普通物理学第五版第9章导体和电介质中的静电场章答案
《物理学基本教程》课后答案第九章静电场中的导体和电介质精品资料
第九章静电场中的导体和电介质9-1把一厚度为d的无限大金属板置于电场强度为 E 0的匀强电场中, E 0与板面垂直,试求金属板两表面的电荷面密度.- σ’+ σ’分析对于有导体存在的静电场问题,首先由静电-+平衡条件分析放入静电场后导体上电荷的重新分布情-+况,再计算空间电场和电势的分布.-+E0本题中,将金属板放入均匀电场后,由于静电感应,-+平板两面带上等值异号感应电荷.忽略边缘效应,两带-+电面可视为平行的无限大均匀带电平面.解设平板两表面的感应电荷面密度分别为和,如图 9-1 所示.由例题 8-7 结果知,带感应电荷图 9-1的两表面视为带等量异号电荷的无限大平行平面,在导体中产生的场强为E,方向与E0相反,由场强叠加原理,平板中任一点的总场强为E E0E E0根据静电平衡条件,金属板中场强E0 ,代入上式得E00则E0 0,E0 0结果与板的厚度无关.9-2一金属球壳的内外半径分别为R1和 R2,在球壳内距球心为 d 处有一电荷量为 q 的点电荷,(1 )试描述此时电荷分布情况及球心O 处电势;(2 )将球壳接地后,以上问题的答案; (3 )如原来球壳所带电荷量为Q ,(1)、(2)的答案如何改变.分析 当导体内达到静电平衡后, 应用高斯定理可以确定导体上电荷重新分布的情况,然后用电势叠加原理求电势.解( 1 )按照静电平衡条件,导体内部E 0 ,在球壳内外表面间作同心高斯球面, 应用高斯定理,可知球壳内表面上应有 q 的感应电荷,为非均匀分布,如图 9-2 所示.根据电荷守恒定律和高斯定理,球壳外表面上有 + q 的感应电++ – +– d R 1+ q + –q ·+- q – R 2+– ++荷,且均匀分布.点电荷 q 在 O 点产生的电势为V 1图 9-2q4 d球壳内外表面上的感应电荷q 和 + q 无论分布情况如何,到球心距离分别为R 1 和 R 2 ,电势叠加原理表达式为标量求和,所以在O 点产生的电势分别为q V 3q V 2R 14R 24O 点电势为VV 1V 2 V 3q qq 4d4 R 1 4R 2q ( 11 1 )4dR 1R 2(2 )将球壳接地后,外球面上的感应电荷消失,球面上电荷分布不变,得V V 1V 2 q (11 )4dR 1(3 )如果原来球壳带电量为 Q ,达静电平衡后外球面上电荷 Q+ q 均匀分布,内球面上电荷分布不变,得V V1V2V3q( 1 1 1 )Q4 d R1R2 4 R2球壳接地后,结果与( 2)相同.9-3一无限长圆柱形导体半径为R a,单位长度带有电荷量λ1,其外有一共轴的无限长导体圆筒,内外半径为分为R b和 R c,单位长度带有电荷量λ2,求(1)圆筒内外表面上每单位长度的电荷量;(2)r R a, R c r R b, R b r R c,r R c四个区域的电场强度.分析静电平衡条件下,在圆筒导体内场强为零,用高斯定理和电荷守恒定律可求出感应电荷的分布.解( 1)如图 9-3所示,在圆筒形导体内作半径为r ,高为单位长的同轴圆柱形高斯面 S,设导体圆筒内外表面单位长的感应电荷分别为和,由静电平衡条件知导体内E 0,故有- λ1λ1R aE d S1q 1(1)0Rb0012λ+λ即得半径为 R b的圆筒内表面单位长上的感S r R c应电荷为 -λ1.由电荷守恒定律知,半径为 R c的圆筒外表面上单位长的感应电荷应为λ1,加上原有电荷量图 9-3λ2,单位长上总带电量为21.(2 )电荷重新分布的结果形成三个同轴的无限长带电圆柱面如图9-3 ,由于电荷分布具有轴对称性的,产生的电场也是轴对称的,用高斯定理可求出r R a时,E0R a r R b时,E12rR b r R c时,E0r R c时,E1220r9-4证明:两平行放置的无限大带电的平行平面金属板 A 和 B 相向的两面上电荷面密度大小相等,符号相反,相背的两面上电荷面密度大小相等,符号相同,如果两金属板的面积同为 100cm 2,电荷量分别为Q A 6 10 8C和Q B410 8 C ,略去边缘效应,求两个板的四个表面上的电荷面密度.分析根据静电平衡条件,一切净电荷都分布在导体表面,本题中的电场空间可视为四个无限大均匀带电平行平面产生的电场的叠加,金属板 A 、 B 内任意点场强为零.由电荷守恒定律可以建立各表面的电荷面密度与两金属板的总电荷量之间的关系.A Bσ1σ2σ3σ4解设 A、B 两板的四个表面上的电荷面密度(先假定为正)分别为σ1、σ2、σ3和σ4,如图9-4所示.设向右为正向,由无限大均匀带电平面的场强公式和场强叠加原理,考虑到金属板 A 、B 内任意点场强为零,得图 9-4金属板 A内123422220金属板 B内1234222200 0解得23,又由电荷守恒定律得S()Q A,S(34)QB联立解得Q A Q B 5 106C/ 2 mS2Q A1110 6 C/m 2S31106 C/m 29-5 三个平行金属板 A 、B 和 C,面积都是 200cm2,A、B 相距 4.0mm ,A、C 相距 2.0mm ,B、C 两板都接地,如图 9-5 所示,如果 A 板带正电3.010 7C,略去边缘效应,(1)求 B 板和 C 板上感应电荷各为多少?(2 )以地为电势零点,求 A 板的电势.分析由静电平衡条件, A 、B、C 板内各点的场强均为零, A 板上电荷分布在两个表面上,因B、C 两板均接地,感应电荷应分布在内侧表面上.解(1)设 A板 1 、2 两面上带电量分别为 q 1和 q 2,B、C 两板与 A 相对的两内侧表面 3 、 4上的感应电荷分别为 q 1’和 q 2’,如图 9-5所示.作侧面与平板垂直的高斯面 S1,两端面处E=0,忽略d1- d2 -边缘效应,侧面无电场线穿过,由高斯定理B A C31 2 411q1S q1S) 0S SE d S q(S0SS得q1q1S1q 1’q 2’同理可得 q2q2.AB板间和AC板间为匀强电场,场强分别为q1q 2q1E q2E12SS图 9-5又已知 V AB V AC,即E1d1E2d 2因q 1 q 2q 3.0 10 7 C由以上各式,得 B 、C 两板上的感应电荷分别为q 1q 1q 1.0 10 7C3q 2 q 22q 12.0 10 7C(2 )取地电势为零, A 板电势即为 A 、 B 间电势差V AVABE 1 d 1q 1d 12.3 103 VS9-6 半径为 R 11.0cm 的导体球所带电荷量为 q 1.0 10 10 C ,球外有一个内外半径分别为 R 23.0cm 和 R 34.0cm 的同心导体球壳,壳上带有电荷量Q 11 11 10 C ,求:( 1)两球的电势;(2)用导线把两球连接起来时两球的电势;( 3)外球接地时,两球电势各为多少?(以地为电势零点. )分析 根据静电平衡条件可以确定感应电荷的分布,用导线连接的导体电势相等,外球接地后电势为零.解 ( 1)根据静电平衡条件,导体球壳内表面感应电荷为-q ,外表面感应电荷为 q ,原有电荷量 Q .由电势叠加原理,导体球电势为V 1qq q Q 1 ( qq q Q) 3.3 10 2 VR 14 R 2 4R 34R 1R 2R 3导体球壳的电势为V 2q q Q q Q q 2.7 102 V4R34 R 34 R 34 R 3(2 )球壳和球用导线相连后成为等势体, 电势等于半径为 R 3 带电量为 Q+ q的均匀带电球面的电势,以无穷远为电势零点,得V 2Q q 2.7 102 V4 R 3(3 )外球接地后,只乘下内表面的电荷 -q ,由电势叠加原理内球电势为qq V 1460V4 R 1R 2外球壳接地与地等势,即V 2 0另外,求 V 1 ’时还可以用内球产生的电场的线积分计算,即R 2qdr q (11) 60VV 2r 2 R 144R 1 R 29-7 半径为 R 的金属球离地面很远,并用细导线与地相连,在与球心的距离为 D 3R 处有一点电荷q ,试求金属球上的感应电荷.R q ’ q分析 由于导体球接地, 其表面上的感应正电荷通过导线与地球内负电荷中和, 只剩下负感应电荷在金属球表面不均匀地分布, 如图 9-7 所示.接地后,导体球上各点电势均为零,球心OOD图 9-7点的电势应等于点电荷在该点电势与金属球表面感应负电荷在该点电势的代数和.解 设金属球上感应电荷为 q ,在金属球表面不均匀地分布,但这些电荷到O 点距离相等,电势叠加后得V 2qR4点电荷 q 在 O 点的电势为V 1q3R4V V 1q qV 243R4R得感应电量为qq3由此可以推证,当 D nR 时,qqn9-8 如图 9-8 所示,三个“无限长”的同轴导体圆柱面 A 、B 和 C ,半径分别为 R A 、 R B 、 R C ,圆柱面 B 上带电荷, A 和 C 都接地,求: B 的内表面单位长度电荷量 1 ,外表面单位长度电荷量2之比值 1/ 2.分析本题与题 9-5 的解题思路相似.解 在导体 B 内作单位长圆柱面形高斯面, 可以说明 A 面单位长度上感应电荷为 1 .同理,可说明 C 面单位长度上感应电荷为 2 .