反激式开关电源设计详解上

合集下载

正激反激式双端开关电源高频变压器设计详解

正激反激式双端开关电源高频变压器设计详解

正激反激式双端开关电源高频变压器设计详解高频变压器作为电源电子设备中的重要组成部分,起到了将输入电压进行变换的作用。

根据不同的使用环境和要求,电源电路中的电感元件可分为正激式、反激式和双端开关电源。

下面就分别对这三种电源的高频变压器设计进行详解。

1.正激式电源变压器设计正激式电源变压器是将输入电压通过矩形波进行激励的一种变压器。

其基本结构包括主磁线圈和副磁线圈两部分,主磁线圈用来耦合能量,副磁线圈用来提供输出电压。

正激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。

(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。

(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。

(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。

(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。

(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。

2.反激式电源变压器设计反激式电源变压器是通过反馈控制来实现变压的一种变压器。

其基本结构包括主磁线圈、副磁线圈和反馈元件等。

反激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。

(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。

(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。

(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。

(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。

(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。

(7)选择合适的反馈元件:根据反馈控制的需要来选择合适的反馈元件,并设计合适的反馈回路。

反激式开关电源设计详解

反激式开关电源设计详解

反激式开关电源设计详解一、工作原理1.开关管控制:反激式开关电源中,开关管起到了关键的作用。

当输入电压施加在开关管上时,开关管处于导通状态,此时电流流经变压器和输出电路,能量存储在变压器核心中。

当输入电压施加在开关管上时,开关管处于截止状态,此时能量释放,通过一对二极管和电容器形成输出脉冲电流。

2.变压器作用:反激式开关电源中的变压器主要用于将输入电压转换为所需的输出电压。

在导通状态下,输入电压施加在变压器的一侧,能量存储在变压器的磁场中。

在截止状态下,变压器的磁场崩溃,能量释放到输出电路中。

3.输出电路过滤:输出电流通过一对二极管和电容器形成脉冲电流。

为了使输出电流更加稳定,需要通过电容器对输出电流进行滤波,降低脉冲幅度,使输出电压更加平稳。

二、基本结构1.输入滤波电路:由于输入电源通常含有较多的噪声和干扰,为了保障开关电源的正常工作,需要在输入端添加一个滤波电路,通过滤波电容和电感将输入电压的尖峰和噪声滤除。

2.开关控制电路:开关控制电路用于对开关管进行控制,使其在合适的时机打开和关闭。

常见的控制方式有定时控制和反馈控制两种。

3.开关管:开关管在反激式开关电源中起到了关键的作用。

常见的开关管有MOS管、IGBT管等,其特性包括导通损耗、截止损耗和开关速度等。

4.变压器:变压器用于将输入电压变换为所需的输出电压。

同时,变压器还能起到隔离输入电源和输出负载的作用,保护负载。

5.输出整流滤波电路:输出整流滤波电路用于对输出电流进行整流和滤波,使输出电压更加稳定。

三、常见设计方法1.脉冲宽度调制(PWM)控制:PWM是一种常用的反激式开关电源控制方法,通过控制开关管的导通时间来调节输出电压和电流。

PWM控制能够实现较高的效率和较低的输出波纹,但需要一定的控制电路。

2.变压器匹配设计:在设计反激式开关电源时,需要合理选择变压器的匝数比,以实现所需的输入输出电压转换。

同时,还需要考虑变压器的大小和功耗。

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。

它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。

本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。

一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。

其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。

1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。

在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。

通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。

二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。

2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。

反激式开关电源变压器设计步骤(重要)

反激式开关电源变压器设计步骤(重要)

反激式开关电源变压器设计反激式变压器是反激式开关电源的核心,它决定了反激式变换器一系列的重要参数,如占空比D ,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。

这样可以让其发热量尽量小,对器件的磨损也尽量小。

同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源性能会有很大的下降,如损耗会加大,最大输出功率会下降.设计变压器,就是要先选定一个工作点,在这个点就是最低的交流输入电压,对应于最大的输出功率。

