北师大版七年级数学下册 5.1轴对称图形(共36张PPT)

合集下载

北师大版七年级下册数学《利用轴对称进行设计》生活中的轴对称PPT教学课件

北师大版七年级下册数学《利用轴对称进行设计》生活中的轴对称PPT教学课件

利用轴对称变换设计美丽图案
轴对称变换:
像上面那样,由一个平面图 形得到它的轴对称图形叫作轴对称 变换.
典例精析
例1 如图,已知△ABC和直线l,作出与△ABC关于 直线l对称的图形.
l
A A′
C B
C′ B′
∴△A′B′C′即为所求.
例2 某居民小区搞绿化,要在一块长方形空地(如 下图)上建花坛,现征集设计方案,要求设计的图案 由圆和正方形组成(圆与正方形的个数不限),并且 使整个矩形场地成轴对称图形.请在下边长方形中 画出你的设计方案.
是轴对称图形.
走进生活,动手创作
观察图案: (1)它们是轴对称图形吗? (2)生活中这些图案可以代表什么含义? (3)自己设计一个轴对称图案,并说明你的设计意图.
利用两个圆、两条线段、两个三角形设计 一个轴对称图案,并说明你的设计意图和要表 达的含义.
当堂练习
1. 如图给出了一个图案的一半,其中的虚线 l 是这个
解:如图所示.
做一做
取一张长30厘米、宽6厘米的纸条,将它每3厘米一 段,一反一正像“手风琴”那样折叠起来,并在折 叠好的纸上画出字母E.用小刀把画出的字母E挖去, 拉开“手风琴”,你就可以得到一条以字母E为图 案的花边.
在上面的活动中,如果先把纸条纵向对折,再 折成“手风琴”,然后继续上面的步骤,此时 会得到怎样的花边?它是轴对称图形吗?
(1)你会得到怎样的图案?先猜一猜,再做一做.
(2)你能说明为什么会得到这样的图案吗?应用学过 的轴对称知识试一试.
两次对折折出了2条对称轴,因此图案中一定有2条对称轴.
(3)如果将正方形按上面方式对折3次,然后沿圆 弧剪开,去掉较小部分,展开后结果又会怎样?
三次对折折出了4条对称轴,因此图案中一定有4条对称轴. (4)当纸对折2次后,剪出的图案至少部分的面积相等. (2)答案不唯一,如图所示:

七年级数学北师大版贵州专版下册课件:5.3简单的轴对称图形(第2课时)

七年级数学北师大版贵州专版下册课件:5.3简单的轴对称图形(第2课时)
D.50°
解析:因为等腰三角形ABC中,AB=AC,∠A=20°,所以 ∠ABC=80°,因为DE是线段AB的垂直平分线,所以AE=BE,所 以∠A=∠ABE=20°,所以∠CBE=∠ABC- ∠ABE=80°20°=60°.故选C.
3.如图所示,在△ABC中,BC=10,边BC的垂直平分 线分别交AB,BC于点E,D,BE=6,求△BCE的周长.
(3)由此你能得到什么结论?
线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴. 线段还有一条对称轴,它就是线段AB所在的直线.
线段垂直平分线的定义与性质
【活动内容一条线段,并且平分这条线段的直线,
叫做这条线段的垂直平分线,简称中垂线. 【活动内容2】
线段的对称性
【活动内容】 线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗? 做一做:为了解决这个问题,请同学们拿出
准备好的纸,在纸上画出一条线段AB,对折AB
使点A,B重合,折痕与AB的交点为O. 想一想:(1)折痕两旁的部分能重合吗?线段是一个轴对称图形吗?这 条折痕是线段的对称轴吗?
(2)点O是线段AB的中点吗?折痕与线段AB垂直吗?为什么?
为AO=BO,∠AOM=∠BOM=90°,OM=OM,所以
△AOM≌△BOM,所以AM=BM.
线段垂直平分线的性质:线段垂直平分线上的点到 这条线段两个端点的距离相等.
尺规作图:作线段垂直平分线
已知:线段AB.
C
求作:线段AB的垂直平分线.
(1)分别以点A和B为圆心,任意长为半 径作弧,两弧相交于点C和D. (2)作直线CD.直线CD就是线段 AB的垂直平分线. 你能说明为什么所作的直线就是已知线段 的垂直平分线吗? 只要连接CA,CB,DA,DB就可以了,因为在△ADC和△BDC 中,AC=BC,AD=BD,CD=CD, 由SSS可知△ADC≌△BDC,得到∠ACD=∠BCD,再由等腰三角形的 “三线合一”就可知道CD是AB的垂直平分线.