由高斯定理可知场强分布为R ArR B 时, E 1,方向沿径向由 B 指向 A .rR BrR C 时, E 2 2,方向沿径向由 B 指向 C .rRR AdrR BV BA RA1 1lnBA 间电势差E 2 d rR BB2r2R ABC 间电势差V BC2ln R C- λ22R BR B λ1 λ2B 为等势体, A 、C 接地, V BAV BC ,从而CARR1 ln( R C / R B )A B C- λ12ln( R B / R A )9-9 半径分别为 R 1 和 R 2 ( R 2 R 1 ) 的两个同心导体薄球壳,电荷量分别为 Q 1和Q 2 ,今将内球壳图 9-8用细导线与远处的半径为 r 的导体球相联,导体球原来不带电,并假设导线上无电荷分布,试求相连后,导体球所带电荷量q .分析 带电的内球壳与导体球用导线相连后, 一部分电荷通过导线转移到导体球表面上.两者相距甚远,可以认为两球壳与球的电场互不影响,已假设导线上无电荷分布,利用内球壳与远处导体球电势相等建立方程求解.解因两球壳与球的电场互不影响,导体球电势为V1q4r2假设导线上无电荷分布,则内球壳上电荷量变为Q1q ,由电势叠加原理,内球壳的电势为Q1q Q 2V2R1 4R2Q24Q1- q q 内球壳与远处导体球电势相等,即R1R rV1V22qQ1q Q24 r 4 R1 4 R2图 9-9解得q r ( R1Q2R2Q1 ) R2 (R1r )9-10地球表面的电场强度为150N/C ,方向垂直指向地面,若把地球视为导体,试求地球表面的电荷面密度和地球带的总电荷量.分析由于地球表面的电场强度方向垂直指向地面,可知地球带负电,将地球视为导体,在静电平衡状态下,电荷分布在表面上.解设地球表面的电荷面密度为,表面附近的场强E,则E 0(150 8.85 10 12 )C/m 2 1.33 10 9 C/m 2地球半径 R 6.3710 6 m ,地球带的总电荷量为q 4 R 1.33 10 942C 6.8 10 5 C680kC9-11设有一孤立导体球,半径为R.,(1 )试求其在真空中的电容表示式;(2)若把地球视为R 6.37 106m的导体球,它的电容量多大?( 3)欲使地球的电势改变 1V ,需使其所带电荷量改变多少?解(1 )将孤立导体球视为与无穷远处的同心导体球面组成的球形电容器,利用球形电容器电容表达式,(9-4 )式给出孤立导体球的电容Q4 R .CV(2)地球电容C4 6.37 106 F 710 4F(3)欲使地球电势改变 1 伏特,需使地球电量的改变为Q CV 7104 1 7 104C这个值很大,所以地球带电量的日常变化不会引起地球电势发生明显的改变,这就是通常可以选取地球作为电势零点的原因.9-12已知空气的击穿电场强度为 3 106 V/m ,求处于空气中一个半径为1m 的导体球最多能带多少电荷及能达到的最高电势.分析在带电导体球周围的空气形成一种绝缘介质包围着导体球,当导体球产生的电场足够强时,会使其周围的空气发生电离而成为导体,致使带电导体球放电,通常称为空气被击穿.因均匀带电导体球面的电场强度和电势与带电量成正比,为了不击穿周围的空气,带电导体球所带电量要受到限制.解由题意击穿电场强度Emax3106 V/m而E mQ m a x a xR2 4Qmax Emax4R 2310648.8510 1212C 3.3 10 4C最高电势为Q max E max 4R26 Vmax C4R RE max 310 V或Qmax 3.310 4V6 V maxR43 10V419-13收音机里的可变电容器如图9-13 (a)所示,其中共有 n 块金属片,相邻两片的距离均为 d ,奇数片联在一起固定不动(叫定片),偶数片联在一起可一同转动(叫动片),每片的形状如图9-13 ( b )所示,求当动片转到使两组片重叠部分的角度为时,电容器的电容.分析除了最外侧的两片外,每块金属片的两个表面分别与相邻的金属片表面构成一个电容器,如图 9-13(c)所示,所以 n 块金属片如此连接等效于( n 1 )个平行板电容器并联.当两组片重叠部分的角度为时,每个电容器有效极板面积为 S( ) ,因此电容器的等效电容是的函数.收音机调频的电容器就是根据这个原理设计的.r 2r 1(a)(b)(c)图 9-13解当两组片重叠部分的角度为时,每个电容器有效极板面积为S( r12r2 )360( n-1 )个极板面积为S,板间距为 d 的平行板电容并联时的等效电容为C(n 1) 0S (n 1)r22r12 d360 d式中以度计.9-14半径都为 a 的两根平行长直导线相距为 d (d a) .(1)设两导线每单位长度上分别带电和,求两导线的电势差;(2)求此导线组每单位长度的电容.分析因 d a ,可设两导线的电场互不影响,由场强叠加原理可求出两导线间的场强分布,d再用场强与电势的积分关系求两导线间电势差,rO P由电容器电容的定义即可求出单位长导线组的等2 a效电容.图 9-14解作两导线组合的截面图,以带正电导线轴心为原点建立坐标系如图9-14 所示.不难看出,正负电荷在P 点的场强均沿r 轴正向,矢量叠加简化为标量和E E E(d r )(11 )2 r r d - r 两导线间电势差为d a d a E d ra2a (11)dr lnd a r d r a由电容器电容的定义,导线单位长电容为Cd aVlna9-15有两个半径分别为 R1和 R2的导体球放在真空中,两球表面相距为d,已知 d R1和 d R2,试求两导体构成的电容器的电容.+Q- QOR1P R2d r图 9-15分析按题意d R2,可认为当两导体球分别带电Q 和Q 时,彼此电场互不影响,即各球面上电荷分布仍是均匀的,由场强叠加原理可求出两球球心连线上任一点的场,用与上题相似的方法可以求出两球电势差和两球构成的电容器电容.解以大球球心为原点,建立如图9-15 所示的坐标系,在坐标为r 处的 P 点(在连心线上),两球产生的电场均沿r 轴正向,得Q QE E E24( R1 R2 d r ) 24 r 两带电导体球间电势差为V R1 dE d rQ R1 d[11]dr R14R1r2( R1R2 d r )2Q1111)4(R2 d R1 d R2R1考虑到 d R1, d R2,可将电势近似表示为V Q ( 11 2 )4R1R2d此两导体球构成的电容器电容为Q4C12VR1 R2d9-16 两只电容器C18 F,C2 2 F ,分别把它们充电到1000V ,然后将它们反接,如图9-16 所示,求此时两极间电势差.分析并联电容极板间电压相同,因两电容器电容不等,则反接前两电容器带的电量必定不等.反接后,相连的极板上正负电荷中和,可以计算出中和后电荷量的代数和及并联电容器的等效电容C,从而求出电势差.解反接前,设 C1和 C 2带电量分别为 Q1和 Q2,充电电压 U 01000 V ,则Q1C1U 0Q2C2U 0+-反接后,正负电荷中和,中和后总电量为C1C2-+Q Q1 Q2,并联等效电容 C C1 C2,则并联电容器两板间电势差为图 9-16Q(C1C2)U0(810 62106 )1000 UC1C28 106210 6V 600VC9-17 如图 9-17所示, C110F, C2 5.0F,C3 5.0 F ,求:(1)AB间的电容;(2)在 AB 间加上 100V 电压时,求每一个电容器上的电荷量和电压;( 3)如果 C1被击穿,问 C3上的电荷量和电压各是多少?分析并联电容器极板电势相等,串联电容器极板上电荷量相等,总电压等于各电容器上电压之和.当C1上电压超过 C1的额定电压, C1将被击穿, C1支路即短路,全部电压就加在 C 3上,如超过 C3的额定电压, C 3将被击穿,A、B间就发生短路.所以,在设计电容器组合电路时,除应计算等效电容外,还应考虑分配到每个电容器上的电压是否超过所选电容器的额定电压.解(1)C1和C2并联电容为C C1 C 2,再与 C 3串联后,等效电容为C C 33.75 FCC C 3(2 )等效电容所带电量为Q CU ,串联的电容所带电量相等Q3Q CU 3.75 10 4 CAU 3Q375VC 3C C12U 1 U2Q Q1Q225V CC C1 C 23B又因Q1Q 2Q10 4C 图 9-17可解得Q1 2.5Q2 1.2510 4C(3)如果 C1被击穿, AB 间电压就加在 C3上,即U 3 U100V则Q3 C3U 3 5 104C9-18平板电容器,两极间距离为 1.5cm ,外加电压 39kV ,若空气的击穿电场强度为 30kV/cm,问此时电容器是否会被击穿?现将一厚度为0.3cm 的玻璃插入电容器并与两板平行,若玻璃的相对电容率为7 ,击穿电场强度为100kV/cm,问此时电容器是否会被击穿?结果与玻璃片的位置有无关系?分析加玻璃片后,电场被分成两部分,应分别计算出空气和玻璃中的电场强度,再判断是否有哪种介质中的场强超过了其击穿场强.可以证明结果与玻璃板的位置无关.解未加玻璃前平板电容器内场强为E U39 V/cm26kV/cm30kV/cm d 1.5因其量值小于空气的击穿电场强度,电容器不会被击穿.加玻璃后,设电容器极板的电荷面密度为,平行板电容器中电位移 D.