第4章 土壤水分运动
农田土壤水分状况PPT演示课件
it i1t
16
入渗试验——例
t(min) i(mm/min)
1
7.4
2 5.81
3 5.04
4 4.56
5
4.2
10 3.3
15 2.87
20 2.59
30 2.25
50 1.88
100 1.48
200 1.16
lgt lgi 0.0 0.87 0.3 0.76 0.48 0.70 0.60 0.66 0.70 0.62 1.00 0.52 1.18 0.46 1.30 0.41 1.48 0.35 1.70 0.27 2.00 0.17 2.30 0.06
lgi
1
0.8
y = -0.351x +
0.8668
0.6
0.4
0.2
0 0 0.5 1 1.5 2 2.5 lgt
设:y kx b
k 0.351
lg i1 b 0.8668
17
考斯加可夫经验公式应用——例
积水或径流
18
五、SPAC系统的概念
1. 定义:在水势梯度作用下,土壤水分被作物吸收、 传输,并转化成水汽从叶面扩散进入大气的连续 过程,这样一个过程形成了一个统一的,动态的 系统,即土壤-作物-大气连续体(Soil-PlantAtmosphere Continuum)。
i(f 单位:mm/h)
入渗总量:
1
I St 2 i f t
(单位:mm)
13
入渗条件下的土壤水分运动
i f ——稳定入渗率,相当于渗透系数
s ——吸水率,与土壤含水率有关, 系。
5、土壤水分入渗规律(图):
土壤水分运动
量纲:取决于水头梯度。如果水头梯度取长度比长度则导水率的量纲完全与 通量相同,也是速度的量纲(LT-1),经常使用。其它量纲不直观,应用很 少。
一、饱和土壤中水分运动 Flow of water in saturated soils
影响导水率因素: (1)土壤性质: A.质地: Ks(sand)=10-2~10-3(cm/秒) Ks(clay)=10-4~10-7 (cm/秒) B.结构:饱和导水率取决于能够导水的大孔隙的孔度,并不是取 决于土壤总孔度;田间裂隙、根孔和虫孔都是饱和导水的主要通 道(这些孔道往往在灌水入渗期间成为发生优先流的地方。有结 构土壤饱和导水率大于无结构的土壤。 总孔隙度大的土壤未必是饱和导水率最高的土壤 注意: 由于土壤基模特性的不稳定性,导致实际上土壤饱和 导水率往往不是常数。如土壤中离子代换作用、土壤胀缩过程、 以及封闭气体作用等。饱和导水率是一个常数是理论概念,它建 立在土壤基模特性稳定的基础上。实际上却并不是一个常数。 (2)环境温度:温度会影响到土壤中封闭空气的溶解度、会影响 到土壤中溶质离子溶解度,同样影响到水分的物理性状。所以, 影响到土壤导水率。 (3)流体性质:液体的粘滞系数(viscosity)和密度(fluid density) 也是影响导水率的主要因素。
一、饱和土壤中水分运动 Flow of water in saturated soils
2.达西定律(Darcy’s law) 1856年法国工程师Henri Darcy在Dijon城解决城市人口用水问题时总结发表 了达西定律,他指出:细沙过滤器中水流的速度与其所受的压力差成正比例,而 与过滤器的长度成反比。(达西定律诞生背景) 达西定律表达式: 一维情况下: Q q = A⋅t = − K ∆H ∆Z q : 流速( flux density ; LT -1) Q :流量 ( quantity of water ; m 3 ) A:土柱横截面积 ( cross − sec tional area ; m 2 ) t:时间( time ; s) K :导水率 ( hydraulic conductivi ty; m/s) ∆H :压力差( hydraulic head; m) ,水分移动的驱动力 ∆Z:土柱长度 (column length; m) ∆H :水势梯度 ( hydraulic gradient ; m / m ) ∆Z “ −”:表示水流的方向由 水势高出流向水势低处
土壤水分类型及有效性(内容严选)
10
•***毛管水上升高度
•从地下水面到毛管上升谁所能达 到的相对高度,叫毛管水上升高 度。
• h水柱高度(cm),d孔隙直径(mm)
行内借鉴
11
不同土壤质地毛管水上升高度
土壤质地 毛管水上升高度 土壤质地 毛管水上升高度
砂土
砂壤土, 轻壤土
0.5~1.0 1.5
中壤土, 1.2~2.0 重壤土
毛管悬着水达到最大值时的土壤含水 量称为田间持水量,通常作为灌溉水量定
额的最高指标。
在数量上它包括吸湿水、膜状水和毛 管悬着水。
● 饱和含水量(saturated water content) 饱和含 水量是指土壤中孔隙都充满水时的含水量。以 干土质量或容积的百分量表示。
行内借鉴
17
(二)土壤水的有效性(availability) 土壤水的有效性是指土壤水能否被
土壤所有的孔隙都充满了水时,水分向土壤 下层或横向运动的速度。
影响饱和导水率的因素 饱和导水率的特点
• 质地 水通量与孔隙半径 ① 饱和率是常数
4次方呈正比。
② 是土壤导水率的MAX
•结构 土壤结皮对土壤饱和 ③ 主要取决于土壤的质地
导水率有显著的影响。
和结构。
•有机质含量。
沙质土 > 壤质土 > 粘
2、为什么说毛管水是土壤中最宝贵的水分?