北师大版七年级数学下册5.3简单的轴对称图形优秀课件ppt

北师大版七年级数学下册5.3简单的轴对称图形优秀课件ppt
单击此处编辑母版标题样式
• 1单. 如击图此,处是编由辑大母小版不文等本的样等式边三角形组 成–的第图二案级,请找出它的对称轴.
• 第三级
– 第四级 » 第五级
2024/7/16
6
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
单击此处编辑母版标题样式
把一张长方形的纸片对折(折痕为ED),在ED边上取点A,
•在 把单另它一展击边 开此取,观处点察B编,,并辑连说接母明A得B版并到文剪的下本三三角样角形式形的(特注点意.包括折痕),
– 第二级
• 第三级
E
– 第四级 D »折第一五折级 E
A
D 剪一剪
A
D
B B
2024/7/16
• 第三级
2.2、 若– 第等四级腰三角形的一个内角为120°,则它 的另外两»个第内五级角为__3_0°__,_3_0_°_
2024/7/16
11
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
单击此处编辑母版标题样式
4.已单知击等腰此三处角形编的辑腰母长比版底标边题长多样式
2cm,并且它的周长为16cm,求这个等腰 •三单角击形此的处各编边辑长母. 版文本样式 解:– 第设二三级角形的底边长为xcm,则其腰长为 (x+2)•c第m,三级根据题意得:
– 第四级
» 第2五(级x+2)+x=16
解得 x=4
∴等腰三角形三边长为4cm,6cm,6cm.
3.1 一等腰三角形的两边长为2和4, • 单则击该此等处腰编三辑角母形版的文周本长样为式__1_0_____

七年级数学下册第五章轴对称的应用将军饮马问题课件(新版)北师大版

七年级数学下册第五章轴对称的应用将军饮马问题课件(新版)北师大版

A P
B l
B′
6、为什么这样找到的点P,就能使得PA+PB最短呢?你能尝试证明吗?
探究新知
证明:在直线L上任意取不同于点P的一点Q,连接QA、QB、 QB/,如图所示。
∵PA+PB=PA+PB/=AB/ QA+QB=QA+QB/
又∵AB/<QA+QB/(两点之间线段最短或三角形中两边之和大 于第三边)
∴PA+PB< QA+QB 即此时点P使得PA+PB的值最小
B
A P L
Q
B/
小试牛刀
如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛 奶,已知居民区A、B分别距离街道1km、2km,两居民区水平距 离4km,请问奶站修建在什么地方才能使得A,B到它的距离之和 最短?最短距离是多少?
C
居民区A 街道
精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这 个问题.这个问题后来被称为“将军饮马问题”.
你知道海伦是如何帮助将军解决问题的吗?
B A
l
任务驱动 启迪智慧
问题
A
1、截至目前, 你学到那些最短 问题?
2、如图,A,B 两点位于直线L
A
的两侧,你能
在直线L上找一
点P,使得点p
到A、B两点距
直线段路径
课后拓展延伸
课后作业
1、如图,菱形ABCD中,AB=2, ∠BAD=600,E是AB 的中点,点P是对角线AC上的一个动点,请找出使得 PE+PB的值最小时点P的位置(找出位置即可)
D
A
P C
E B
课后拓展延伸
☆一点P,让PB与PA 的差最大,并给出证明!