第一步,选定原边感应电压V OR 。

这个值是有自己来设定的,这个值就决定了电源的占空比.可能朋友们不理解什么是原边感应电压。

我们分析一个工作原理图。

当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性上升:I 升=Vs*Ton/L 。

这三项分别是原边输入电压,开关开通时间和原边电感量。

在开关管关断的时候,原边电感放电,电感电流会下降,此时有下降了的电流:I 降=V OR *T OFF /L 。

这三项分别是原边感应电压(即放电电压)、开关管管段时间和电感量。

经过一个周期后,原边电感电流会回到原来的值,不可能会变,所以有:Vs *T ON /L=V OR *T OFF /L 。

即上升了的等于下降了的。

上式中用D 来代替T ON ,用(1-D )来代替T OFF .移项可得:D=V OR /(V OR +Vs)。

这就是最大占空比了.比如说我设计的这个变压器,我选定电感电压V OR =20V ,则Vs 为24V ,D=20/(20+24)=0。

455。

第二步,确定原边电流波形的参数原边电流波形有三个参数,平均电流,有效值电流,峰值电流,首先要知道原边电流的波形,原边电流的波形如下。

这是一个梯形波横向表示时间,总想表示电流大小,这个波形有三个值,一个是平均值I 平均,二是有效值I ,三是峰值Ip 。

首先要确定平均值I 平均:I 平均=Po/(η*Vs )。

反激式开关电源设计资料要点

反激式开关电源设计资料要点

反激式开关电源设计资料前言反激式开关电源的控制芯片种类非常丰富,芯片厂商都有自己的专用芯片,例如UC3842、UC3845、OB2262、OB2269、TOPSWITCH 等等。

虽然控制芯片略有不同,但是反激式开关电源的拓扑结构和电路原理基本上是一样的,本资料以UC3842为控制芯片设计了一款反激式开关电源。

单端反激式开关稳压电源的基本工作原理如下:D1ET ON T OFFL P L STI PQ1C O R L图1 反激式开关电源原理图当加到原边主功率开关管Q1的激励脉冲为高电平使Q1导通时,直流输入电压V IN加载原边绕组N P两端,此时因副边绕组相位是上负下正,使整流管D1反向偏置而截止;当驱动脉冲为低电平使Q1截止时,原边绕组N P两端电压极性反向,使副边绕组相位变为上正下负,则整流管被正向偏置而导通,此后存储在变压器中的磁能向负载传递释放。

因单端反激式电源只是在原边开关管到同期间存储能量,当它截止时才向负载释放能量,故高频变压器在开关工作过程中,既起变压隔离作用,又是电感储能元件。

因此又称单端反激式变换器是一种“电感储能式变换器”。

学习了反激式开关电源的工作原理之后,我们可以自行设计一款电源进行调试。

开关电源是一门实验科学,理论知识的学习是必不可少的,但是光掌握了理论知识是远远不够的,还要多做实验,测试不同环境不同参数下的电源工作情况,这样才能对电源有更深的认识。

除此之外,掌握大量的实验数据可以对以后设计电源和电源的优化提供很大帮助,可以更快速更合理的设计出一款新电源或者排除一些电源故障。

通过阅读下面的章节,可以使你对电源从原理理解到设计能力有一个快速的提升。

第一章电源参数的计算第一步,确定系统的参数。

我们设计一个电源首先要确定电源工作在一个什么样的环境,比如说输入电压的范围、频率、网侧电压是否纯净,接下来是电源的输出能力包括输出电压、电流和纹波大小等等。

先要确定这些相关因素,才能更好的设计出符合标准的电源。

反激式开关电源变压器设计说明

反激式开关电源变压器设计说明

2.6 计算一次绕组最大匝数Npri
Lpri 452*10-6
Npri = =
= 61.4匝 取Npri=62匝
AL 120*10-9
2.7 计算二次主绕组匝数NS1〔NS1为DC+5V绕组
Npri<V01+VD><1-Dmax> 62*<5+0.7>*<1-0.5>
Ns1=
=
= 2.78匝
Vin<min>Dmax
技术部培训教材
反激式开关电源变压器设计(2)
表二 变压器窗口利用因数
变压器情况
窗口
反激式变压器 一个二次绕组 两个或多个二次绕组 相互隔离的二次绕组 满足UL或CSA标准 满足IEC标准 法拉第屏屏蔽
1.1 1.2
1.3 1.4 1.1 1.2 1.1
用下式按变压器情况将各窗口利用因数综合起来 Knet=Ka.Kb…
技术部培训教材
反激式开关电源变压器设计(2)
变压器绕制结构如下:
0.06/3层 0.06/3层 0.06/3层 0.06/3层
偏置绕组 ½一次绕组 二次绕组 ½一次绕组
3mm
3mm 技术部培训教材
反激式开关电源变压器设计(2)
2.11 计算变压器损耗
1铜损:Pcun = NnV* MLT*Rn>In2 MLT = 2E+2C=2*25.27+2*9.35=69.24mm
5+0.7
取13匝
技术部培训教材
反激式开关电源变压器设计(2)
2.9 检查相应输出端电压误差 Vsn
δVsn%=<< = *Ns’n-Vsn>/Vsn>*100% Nsn