3、分析土壤水分的有效性
4、研究土壤水有何重大意义?土壤水在土壤中有何 重要作用?
5、土水势与土壤水吸力有何异同点?
行内借鉴
56
行内借鉴
57
植物吸收利用及其难易程度。 不能被植物吸收利用的水称为无效
水,能被植物吸收利用的水称为有效水。 最大有效水含量是凋萎系数至田间
第四章(2) 土壤水、气、热
22
四、土壤水分含量的测定
烘干法:经典、准确,标准方法
中子法
TDR法(时域反射仪):电磁测量方法,依据土 壤的介电性质。具有直接、快速、方便的特 点,并可同时测定土壤含盐量。
含水量与水吸力呈负相关 同一含水水量时,吸力:粘土>壤土>砂土 同一水吸力时,含水量:粘土>壤土>砂土
31
水分特征曲线的作用:
吸力与含水量换算 反映土壤持水、供水性能 计算当量孔径,反映土壤中大小孔隙的分布 土壤水分运动参数计算
32
5、当量孔径
与一定土壤水吸力相对应的土壤孔隙直径
2、凋萎系数(萎焉系数) (Wilting Coefficient) 根系因无法吸收水分而发生萎焉时的土壤含水量
是土壤有效水下限 吸力约 15 bar
17
18
水分常数与水分有效性的关系
水分能量 (大气压)
1~2万 31 最 大 吸 湿 量
16~15 凋 萎 系 数
水分常数
6.25 最 大 分 子 持 水 量
2、组成特点
气体 大气 土壤空气
46
3、土壤空气组成变化对土壤和作物的影响
O2要求>10%,过低根系呼吸受阻,影响发 芽出苗
CO2根吸收,提供地上部光合作用,过多 会产生毒害,一般<1%即可 还原性气体过多对作物有毒害作用
47
第四章 土壤水分的能态
第四节 土壤水能态测定方法
有多种方法, 有多种方法,如:张力计法、压力膜法、 张力计法、压力膜法、 冰点下降法、水气压法等。 冰点下降法、水气压法等。它们的适宜 范围不同。 范围不同。 最常测定的是基质势,仪器为张力计。 最常测定的是基质势,仪器为张力计。
基质势的测定 (1)张力计法。 张力计法。 主要原理是将充满水的带有陶土滤杯 孔径在1.0 1.5um的细孔 1.0— 的细孔) (孔径在1.0—1.5um的细孔)的金属 管埋入土中, 管埋入土中,水可通过细孔与土壤水 接触,水分由细孔进入土壤。 接触,水分由细孔进入土壤。 金属管上端连接金属表, 金属管上端连接金属表,水分由瓷杯细 孔进入土壤后,管内形成负压, 孔进入土壤后,管内形成负压,真空 压力计上的负压读数即代表管外土壤 水吸力。 水吸力。来自(六)土壤水能态的定量表示
单位容积土壤水的势能值用压力表示, 单位容积土壤水的势能值用压力表示, 标准单位帕(Pa),或千帕(KPa),兆 ),兆 标准单位帕 ,或千帕( ), ),习惯上也曾用巴 帕(MPa),习惯上也曾用巴(bar) ),习惯上也曾用巴( ) 和大气压( 和大气压(atm)表示。 )表示。 单位重量的土壤水的势能值用相当于一 定压力的水柱高厘米数表示。 定压力的水柱高厘米数表示。
土壤-植物 大气系统 土壤 植物-大气系统 植物 土壤水分有效性是一个与大气条件紧密 相连的问题,应该从土壤-植物 植物-大气这 相连的问题,应该从土壤 植物 大气这 个动态系统来阐明土壤水分的有效性。 个动态系统来阐明土壤水分的有效性。 只要根系吸收水分的速率能平衡蒸腾损 耗水分的速率,植物就能正常生长, 耗水分的速率,植物就能正常生长,土 壤水分就是有效的。 壤水分就是有效的。 一旦根系吸水速率低于蒸腾速率,植物 一旦根系吸水速率低于蒸腾速率, 就失水,并且迅速凋萎。 就失水,并且迅速凋萎。此时土壤水分 就是无效的。 就是无效的。
刘春生版《土壤肥料学》-第四章-土壤水分-思考题解析
第四章土壤水分1、土壤水分按照受力大小和水分性质分为哪几种类型及各自的特点的哪些?我国土壤水分的分类方法一般采用数量法。
根据土壤水分所受力的类型可分吸附力、毛管力和重力;把土壤水分划分为吸附水(吸湿水和膜状水)、毛管水、重力水和地下水。