设玻璃和空气中场强分别为E 1 和 E 2 ,则有DDE 1E 20 r00U玻璃厚为 d 1 ,则空气层厚为 d - d 1,得E 1d 1 E 2 (d d 1 ) U图 9-18由以上各式得E 1U4.48kV/cm( d d 1d 1 ) rU r31.4kV/cm 30kV/cmE 2d 1 ) d 1 (dr即空气部分首先被击穿,然后全部电压加在玻璃板上,致使玻璃中场强为U 39 E 1130kV/cm 100kV/cmd 10.3玻璃部分也会被击穿.9-19一平板电容器极板面积为 S ,两板间距离为 d ,其间充以相对电容率分别为r1、r2的两种均匀介质, 每种介质各占一半体积, 若忽略边缘效应,(1 )与两种不同介质相对的两部分极板所带电荷面密度是否相等?如果不相等,求:1 /2 = ?( 2)试证此电容器的电容为CS r1r 2d2分析忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,从而可以确定两种不同介质中场强与极板电势差的关系, 以及与两部分极板上的电荷面密度的关系, 从而可知极板上的总电荷量. 另一种思路是将充入两种介质后的电容器视为由两个电容器并联而成,直接应用并联电容器的计算公式.解 1(1)设电容器端电压为U ,两种介质中场强分别为E1和 E2,由充满均匀介质的平行板电容器的场强与电压的关系可得E1 E2U( 1)d设1、2分别为两种不同介质对应部分极板上的电荷面密度,忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,则有12(2 )E1E20 r10 r2S代入 (1) 式可得1r1εr1εr2d2r2即两部分极板所带电荷面密度不相等.由( 1 )和( 2)式可得极板上的总电荷量为图 9-19Q S0SU r1r2)(12)d(22由电容器定义得Q0S(r 1r 2) Cd2U解 2由并联电容器公式求总电容C C1S S0S(r 1r 2) C 20 r10 r 22 2d2d d可见第二种方法计算简单,用第一种方法可对物理过程、电场电荷分布有更明确的概念.另外在第一种方法中亦可用介质中的高斯定理求解.9-20一球形电容器,在外球壳的半径R 和内外导体间的电势差U 维持恒定的条件下,内球半径R 为多大时才能使内球表面附近的电场强度最小?并求这个最小电场强度的值.分析导体表面附近的场强与电荷面密度成正比,而当极板间电势差恒定时,极板所带电荷量取决于电容 C ,电容器的电容由电介质性质和几何因素决定,根据这些关系可以确定内球半径对内球表面附近电场强度的影响.解 球形电容器电容为4 RR CR R极板上带电量为4 RRU q CUR R当外球壳的半径 R 和极板间电势差 U 恒定时, q 是内球半径 R 的函数.内球表面附近的场强大小为qRU E2R(R R)4 R即也是 R 的函数.欲求场强的最小值,令dE2R R] 0RU [ R 2 ( R R ) 2 dR得RR2并有 RR时,d 2 E0 ,即 RR时,场强有极小值,且2dR 224U E minR9-21 图 9-21 为水蒸气分子 H 2O 中氧氢原子核及核外电子云示意图. 由于分子的正负电荷中心不重合,故其为有极分子,电矩p 6.2 10 30 C m .( 1)水分子有 10 个正电荷及 10 个负电荷,试求正负电荷中心之距 d= ?(2)如将水蒸气置于 E1.5 10 4 N/C 的匀强电场中,求其可能受到的最大力矩?( 3)欲使电矩与外场平行反向的水分子转到外场方向(转向极化),问电场力作功多少?3kT 的多少分之一?在室温 这功的大小为室温( 300K )水分子的平均平动动能2下实现水分子的转向极化,外加电场强度应该多大?分析由电矩 pqd 及已知的水分子电量可计算正负电荷中心之距d .由电偶极子在外场中受的力矩Mp E, MpE sin,可知,当 p 与 E 正交时力矩最大 .当电矩与外场平行反向(180 ) 时,电场力的力矩作功将使减小,最后0 ,注意到在此过程中 d0.如果这个功与室温下水分子的平均平动动能3k T 相比较是微不足道的,那么要使水分子在常温下实现极化,外电场作的功2至少要等于平均平动动能才能克服热运动的干扰,这就要求外电场足够强. 本题的目的在于启发在实际问题中综合各种物理因素的分析方法和数量级分析的方法.解 ( 1)由题意,水分子正负电荷中心不重合,形成一个电偶极子,电量q 10e , 电矩大小 p qd (10e)d30正负电荷中心之距dp 6.2 1019 3.9 10 12 m 10e 10 1.6 10题9-21图中, OH键距为 0.958 1010 m , d 为这个距离的4%.(2 )由电场力作用于电偶极子的力矩Mp E,力矩大小为MPE sin ,90 ,M达极大 .M maxPE6.2 10301.5 1049.3 1026 N m(3 )力矩作功为 W Md ,本题中,当转向极化进行时,力矩作正功但dWPE sin d2PE1.9 10 25Jθ180E而 T=300K 时,水分子的平均平动动能pk3kT3 1.38 10 23 300 6.2 10 21J22图 9-21k32630W可见在这样大小的外电场中,水分子的转向极化将被分子的热运动干扰,要实现转向极化,使180 的水分子也转到外电场的方向上,电场力作的功至少要等于分子热运动的平均平动动能k ,从而外场场强值至少要达到E W k 6.2 10 21 5 108 N/C2 p 2 p 2 6.210 309-22 平板电容器两级板相距 3.0cm ,其间平行地放置一层r 2.0 的介质,其位置和厚度如图 9-22(a) 所示,已知 A 板带负电、 B 板带正电,极板上电荷面密度为0 8.85 10 10 C/m 3,略去边缘效应,求:(1)极板间各区域的D、E;(2 )极板间距 A 极 1cm 、 2cm 、 3cm 处的电势(设 A 板电势为零);( 3)绘出 D x 、 E x 、 U x 曲线;(4)介质表面的极化电荷面密度.解( 1)作如图9-22(a) 所示的高斯面S1和S2,由介质中的高斯定理可以证明各区域 D 相等,得D08.8510 10 c/m 2介质外场强D10V 0/m E0介质内场强E D50 V / mr(2 )以 A 板电势为零,则x1cm 处A S2B V1E0 x11000.011Vx2cm 处V2V1E( x2x1 )S1 1.5Vx1cm 处V3V2E0 ( x3x2 ) 2.5V0 1 2 3x /cmD/ (C/m)E/ (V/m)V/ V100(a)σ025010 1 2 3x0 1 2 3x0 1 23(b)图 9-22(3) D x , E x , V x 曲线如图 9.22(b)所示.(4 )介质表面的极化电荷面密度为(1 1) 4.42510 10 C/m r9-23平板电容器两极间充满某种介质,板间距d2mm ,电压 600V ,如果断开电源后抽出介质,则电压升高到1800V ,求:(1 )介质的相对电容率;( 2)介质上的极化电荷面密度;(3 )极化电荷产生的电场强度.分析断开电源后抽出介质意味着极板上的自由电荷电量保持不变,电位移D也不变,但是电场强度改变,电压也会改变.在计算有均匀各向同性电介质的平行板电容器之间的电场时,电场强度可以表示为E E0E0,即自由电荷的电场和极化电荷产生的附加电场的00叠加,其中电介质对电场的影响以极化电荷面密度的形式表现出来,反映了空间电场是自由电荷和极化电荷共同产生的;介质中的电场强度也可以直接表示为 E0,其中电介质对电场的影响以相对电容率r 的形式表现出来,也反映0 r了空间的电场是自由电荷和极化电荷共同产生的.这两种表现形式是等效的.解(1)由 E0U 0, EU,得相对电容率为d dE0U 01800rU3E600(2 )在平行板电容器两极板间充满均匀电介质时,忽略边缘效应,得(1 1 )(11) E0 0 5.31 10 6 C/mr r(3 )极化电荷的分布形成等量异号带电板,忽略边缘效应,得E 6 10 5 V/m9-24 盖革计数器可用来测量电离辐射,它的正极是半径为R1的金属丝,负极是半径为 R2的同轴圆柱面,当管内充以低压惰性气体,并使两极间建立起强电场,若有辐射粒子进入器壁时将使气体电离,在电子向正极运动的过程中,又会与其他气体原子产生碰撞电离,这样将有更多的电子到达正极并产生一个信号,记录下该辐射,假设 R125 10 6 m , R2 1.4 10 2 m ,管长 L 1610 2 m ,两级间电势差 U 6000V ,低压惰性气体的相对电容率r 1 ,试计算此时阳极上的电荷量和电荷数.分析由于 L R2 , L R1,忽略边缘效应,可以把盖革计数器视为带等量异号电荷的无限长同轴圆柱面电容器.解 两级间场强为 E,方向沿径向指向阴极.电势差为2 0rUR 2drR 2r2ln2 0R 1R 1则Uln R 2R 1阳极上电荷量为2 0UL 2600016 10 2 10 9CqLR 2 ln(1.4 10 2/ 2510 6)8.4 lnR 1q 8.4 10 相应的电荷数为Ne 1.6 109195.25 10109-25圆柱形电容器是由半径为 R 1 的导体圆柱和与它同轴的导体圆筒构成 的,圆筒的半径为 R 2 ,电容器的长为 L ,其间充满相对电容率为 r 的介质,设沿轴线单位长度上圆柱带电荷量为,圆筒单位长带电荷量为,忽略边缘效应,求:(1)介质中的电位移和电场强度; (2 )介质表面的极化电荷面密度; (3)两极之间的电势差 U ,从而求电容器电容.