小功率反激式开关电源设计与计算

小功率反激式开关电源设计与计算
肯普科技
小功率反激式开关电源设计与计算
一、原理分析 下图为一开关电源原理图
学习园地
220V 市电经开关、保险管、热敏电阻、共模抑制电感电容和差模抑制电容, 经桥式整流成脉动直流,经电解电容滤波,得到约 300V 直流电压,通过开关变 压器的初级加至开关管漏极(或集电极),这其中在保险管的后面接有压敏电阻, 可消除来自电网的超高瞬态尖峰脉冲干扰,如果市电电压异常升高,在一个不 太长的毫秒级时间内,压敏电阻阻值迅速降低至欧姆级,大电流熔断保险丝, 从而保护了后面的电路。在 220V 电路中,串有热敏电阻,该电阻在常温下约十 几欧姆,开机瞬间利用这一电阻有效减小冲击电流,保护线路、电源开关接点、 整流二极管。当电流稳定后,热敏电阻温度升高电阻下降即负温度系数,整机 正常工作。
8
肯普科技
i) 其它
Cin=3µF/W(85~265V AC) IP=IR/KRP
IP=
P0
+
VImin * Dmax *η
IR 2
2µF/W(195~265V AC)
IP=
2P0 VImin * Dmax *η(2 − KRP)
ISP=IP* N P NS
ISRMS=ISP*
(1

D max
)(
PO =0.032A η * V1min
c) IP=
I AVG
=0.15A
(1- 0.5KRP ) * Dmax
d) NP=
LP =210T ALG
e)
LP=
IP
2
*
K
106 PO RP (1- 0.5KRP
)
*
f
* Z(1-η) +η η
=6

反激开关电源设计解析上

反激开关电源设计解析上
单击此处添加小标题
04
Y电容是指跨与L-G/N-G之间的电容器.
单击此处添加小标题
X电容多选用耐纹波电流比较大的聚脂薄膜类电容。这种类型的电容,体积较大,但其允许瞬间充放电的电流也很大,而其内阻相应较小。 X电容容值选取是uF级,此时必须在X电容的两端并联一个安全电阻,用于防止电源线拔插时,由于该电容的充放电过程而致电源线插头长时间带电。 安全标准规定,当正在工作之中的机器电源线被拔掉时,在两秒钟内,电源线插头两端带电的电压(或对地电位)必须小于原来额定工作电压的30%。 作为安全电容之一的X电容,也要求必须取得安全检测机构的认证。X电容一般都标有安全认证标志和耐压AC250V或AC275V字样,但其真正的直流耐压高达2000V以上,使用的时候不要随意使用标称耐压AC250V或者DC400V之类的的普通电容来代用。
反激开关电源特点
在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电 压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以自行车充电器为例,详细讲解反激开关电源的设计流程及元器件的选择方法。
共模磁芯的选择
从前述设计要求中可知,共模电感器要不易饱和,如此就需要选择低B-H(磁芯损耗与饱和磁通密度)温度特性的材料,因需要较高的电感量,磁芯的μi值也就要高,同时还必须有较低的磁芯损耗和较高的BS(饱和磁通密度)值,符合上述要求之磁芯材质,目前以铁氧体材质最为合适,磁芯大小在设计时并没有一定的规定,原则上只要符合所需要的电感量,且在允许的低频损耗范围内,所设计的产品体积最小化。 因此,磁芯材质及大小选取应以成本、允许损耗、安装空间等做参考。共模电感常用磁芯的μi约在2000~10000之间。

反激ACDC开关电源设计解析(上)

反激ACDC开关电源设计解析(上)

(上)彭磊•10W以内常用RCC(自激振荡)拓扑方式•10W-100W以内常用反激式拓扑(75W以上电源有PF值要求)•100W-300W 正激、双管反激、准谐振•300W-500W 准谐振、双管正激、半桥等•500W-2000W 双管正激、半桥、全桥•2000W以上全桥•在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。

优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出.缺点:输出纹波比较大。

(输出加低内阻滤波电容或加LC噪声滤波器可以改善)•今天以自行车充电器为例,详细讲解反激开关电源的设计流程及元器件的选择方法。

EMI整流滤波变压器次级整流滤波开关器件PWM 控制IC隔离器件采样反馈输出高压区域低压区域—保险管•作用:安全防护。

在电源出现异常时,为了保护核心器件不受到损坏。

•技术参数:额定电压V、额定电流I、熔断时间I^2RT。

•分类:快断、慢断、常规•0.6为不带功率因数校正的功率因数估值•Po输出功率•η 效率(设计的评估值)•Vinmin 最小的输入电压•2为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。

