0,且a+b+c=0,则+++的值可能是( )A.0B.±1C.±2D.0或±2解:∵abc≠0,且a+b+c=0,∴a、b与c中可能有1个字母小于0,也可能有2个字母小于0.当a、b与c中有1个字母小于0,如a<0,则b>0,c>0,∴+++=﹣1+1+1﹣1=0.当a、b与c中有2个字母小于0,如a<0,b<0,则c>0,∴+++=﹣1﹣1+1+1=0.综上:+++=0.故选:A.二、填空题(本大题共10小题,每小题2分,共20分)请把答案直接填写在横线上9.(2020秋•丹徒区月考)﹣5的相反数等于 5 .解:﹣5的相反数等于5.故答案为:5.10.(2022秋•安乡县期中)比较大小:﹣(﹣1) > ﹣|﹣1.35|.(填“<”、“>”或“=”)解:﹣(﹣)=1.6,而﹣|﹣1.35|=﹣1.35,由于1.6>﹣1.35,所以﹣(﹣1)>﹣|﹣1.35|.故答案为:>.11.(2020秋•西固区校级月考)把(﹣12)﹣(﹣13)+(﹣14)统一成加法的形式是 (﹣12)+(+13)+(﹣14) ,写成省略加号的形式是 ﹣12+13﹣14 .解:(﹣12)﹣(﹣13)+(﹣14)统一写成加法的形式是:(﹣12)+(+13)+(﹣14),写成省略加号的形式是:﹣12+13﹣14.故答案为:(﹣12)+(+13)+(﹣14),﹣12+13﹣14.12.(2021•江西模拟)= .解:﹣1﹣=﹣1+(﹣)=﹣+(﹣)=﹣.故答案为:﹣.13.(2020秋•成都期末)两个数a 与2在数轴上对应的点之间的距离为3,已知b 2=4,且a <b ,则a ﹣b 的值为 ﹣3 .解:因为两个数a 与2在数轴上对应的点之间的距离为3,所以a =﹣1,或a =5;因为b 2=4,所以b =﹣2,或b =2;因为a <b ,所以a =﹣1,b =2.所以a ﹣b =﹣1﹣2=﹣3.故答案为:﹣3.14.(2018秋•道里区校级期中)甲数相当于乙数的,甲数是30,则乙数是 36 .解:30÷=30×=36,故答案为:36.15.(2021秋•碑林区校级期末)若|x |=5,|y |=4,且xy <0,则x ﹣y 的值为 ﹣9或9 .解:∵|x |=5,|y |=4,∴x =±5,y =±4,∵xy <0,∴x =5,y =﹣4或x =﹣5,y =4,当x =5,y =﹣4时,x ﹣y =5﹣(﹣4)=5+4=9;当x =﹣5,y =4时,x ﹣y =﹣5﹣4=﹣9;综上,x ﹣y 的值为﹣9或9,故答案为:﹣9或9.16.(2020秋•武昌区期中)已知x ,y 互为相反数,a ,b 互为倒数,c 的绝对值为3,则x +y +ab +|c |的值是 4 .解:根据题意得:x +y =0,ab =1,c =3或﹣3,则原式=0+1+3=4.故答案为:4.17.(2020秋•门头沟区期末)如图,是北京S1线地铁的分布示意图,其中桥户营、四道桥、金安桥、苹果园四站在同一条直线上.如果在图中以正东为正方向建立数轴,桥户营站、苹果园站表示的数分别是﹣4,2,那么金安桥站表示的数是 0 .解:∵图中以正东为正方向建立数轴,桥户营站、苹果园站表示的数分别是﹣4,2,∴每站的单位长度是2,∴金安桥站表示的数是0.故答案为:0.18.(2020春•香坊区校级月考)已知:如图所示,A、B是数轴上的两个点,点A所表示的数为﹣5,动点P以每秒4个单位长度的速度从点B向左运动,同时,动点Q、M从点A向右运动,且点M的速度是点Q速度的,当运动时间为2秒和4秒时,点M和点P 的距离都是6个单位长度,则当点P运动到点A时,动点Q所表示的数为 22 .解:设点Q运动的速度为每秒a个单位长度,则点M运动的速度为每秒a个单位长度,由运动时间为2秒和4秒时,点M和点P的距离都是6个单位长度,可列方程,2×a+6+4×2=4×a+4×4﹣6,解得,a=6,a=2,即:点Q运动的速度为每秒6个单位长度,点M运动的速度为每秒2个单位长度,此时,AB=2×2+6+4×2=18,∴点Q所表示的数为﹣5+×6=22,故答案为:22.三.解答题(本大题共8小题,共64分).解答时应写出文字说明、证明过程或演算步骤. 19.(8分)(2015秋•句容市校级期末)计算:(1)()×45(2)(﹣8)÷(﹣23)×()+1.解:(1)原式=10﹣15+27=22;(2)原式=﹣8÷4×+1=﹣3+1=﹣2.20.(8分)(2022秋•滕州市校级期末)如果x n=y,那么我们记为:(x,y)=n.