分析 已知电荷分布,由介质中的高斯定理可知介质中的 D 和 E ,由场强叠加原理可求出极R 2εrεR 1rLλ化电荷的面密度 .–λ解 (1)由于电场具有轴对称性,以半径为r 作高为 L 的同轴高斯面,介质中的高斯定理得2 rL D L图 9-25DrD( 1)Er 2rr (2 )设介质内外表面单位长上的极化电荷分别为和,在介质内,其内表面极化电荷产生的附加电场的场强为E2 0 r根据场强叠加原理,在介质内电场是导体圆柱表面的自由电荷产生的电场和介质内表面极化电荷产生的附加电场的叠加,即E E0E( 2)2 0 r 2 0 r由( 1)和( 2)式解得(1 1 )r介质内外表面单位长的面积分别为 2 R2, 2 R1,则极化电荷面密度分别为2 R1(1)(1)2 R1r2R2 2R2r(3 )电容器两极板电势差为U E d rR2dr ln R2R2R1R120 r r0rR1电容为Q L20rL CR2R2 U ln ln2R1R10 r9-26在半径为 R 的金属球外有一层外半径为R 的均匀介质层,设电介质的相对电容率为r ,金属球带电量为Q,求:(1 )介质层内外的电场强度;(2 )介质层内外的电势;( 3)金属球的电势.分析本题为球对称场,已知电荷分布由介质中的高斯定理可求出D、E 分布.以无穷远电势为零由场强与电势的积分关系或电势叠加原理可求电势分布.解( 1)如图 9-26,作半径为 r的球面为高斯面,由有介质的高斯定理得4 r 2 D QDQ4r 2R在介质内, R r RD Q R’r E14r r20r0εr在介质外,r RD Q E24r 2(2 )介质内任一点的电势为图 9-26V1RE1dr E2 dr Q1(1 1)1( 1)4r r R Rr R介质外任一点电势为V2Q rE2 dr4 0 r(3 )金属球的电势可由( 1)式中令 r R 得到,即V0Q1111 4 0R R Rr9-27球形电容器由半径为R1的导体球和与它同心的导体球壳组成,球壳内半径为 R3,其间有两层均匀电介质,分界面半径为R2,相对电容率分别为r1和r2 ,如图9-27所示,求:(1)当内球所带电荷量为Q 时,电场强度的分布;( 2)各介质表面上的束缚电荷面密度;(3 )电容器电容.分析本题电场为球对称的,已知电荷分布,可由介质中的高斯定理先求 D ,再求 E 的分布.束缚电荷分布在内外两层介质的四个表面上,因为各表面的曲率。
高中物理第九章静电场及其应用总结(重点)超详细(带答案)
高中物理第九章静电场及其应用总结(重点)超详细单选题1、半径为R的绝缘光滑半球形碗,固定放置在水平面上,在碗中置入三个质量均为m,电荷量相同的带电小球。
当处于平衡状态时,三小球同处于水平平面内,该平面和地面的距离为0.5R。
已知静电力常数为k,重力加速度为g,则()A.小球电荷量的大小为32R√mgkB.小球受到的弹力大小为√3mgC.小球电荷量的大小为12R√3mgkD.碗受到三小球的作用力小于3mg答案:AAC.小球受重力,碗给的支持力和库伦作用力,三力平衡。
已知三个小球处于同一平面,所以三个小球从俯视图看应为等边三角形排布,已知该平面和地面的距离为0.5R,所以该平面到碗面处也应为0.5R,并且已知碗的半径为R,所以碗面处的圆心到其中一个小球的距离应为R,根据几何知识,可得其中一个小球到其所处平面中心的距离为l=√(R)2−(0.5R)2=√3 2R根据几何知识有,小球与小球之间距离为32R,小球受力分析如图所示每个小球所受库仑力为F=2⋅kq2(32R)2cos30°又有tan30°=mg F联立解得q=32R√mgkA正确,C错误;B.根据以上分析,有F N=mgsin30°=2mgB错误;D.将三个小球看成一个整体,受到重力和碗给小球的作用力,因此和三个小球重力等大反向,3mg,D错误。
故选A。
2、如图,在一点电荷附近a、b点放置试探电荷测量其受力,下列试探电荷受力F与电荷量q的关系图中,正确的是()A.B.C.D.答案:B电场强度的定义式E=Fq,即F−q图像的斜率表示场强的大小,而试探电荷的电量越大,同一点所受的电场力越大,即电场力关于电量q为增函数;根据点电荷周围的场强决定式E=kQr2可知E a>E b故选B。
3、如图所示,将两个摆长均为l的单摆悬于O点,摆球质量均为m,带电量均为q(q>0)。
将另一个带电量也为q(q>0)的小球从O点正下方较远处缓慢移向O点,当三个带电小球分别处在等边三角形abc的三个顶点上时,摆线的夹角恰好为120°,则此时摆线上的拉力大小等于()A.√3mg B.3mg C.2√3kq 2l2D.√33kq2l2答案:D球a与球b间距为√3l,对小球a受力分析,受重力、c球对a球的斥力、b球对a球的斥力和细线的拉力,如图所示根据平衡条件,水平方向F ab+F ac cos60°=Tcos30°竖直方向F ac sin60°+Tsin30°=mg其中F ab=F ac=kq2(√3l)2解得T=mg=√33⋅kq2l2故D正确, ABC错误。
太原理工大学大学物理第五版第9章课后题答案
第9章 真空中的静电场(习题选解)9-补充 三个电量为q -的点电荷各放在边长为r 的等边三角形的三个顶点上,电荷(0)Q Q >放在三角形的重心上。
为使每个负电荷受力为零,Q 之值应为多大?解:以三角形上顶点所置的电荷(q -)为例,其余两个负电荷对其作用力的合力为1f ,方向如图所示,其大小为题6-1图22221004330cos 42r q r q f πεπε=︒⨯=中心处Q 对上顶点电荷的作用力为2f ,方向与1f 相反,如图所示,其大小为2233200434r Qqr Qq f πεπε==⎪⎪⎭⎫ ⎝⎛由12f f =,得3Q q =。
6-补充 在某一时刻,从238U 的放射性衰变中跑出来的α粒子的中心离残核234Th 的中心为159.010r m -=⨯。
试问:(1)作用在α粒子上的力为多大?(2)α粒子的加速度为多大?解:(1)由反应238234492902U Th+He →,可知α粒子带两个单位正电荷,即 1912 3.210Q e C -==⨯Th 离子带90个单位正电荷,即1929014410Q e C -==⨯它们距离为159.010r m -=⨯由库仑定律可得它们之间的相互作用力为:191991221520 3.21014410(9.010)5124(9.010)Q Q F N r πε---⨯⨯⨯==⨯⨯=⨯(2)α粒子的质量为:2727272()2(1.6710 1.6710) 6.6810p n m m m Kg α---=+=⨯⨯+⨯=⨯由牛顿第二定律得:282275127.66106.6810F a m s m α--===⨯⋅⨯ 9-1 如图所示,有四个电量均为C q 610-=的点电荷,分别放置在如图所示的1,2,3,4点上,点1与点4距离等于点1与点2的距离,长m 1,第3个电荷位于2、4两电荷连线中点。
求作用在第3个点电荷上的力。
解:由图可知,第3个电荷与其它各电荷等距,均为22r m =。
高中物理第九章静电场及其应用重点知识点大全(带答案)
高中物理第九章静电场及其应用重点知识点大全单选题1、如图所示,面积足够大的、板间距离为d的两平行金属板竖直放置,与直流电压为U的电源连接,板间放一半径为R(2R<d)的绝缘金属球壳,C、D是球壳水平直径上的两点,则以下说法正确的是()A.由于静电感应,球壳外表面以内不再有电荷B.由于静电感应,球壳中心O点场强为0C.用手摸一下球壳,再拿去平行金属板,球壳带正电D.用手摸一下球壳,再拿去平行金属板,球壳不带电答案:BA.由于静电感应,最终达到静电平衡状态,球壳外表面以内不再有多余的净电荷,并不是没有电荷,故A错误;B.达到静电平衡后,球壳处于静电平衡状态,外表面以内各点的电场强度均为0,故B正确;CD.球壳电势大于大地电势,手与大地是个等势体,用手摸一下球壳,负电荷会从大地流向球壳,再拿去平行金属板,球壳带负电,故CD错误。
故选B。
2、如图所示,两原长均为L、劲度系数相等的绝缘轻弹簧悬挂于O点,其另外一端各连接一个带电小球,平L。
两小球的质量均为m,重力衡时A球靠在光滑绝缘竖直墙上,OA长为2L且竖直;B球悬于空中,OB长为32加速度为g,则两球间的库仑力大小为()A.12mg B.34mg C.mg D.2mg答案:B设OA、OB夹角为θ,B球的受力如图甲所示,构成的力的矢量三角形与△OAB相似,则有mg OA =F B OB即mg 2L =F B 3 2L可得F B=34 mg对AB两带电小球整体受力分析如图乙,根据平衡条件可得F A+F B cosθ=2mg 两弹簧完全相同F B=k L2=34mg则F A=kL=2F B=32 mg解得cosθ=2 3在力的矢量三角形中,应用余弦定理有F AB=√(mg)2+F B2−2mgF B cosθ=34 mg故B正确。