•0.98 PF值相关知识•大部分用电设备中,其工作电压直接取自交流电网。

所以电网中会有许多家用电器、工业电子设备等等非线性负载,这些用电器在使用过程中会使电网产生谐波电压和电流。

没有采取功率因数校正技术的AC-DC整流电路,输入电流波形呈尖脉冲状。

交流网侧功率因数只有0.5~0.7,电流的总谐波畸变(THD)很大,可超过100%。

采用功率因数校正技术,功率因数值为0.999时,THD约为3%。

为了防止电网的谐波污染,或限制电子设备向电网发射谐波电流,国际上已经制定了许多电磁兼容标准,有IEEE519、IEC1000-3-2等。

•功率因数的校正(PFC)主要有两种方法:无源功率因数校正和有源功率因数校正。

反激式开关电源设计详解(上)教材

反激式开关电源设计详解(上)教材

NTC的选择依据
Rt Rne
1 1 [ B ( )] T1 Tn
公式中: 1. Rt 是热敏电阻在T1温度下的阻值; 2. Rn是热敏电阻在常温Tn下的标称阻值; 3. B是材质参数(常用范围2000K~6000K); 4. exp是以自然数 e 为底的指数( e =2.71828 ); 5. T1和Tn为绝对温度K(即开尔文温度),K度 =273.15(绝对温度)+摄氏度;
安规电容之--X电容
• X电容多选用耐纹波电流比较大的聚脂薄膜类电容。这种 类型的电容,体积较大,但其允许瞬间充放电的电流也很大, 而其内阻相应较小。 • X电容容值选取是μF级,此时必须在X电容的两端并联一 个安全电阻,用于防止电源线拔掉时,由于该电容被充电荷 没泄放而致电源线插头长时间带电。 安全标准规定,当正 在工作之中的机器电源线被拔掉时,在两秒钟内,电源线插 头两端带电的电压(或对地电位)必须小于原来额定工作电 压的30%。 • 作为安全电容之一的X电容,也要求必须取得安全检测机构 的认证。X电容一般都标有安全认证标志和耐压AC250V 或AC275V字样,但其真正的直流耐压高达2000V以上,使用 的时候不要随意使用标称耐压AC250V或者DC400V之类 的普通电容来代用。
aVrms bc
2,V1mA 488.042 V
a 为电路电压波动系数,一般取值1.2; Vrms 为交流输入电压有效值; b 为压敏电阻误差,一般取值0.85; C 为元件的老化系数,一般取值0.9; √2 为交流状态下要考虑峰峰值; V1mA 为压敏电阻电压实际取值近似值; 通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规 定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超 过± 10%时的最大脉冲电流值。

反激式开关电源原理与工程设计讲解

反激式开关电源原理与工程设计讲解

反激式开关电源原理与工程设计讲解反激式开关电源原理与工程设计一.反激式开关电源的原理分析二.反激式开关电源实际电路的主要部件及其作用三.反激式开关电源电路各主要器件的参数选择四.反激式开关电源pcb排板原则五.变压器的设计六.反激式开关电源的稳定性问题反激式开关电源原理与工程设计一.反激式开关电源的原理分析1.反激式开关电源电路拓扑2.为什么是反激式a.变压器的同名端相反b.利用了二极管的单向导电特性3.电感电流的变化为何不是突变电压加在有电感的闭合回路上,流过电感上电流不是突变的,而是线性增加。

愣次定律:a.当电感线圈流过变化的电流时会产生感生电动势,其大小于与线圈中电流的变化率成正比;b.感生电动势总是阻碍原电流的变化4.变压器的主要作用与能量的传递理想变压器与反激式变压器的区别反激式变压器的作用a.电感(储能)作用遵守的是安匝比守恒(而不是电压比守恒)储存的能量为1/2×L×Ip2b.限流的作用c.变压作用初次级虽然不是同时导通,它们之间也存在电压转换关系,也是初级按匝比变换到次级,次级按变比折射回初级。