土壤水分的特点:吸湿水:吸湿水受土粒的吸持力很大,水分不能移动,无溶解能力,具有固态水的性质,植物不能吸收利用,是一种无效的水分类型。
膜状水:由于它所受的吸力比吸湿水要小,水分能够在土壤中缓慢移动,其中有部分水分能够被植物吸收利用。
因此,膜状水是部分有效的水分类。
毛管水:它所受的毛管吸持力很小,很容易被作物吸收利用,是有效水,另外,毛管水还溶解有各种营养成分,利于植物的养分供应。
重力水:是地下水的重要来源。
2、何为土壤水势,其水势是如何划分和定义的?土壤水势:是指从一已定高度的蓄水池中,把无限少量的纯水,在一个大气压下,等温和可逆地转移到土壤中的某一已定点,使之成为土壤水,这时所必须做的功,以单位水量为基础来表示,其数值代表土壤总水势。
土壤水势实际上是作用于土壤水分各种力的总和,根据其力源的性质,土壤水势可分:基质势、溶质势、压力势、重力势和土壤水总势。
基质势:由土壤固体基质对土壤水分的吸引而使水分自由能降低的现象。
溶质势:由溶质的渗透压力引起的水势能变化现象。
压力势:土壤水承受不同压力所产生的自由能变化。
重力势:同重力引起的土壤水势的变化。
土壤水总势:是作用于土壤水分的各种力所产生的分势的总和。
3、土壤水吸力与土壤水势有哪些相同点和不同点?土壤水吸力是指土壤水在承受一定吸力情况下所处的能态,不是反映土壤对水的吸力。
与土壤水势的相同点:水吸力的意义与水势相同,是表示土壤水具有的自由能。
与土壤水势的不同点:水吸力只包括基质势和溶质势。
4、土壤水分特征曲线的滞后现象发生的原因是什么?土壤水分特征曲线的滞后现象:是指脱水曲线与吸水曲线不能重合的现象。
发生原因:产生滞后现象的原因很多,主要是因为土壤中的孔隙有大有小,而且呈”串珠状“连接方式造成的。
第4章-蒸发条件下的土壤水分运动.讲课讲稿
如果未知函数改用土壤水吸力s,则相应的定解
问题为
K
s
ds dz
1 E
解为:z
s
0
s
1
0
dS
E/K
s
z0
为了对上式进行积分,Gardner(1958)
将导水率用下面的函数形式表示:K
s
sm
a1
a2
。
再令 E / a1 a2 1
从而
z
1 sm
ds
4.3 定水位条件下均质土壤的稳定蒸发
4.3.1 稳定蒸发条件下土壤的含水率及吸力分布
4.2 土壤蒸发的三个阶段及定解问题
4.2.2 蒸发条件下土壤水运动的定解问题
(2) 边 界 条 件
1)当土柱底部为不透水层,显然土壤水通量在底部 边界处为0,即
J wz L 0;
2)又如土柱底部为浅层地下水,地下水处土壤基质势
为0,即 m zL 0
3)又如实为无限长土柱但只分析有限长土柱,且蒸发
Ks
aa21/s,m上式可H近似aE1取aE11为a2 :1
arctan
EsH 2 a1 a2E
当m=2时,由上一幻灯片中(1)可得:
H
a1 E
arctansH
E a1
4.3 定水位条件下均质土壤的稳定蒸发
ez
EDv
ed
e0
d
(3)
式中:
Dv为水汽在干土层中的扩
散系数,与土壤质地、 结构有关;
ed 为干土层以下蒸发区的
水汽压力,与有关;
d 为干土层厚度。
干土层 e0
d
ed
From Eqn. (2) & Eqn. (3)
第4章 土壤温度和热流解析
4.4 土壤中水热的耦合运移(Coupling transport of water and heat in soils) 1、土壤中水分运动及含水量分布是和热流及温度分布相互联系的。
土壤中热流分析计算是以土壤水分运动作为条件或前提的。
2、土壤中热流及温度分布反过来也对水流运动有影响。
(1)由于温度场的存在产生温度势;(2)温度的变化亦会引起土壤水分中溶质的情况变化。
但在一般条件下,通常忽略温度变化对水分运移的影响,而将水分运动和热流运动单独求解。
在冻融条件下,土壤中的水分一部分为液态,另一部分为固态(冰)。
此时,土壤水分的运动强烈受到热量交换的影响。
此时,必须耦合求解水分和热流方程。
4.5 土壤温度的变化规律特定地区地表土壤温度以年为变化周期,一年当中各出现一次最高温度和最低温度时期。