北师大版数学七年级下册5.1 轴对称现象课件(17张PPPT)

北师大版数学七年级下册5.1 轴对称现象课件(17张PPPT)

议一议 观察图中的每组图案,你发现了什么?
如果两个平面图形沿一条直线对折后能够完全 重合,那么称这两个图形成轴对称,这条直线叫做 这两个图形的对称轴.
归纳总结
比较归纳
轴对称图形
的一个图形
有特殊位置关系 的两个全等图形
1. 都是沿着某条直线折叠后能重合; 2. 可以通过分割或整合互相转化.
区别 成轴对称:有着特殊位置关系的两个全等 图形
课堂练习
1. (成都·期末) 日常生活中我们要去各种公共场所,为 了提醒人们保护自己的人身财产安全,公共场所通常 会贴出一具有警示性的标识,下列图标属于轴对称图 形的是 ( A )
A.
B.
C.
D.
2. 这是轴对称图形还是两个图形成轴对称?说说你的 理由.
议一议 观察图中的图形,哪些图形是轴对称图形?如果是
轴对称图形,请找出它的对称轴.
做一做 将一张纸对折后,用笔尖在纸上扎出如图所示的图
形,将纸打开后铺平,观察所得到的图形,是轴对称图 形吗?你还能用这种方法得到其他的轴对称图形吗?与同 伴进行交流.
全班总动员
ABCDEFGHIJKLM
NOPQRSTUVWXYZ
七年级下册数学(北师版)
第五章 生活中的轴对称
5.1 轴对称现象
情景导入
天工造物,自然之美
民间艺术, 趣味横生
庄严肃穆,中正祥和
它们有什么共同特点?
探究新知
a 1 轴对称和轴对称图形
轴对称
图形
m
对称轴
如果一个平面图形沿一条直线折叠后,直线两旁的 部分能够互相重合,那么这个图形就叫做轴对称图形, 这条直线叫做对称轴.
典例精析
例 右边四组
图片中有哪

新北师大版七年级数学下第五章《生活中的轴对称》学案及答案

新北师大版七年级数学下第五章《生活中的轴对称》学案及答案

第五章生活中的轴对称第一课时 5.1 轴对称现象一、学习目标:1、经历观察、分析现实生活实例和典型图案的过程,认识轴对称和轴对称图形培养学生探索知识的能力与分析问题、思考问题的习惯。

2、会找出简单对称图形的对称轴,了解轴对称和轴对称图形的联系与区别。

二、学习重点:通过对现实生活实例和典型图案的观察与分析,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴.三、学习难点:找出简单轴对称图形的对称轴与理解轴对称和轴对称图形的联系与区别(一)预习准备(1)预习书115~117页(2)预习作业:1.如图所示的几个图案中,是轴对称图形的是()2.如图所示,下面的5个英文字母中是轴对称图形的有()A.2个 B.3个 C.4个 D.5个3.如图所示的图案中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个(二)学习过程:1、如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做_______图形,这条直线叫做_______.2、对称轴是一条_______,有些轴对称图形可能有几条,甚至无数条对称轴.3、把一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么就说这_______图形成轴对称,这条直线就是对称轴,两个图形中的对应点叫做对称点。

4、轴对称图形与轴对称的区别:区别:轴对称是_______图形的位置关系,而轴对称图形是_______具有特殊形状的图形. 5.你认识世界上各国的国旗吗?如图7-4所示,观察下面的一些国家的国旗,是轴对称图形的有( )A.甲乙丙丁戊 B.甲乙丁戊 C.甲乙丙戊 D.甲乙戊6.小红将一张正方形的红纸沿对角线对折后,得到等腰直角三角形,然后在这张重叠的纸上剪出一个非常漂亮的图案,她拿出剪出的图案问小冬,打开后的图案的对称轴至少有( )A.0条 B.1条 C.2条 D.无数条7.如图所示,从轴对称的角度来看,你觉得下面哪一个图形比较独特?简单说明你的理由.8.观察如图所示的图案,它们都是轴对称图形,它们各有几条对称轴?在图中画出所有的对称轴.9.如图所示的四个图形中,从几何图形的性质考虑哪一个与其他三个不同?•请指出这个图形,并简述你的理由.拓展:1.如图所示,以虚线为对称轴画出图形的另一半.回顾小结:1.如果一个图形沿某一条直线折叠后,直线两旁的部分能够,那么这个图形叫做轴对称图形,这条直线叫做。