3、矩形金属导体处于正点电荷Q产生的电场中,静电平衡时感应电荷产生的电场在导体内的电场线分布情况正确的是()A.B.C.D.答案:A导体处于静电平衡状态时,导体内部场强处处为0,感应电荷在导体内部某处产生的电场与场源电荷Q在此处产生的电场场强大小相等,方向相反。
《物理学基本教程》课后答案 第九章 静电场中的导体和电介质
第九章 静电场中的导体和电介质9-1 把一厚度为d 的无限大金属板置于电场强度为0E 的匀强电场中,0E 与板面垂直,试求金属板两表面的电荷面密度.分析 对于有导体存在的静电场问题,首先由静电平衡条件分析放入静电场后导体上电荷的重新分布情况,再计算空间电场和电势的分布.本题中,将金属板放入均匀电场后,由于静电感应,平板两面带上等值异号感应电荷.忽略边缘效应,两带电面可视为平行的无限大均匀带电平面.解 设平板两表面的感应电荷面密度分别为σ'和σ'-,如图9-1所示.由例题8-7结果知,带感应电荷的两表面视为带等量异号电荷的无限大平行平面,在导体中产生的场强为0εσ'='E ,方向与0E 相反,由场强叠加原理,平板中任一点的总场强为00εσ'-='-=E E E E 根据静电平衡条件,金属板中场强0=E ,代入上式得000='-εσE 则 00εσE =', 00εσE -='- 结果与板的厚度无关.9-2 一金属球壳的内外半径分别为R 1和R 2,在球壳内距球心为d 处有一电荷量为q 的点电荷,(1)试描述此时电荷分布情况及球心O 处电势;(2)将球壳接地后,以上问题的答案;(3)如原来球壳所带电荷量为Q ,(1)、(2)的答案如何改变.分析 当导体内达到静电平衡后,应用高斯定理可以确定导体上电荷重新分布的情况,然后用电势叠加原理求电势.解 (1)按照静电平衡条件,导体内部0=E ,在球壳内外表面间作同心高斯球面,应用高斯定理,可知球壳内表面上应有q -的感应电荷,为非均匀分布,如图9-2所示.根据电荷守恒定律和高斯定理,球壳外表面上有+q 的感应电荷,且均匀分布.点电荷q 在O 点产生的电势为dq V 0=πε41球壳内外表面上的感应电荷q -和+q 无论分布情况如何,到球心距离分别为R 1和R 2,电势叠加原理表达式为标量求和,所以在O 点产生的电势分别为124R q V 0-=πε 234R q V 0=πεO 点电势为 21321444R qR q d q V V V V 000+-=++=πεπεπε111(421R R d q +-=πε (2)将球壳接地后,外球面上的感应电荷消失,球面上电荷分布不变,得)11(4121R d qV V V -=+=0πε (3)如果原来球壳带电量为Q ,达静电平衡后外球面上电荷Q +q 均匀分布,内球面上电荷分布不变,得2213214)111(4R Q R R d q V V V V 00++-=++=πεπε 球壳接地后,结果与(2)相同.9-3 一无限长圆柱形导体半径为R a ,单位长度带有电荷量λ1,其外有一共轴的无限长导体圆筒,内外半径为分为R b 和R c ,单位长度带有电荷量λ2,求(1)圆筒内外表面上每单位长度的电荷量;(2)a R r <,b c R r R <<,c b R r R <<,c R r >四个区域的电场强度.分析 静电平衡条件下,在圆筒导体内场强为零,用高斯定理和电荷守恒定律可求出感应电荷的分布.解 (1)如图9-3所示,在圆筒形导体内作半径为r ,高为单位长的同轴圆柱形高斯面S ,设导体圆筒内外表面单位长的感应电荷分别为λ'-和λ',由静电平衡条件知导体内0=E , 故有⎰=⋅S E d 0)(1110='-=∑λλεεq即得半径为R b 的圆筒内表面单位长上的感应电荷为-λ1.由电荷守恒定律知,半径为R c 的圆筒外表面上单位长的感应电荷应为λ1,加上原有电荷量λ2,单位长上总带电量为12λλ+.(2)电荷重新分布的结果形成三个同轴的无限长带电圆柱面如图9-3,由于电荷分布具有轴对称性的,产生的电场也是轴对称的,用高斯定理可求出a R r <时,0=Eb a R r R <<时,rE 0=πελ21c b R r R <<时, 0=E c R r >时, rE 0212πελλ+=9-4 证明:两平行放置的无限大带电的平行平面金属板A 和B 相向的两面上电荷面密度大小相等,符号相反,相背的两面上电荷面密度大小相等,符号相同,如果两金属板的面积同为100cm 2,电荷量分别为C 1068A -⨯=Q 和C 1048B -⨯=Q ,略去边缘效应,求两个板的四个表面上的电荷面密度.分析 根据静电平衡条件,一切净电荷都分布在导体表面,本题中的电场空间可视为四个无限大均匀带电平行平面产生的电场的叠加,金属板A 、B 内任意点场强为零.由电荷守恒定律可以建立各表面的电荷面密度与两金属板的总电荷量之间的关系.解 设A 、B 两板的四个表面上的电荷面密度(先假定为正)分别为σ1、σ2、σ3和σ4,如图9-4所示.设向右为正向,由无限大均匀带电平面的场强公式和场强叠加原理,考虑到金属板A 、B 内任意点场强为零,得 金属板A 内0222243201=---000εσεσεσεσ 金属板B 内 0222243201=-++000εσεσεσεσ 解得32σσ-=, 41=σσ又由电荷守恒定律得 A Q S =+21)(σσ,B Q S =+)(43σσ 联立解得 26BA C/m 105-41⨯=+==SQ Q σσ 261A2C/m 101S-⨯=-=σσQ 263C/m 101-2⨯-=-=σσ9-5 三个平行金属板A 、B 和C ,面积都是200cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm ,B 、C 两板都接地,如图9-5所示,如果A 板带正电C 100.37-⨯,略去边缘效应,(1)求B 板和C 板上感应电荷各为多少?(2)以地为电势零点,求A 板的电势.分析 由静电平衡条件,A 、B 、C 板内各点的场强均为零,A 板上电荷分布在两个表面上,因B 、C 两板均接地,感应电荷应分布在内侧表面上.解 (1)设A 板1、2两面上带电量分别为q 1和q 2,B 、C 两板与A 相对的两内侧表面3、4 上的感应电荷分别为q 1’和q 2’,如图9-5所示.作侧面与平板垂直的高斯面1S ,两端面处E =0,忽略边缘效应,侧面无电场线穿过,由高斯定理0)(11d 110=+'==⋅0⎰∑S S q S S q q ∆∆εεS E 得11q q -=' 同理可得22q q -='.AB 板间和AC 板间为匀强电场,场强分别为S q E 0=ε11 Sq E 0=ε22又已知AC AB V V =,即2211d E d E =因 C 100.3721-⨯==+q q q 由以上各式,得B 、C 两板上的感应电荷分别为C 100.13711-⨯-=-=-='qq q C 100.227122-⨯-=-=-='q q q (2)取地电势为零,A 板电势即为A 、B 间电势差V 103.231111⨯====0Sd q d E V V AB A ε 9-6 半径为cm 0.11=R 的导体球所带电荷量为C 100.110-⨯=q ,球外有一个内外半径分别为cm 0.32=R 和cm 0.43=R 的同心导体球壳,壳上带有电荷量C 111110-⨯=Q ,求:(1)两球的电势;(2)用导线把两球连接起来时两球的电势;(3)外球接地时,两球电势各为多少?(以地为电势零点.)分析 根据静电平衡条件可以确定感应电荷的分布,用导线连接的导体电势相等,外球接地后电势为零.解 (1)根据静电平衡条件,导体球壳内表面感应电荷为-q ,外表面感应电荷为q ,原有电荷量Q .由电势叠加原理,导体球电势为321144R Q q R q R q V 000++-4=πεπεπεV 103.3)(412321⨯=++-=0R Qq R q R q πε导体球壳的电势为V 107.244442333302⨯=+=++-=000R qQ R q Q R q R q V πεπεπεπε(2)球壳和球用导线相连后成为等势体,电势等于半径为R 3带电量为Q +q 的均匀带电球面的电势,以无穷远为电势零点,得V 107.24232⨯=+=0R qQ V πε(3)外球接地后,只乘下内表面的电荷-q ,由电势叠加原理内球电势为V 6044211=-='00R q R q V πεπε外球壳接地与地等势,即02='V另外,求V 1’时还可以用内球产生的电场的线积分计算,即V 60)11(4d 4212221=-=='00⎰R R q r r q V R R πεπε 9-7 半径为R 的金属球离地面很远,并用细导线与地相连,在与球心的距离为R D 3=处有一点电荷q +,试求金属球上的感应电荷.分析 由于导体球接地,其表面上的感应正电荷通过导线与地球内负电荷中和,只剩下负感应电荷在金属球表面不均匀地分布,如图9-7所示.接地后,导体球上各点电势均为零,球心O点的电势应等于点电荷在该点电势与金属球表面感应负电荷在该点电势的代数和.