深度每增加1 m,最高(或最低)地温出现的时间推迟20~30 d。
并且随着深度的增加,土壤温度年变化幅度迅速减小。
土壤深度达到某一深度时,土壤温度季节性变化消失,此深度称为恒温层。
恒温层深度在低纬度地区仅5~10 m,中纬度地区约为15~20 m,而在高纬度地区约为20 m。
土壤温度日变化与年变化相似,随着深度的增加,土壤温度的变化呈滞后现象;且土壤深度越大,温度变化幅度越小。
土壤温度年变化和日变化规律近似于正弦曲线的周期性波动2π T ( z , t = Tave + Az sin[ t + φ ( z ] Δ 影响土壤温度变化的因素太阳辐射能天文及气象因素,如与太阳辐射能量有关的纬度;季节及昼夜交替;大气成分、密度及其浑浊程度;云层高度和厚度;降雨以及与蒸发有关的风速、气压等。
土壤机械组成及性质,如与土壤热容量、导热率和热扩散率等热特征参数有关的土壤质地、土壤含水量、土壤有机质。
地理位置,如海拔高度、地形方位(坡度、坡向)。
土壤表面状况,如地表植物覆盖情况、土壤颜色以及土壤平坦度。
土壤温度的调节人工覆盖以水调温耕作。
第四章土壤水
二、土壤墒情 1.墒情的种类 黑墒:土壤含水量在田间持水量以上。 褐墒:土壤含水量为田间持水量75%以上。 黄墒:土壤含水量为田间持水量的50%~75%。 潮干土:土壤含水量在田间持水量的50%以下。 干土:土壤含水量在萎蔫系数以下。 2. 墒情的判断 ①墒情在空间上的层次性:表墒;底墒;深墒。 ②墒情在时间上的季节性:与气候的季节性以及作物 的生长发育季节密切相关。
二、土壤水分状况 土壤水分状况通常是指周年中土壤剖面上下土层的含水量 或土水势的情况及变化(也称为墒情)。 我国北方在周年内土壤水分状况可分为四个时期: 1. 土壤湿度相对稳定期 2. 春夏之交土壤失水期 3. 夏季土壤水分聚集期 4. 晚秋至冬初的土壤失水期 三、土壤水分状况调节 1. 科学合理地灌水 2. 搞好农田基本建设和流域综合治理 3. 采用合理的农艺措施,进行耕作保墒 4. 地面覆盖技术 5. 化学保墒增温剂的应用 6. 排水
三、土壤水分的有效性 土壤水分的有效性:是指水分被植物利用的程度。 有效水:可被植物吸收利用的那一部分水分称有效水。 无效水:另一部分不能被植物吸收利用的水称为无效水 土壤水分常数(吸湿系数、凋萎系数、最大分子持水量 田间持水量、毛管持水量、饱和持水量等都是土壤水分 常数,这些常数对于作物的生长有一定意义) 土壤有效水的范围(%)=田间持水量(%)-凋萎系数(%) 速效水:田间持水量至毛管断裂含水量。 迟效水:毛管断裂含水量至凋萎系数。 土壤中各种类型水分有效性如图所示。
二、土壤水分的能量概念
土水势:土壤在各种力(吸附力、毛管力、重 力和静水压力等)的作用下,势(或自由能)的 变化(主要是降低),称为土水势。 用土水势研究土壤水有许多优点:可以作为判 断各种 土壤水分能态的统一标准和尺度;水势 的数值可以在土壤—植物—大气之间统一使用, 把土水势、根水势、叶水势等统一比较,判断它 们之间的水流方向,速度和土壤水的有效性;对 土壤水势的研究还能提供一些更为精确的测定手 段。
第四章 水分
二、水汽凝结物
1.地表和地物上的水汽凝结物
(1)露(dew)与霜(frost) 近地面空气中的水汽,直接在地表面或地物表面上凝结或凝华 形成的水滴或冰晶。 夜晚或清晨,由于地面、地物表面的辐射冷却而降温,当其温度降到
露点温度以下时,与辐射面接触的水汽在其表面上产生凝结。
如果凝结时的露点温度高于0℃,水汽凝结为露;如果露点温度低于0℃, 则水汽凝结为霜。
云的外形特征千变万化,按云底距地面的高度把云分为 低、中、高三种,各种云又按外形特征、结构和成因划分11类。
低云-1 (淡积云)
向上发展浓厚云 块,顶突起,低 平,边界分明
低云-2 (浓积云)
低云-3 (积雨云)
浓厚高耸象山、塔、花 椰菜状,有强降雨或雪、 间有雹。
低云-4 (雨层云)