例如32=9,则(3,9)=2.(1)根据上述规定,填空:(2,8)= 3 ,(﹣5,25)= 2 ;(2)若(x,16)=2,则x= ±4 ;(3)若(4,a)=2,(b,8)=3,求(b,a)的值.解:(1)∵23=8,(﹣5)2=25,∴(2,8)=3,(﹣5,25)=2,故答案为:3,2;(2)∵(±4)2=16,∴(±4,16)=2,故答案为:±4;(3)∵42=16,23=8,∴(4,16)=2,(2,8)=3,∴a=16,b=2,又∵24=16,∴(b,a)=(2,16)=4.21.(6分)(2017秋•子长市期中)世界最高峰珠穆朗玛峰的海拔高度是8 844.43米,死海湖面的海拔高度是﹣416米,我国吐鲁番盆地的海拔高度比死海湖面高262米,珠穆朗玛峰的海拔高度比吐鲁番盆地的海拔高度高多少米?解:吐鲁番盆地的海拔高度是:﹣416+262=﹣154米,珠穆朗玛峰的海拔高度比吐鲁番盆地的海拔高度高:8844.43﹣(﹣154)=8998.43(米),答:珠穆朗玛峰的海拔高度比吐鲁番盆地的海拔高度高9888.43米.22.(8分)(2021秋•江夏区期末)如图,在数轴上有A,B两点,其中点A在点B的左侧,已知点B对应的数为4,点A对应的数为a.(1)若a=×72,则线段AB的长为 9 (直接写出结果).(2)若点C在射线AB上(不与A,B重合),且2AC﹣3BC=6,求点C对应的数(结果用含a的式子表示).(3)若点M在线段AB之间,点N在点A的左侧(M、N均不与A、B重合),且AM﹣BM=2.当=3,BN=6BM时.求a的值.解:(1)∵a=×72=72=﹣5,∴AB=4﹣(﹣5)=4+5=9,故答案为:9.(2)设点C对应的数字为x,①点C在A,B之间时,∵2AC﹣3BC=6,∴2(x﹣a)﹣3(4﹣x)=6.化简得:5x=18+2a.∴x=.②点C在B点的右侧时,∵2AC﹣3BC=6,∴2(x﹣a)﹣3(x﹣4)=6.化简得:﹣x=﹣6+2a.∴x=6﹣2a.综上,点C对应的数为或6﹣2a.(3)设点M对应的数字为m,点N对应的数字为n,由题意得:AM=m﹣a,AN=a﹣n,BM=4﹣m,BN=4﹣n,∵AM﹣BM=2,∴(m﹣a)﹣(4﹣m)=2.∴2m﹣a=6①.∵当=3时,BN=6BM,∴,4﹣n=6(4﹣m).∴m+3n=4a②,6m﹣n=20③,③×3+②得:19m=60+4a④,将④代入①得:2×﹣a=6.∴a=.23.(8分)(2021秋•昭阳区期中)一个外卖小哥骑摩托车从沃尔玛出发,在东西向的大道上送外卖.如果规定向东行驶为正,向西行驶为负,一天中外卖小哥的七次行驶记录如下(单位:km):﹣7,+8,﹣4,+6,+5,﹣2,﹣9(1)填空:第 5 次送外卖时距沃尔玛最远.(2)求七次外卖送完时小哥在沃尔玛的什么方向?距沃尔玛多远?(3)若每千米耗油0.2升,问这七次送外卖共耗油多少升?解:(1)﹣7+8=1,1﹣4=﹣3,﹣3+6=3,3+5=8,8﹣2=6,6﹣9=﹣3,故第5次送外卖时距沃尔玛最远,故答案案为:5;(2)﹣7+8﹣4+6+5﹣2﹣9=﹣3(km ),答:七次外卖送完时小哥在沃尔玛的正西方向,距沃尔玛3km ;(3)(|﹣7|+|+8|+|﹣4|+|+6|+|+5|+|﹣2|+|﹣9|)×0.2=(7+8+4+6+5+2+9)×0.2=41×0.2=8.2(升),答:这七次送外卖共耗油8.2升.24.(8分)(2021秋•李沧区期中)把下列各数分别在数轴上表示出来,并用“<”连接起来:﹣,2,0,﹣3,|﹣0.5|,﹣(﹣4) ﹣3 < ﹣ < 0 < |﹣0.5| < 2 < ﹣(﹣4) .解:|﹣0.5|=0.5,﹣(﹣4)=4.各点在数轴上的位置如图所示:根据数轴上左边的数小于右边的数可知:﹣3<﹣<0<|﹣0.5|<2<﹣(﹣4).故答案为:﹣3,﹣,0,|﹣0.5|,2,﹣(﹣4).25.(8分)(2022秋•京山市期中)已知买入股票与卖出股票均需支付成交金额的0.5%的交易手续费,李先生上周在股市以收盘价每股20元买进某公司的股票1000股,如表为在本周交易日内,该股票每股的涨跌情况:时间星期一星期二星期三星期四星期五每股涨跌/元+2+3﹣2.5+3﹣2注:①涨记作“+”,跌记作“﹣”;②表中记录的数据为每天收盘价格相比前一天收盘价格的变化.(1)直接判断本周内价格最高的是星期 四 .(2)求本周三收盘时,该股票每股多少钱?