解 设金属球上感应电荷为q ',在金属球表面不均匀地分布,但这些电荷到O 点距离相等,电势叠加后得R q V 0'=πε42点电荷q 在O 点的电势为 R q V 3410=πε043421='+=+=00Rq Rq V V V πεπε得感应电量为 3qq -='由此可以推证,当nR D =时, nqq -='9-8 如图9-8所示,三个“无限长”的同轴导体圆柱面A 、B 和C ,半径分别为A R 、B R 、C R ,圆柱面B 上带电荷,A 和C 都接地,求:B 的内表面单位长度电荷量1λ,外表面单位长度电荷量2λ之比值21/λλ.分析 本题与题9-5的解题思路相似.解 在导体B 内作单位长圆柱面形高斯面,可以说明A 面单位长度上感应电荷为1λ-.同理,可说明C 面单位长度上感应电荷为2λ-.由高斯定理可知场强分布为B A R r R <<时,rE 012=πελ1,方向沿径向由B 指向A . C B R r R <<时,rE 02=πελ22,方向沿径向由B 指向C . BA 间电势差BAV ⎰⋅=A B d 2R R r E ⎰00=-=AB A B 11ln 22R R R R r drπελπελBC 间电势差 BC 02BCln 2R R V πελ=B 为等势体,A 、C 接地,BC BA V V =,从而)/ln()/ln(A B B C 21R R R R =λλ9-9 半径分别为1R 和)(122R R R >的两个同心导体薄球壳,电荷量分别为1Q 和2Q ,今将内球壳用细导线与远处的半径为r 的导体球相联,导体球原来不带电,并假设导线上无电荷分布,试求相连后,导体球所带电荷量q .分析 带电的内球壳与导体球用导线相连后,一部分电荷通过导线转移到导体球表面上.两者相距甚远,可以认为两球壳与球的电场互不影响,已假设导线上无电荷分布,利用内球壳与远处导体球电势相等建立方程求解.解 因两球壳与球的电场互不影响,导体球电势为214r q V 0=πε假设导线上无电荷分布,则内球壳上电荷量变为q Q -1,由电势叠加原理,内球壳的电势为2211244R Q R q Q V 00+-=πεπε内球壳与远处导体球电势相等,即21V V =2211444R Q R q Q r q000+-=πεπεπε 解得)()(121221r R R Q R Q R r q ++=9-10 地球表面的电场强度为150N/C ,方向垂直指向地面,若把地球视为导体,试求地球表面的电荷面密度和地球带的总电荷量.分析 由于地球表面的电场强度方向垂直指向地面,可知地球带负电,将地球视为导体,在静电平衡状态下,电荷分布在表面上.解 设地球表面的电荷面密度为σ,表面附近的场强0εσ=E ,则 292120C/m 1033.1C/m )1085.8150(--⨯-=⨯⨯-==εσE地球半径m 1037.66⨯≈R ,地球带的总电荷量为kC 680C 108.6C 41033.14529-=⨯-=10⨯6.37⨯⨯⨯-==12-2ππσR q9-11 设有一孤立导体球,半径为R .,(1)试求其在真空中的电容表示式;(2)若把地球视为m 1037.66⨯=R 的导体球,它的电容量多大?(3)欲使地球的电势改变1V ,需使其所带电荷量改变多少?解 (1)将孤立导体球视为与无穷远处的同心导体球面组成的球形电容器,利用球形电容器电容表达式,(9-4)式给出孤立导体球的电容R VQC 0==πε4. (2)地球电容F 107F 1037.6446--12⨯=⨯⨯10⨯8.85⨯=πC(3)欲使地球电势改变1伏特,需使地球电量的改变为C 1071107ΔΔ44--⨯=⨯⨯==V C Q这个值很大,所以地球带电量的日常变化不会引起地球电势发生明显的改变,这就是通常可以选取地球作为电势零点的原因.9-12 已知空气的击穿电场强度为V/m 1036⨯,求处于空气中一个半径为1m 的导体球最多能带多少电荷及能达到的最高电势.分析 在带电导体球周围的空气形成一种绝缘介质包围着导体球,当导体球产生的电场足够强时,会使其周围的空气发生电离而成为导体,致使带电导体球放电,通常称为空气被击穿.因均匀带电导体球面的电场强度和电势与带电量成正比,为了不击穿周围的空气,带电导体球所带电量要受到限制.解 由题意击穿电场强度V /m 1036max ⨯=E而 2maxmax 4RQ E 0=πε C 103.3C 11085.841034421262max max --0⨯=⨯⨯⨯⨯⨯==ππεR E Q最高电势为 V 103446max 2max max max ⨯====00RE R R E C Q V πεπε或 V 103V 14103.3464max max ⨯=⨯10⨯8.85⨯⨯==12--0ππεR Q V9-13 收音机里的可变电容器如图9-13(a )所示,其中共有n 块金属片,相邻两片的距离均为d ,奇数片联在一起固定不动(叫定片),偶数片联在一起可一同转动(叫动片),每片的形状如图9-13(b )所示,求当动片转到使两组片重叠部分的角度为θ时,电容器的电容.分析 除了最外侧的两片外,每块金属片的两个表面分别与相邻的金属片表面构成一个电容器,如图9-13(c )所示,所以n 块金属片如此连接等效于(1-n )个平行板电容器并联.当两组片重叠部分的角度为θ时,每个电容器有效极板面积为)(θS ,因此电容器的等效电容是θ的函数.收音机调频的电容器就是根据这个原理设计的.解 当两组片重叠部分的角度为θ时,每个电容器有效极板面积为)(3602212-︒=r r S ππθ(n -1)个极板面积为S ,板间距为d 的平行板电容并联时的等效电容为dr r n d Sn C ⋅︒)-(-=-=0360)1()1(21220θπεε式中θ以度计.9-14 半径都为a 的两根平行长直导线相距为)(a d d >>.(1)设两导线每单位长度上分别带电λ+和λ-,求两导线的电势差;(2)求此导线组每单位长度的电容.分析 因a d >>,可设两导线的电场互不影响,由场强叠加原理可求出两导线间的场强分布,再用场强与电势的积分关系求两导线间电势差,由电容器电容的定义即可求出单位长导线组的等效电容.解 作两导线组合的截面图,以带正电导线轴心为原点建立坐标系如图9-14所示.不难看出,正负电荷在P 点的场强均沿r 轴正向,矢量叠加简化为标量和-11()(2rd r r d r E E E +2=-2+=+=000-+πελπελπελ 两导线间电势差为=-+V r E ad a d ⋅⎰-⎰-0-+=a d a r rd r d 11(2πελa ad -=0ln πελ 由电容器电容的定义,导线单位长电容为aad V C -==-+lnπελ9-15 有两个半径分别为1R 和2R 的导体球放在真空中,两球表面相距为d ,已知1R d >>和2R d >>,试求两导体构成的电容器的电容.分析 按题意 2R d >>,可认为当两导体球分别带电Q +和Q -时,彼此电场互不影响,即各球面上电荷分布仍是均匀的,由场强叠加原理可求出两球球心连线上任一点的场,用与上题相似的方法可以求出两球电势差和两球构成的电容器电容.解 以大球球心为原点,建立如图9-15所示的坐标系,在坐标为r 处的P 点(在连心线上),两球产生的电场均沿r 轴正向,得2212)(44r d R R Qr Q E E E -+++=+=00-+πεπε两带电导体球间电势差为-+V ⎰+⋅=dR R r E 11d ⎰+0-+++=dR R r r d R R r Q 112212d ])(11[4πε)1111(42121R d R d R R Q +-+-+=πε 考虑到1R d >>,2R d >>,可将电势近似表示为)211(421dR R Q V -+=-+πε 此两导体球构成的电容器电容为dR V Q C 21R 421-+1==0-+πε9-16 两只电容器F 81μ=C ,F 22μ=C ,分别把它们充电到1000V ,然后将它们反接,如图9-16所示,求此时两极间电势差.分析 并联电容极板间电压相同,因两电容器电容不等,则反接前两电容器带的电量必定不等.反接后,相连的极板上正负电荷中和,可以计算出中和后电荷量的代数和及并联电容器的等效电容C ,从而求出电势差.解 反接前,设1C 和2C 带电量分别为1Q 和2Q ,充电电压V 10000=U ,则011U C Q = 022U C Q =反接后,正负电荷中和,中和后总电量为21Q Q Q -=,并联等效电容 21C C C +=,则并联电容器两板间电势差为V 600V 1021081000)102108()(666621021=⨯+⨯⨯⨯-⨯=+-==----C C U C C C Q U 9-17 如图9-17所示,F 0.5,F 0.5,F 10321μμμ===C C C ,求:(1)AB 间的电容;(2)在AB 间加上100V 电压时,求每一个电容器上的电荷量和电压;(3)如果C 1被击穿,问C 3上的电荷量和电压各是多少?分析 并联电容器极板电势相等,串联电容器极板上电荷量相等,总电压等于各电容器上电压之和.当1C 上电压超过1C 的额定电压,1C 将被击穿,1C 支路即短路,全部电压就加在3C 上,如超过3C 的额定电压,3C 将被击穿,A 、B 间就发生短路.所以,在设计电容器组合电路时,除应计算等效电容外,还应考虑分配到每个电容器上的电压是否超过所选电容器的额定电压.