低而漫无定 形的降水云 层。
低云-5 (层积云)
云缝漏青 天
低云-6 (层云)
低而均匀,像雾幕状
中云-1 (高层云)
日,月轮廓不 清晰
中云-2 (高积云)
薄云块、扁球形 排列成群、成行 或成波浪状
高云-1 (卷云)
纤维状,絮状,钩 状丝缕状,羽毛状, 常分离散处,带有 柔丝光泽。
高云-2 (卷层云)
薄如丝绢般云幕, 似乱发,日月轮 廓分明,常有晕。
第二节 蒸发与蒸腾 一、蒸发
蒸发是指水分子从液态或固态水的自由面逸出而成为汽态的过程或现象。 单位时间内单位面积上蒸发的水量称为蒸发速率,单位:gcm-2s-1。 水面蒸发、土壤蒸发
1. 水面蒸发
影响水面蒸发的因子: (1)水源 水源是蒸发的根源。 水面、雪面、冰面、潮湿土壤和植被是蒸发的基本条件。 (2)热源 蒸发速度取决于热量供给。 (3)饱和差 蒸发速度与饱和差成正比,饱和差越大 蒸发速度越快。 (4)风速与湍流扩散
第四章土壤水分
水 沿 着 毛 管 上 升
毛管作用力范围: 0.1-1mm 有明显的毛管作用 0.05-0.1mm
毛管作用较强
0.05-0.005mm 毛管作用最强 〈0.001mm 毛管作用消失
土粒 地下水位
毛管 上升 水示 意图
毛管水上升的高度与毛管的半径有密切关系。 根据茹林公式,H=0.15/r 由此可见,毛管水上升高度与毛管半径成反比, 即毛管半径愈细,上升高度愈高。但在土壤中的 实际上升高度远达不到上式的理论计算数字。 毛管水上升可使地表水不断得到补充。但在低 洼地区往往会造成土壤的盐渍化。
第 四 章 土 壤 水
土壤水分与土壤肥力的关系
1.土壤水分对土壤形成有极其重要的作用。 2.土壤水分影响土壤的养分状况 养分的释
放、转化、移动以及被植物吸收都离不开水分。
3.土壤水分直接影响土壤空气和热量状况
4.土壤水分影响土壤的物理机械性和耕性
土壤水分与作物生长的关系
1.土壤水分是作物生命活动的重要因素
第二节
土壤水分含量的表示方法及其测定
一、土壤水分含量的表示方法 1、质量含水量
土壤中水分的质量与干土质量的比值,所以又称 为重量含水量,无量纲,常用符号 θm表示。这是一 种最常用的表示方法,可直接测定。用数学公式表 示为: W1-W2 土壤质量含水量(%)= —————×100 W2 式中,θm为土壤质量含水量(%),W1为湿土 质量,W2为干土质量,W1-W2为土壤水质量。 例如,某一耕层湿土重 100g,干土重为80g,则土 壤质量含水量(%)=(100-80)/80×100=25 %
2由于受充气的大孔隙阻隔土壤水分的流动只能是曲折地进行增加了流程和过水时间导水率降低33在质地较粗的土壤中当大孔隙中的水分流在质地较粗的土壤中当大孔隙中的水分流出后常在土粒之间的接触处出后常在土粒之间的接触处保存有楔状的毛保存有楔状的毛管水也叫触点水它们彼此不相连接团粒它们彼此不相连接团粒间的孔隙也有类似情况这样在饱和流动中原间的孔隙也有类似情况这样在饱和流动中原是导水的最大通道而在非饱和流中却成了水分是导水的最大通道而在非饱和流中却成了水分流动的障碍使导水率下降
(农业气象学原理)第四章水分条件与农业生产
2021/1/12
● 毛管力 毛管壁与水分子之间的吸持力和毛管水面凹曲 产生的表面张力。 ● 渗透压力 土壤中矿物质溶解于水形成溶液而产生的力。
水分在土壤中主要受到这五种力的作用,使其 能够保持在土壤中。
(6)毛管蓄水量(最大毛管水量) 土壤毛管孔隙都充满水分时的含水量。 包括吸湿水、膜状水和毛管上升水。 毛管蓄水量比田间持水量高1/4~1/3左右。
(7)全蓄水量(全持水量、土壤饱和含水量) 土壤所有孔隙全部充满水分时的含水量。 全蓄水量的数值主要取决于土壤孔隙度。
2021/1/12
3、土壤水分常数及其有效性 不同类型土壤的水分常数不同,主要决定于土 壤质地及结构。
会被植物吸收利用。对旱作物来讲,多则不利。
2021/1/12