(3)若李先生在本周五以收盘价将全部股票卖出,李先生周五当天需要支付多少元的交易手续费?解:(1)结合表格中数据可得:周一价格为20+2=22(元),周二价格为22+3=25(元),周三价格为25﹣2.5=22.5(元),周四价格为22.5+3=25.5(元),周五价格为25.5﹣2=23.5(元),价格最高的是星期四;故答案为:四;(2)20+2+3﹣2.5=22.5(元/股);∴本周三收盘时,该股票每股22.5元;(3)22.5+3﹣2=23.5(元),23.5×1000×0.5%=117.5元,∴周五当天需要支付117.5元的交易手续费.26.(10分)(2021秋•慈溪市期中)如图:在数轴上A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a,c满足|a+2|+(c﹣7)2=0.(1)a= ﹣2 ,b= 1 ,c= 7 ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 4 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,则AB= 3t+3 ,AC= 5t+9 ,BC= 2t+6 .(用含t 的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1,故答案为:﹣2,1,7;(2)∵(7+2)÷2=4.5,∴对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4,故答案为:4;(3)∵点A以每秒1个单位长度的速度向左运动,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,∴t秒钟过后,点A表示的数为﹣2﹣t,点B表示的数为1+2t,点C表示的数为7+4t,∴AB=1+2t﹣(﹣2﹣t)=1+2t+2+t=3t+3,AC=7+4t﹣(﹣2﹣t)=7+4t+2+t=5t+9,BC =7+4t﹣(1+2t)=7+4t﹣1﹣2t=2t+6,故答案为:3t+3,5t+9,2t+6;(4)不变,理由如下:由(3)知:AB=3t+3,BC=2t+6,∴3BC﹣2AB=3(2t+6)﹣2(3t+3)=6t+18﹣6t﹣6=12,∴3BC﹣2AB的值不随着时间t的变化而改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
远? (2)如果每毫米需时 0.02 秒,则共用多少秒?
9
29.(7 分)下表列出了国外几个城市与首都北
为什么?
(3)如果现在是芝加哥时间上
午 6︰00,那么现在北京时间是多 城市 时差
少?(2 分)
/时
纽约 -13
巴黎 -7
东京 1
芝加 -14
哥
10
30.(6 分)已知 ab 2 与b 12 互为相反数。
京的时差(带正号的表示同一时刻比北京时
间早的时数),如北京时间的上午 10︰00 时,
东京时间的 10 点已过去了 1 小时,现在已是
10+1=11︰00。
(1)如果现在是北京时间 8︰00,那么现在
的纽约时间是多少?(2 分)
(2)此时(北京时间 8︰00)小明想给远在
巴黎姑妈打电话,你认为合适吗?(3 分)
分别表示 2、-3、-4、6(每张牌只能用
一次,可以用加、减、乘、除等运算)请写
出一个算式,使结果为 24:_________ 。
21.若︱x︱+x=0,则 x_______;若 x =-1, x
则 x_________。
22.规定一种新的运算: a b a b a b 1,
如 3* 4 3 4 3 4 1,请比较大小: (3) * 4 ______ 4 * (3) 。
5
321022197807053858 , 则 赵 老 师 的 生 日
是:___ 年___ 月___ 日。
18.将一张完好无缺的白纸对折 n 次后,数了
一下共有 128 层,n=______
19.写出两个负数,比较它们的大小,并用“<”
或“>”连接起来:
_____
20.用“数字牌”做 24 点游戏,抽出的四张牌
个数是(
)
A.1
B.3
C.5
D.1 或 3 或 5
11.下列说法中错误的是(
)
A.—a 的绝对值为 a
B.—a 的相反数为 a
C . 1的 倒 数 是 a a
D.—a 的平方等于 a 的平方
12.