北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]

北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]

北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]研究目标】1.增进对身边轴对称图形的认识和欣赏,提高对数学的兴趣。

2.了解轴对称的概念,探索轴对称图形的基本性质和应用。

3.探究线段垂直平分线、角平分线和等腰三角形的性质及判定方法。

4.能够按照要求画出一些轴对称图形。

要点梳理】要点一、轴对称1.轴对称图形和轴对称1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。

2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。

要点诠释:成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上。

3)轴对称图形与轴对称的区别和联系要点诠释:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的。

联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形。

2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一。

同时也给出了引辅助线的方法,即遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。

三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。

北师大版七年级数学下册 5.2 《探索轴对称的性质》教学课件(共31张ppt)

北师大版七年级数学下册 5.2 《探索轴对称的性质》教学课件(共31张ppt)
称轴垂直平分,对应线段相等课,对堂应小角相结等.
2.画轴对称图形的步骤: (1)确定对称轴; (2)根据对称轴确定关键点的对称位置; (3)将找到的对称点顺次连接起来.
再见
D'
B
E
E'
B'
活动2.右图是一个轴对称图形:
D
(1)你能找出它的对称轴吗?
3
(2)连接点A与点A1的线段探与对究称轴新有知A B
C
什么关系?连接点B与点B1的线段呢?
D1
4
A1
C1 B1
(3)线段AD与线段A1D1有什么关系?线 段BC与B1C1呢?为什么?
12
(4)∠1与∠2有什么关系? ∠ 3与∠4呢?说说你的理由?
纸打开后铺平.如图
A
D B
C
1
3
F
E
C'
2
4
F'
E'
A'
D' B'
A
C
1
C'
A'
2
问(题 轴对1:称两)个“14”有什探么关究系新? 知B D
3
F
E
4
F'
E'
D' B'
问题2:在上面扎字的过程中,点E与点E′重合,点F与点F′重 合.设折痕所在直线为l,连接点E与点 E′的线段与l有什么关系?点F与 点F′呢?
6cm2

∴h=4 .
随堂练习
5.如图,已知牧马营地在M处,每天牧马人要 赶着马群先到河边饮水,再到草地吃草,然后
回到营地,试设计出最短的放牧路线.
随堂练习
解:以河为对称轴作M的对称点 ,过 作草地的 垂线,垂线和河的交点H就是所求的点.

北师大版七年级数学下册课件简单的轴对称图形

北师大版七年级数学下册课件简单的轴对称图形


C
D
性质2可以分解为三个命题,本节课证明“等腰三 角形的底边上的中线也是底边上的高和顶角平分线”.
证明等腰三角形的性质
已知:如图,△ABC 中,AB =AC,AD 是底边BC 的中线.求证:∠BAD =∠CAD,AD⊥BC.
A 证明:∵ AD 是底边BC 的中线,
∴ BD =CD.
∵ AB =AC,
A
B
C
等边三角形
请分别画出一个等腰三角形和等边三角形,结合
你画的图形说出它们有什么区分和联系?
A
A
B
CB
C
联系:等边三角形是特殊的等腰三角形; 区分:等边三角形有三条相等的边,而等腰三角形 只有两条.
问题 等腰三角形有哪些特殊的性质呢?
从边的角度:两腰相等; 从角的角度:等边对等角; 从对称性的角度:轴对称图形、三线合一.
呢?从剪图、折纸的过程中你能获得什么启示?
证明等腰三角形的性质
已知:如图,△ABC 中,AB =AC.求证:∠B =
∠C. A
证明:作底边的中线AD.
∵ AB =AC,
BD =CD,
AD =AD,
∴ △ABD ≌△ACD(SSS).
∴ ∠B =∠C.