五、土壤水分常数 1、定义 土壤中水分从受一种力的作用转到受另一种力 的作用时的土壤水分含量。 2、常用的土壤水分常数 (1)吸湿系数(最大吸湿量) 土壤吸湿水达到最大数量时的土壤含水量。 吸湿系数以下的土壤水被土粒牢固吸持,不能 被植物吸收利用。
三水分通过水量的时间分配对农作物的生三水分通过水量的时间分配对农作物的生命活动产生影响命活动产生影响不同作物在不同生育期对水分条件的要求不同我国降水的季节分配不均如水分的季节性分配正好满足作物的需要就促进其生长发育获得高产
(农业气象学原理)第四章水分条件与 农业生产
本章重点与难点
本章重点: 土壤水分常数、土壤水势、作物需水量
b.可以定量处理和解决土壤水分运动的问题, 且与其它学科采用共同的单位。
2021/1/12
2、土壤水势的组成 组成土壤水势的分水势有:基模势、渗透势、 压力势、重力势和温度势。 (1)基模势(Ψm) 是由于土壤基粒的吸附力和毛管力作用于水 所引起的水势。 基模势使自由能减少,有降低水势的作用, 为负值。 基模势是土壤水势的主要组成部分,而在植 物中很小,干旱时植物组织中的较大。
《土壤学》第四章 土壤水分、空气与热量状况
(五)土壤水贮量(方/亩或吨/亩)
=2/3 ×水层厚度
(六)墒情:干墒、黄墒、灰墒、黑墒 干、 润、 潮、 湿
三、土壤水分含量的测定 • (一)烘干法:常用
1、经典烘干法 :恒温箱105-110 ºC烘干称重计算
2、快速烘干法 :红外线烘干法、微波炉烘干法、酒精燃 烧法、电炉法等。
(三)土壤空气对植物抗病性的影响 通气不良产生还原性气体H2S、CH4、
H2、NO等会严重危害作物生长,CO2 过多致使土壤酸度增高,致使霉菌发育, 植株生病
氧扩散率(ODR与不同植物状况之间关系)
植物
茎叶菜 莴苣 菜豆 甜菜 草莓 棉花 柑橘
土壤类型
壤土 粉砂壤土
壤土 壤土 砂壤土 粘壤土 砂壤土
一是受辐射、气温、湿度和风速等气象因素的影响; 二是受土壤含水率的大小和分布的影响
土面蒸发过程区分为三个阶段: 1、大气蒸发控制阶段 2、土壤导水快慢控制阶段
在土壤不是很湿能进入田间时,应及时锄地松土, 减少水分蒸发。 3、水汽扩散阶段
一般情况下,只要土表有1~2mm干土层就能显著降 低蒸发强度。
田间土壤水分收支示意图
总水势(Ψt) Ψt=Ψm+Ψp+Ψs+Ψg
(二)土壤水吸力
指土壤水在承受一定吸力的情况 下所处的能态,简称吸力。
与土水势的意义一致,但只是 基质吸力和溶质吸力的和。
(三)土水势的测定
• 主要有张力计法(测定基质势最 常用)
• 压力膜法 • 冰点下降法 • 水气压法等
张力计法
压力膜法
冰点下降法
中耕
3. 合理灌溉排水,及时增减土壤水分。
变漫灌、畦灌、沟灌等地面灌溉方式为波涌灌、膜 下灌等改良的灌溉方式,有条件的可采用较为先进 的滴灌、喷灌和渗灌
(完整版)农田水利学
第一章§1 农田水分状况农田水分:指农田中的地表水、土壤水和地下水。
地表水:地表积水。
土壤水:包气带中的水分。
地下水:饱水带中的水分(可自由流动的水体)。
与作物生长最亲密的是土壤水。
一、土壤水(一)土壤水分形态土壤水又可分为吸着水、毛管水和重力水等几种水分形态。
1.吸着水(1)吸湿水分子力、牢牢约束在土粒表面、不可以挪动、分子状态水吸湿水达到最大时的土壤含水率称为吸湿系数。
(2)膜状水分子力、约束在土粒表面、可沿表面挪动但不可以离开土粒表面、液态水膜膜状水达到最大时的土壤含水率称为最大分子持水率。
2.毛管水对于单个土粒 ,只好依赖分子力吸附水分 , 但对于由很多土粒会合而成的土壤 ,其连续不停的孔隙相当于毛细管 ,所以还存在一种毛管力 ,依赖毛管力保持在土壤中的水分称为毛管水。
按水份供应状况不一样,分悬着毛管水和上涨毛管水。
(1)悬着毛管水浇灌或降雨后,在毛管力作用下保持在上部土层中的水分。
土壤储藏水的主要形式。
悬着毛管水达到最大时的土壤含水率称为田间持水率。
(2)上涨毛管水在地下水位以上周边土层中,因为毛细管作用所保持的水分。