d.变压器的气隙作用扩展磁滞回线,能使变压器更不易饱和磁饱和的原理图电感值跟导磁率成正比,导磁率=B/HB是磁通密度H是磁场强度简单一点,H跟外加电流成正比就是了,增加电流,磁流密度会跟着增加, 当加电流至某一程度时,我们会发现,磁通密度会增加得很慢, 而且会趋近一渐近线.当趋近这一渐近线时,这时的磁通密度,我们就称為饱和磁通密度,电感值跟导磁率成正比,导磁率=B/HB是磁通密度,H是磁场强度(电流增加,H会增加.) H会增加,但B不会增加, 导磁率变化量会趋近零啦!电感值跟导磁率变化量成正比, 导磁率变化量趋近零,那电感值会是多少? 零5.开关管漏极电压的组成a. 高压为基础部分b. 折射回来的电压部分c. 漏感产生的尖峰部分波形6.反激式拓扑开关电源有两种工作模式:(1) 完全能量转换,也叫做非连续导通模式。

反激式(RCD)开关电源原理及设计

反激式(RCD)开关电源原理及设计

反激式(RCD)开关电源原理及设计[导读]反激拓扑的前身是Buck-Boost变换器,只不过就是在Buck-Boost变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的Buck-Boost变换器。

关键词:反激式开关电源因该电源是公司产品的一个配套使用,且各项指标都不是要求太高,故选用最常用的反激拓扑,这样既可以减小体积(给的体积不算大),还能降低成本,一举双的!反激拓扑的前身是Buck-Boost变换器,只不过就是在Buck-Boost变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的Buck-Boost变换器。

先学习下Buck-Boost变换器工作原理简单介绍下1.在管子打开的时候,二极管D1反向偏置关断,电流Is流过电感L,电感电流IL线性上升,储存能量!2.当管子关断时,电感电流不能突变,电感两端电压反向为上负下正,二极管D1正向偏置开通!给电容C充电及负载提供能量!3.接着开始下个周期!从上面工作可以看出,Buck-Boost变换器是先储能再释放能量,VS不直接向输出提供能量,而是管子打开时,把能量储存在电感,管子关断时,电感向输出提供能量!根据电流的流向,可以看出上边输出电压为负输出!根据伏秒法则Vin*Ton=Vout*ToffTon=T*DToff=T*(1-D)代入上式得Vin*D=Vout*(1-D)得到输出电压和占空比的关系Vout=Vin*D/(1-D)看下主要工作波形从波形图上可以看出,晶体管和二极管D1承受的电压应力都为Vs+Vo(也就是Vin+Vout);再看最后一个图,电感电流始终没有降到0,所以这种工作模式为电流连续模式(Ccm模式)。

如果再此状态下把电感的电感量减小,减到一定条件下,会出现这个波形!从上图可以看出,电感电流始终降到0后再到最大,所以这种模式叫不连续模式(DCM模式)。

反激式开关电源设计详解上共44页PPT46页

反激式开关电源设计详解上共44页PPT46页

60、生活的道路一旦选定,就Βιβλιοθήκη 勇敢地 走到底 ,决不 回头。 ——左
反激式开关电源设计详解上共44页
41、俯仰终宇宙,不乐复何如。 42、夏日长抱饥,寒夜无被眠。 43、不戚戚于贫贱,不汲汲于富贵。 44、欲言无予和,挥杯劝孤影。 45、盛年不重来,一日难再晨。及时 当勉励 ,岁月 不待人 。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

单端反激式开关电源-主电路设计讲解

单端反激式开关电源-主电路设计讲解

摘要开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制、IC 和MOSFET构成。

本设计在大量前人设计开关电源的的基础上,以反激式电路的框架,用TOP244Y 构成12V、2.5A开关电源模块,通过整流桥输出到高频变压器一次侧,在二次侧经次级整流滤波输出。