C
D
证明等腰三角形的性质
你还有其他方法证明性质1吗? 可以作底边的高线或顶角的角平分线. A
3.上面剪出的等腰△ABC是轴对称图形吗?如果是,其对 称轴是什么(借助图中的线表示)?
(1)由折叠和对称可知,在△ABC中,∠B与∠C的大小关系如 何;
(2)由折叠和对称又可知:∠BAD与∠DAC, BD与DC大小关 系如何, AD与BC的位置关系是什么?
学习目标

北师大版七年级数学下册课件:轴对称现象

北师大版七年级数学下册课件:轴对称现象

A
B
C
D
4.【例2】下列四个图形:
其中是轴对称图形,且对称轴的条数为2的图形有( C )
A.1个
B.2个
C.3个
D.4个
.下列“数字”图形中,有且仅有一条对称轴的是( A )
A
B
C
D
ቤተ መጻሕፍቲ ባይዱ
5.【例3】下列图形中,△A'B'C'与△ABC关于直线MN成轴对 称的是( B )
A
B
C
D
如图,(1)属于轴对称图形的有 ①③④⑧⑩; (2)两个图形成轴对称的有 ②⑤⑥⑦⑨ .(填序号)
(2)找出如图所示的轴对称图形的对称轴.是否有些图形的对 称轴不止一条呢?
画对称轴略.一个轴对称图形的对称轴可以有1条,也可以有多 条,还可以有无数条.
对点训练 1.(1)下列是轴对称图形的是( D )
A
B
C
D
(2)(传统文化)甲骨文是我国的一种古代文字,下面是 “北”“比”“鼎”“射”四个字的甲骨文,其中不是轴对称图形的 是( B )
第五章 生活中的轴对称
轴对称现象
学习目标
1.(课标)了解轴对称图形的概念,认识并欣赏自然界和现实生 活中的轴对称图形. 2.通过具体实例了解轴对称的概念(课标).理解成轴对称的图 形的意义,能够识别这些图形并能指出它们的对称轴.
知识要点
知识点一:轴对称图形 (1)如果一个平面图形沿一条直线折叠后,直线两旁的部分能 够互相 重合 ,那么这个图形叫做轴对称图形,这条直线叫 做 对称轴 . 注意:对称轴是一条直线,不是射线或线段.
6.【例4】(北师7下P117改编)下面四个图形中,哪些是轴对称 图形?如果是轴对称图形,各有几条对称轴?分别画出来.

5.3 简单的轴对称图形(1)

5.3 简单的轴对称图形(1)

20°
.
数学
返回目录
名师点拨:
(1)若题目中没有明确顶角或底角的度数,做题时要注意分情况
进行讨论计算;
(2)等腰三角形的顶角可以是直角、钝角或锐角,而底角只能是
锐角.
数学
返回目录
知识点三 等边三角形的定义和性质
1.定义:三边都相等的三角形是 等边三角形 ,也叫正三角形.
2.性质:等边三角形是特殊的等腰三角形,它除了具有等腰三角
等腰三角形的 顶角 ,腰与底边的夹角叫做等腰三角形的
底角
.
2.性质:①等腰三角形是轴对称图形,对称轴是它的顶角平分
线所在的直线;②等腰三角形顶角的平分线、底边上的高、
底边上的中线重合(简称“ 三线合一 ”).
数学
返回目录
▶▶ 典型例题
【例1】如图,在△ABC中,AB=AC,AD⊥BC于点D,DE⊥AB于点
腰三角形的个数是
3
.
数学
返回目录
三、解答题
1.如图,在△ABC中,已知AB=AC,AD为∠BAC的平分线,且
∠2=36°,BD=2,求∠BAC,∠B的度数及BC的长.
解:因为AD为∠BAC的平分线,∠2=36°,
所以∠1=∠2=36°,∠BAC=2∠2=72°.
又因为AB=AC,所以AD⊥BC,BD=CD,
解:因为AB=AC,AD是∠BAC的平分线,
所以BD=CD.
因为△ABC的周长为16,
1
所以AB+BD= ×16=8.
2
因为△ABD的周长为12,所以AD=12-8=4.
数学
返回目录
6.如图,A,B是直线l同侧的两点.请在直线l上找一点C,使得
AC+CB最小,并说明理由.