上涨毛管水达到根系,则可被作物汲取利用,但地下水位不一样意上涨到根系,以防渍害。
盐碱地域应严格控制地下水位,发防发生次生盐碱化。
3.重力水土壤中超出田间持水率的那部分水为重力水。
重力水以深层渗漏的形式进入更下的土层,或地下水。
旱地应防止深层渗漏,以防备水的浪费和肥料的流失。
水田保持适合的深层渗漏是有利的,会增添根部氧分,有利于根系发育。
(二)土壤水分的有效性土壤对水分的吸力:1000MPa —作物根系对水分的吸力: 1.5 MPa 左右(1 MPa=9.87 大气压 =100m 水柱 )假如水分受土壤的吸力小于 1.5 MPa, 作物可汲取利用 ;如水分受土壤的吸力大于 1.5 MPa, 则作物不可以汲取利用。
1.5 MPa 是有效水和无效水的分界点。
土壤水分的有效性能够用下列图来说明:(图:土壤水分有效性图)二、农田水分状况(一 )旱田适合的农田水分状况不一样意地表积水土壤适合含水率: 凋萎系数 ~田间持水率凋萎系数 =0.6 β田地下水水质较好,则地下水位可较高, 但一下水位不可以达到根系层。
土中水的运动规律
土中水的运动规律土中水的运动规律主要包括渗流、重力流和径流等。
下面将依次介绍它们的特点和相关参考内容。
渗流是指水分在土壤中通过孔隙和颗粒间隙的逐渐移动和传导过程。
其运动方向和速率主要受到土壤水分势、土壤类型、孔隙度、土壤水分饱和度、土壤结构等因素的影响。
渗流过程也受到达西定律和泥土水分运动定律的约束。
参考内容:- 达西定律:由法国科学家亨利·达西提出。
其核心原理是根据达西定律,单位时间内渗透液体体积通过渗流截面的速度与压力梯度成正比。
参考文献:P. Englezos, "The Darcy law and interfacial transport," Chemical Engineering Education, vol. 47, no. 4, pp. 226-230, 2013.- 泥土水分运动定律:由裴元宽等人提出。
通过试验和模型分析,研究土壤水分运动的物理方程、影响因素以及渗透速度等。
参考文献:S. Cui, M. Shi and H. Cui, "Simulation of soil moisture distribution under oil spill using Richa rds’ equation," Journal of Hydrology, vol. 587, p. 124955, 2020.重力流是指较大量的水通过土壤表面流动的现象。
主要是由于降雨强度大于土壤的渗透能力,导致多余的水不能渗入土壤而形成地面径流。
重力流的运动规律与地形、土壤类型、孔隙度、土壤饱和度等因素密切相关。
参考内容:- 地面径流模型:通过建立数学模型,模拟降雨对地面径流的影响。
其中著名的模型包括NRCS-CN模型和SWMM模型。
参考文献:R. H. Hawkins and R. A. Ward, "Storm Water Management Model - Version 5 - Reference Manual," UrbanWater Resources Research Program, School of Civil Engineering, Purdue University, West Lafayette, 2013.- 降雨径流响应模型:研究降雨时间和强度对地面径流的影响,从而预测土地利用变化对水文过程的影响。
农田水利学:土壤水分运动52页文档
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
农田水利学:土壤水分运动 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
Thank you
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非饱和导水率的测定
连续方程
Rechards 方程
土壤水分运动的定解条件