输出电压经采样与TL431稳压管内部基准电压进行比较,经过线性光偶合器PC817改变TOP244Y的占空比,从而使电路能直流稳压输出。

关键词开关电源;脉冲宽度调制控制;高频变压器;TOP244YABSTRACT Switching power supply is the use of modern electronic technology, control switching transistor turn-on and turn-off time ratio of the output voltage to maintain a stable power supply, switching power supply generally by the pulse width modulation (PWM) control,IC and MOSFET form.The design of a large number of predecessors in the switching power supply design based on the flyback circuit to the framework, using TOP244Y constitute a 12V, 2.5A switching power supply module, through the rectifier bridge output to high-frequency transformer primary side, the secondary side by the time level rectifier output. TL431 by sampling the output voltage regulator with an internal reference voltage comparison, after a linear optical coupler PC817 change TOP244Y duty cycle, so the circuit can be DC regulated output.Keyword Switching Power Supply;PWM Control;high frequency transformer;TOP244Y目录前言 (3)1.反激式PWM高频开关电源的工作原理 (4)1.1 PWM开关电源 (5)1.1.1 开关电源简介 (5)1.1.2 PWM开关电源原理 (6)1.2 反激式变换器 (8)1.2.1 反激变换器的工作原理 (8)1.2.2 反激变换器的工作模式 (9)1.3 单相二极管整流桥 (9)1.4 缓冲电路(吸收电路) (10)2.TOPSwitch-GX芯片 (11)2.1 TOPSwitch-GX的性能 (12)2.2 TOPSwitch-GX的内部结构及引脚 (12)2.2.1 TOPSwitch-GX的内部结构 (12)2.2.2 TOPSwitch-GX的引脚功能 (14)3.反激式变换器的高频变压器设计 (15)3.1 开关电源变压器的绕线技术 (16)3.1.1 绕组符合安全规程 (16)3.1.2 低漏感的绕制方法 (17)3.1.3 变压器紧密耦合的绕制方法 (19)3.2 确定磁心的尺寸 (20)3.3 反激式变压器的设计 (22)4.单端反激式开关电源-主电路设计 (24)4.1 单端反激式开关电源主电路介绍 (25)4.2 单端反激式开关电源驱动电路介绍 (26)5.设计结果及分析 (27)5.1 设计输出电压及波形 (28)5.2 设计结果分析 (32)结论 (33)致谢 (34)参考文献 (34)附录 (35)前言本课题主要掌握反激式PWM高频开关电源的工作原理。

(完整版)反激式开关电源的设计方法

(完整版)反激式开关电源的设计方法

1 设计步骤:1.1 产品规格书制作1.2 设计线路图、零件选用.1.3 PCB Layout.1.4 变压器、电感等计算.1.5 设计验证.2 设计流程介绍:2.1 产品规格书制作依据客户的要求,制作产品规格书。

做为设计开发、品质检验、生产测试等的依据。

2.2 设计线路图、零件选用。

2.3 PCB Layout.外形尺寸、接口定义,散热方式等。

2.4 变压器、电感等计算.变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,2.4.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip = 一次侧峰值电流(A)➢ Np = 一次侧(主线圈)圈数➢ Ae = 铁心截面积(cm 2)➢B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。

2.4.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。

2.4.3 决定变压器线径及线数:变压器的选择实际中一般根据经验,依据电源的体积、工作频率,散热条件,工作环境温度等选择。

当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。

反激式开关电源变压器设计

反激式开关电源变压器设计

反激式开关电源变压器设计反激式开关电源是一种常见的开关电源拓扑结构,具有体积小、效率高、负载适应性强等优点,因此在电子设备中得到广泛应用。

其中重要的组成部分之一是变压器,它起到了转换与隔离功效。

下面将详细介绍如何设计反激式开关电源变压器。

首先,设计反激式开关电源变压器需要确定的参数包括输入电压Vin,输出电压Vout,输出功率Pout,开关频率f,以及变压器变比n。

1.确定变压器的基本参数根据输出功率Pout和输出电压Vout,可以求得输出电流Iout,即Iout=Pout/Vout。

根据变比n,可以求得输入电流Iin,即Iin=Iout/n。

2.计算变压器的工作点电流为了保证变压器工作的稳定性和可靠性,需要计算变压器的工作点电流。

工作点电流最大值的计算公式是Ipk=(1.1-1.2)*Iin,其中1.1-1.2是一个经验系数。

通过计算得到的Ipk,可以计算得到变压器的直流电压Vdc,即Vdc=Vin*(1-1/n)。

3.计算变压器的直流电感为了保证变压器的工作效率和响应速度,需要计算变压器的直流电感。

直流电感的公式是L=Vdc/(f*(1-δ)*Ipk),其中f是开关频率,δ是开关管的占空比。

选择合适的直流电感可以有效降低功率损失。

4.计算变压器的绕组匝数根据变压器的变比n,可以计算得到变压器的绕组匝数。

若变压器的输入绕组匝数是N1,输出绕组匝数是N2,则变比n=N1/N2、根据变比n 和输入电压Vin,可以计算得到输出电压Vout,即Vout=Vin/n。

5.计算变压器的铜损耗和铁损耗变压器的铜损耗和铁损耗是设计中重要的参考因素。

铜损耗的公式是Pcu=Iin^2*R,其中Iin是输入电流,R是变压器的电阻。

铁损耗是根据变压器的磁通密度和磁场强度来计算的。

6.选择合适的变压器尺寸和材料根据以上计算的结果,可以选择适当的变压器尺寸和材料。

变压器的尺寸和材料直接影响着反激式开关电源的体积和效果,需要根据实际需求和设计要求进行选择。

反激式开关电源设计详解(上)资料PPT45页

反激式开关电源设计详解(上)资料PPT45页

反激式开关电源设计详解(上)资料
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
Hale Waihona Puke 31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克