2020春北师大版初中数学七年级下册习题课件--期末复习(五) 生活中的轴对称

2020春北师大版初中数学七年级下册习题课件--期末复习(五) 生活中的轴对称

14.如图,△ ABC 的三边 AB,BC,AC 的长分别为 45,50,60,其中三条角平分线相交于点 O, 则 S△ ABO∶S△ BCO∶S△ CAO= 9∶10∶12 .
15.如图,在四边形 ABCD 中,∠BAD=120°,∠B=∠D=90°,在 BC, CD 上分别找点 M,N,使△ AMN 周长最小时, 则∠AMN+∠ANM 的度数是 120°.
解:如图所示,四边形 A′B′C′D′即为所求.
思想方法 1 转化思想 【例 5】 如图,在△ ABC 中,AB=AC,AB 的垂直平分线分别交 AB, AC 于点 D,E,△ BCE 的周长是 8,AB-BC=2,求△ ABC 的周长. 【思路点拨】 根据线段垂直平分线的性质得出 AE=BE,结合三角形的周长求出 AB+BC 的值, 再与等式 AB-BC=2 分别相加减,可求得 AB 和 BC,即可求出△ ABC 的周长.
5.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击
打白球时,必须保证∠1 的度数为(C )
A.30°
B.45°
C.60°
D.75°
6.如图,已知等腰△ ABC,AB=AC.若以点 B 为圆心,BC 长为半径画
弧,交腰 AC 于点 E,则下列结论一定正确的是(C )
A.AE=EC
解:①分别作点 C 关于 OA,OB 的对称点 M,N; ②连接 MN,分别交 OA,OB 于点 D,E; 连接 CD,CE,则 C→D→E→C 为所求的行走路线.如图.
18.(12 分)如图,AB∥DC,点 E 是 BC 上一点,AB=BE,CD=CE. 试说明:AE⊥DE.
解:因为 AB∥DC, 所以∠B+∠C=180°. 因为 AB=BE,CD=CE, 所以∠1=∠2,∠3=∠4.