……依次观察左
4
边三个图形,并判断照此
规律从左到右第四个图形是(
)
A.
B.
C
.
D.
二.填空(2 分×10=20 分) 13.若某次数学考试标准成绩定为 85 分,规定
4
7
(1)正数集合:
{
…};
(2)负数集合:
{
…};
(3)整数集合:
{
…};
(4)分数集合:
{
…}.
26.(5 分)根据输入的数字,按图中程序计算, 并把输出的结果填入表内:
输输 入出
输
否
入
+
>
输
(-
-0. 是 出
8
2-)2
4÷5
(+
(+
-2 - 1.5 0 1 1.5
27.(4 分)已知|a|=3,|b|=5,且 a<b,求 a-b 的值。
初一数学第一次月考模拟试卷 6
初一数学第一次月考模拟试卷 6
满分:100 分 考试时间:90 分钟 __________
得分
题
111
123456789
号
012
答
案
一.选择题(2 分×12=24 分)
1.-2 的相反数是(
)
A.+2
B. 1 2
C.- 1 2
D.-2
2.冬季某天我国三个城市的最高气温分别是-
大街上,学校在家的南边 20 米,书店在家北
边 100 米,张明同学从家里出发,向北走了
50 米,接着又向北走了-70 米,此时张明的
位置在 (
)
A.在家 B.在学校 C.在书店
D.不在上述地方
8.火车票上的车次号有两个意义,一是数字越
小表示车速快,1~98 次为特快列车,101~
198 次为直快列车,301~398 次为普快列车,
3
401~498 次为普客列车;二是单数与双数表
示不同的行驶方向,其中单数表示从北京开
出,双数表示开往北京,根据以上规定,北
京开往杭州的某一直快列车的车次号可能是
(
)
A.20
B.119
C.120
D.319
9.一个有理数的平方是正数,那么这个有理数
的立方是(
)
A.整数
B.正数
C.负数
D.正数或负数
10.五个有理数的积为负数,则五个数中负数的
(填>,<或=)。
三.解答题 23.计算(2 分×6=12 分)
(1)22+(-4)+(-2)+4;
6
(2) 8 0.25 9 1 4
(3) ; 11 1 2.75 24 2 3
3 8
(4)(- 7 )÷( 3 - 1 - 2 )
30
56 3
(5)-9÷ 5 2 3 22 ; 9 3
10℃,1℃,-7℃,它们任意两城市中最大
的温差是:(
)
A.11℃
B.17℃
C.8℃
D.3℃
3.关于 0,下列几种说法不正确的是 (
)
A.0 既不是正数,也不是负数ຫໍສະໝຸດ B.0的相反数是 0
C.0 的绝对值是 0
2
D.0 是最小的数
4.一种面粉的质量标识为“25±0.25 千克”,则
下列面粉中合格的 (
(6)-14- 1 ×2 (3)2 6
24.(3 分)将下列各数在数轴上表示出来,并 按从小到大的顺序用 “<”号连接起来:
-32, -︱-2.5︱, -(-2 1 ), 0, -(- 2
1)2008, -︱-4︱
7
25.(4 分)把下列各数分别填入相应的集合里.
5, 3 , 0, 3.14, 22 , 2008, 1.99, (6).
高于标准记为正,两位学生的成绩分别记作: +9、-3,则两名学生的实际得分为_______、 _______。 14.数轴的三要素为_________、_________、 __________。 15.环境污染日益严重,据统计,全球每分钟 约有 8500000 吨污水排入江河湖海,这个 排污量用科学计数法表示为_____吨。 16.池塘里浮萍面积每天长大一倍,若经 7 天 长满整个池塘,问需_________天浮萍长满 半个池塘。 17 . 赵 老 师 的 身 份 证 号 码 是
)
A.24.70 千克 B.25.30 千克
C.24.80 千克 D.25.51 千克
5.如图,把一条绳子折成 3 折,用剪刀从中剪
断,得到几条绳子? (
)
A.3
B.4
C.5
D.6
6. a、b 为有理数,下列式子成立的是
A. a a
B. a3 (a)3
C. 3a 2a
D. a2 1≥1
7.学校、家、书店依次坐落在一条南北走向的