反激式开关电源设计

反激式开关电源设计

反激式开关电源设计(徐辉)概述:在反激拓扑中,开关导同时,变压器储存能量,负载电流由输出滤波电容提供;开关关断时,变压器存储的能量传送到负载和输出滤波电容,以补偿电容单独提供负载电流时消耗的能量。

应用范围:这种拓扑在输出功率为5~150W电源中应用非常广泛。

它最大的特点是不在次级接储能电感(但需加较小的滤波电感),使成本降低,体积较小。

电源电路原理图:一、输入部分电路设计:电路原理图如下:◆输入部分主要由下列几部分组成:保险丝F1(3A/250V)、热敏电阻N1(5D-9)、压敏电阻ZN1(7D471K)、共模电感L1(22mH/2A)、整流二极管BD1~BD4(1N5399)和C6(47U/400V)组成。

◆输入整流器:在选择整流器是应注意下面一些重要参数:1)最大正向整流电流:它主要由输出功率决定,所以整流二极管的稳态电流容量至少应是计算值的2倍。

2)峰值反向截止电压:由于整流器处在高电压的环境中,它必须有较高的反向截止电压,一般应为600V以上。

3)能承受较高的浪涌电流能力:浪涌电流是由开关管导通时的峰值电流所产生的。

◆滤波电容的计算:1)正确的选择电容很重要,它影响输出端的低频纹波和输出电压保持时间这两个参数。

计算滤波电容的公式如下:C=I×t /ΔV (C:电容值(F);I:负载电流(A);t:电容提供电流的时间(s);ΔV:允许的纹波电压(V)。

)备注:一般根据输出功率算:1W用1uF的电容2)电容的纹波电流对电源的寿命有很大影响,流经直流输入回路的平均电流Idc由下公式决定:Idc=Ids×Dmax;这里的,Ids:输入Np(MOS管)电流;Dmax:最大占空比。