(1)初始条件
(2)边界条件 第一类边界条件(浓度型): 第二类边界条件(通量型): 第三类边界条件(混合型):
4.3 土壤水分入渗和再分配
入渗是在灌溉或降雨条件下,水分通过土壤表面垂直或水平进入土 壤的过程。土壤入渗受到供水强度和土壤入渗能力的影响。土壤入渗 能力重用土壤入渗率 i 和累积入渗量 I 来表示。
土壤蒸发阶段性
根据土壤蒸发速率的大小和控制因素不同,土壤蒸发可分为 三个阶段:大气蒸发力控制阶段;土壤导水率控制阶段;水汽扩 散控制阶段。
蒸发三阶段示意图
蒸发速率与时间关系 1、2、3、4表示起始蒸发速率降低次序
蒸发条件下水分运动定解问题
(1)初始条件 土壤剖面含水量均匀分布, 土壤含水量非均匀分布。
Darcy’s Law
饱和导水率的测定——定水头法
饱和导水率的测定——变水头法
4.2 非饱和土壤中的水流
白金汉—达西定律(Edgar Buckingham, 1907)
假设: (1)土壤是非膨胀、等温的,且不含任何溶质成分,气体
压力势为零。 (2)土水势由基质势和重力势组成。 (3)非饱和土壤导水率是土壤含水量或基质吸力的函数。
为底部土壤只有重力排水,重力势梯度为1,基质势梯度为0,下边界通量 与相应的导水率相等。
4.5 土壤水分运动的计算机模拟
携手共进,齐创精品工程
Thank You
世界触手可及
(2)上边界条件 表土蒸发率已知,且为常数, 表土蒸发率已知,但有日变化,假定为正弦周期变化, 表土蒸发率随表土含水量改变发生变化, 表土含水量一定。
(3)下边界条件 对于半无限蒸发土柱,表土蒸发不影响到无穷深处的含水量,下边界
含水量不变,为初始含水量, 对于有限长土柱,下边界条件又分为: 土柱底部为不透水层,土壤通量在底部边界处为零, 土柱底部为浅层地下水,地下水处土壤基质势为零, 实为无限土柱,但只分析有限土柱,且蒸发过程未影响到底部,则认
& 土壤水分剖面四个区:
饱和区 过渡区 传导区 湿润区
入渗土壤水分剖面
土壤入渗过程影响因素
& 土壤初始含水量 & 土壤质地 & 供水强度 & 供水水质 & 供水方式 & 雨滴击溅 & 温度场
土壤入渗模型
(1)Horton 入渗模型,1940 (2)Philip 两项入渗模型,1957
(3)Green-Ampt 入渗模型,1911
入渗率是指单位时间、单位面积土壤表面入渗的水量,常用单位 mm/s,或cm/d。而累积入渗量是指一定时段内通过单位土壤表面入 渗的累积水量,或者是在一定时段内,单位面积土壤入渗的总水量, 常用水深来表示,单位为cm或mm。
入渗率随时间的变化
土壤入渗过程
& 土壤入渗过程三阶段:
渗润阶段 渗漏阶段 渗透阶段
土壤水分再分布
当供水(降雨或灌溉)结束 后,地表积水逐渐消失,土壤入 渗过程即告结束。但在土壤剖面 仍存在水势梯度,土壤水分在水 势梯度的作用下,仍继续移动和 重新分配,直至土壤剖面不存在 水势梯度。当地下水埋藏较浅或 者研究剖面全部饱和时,土壤水 在水势梯度作用下向下运动,排 入地下水或者排出研究土体,称 这种土土壤不是全饱和,土壤水 在水势梯度作用下的重新分布过 程,称为土壤水再分布。
图中表示灌溉后0、1、 4、14天的水分剖面
4.4 土壤蒸发
土壤水经过土壤表面以水蒸气形式扩散到大气中的过程为土 壤蒸发。
蒸发过程能维持下去,必须具备三个条件: (1)必须有不断的热能补给,以满足水分汽化热的需要; (2)蒸发面和大气之间必须存在水汽压梯度; (3)蒸发面必须不断地得到水分补充。 前两个条件由气象因素决定,包括太阳辐射、气温、空气湿 度和风速等。第三个条件由土壤导水性质决定。
第4章 土壤水分运动
第4章 土壤水分运动
主要内容: ※ 饱和土壤中的水流 ※ 非饱和土壤中的水流 ※ 土壤水分入渗与再分布 ※ 土壤水蒸发 ※ 土壤水分运动模拟
重、难点: ※ Darcy’s Law;Richards方程;土壤水分入渗模
型;土壤蒸发;土壤水分运动模拟
4.1 饱和土壤中的水流 毛细管中的水流