解 (1)1C 和2C 并联电容为21C C C +=',再与3C 串联后,等效电容为F 75.333μ='+'=C C C C C (2)等效电容所带电量为CU Q =,串联的电容所带电量相等C 1075.343-⨯===CU Q QV 75333==C Q U V 25221121==='==C Q C Q C Q U U又因 Q Q Q =+21可解得 C 105.241-⨯=QC 1025.142-⨯=Q(3)如果C 1被击穿,AB 间电压就加在C 3上,即V 1003==U U则 C 1054333-⨯==U C Q9-18 平板电容器,两极间距离为1.5cm ,外加电压39kV ,若空气的击穿电场强度为30kV/cm ,问此时电容器是否会被击穿?现将一厚度为0.3cm 的玻璃插入电容器并与两板平行,若玻璃的相对电容率为7,击穿电场强度为100kV/cm ,问此时电容器是否会被击穿?结果与玻璃片的位置有无关系?分析 加玻璃片后,电场被分成两部分,应分别计算出空气和玻璃中的电场强度,再判断是否有哪种介质中的场强超过了其击穿场强.可以证明结果与玻璃板的位置无关.解 未加玻璃前平板电容器内场强为kV/cm 30kV/cm 26V/cm 5.139<===d U E 因其量值小于空气的击穿电场强度,电容器不会被击穿.加玻璃后,设电容器极板的电荷面密度为σ,平行板电容器中电位移σ=D .设玻璃和空气中场强分别为1E 和2E ,则有r 01εεσε==DE 002εσε==D E玻璃厚为d 1,则空气层厚为d - d 1,得U d d E d E =-+)(1211由以上各式得kV /cm 48.4)(r111=-+=εd d d UE30kV /cm kV /cm 4.31)(r11r2>=-+=εεd d d U E即空气部分首先被击穿,然后全部电压加在玻璃板上,致使玻璃中场强为kV /cm 100kV /cm 1303.03911>==='d U E 玻璃部分也会被击穿.9-19一平板电容器极板面积为S ,两板间距离为d ,其间充以相对电容率分别为r1ε、r2ε的两种均匀介质,每种介质各占一半体积,若忽略边缘效应,(1)与两种不同介质相对的两部分极板所带电荷面密度是否相等?如果不相等,求:21/σσ=?(2)试证此电容器的电容为⎪⎭⎫⎝⎛+=2210r r d S C εεε 分析 忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,从而可以确定两种不同介质中场强与极板电势差的关系,以及与两部分极板上的电荷面密度的关系,从而可知极板上的总电荷量.另一种思路是将充入两种介质后的电容器视为由两个电容器并联而成,直接应用并联电容器的计算公式.解1 (1)设电容器端电压为U ,两种介质中场强分别为E 1和E 2,由充满均匀介质的平行板电容器的场强与电压的关系可得dUE E ==21 (1)设1σ、2σ分别为两种不同介质对应部分极板上的电荷面密度,忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,则有r1011εεσ=E r2022εεσ=E (2) 代入(1)式可得 r2r121εεσσ=即两部分极板所带电荷面密度不相等.由(1)和(2)式可得极板上的总电荷量为)2()(2r2r1021εεεσσ+=+=d SU SQ 由电容器定义得 )2(210r r d S U Q C εεε+==解2 由并联电容器公式求总电容)2(22210201021r r r r d S d S d S C C C εεεεεεε+=+=+= 可见第二种方法计算简单,用第一种方法可对物理过程、电场电荷分布有更明确的概念.另外在第一种方法中亦可用介质中的高斯定理求解.9-20 一球形电容器,在外球壳的半径R 和内外导体间的电势差U 维持恒定的条件下,内球半径R '为多大时才能使内球表面附近的电场强度最小?并求这个最小电场强度的值.分析 导体表面附近的场强与电荷面密度成正比,而当极板间电势差恒定时,极板所带电荷量取决于电容C ,电容器的电容由电介质性质和几何因素决定,根据这些关系可以确定内球半径对内球表面附近电场强度的影响.解 球形电容器电容为R R R R C '-'=πε4 极板上带电量为RR UR R CU q '-'==πε4当外球壳的半径R 和极板间电势差U 恒定时,q 是内球半径R '的函数.内球表面附近的场强大小为)(42R R R RUR q E '-'='==πεεσ 即E 也是R '的函数.欲求场强E 的最小值,令0])(2[d d 22='-'-'='R R R RR RU R E 得 2RR =' 并有2R R ='时,0d d 22>'R E ,即2RR ='时,场强有极小值,且 RUE 4min =9-21 图9-21为水蒸气分子O H 2中氧氢原子核及核外电子云示意图.由于分子的正负电荷中心不重合,故其为有极分子,电矩m C 102.630⋅⨯=-p .(1)水分子有10个正电荷及10个负电荷,试求正负电荷中心之距d=?(2)如将水蒸气置于N/C 105.14⨯=E 的匀强电场中,求其可能受到的最大力矩?(3)欲使电矩与外场平行反向的水分子转到外场方向(转向极化),问电场力作功多少?这功的大小为室温(300K )水分子的平均平动动能kT 23的多少分之一?在室温下实现水分子的转向极化,外加电场强度应该多大?分析 由电矩qd p =及已知的水分子电量可计算正负电荷中心之距d .由电偶极子在外场中受的力矩M E p ⨯=,θsin pE M =,可知,当p 与E 正交时力矩最大.当电矩与外场平行反向)180(︒=θ时,电场力的力矩作功将使θ减小,最后0=θ,注意到在此过程中0d <θ.如果这个功与室温下水分子的平均平动动能kT 23相比较是微不足道的,那么要使水分子在常温下实现极化,外电场作的功至少要等于平均平动动能才能克服热运动的干扰,这就要求外电场足够强.本题的目的在于启发在实际问题中综合各种物理因素的分析方法和数量级分析的方法.解 (1)由题意,水分子正负电荷中心不重合,形成一个电偶极子,电量 e q 10=, ∴ 电矩大小d e qd p )10(==正负电荷中心之距m 109.3106.110102.610121930---⨯=⨯⨯⨯==e p d 题9-21图中,OH 键距为m 10958.010-⨯,d 为这个距离的4%.(2)由电场力作用于电偶极子的力矩M E p ⨯=,力矩大小为θsin PE M =,︒=90θ,M 达极大.m N 103.9105.1102.626430max ⋅⨯=⨯⨯⨯==--PE M(3)力矩作功为⎰=θd M W ,本题中,当转向极化进行时,力矩作正功但0,<θd∴⎰︒-⨯==-=18025109.12d sin J PE PE W θθ 而T =300K 时,水分子的平均平动动能J kT k 2123102.63001038.12323--⨯=⨯⨯⨯==ε32630=Wkε可见在这样大小的外电场中,水分子的转向极化将被分子的热运动干扰,要实现转向极化,使︒=180θ的水分子也转到外电场的方向上 ,电场力作的功至少要等于分子热运动的平均平动动能k ε,从而外场场强值至少要达到N/C 105102.62102.62283021⨯=⨯⨯⨯=='='--p p W E k ε 9-22 平板电容器两级板相距3.0 cm ,其间平行地放置一层0.2=r ε的介质,其位置和厚度如图9-22(a)所示,已知A 板带负电、B 板带正电,极板上电荷面密度为3100C/m 1085.8-⨯=σ,略去边缘效应,求:(1)极板间各区域的D 、E ;(2)极板间距A 极1cm 、2cm 、3cm 处的电势(设A 板电势为零);(3)绘出x D -、x E -、x U -曲线;(4)介质表面的极化电荷面密度.解 (1)作如图9-22(a)所示的高斯面1S 和2S ,由介质中的高斯定理可以证明各区域D 相等,得2100c/m 1085.8-⨯==σD介质外场强 V /m 1000==εDE(3)x D -,x E -,x V -曲线如图9.22(b)所示.(4)介质表面的极化电荷面密度为C/m 10425.4)11(10-⨯=-='σεσr9-23 平板电容器两极间充满某种介质,板间距mm 2=d ,电压600V ,如果断开电源后抽出介质,则电压升高到1800V ,求:(1)介质的相对电容率;(2)介质上的极化电荷面密度;(3)极化电荷产生的电场强度.分析 断开电源后抽出介质意味着极板上的自由电荷电量保持不变,电位移σ=D 也不变,但是电场强度改变,电压也会改变.在计算有均匀各向同性电介质的平行板电容器之间的电场时,电场强度可以表示为0000εσεσ'-='-=E E E ,即自由电荷的电场和极化电荷产生的附加电场的叠加,其中电介质对电场的影响以极化电荷面密度σ'的形式表现出来,反映了空间电场是自由电荷和极化电荷共同产生的;介质中的电场强度也可以直接表示为r00εεσ=E ,其中电介质对电场的影响以相对电容率r ε的形式表现出来,也反映了空间的电场是自由电荷和极化电荷共同产生的.这两种表现形式是等效的.