3)这里也给出与上面公式不一样求C值的公式:按经验值:C=(400~600)×Idc(单位:uF)4)流经C的纹波电压Vcr:Vcr=(Idc×t)/C (t:为整流器的非导通时间,由二极管资料得到;)◆流经开关元件的有效电流值:Irms=Ids×√(Ton/T)(Ton为开关导通时间,T为整个周期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反激开关电源特点
• 在开关电源市场中,400W以下的电源大约占了市 场的70-80%,而其中反激式电源又占大部分,几乎 常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电 压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容 或加LC噪声滤波器可以改善)
• 1. X电容是指跨与L-N之间的电容器, • 2. Y电容是指跨与L-G/N-G之间的电容器.
安规电容之--X电容
• X电容多选用耐纹波电流比较大的聚脂薄膜类电容。这种 类型的电容,体积较大,但其允许瞬间充放电的电流也很大, 而其内阻相应较小。
• X电容容值选取是μF级,此时必须在X电容的两端并联一 个安全电阻,用于防止电源线拔掉时,由于该电容被充电荷 没泄放而致电源线插头长时间带电。 安全标准规定,当正 在工作之中的机器电源线被拔掉时,在两秒钟内,电源线插 头两端带电的电压(或对地电位)必须小于原来额定工作电 压的30%。
• 技术参数: 额定电压V、额定电流I、熔断时间I^2RT。
• 分类: 快断、慢断、常规
保险管的参数计算方法
F1
2
Vin
P0
m in
0.6
F1
2 Vin
P0 min
0.98
• 0.6为不带功率因数校正的功率因数估值 • Po输出功率 • η 效率(设计的评估值) • Vinmin 最小的输入电压 • 2为经验值,在实际应用中,保险管的取值范围是理
• 今天以自行车充电器为例,详细讲解反激开关电 源的设计流程及元器件的选择方法。
隔离开关电源框架结构图
EMI 整流滤波 变压器 次级整流滤波
输出
开关器件
采样反馈
PWM 控制IC 隔离器件
高压区域
低压区域
电源电路原理图
初级侧部分
第一个安规元件—保险管
• 作用: 安全防护。在电源出现异常时,保护核心器件不 受到损坏。
管(瞬间抑制二极管)稍慢一些,一般情况下用于电子电 路的过电压保护,其响应速度可以满足电路要求。
选取压敏电阻的方法
• 压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持 续电流,在用作过压保护时必须考虑到这一点。压敏电阻的选用,一 般选择标称压敏电压V1mA和通流容量两个参数。
a 1.2,Vrms 220V,b 0.85,c 0.9,
V1mA
aVrms bc
2,V1mA 488 .042V
a 为电路电压波动系数,一般取值1.2;
Vrms 为交流输入电压有效值; b 为压敏电阻误差,一般取值0.85;
C 为元件的老化系数,一般取值0.9;
√2 为交流状态下要考虑峰峰值;
V1mA 为压敏电阻电压实际取值近似值; 通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规定的
NTC的选择依据
[B( 1 1 )]
Rt Rne T1 Tn
公式中: 1. Rt 是热敏电阻在T1温度下的阻值; 2. Rn是热敏电阻在常温Tn下的标称阻值; 3. B是材质参数(常用范围2000K~6000K); 4. exp是以自然数 e 为底的指数( e =2.71828 ); 5. T1和Tn为绝对温度K(即开尔文温度),K度 =273.15(绝对温度)+摄氏度;
论值的1.5~3倍。 • 0.98 功率因数值(PF)
相关知识
关于功率因数
• 大部分用电设备,其工作电压直接取自交流电网。 所以电网中会有许多家用电器、工业电子设备等 非线性负载,这些用电器在使用过程中会使电网 产生谐波电压和电流。没有采取功率因数校正技 术的AC-DC整流电路,输入电流波形呈尖脉冲状。 交流网侧功率因数只有0.5~0.7,电流的总谐波畸 变(THD)很大,可超过100%。采用功率因数校 正技术后,功率因数值为0.999时,THD约为3%。 为了防止电网的谐波污染,或限制电子设备向电 网发射谐波电流,国际上已经制定了许多电磁兼 容标准,如IEEE519、IEC1000-3-2等。
– 有源功率因数校正是使用所谓的有源电流控制功率因数 的校正方法,可以迫使输入电流跟随供电的正弦电压变 化。这种功率因数校正有体积小、重量轻、功率因数可 接近1等优点。
NTC电阻的作用
• NTC(负温度系数)电阻,是以氧化锰等为主要 原料制造的精细半导体电子陶瓷元件。电阻值随 温度升高而降低且呈现非线性变化。利用这一特 性,在电路的输入端串联一个负温度系数热敏电 阻增加线路的阻抗,这样可以有效的抑制电路开 机时产生的浪涌电压形成的浪涌电流。当电路进 入稳态工作时,由于线路中的持续工作电流引起 NTC发热,使得电阻器的电阻值变得很小,对线 路的影响可以完全忽略。
冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超过± 10%时的最大脉冲电流值。
选取压敏电阻的方法
• 结合前面所述,来看一下本电路中压敏电 阻的型号所对应的相关参数。
EMI电路
• X电容,共模电感(也叫共模扼流圈 ),Y 电容
– 根据IEC 60384-14,安规电容器分为X电容及Y 电容:
(下)
电子科技大学 杨忠孝
开关电源的拓扑结构分类
• 10W以内常用RCC(自激振荡)拓扑方式 • 10W-100W以内常用反激式拓扑(75W以
上电源有PF值要求) • 100W-300W 正激、双管反激、准谐振 • 300W-500W 准谐振、双管正激、半桥等 • 500W-2000W 双管正激、半桥、全桥 • 2000W以上 全桥
压敏电阻的作用
• 压敏电阻是一种限压型保护器件。利用压敏电阻的非线性 特性,当过电压出现在压敏电阻的两极间时,压敏电阻可 以将电压钳位到一个相对固定的电压值,从而实现对后级 电路的保护。
• 主要作用:过电压保护、防雷、抑制浪涌电流。
• 主要参数有:压敏电压、通流容量、结电容、响应时间等。 • 压敏电阻的响应时间为ns级,比空气放电管快,比TVS
相关知识
关于功率因数
• 功率因数的校正(PFC)主要有两种方法:无源功率 因数校正和有源功率因数校正。
– 无源功率因数校正利用线性电感器和电容器组成滤波 器来提高功率因数、降低谐波分量。这种方法简单、 经济,在小功率中可以取得好的效果。但是,在较大 功率的供电电源中,大量的能量必须被这种滤波器储 存和管理,因此需要大电感器和电容器,这样体积和 重量就比较大也不太经济,而且功率因数的提高和谐 波的抑制也不能达到理想的效果。
相关文档
最新文档