2020--2021学年 北师大版七年级数学下册5.4 利用轴对称进行设计 课件

2020--2021学年  北师大版七年级数学下册5.4 利用轴对称进行设计  课件
解:(1)如图1所示: (2)如图2所示: (3)如图3所示:
连接中考
(2020•吉林)图①、图②、图③都是3×3的正方形网格,每
个小正方形的顶点称为格点.A,B,C均为格点.在给定的网
格中,按下列要求画图:
(1)在图①中,画一条不与AB重合的线段MN,使MN与AB
关于某条直线对称,且M,N为格点.
探究新知
在上面的活动中,如果先把纸条纵向对折,再折成“手风 琴” ,然后继续上面的步骤,此时会得到怎样的花边?它是 轴对称图形吗?先猜一猜,再做一做.
探究新知
如图所示,取一张薄的正方形纸,沿对角线对折后,得到 一个等腰直角三角形,再沿底边上的高线对折. 将得到的 角形纸沿图中的黑色线剪开,去掉含 90°角的部分.打开 折叠的纸,并将其铺平.
解:如图所示;
课堂检测
能力提升题
在由小正方形围成的L形图中,请你用三种方法分别添画 一个小正方形,使它成为轴对称图形.
课堂检测
拓广探索题
观察设计 (1)观察如图的①~④中阴影部分构成的图案,请写出 这四个图案都具有的两个共同特征; (2)借助如图之⑤的网格,请设计一个新的图案,使该 图案同时具有你在解答 (1)中所写出的两个共同特 征.(注意:新图案与如图 的①~④的图案不能重合)
探究新知
如果将正方形纸按上面方式对折 3 次(如图所示) , 然后沿圆弧剪开,去掉较小部分,展开后结果又会怎样?为 什么?
探究新知 素养考点 1
利用轴对称的性质作图
例1 如图,已知△ABC和直线l,作出与△ABC关于直线l对
称的图形.
A
A
B C
B C
巩固练习
变式训练
如图,把下面的图形补成关于直线l对称的图形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称图形
一分为二 合二为一
轴对称
轴对称与轴对称图形有什么区别与联系?
区别: 轴对称是指两个图形能沿对称轴折叠后重
合,而轴对称图形是指一个图形的两部分 沿对称轴折叠后能完全重合。
联系:都有对称轴、对称点和两部分完全重合的特
性。
请你举出生活中的轴对称和轴对称图形?
轴对称: 两扇大门、一双鞋、两只手、同一人的两脸 颊、物体和镜中的像……
轴对称图形: 圆、正方形、长方形、菱形、等腰三角形、等 边三角形、等腰梯形、线段、角……
注意:平行四边 形不是轴对称图形
图中三角形(4)与哪些三角形成轴对称? 整个图形是轴对称图形吗?它们共有几条对称轴?
1
2
4
3
《金典训练》P97-98
A
B
两个图形关于这条直线成轴对
称,这条直线叫做对称轴。 C
D
折叠重合的两点叫对应点
也叫对称点。
轴对称
A
C
E
思考: 根据你对轴对称
的理解,你能发现 轴对称有哪些性质 特征?
L
o1 B o2
对称点
D
o3
F
对称轴
你能找出图中的对称轴和一些对称点吗?
M
N
A
B
CD
P

Q
讨论:轴对称与轴对称图形有什么区别与联系?
如图是在平面镜中看的钟表,你能告诉老师 现在几点了么?
下图曾被哈佛大学选为入学考试的试题. 请在下列一组图形符号中找出它们所蕴 含的内在规律,然后在空白处填上恰当 的图形.
练一练:下面的字母哪些是轴对 称图形?找出对称轴?
A BC D
E FG H
猜字游戏
在艺术字中,有些汉字是轴对称的,你能猜一猜 下列是哪些字的一半吗?
试一试
把一圆形纸片两次对折后,得到 右图,然后沿虚线剪开,得到两 部分,其中一部分展开后的平面
图形是( B )
A
B
C
D
下面的文字中有轴对称图形吗?
六中吉祥
观察下面的图形,你能发现它们 有什么共同的特征吗?
下面每对图形呢?
轴对称、对称轴、对称点
平面内两个如果把一个图
形沿着某一条直线折叠后,能 够与另一个图形重合,那么这
轴对称图形
轴对称图形
对称轴
对称轴
练习:下面的图形是轴对称图形吗?如果是,你能
指出它的对称轴吗?



不是


猜猜看?
美3 A
图形
形状 是否轴对称图形 对称轴的数量
长方形 正方形
平行四边形 等腰三角形
圆形
线段 角

是 不是 是 是 是

2
4
0 1 无数 2 1
想一想:一辆汽车的车牌在水中的倒影如图 所示,你能确定该车车牌的号码吗?
欣赏精美图片
巨灵神 李天王 张 飞 盖书文 李 逵
中国戏曲脸谱 北京天安门
斯里兰卡
印度 泰姬陵
法国艾菲尔铁塔
云南大理三塔
美国白宫
苏州园林 静思园
请你想一想:将上图中的每一个图形沿某条直线 折叠,直线两旁的部分能完全重合吗?
要 仔 细 观 察 哦!
轴对称图形定义:
如果 一个平面图形 沿一条直线折叠,直线两 旁的部分能够 完__全___重__合__,那么这个图形就叫做 轴___对__称__图__形___.这条直线 叫做____对__称___轴_.
相关文档
最新文档