解 (1) 由d U E 00=,dUE =,得相对电容率为 3600180000r ====U U E E ε (2)在平行板电容器两极板间充满均匀电介质时,忽略边缘效应,得C/m 1031.5 )11( )11(600rr-⨯=-=-='εεσεσE(3)极化电荷的分布形成等量异号带电板,忽略边缘效应,得V /m 10650⨯='='εσE9-24 盖革计数器可用来测量电离辐射,它的正极是半径为1R 的金属丝,负极是半径为2R 的同轴圆柱面,当管内充以低压惰性气体,并使两极间建立起强电场,若有辐射粒子进入器壁时将使气体电离,在电子向正极运动的过程中,又会与其他气体原子产生碰撞电离,这样将有更多的电子到达正极并产生一个信号,记录下该辐射,假设m 104.1,m 10252261--⨯=⨯=R R ,管长m 10162-⨯=L ,两级间电势差V 6000=U ,低压惰性气体的相对电容率1r ≈ε,试计算此时阳极上的电荷量和电荷数.分析 由于12,R L R L >>>>,忽略边缘效应,可以把盖革计数器视为带等量异号电荷的无限长同轴圆柱面电容器.解 两级间场强为rE 02πελ=,方向沿径向指向阴极.电势差为 ⎰==211200ln 2d 2R R R R r r U πελπελ 则 120ln R R Uπελ2=阳极上电荷量为)1025/104.1ln(101660002ln 2622120----12⨯⨯⨯⨯⨯10⨯8.85⨯===ππελR R UL L q C 9104.8-⨯= 相应的电荷数为 101991025.5106.1104.8⨯=⨯⨯==--e q N9-25 圆柱形电容器是由半径为1R 的导体圆柱和与它同轴的导体圆筒构成的,圆筒的半径为2R ,电容器的长为L ,其间充满相对电容率为r ε的介质,设沿轴线单位长度上圆柱带电荷量为λ+,圆筒单位长带电荷量为λ-,忽略边缘效应,求:(1)介质中的电位移和电场强度;(2)介质表面的极化电荷面密度;(3)两极之间的电势差U ,从而求电容器电容.分析 已知电荷分布,由介质中的高斯定理可知介质中的D 和E ,由场强叠加原理可求出极化电荷的面密度.解 (1)由于电场具有轴对称性,以半径为r 作高为L 的同轴高斯面,介质中的高斯定理得L D rL λπ=⋅2rD πλ2=rr DE r 2επελπελε0=2==(1) (2)设介质内外表面单位长上的极化电荷分别为λ'和λ'-,在介质内,其内表面极化电荷产生的附加电场的场强为rE 02πελ'-=' 根据场强叠加原理,在介质内电场是导体圆柱表面的自由电荷产生的电场和介质内表面极化电荷产生的附加电场的叠加,即rr E E E 00022πελπελ'-='-= (2) 由(1)和(2)式解得)11(rελλ-='介质内外表面单位长的面积分别为22R π,12R π,则极化电荷面密度分别为)1(22r 11επλπλσ1--='-='-R R )1(22r22επλπλσ1-='='R R (3)电容器两极板电势差为=U ⎰⋅21d R R r E ⎰2==2112r 0r 0ln 2d R R R R r r επελεπελ电容为 12r 012r 0ln 2ln 2R R LR R LUQC επεεπελλ===9-26 在半径为R 的金属球外有一层外半径为R '的均匀介质层,设电介质的相对电容率为r ε,金属球带电量为Q ,求:(1)介质层内外的电场强度;(2)介质层内外的电势;(3)金属球的电势.分析 本题为球对称场,已知电荷分布由介质中的高斯定理可求出D 、E 分布.以无穷远电势为零由场强与电势的积分关系或电势叠加原理可求电势分布.解 (1)如图9-26,作半径为r 的球面为高斯面,由有介质的高斯定理得Q D r =24π24r QD π=在介质内,R r R '<< 2r 0r014r Q DE επεεε==在介质外,R r '> 224rQDE 00==πεε(2)介质内任一点的电势为⎰⎰'∞'+=R rR r E r E V d d 211⎥⎦⎤⎢⎣⎡'+'-=0R R r Q 1)11(14r επε (1) 介质外任一点电势为⎰∞==rrQ dr E V 0224πε(3)金属球的电势可由(1)式中令R r =得到,即⎥⎦⎤⎢⎣⎡'+⎪⎭⎫ ⎝⎛'-=R R R Q V 11114r 00επε 9-27 球形电容器由半径为1R 的导体球和与它同心的导体球壳组成,球壳内半径为3R ,其间有两层均匀电介质,分界面半径为2R ,相对电容率分别为1r ε和r2ε,如图9-27所示,求:(1)当内球所带电荷量为Q +时,电场强度的分布;(2)各介质表面上的束缚电荷面密度;(3)电容器电容.分析 本题电场为球对称的,已知电荷分布,可由介质中的高斯定理先求D ,再求E 的分布.束缚电荷分布在内外两层介质的四个表面上,因为各表面的曲率。
华理大物答案第9章(2015)
得
E1 q1 E2 q2
(2)
根据题意
UA UB UA UC E1d1 E 2 d 2 (3)
得
E1 d 2 1 E 2 d1 2
由(1) 、 (2) 、 (3)式可得 q 1 1.0 10 7 C , q 2 2.0 10 7 C 。 (2) U A E 1 d 1
(2)
(3)
q外 0
U 外 E dl R 2
q q dr 2 40 r 40 R 2
q 外 q
U内 q内
U E dl 0
( E 外 0)
40 R 1
R q 0 q内 1 q 40 R 2 R2
E1 20 r R 1
E1 20 r r
E2
20 r R 2
根据题意 E 1 2.5E 2 可解得 R 2 2.5R 1 2.5 0.5 1.25cm 又 E1 的场强最大,故电压升高后,该处先击穿。令 E 1 E M ,则有
20 r R 1 E M
q1 d1 0S
1.0 107 4.0 103 2.3 103V 8.85 1012 0.02
11
大学物理(下)习题册参考解答
5、半径均为 a 的两根平行长直导线,相距为 d (d>>a),求单位长 度上的电容。 解:设两导线间任意 P 点,距导线中心为 r,则 P 点 E 为
U 2 U 3 U U1 100 50 50V
Q3 C3U 3 20 10 6 50 1.0 10 3 C
高中物理第九章静电场及其应用知识点总结全面整理(带答案)
高中物理第九章静电场及其应用知识点总结全面整理单选题1、关于库仑定律的理解,下面说法正确的是()A.对任何带电体之间的静电力计算,都可以使用库仑定律公式B.两个点电荷之间的静电力,无论是在真空中还是在介质中,一定是大小相等、方向相反的C.只要是点电荷之间的静电力计算,就可以使用库仑定律公式D.摩擦过的橡胶棒吸引碎纸屑,说明碎纸屑一定带正电答案:BAC.库仑定律适用于真空中静止点电荷间静电力的计算,故AC错误;B.两个点电荷之间的静电力,是作用力和反作用力关系,故无论是在真空中还是在介质中,一定是大小相等、方向相反的,故B正确;D.摩擦过的橡胶棒吸引碎纸屑,纸屑带正电或不带电都可以,故D错误。
故选B。
2、如图所示,空心金属球壳上所带电荷量为+Q,关于O、M两点电场强度EO、EM的说法中正确的是()A.EO≠0EM=0B.EO=0 EM≠0C.EO=0 EM=0D.EO≠0EM≠0答案:C由题意,可知空心金属球壳处于静电平衡状态,根据处于静电平衡状态中的导体,内部电场强度处处为零,可知E O=0,E M=0。
故选C。
3、电场中有一点P,下列说法正确的是()A.若放在P点的电荷的电荷量变为原来的2倍,则P点电场强度变为原来的2倍B.若P点没有试探电荷,则P点的场强为零C.P点的场强方向为试探电荷在该点的受力方向D.P点的场强越小,则同一电荷在P点所受的静电力越小答案:DAB.电场强度是电场本身决定的,与放不放试探电荷,所放试探电荷的电性、电量无关,故AB错误;C.正电荷所受电场力的方向与场强方向相同,负电荷所受电场力的方向与场强方向相反,故C错误;D.由公式F=qE可知P点的场强越小,则同一电荷在P点受到的静电力越小,故D正确。
故选D。
4、如图所示,一均匀带电的金属球体,半径r=√5cm,球体所带电荷量为Q=5×10-12C,静电力常量为k=9.0×109N·m2/C2,则关于该金属球形成的场强说法正确的是()A.由于该金属球的体积较大,不能看成是点电荷,所以无法计算其空间某点的场强B.距离球心O为3r的某点场强为100N/CC.距离球心O为0.3r的某点场强为0D.把正的试探点电荷放在金属球外空间某点,则其该点场强变大答案:CA.均匀带电球体可以看成电荷量集中在球心处的点电荷,根据点电荷电场强度的计算公式能计算空间某点的场强,A错误;B.根据A选项分析可知,距离球心3r的某点场强E=kQ(3r)2=9.0×109×5×10−12(3×√5×10−2)2N C⁄=10.0N C⁄B错误;C.由静电平衡可知,带电导体内部场强处处是0,因此距离球心O为0.3r的某点场强是0,C正确;D.把正的试探电荷放在金属球外空间某点,由于金属球带正电,相互排斥,则金属球所带电荷的等效位置不再位于球心,在球心的左侧,则该点距等效位置间距变大,则该点场强变小,D错误。
高中物理第九章静电场及其应用易错知识点总结(带答案)
高中物理第九章静电场及其应用易错知识点总结单选题1、如图所示,xOy 平面是无穷大导体的表面,该导体充满z <0的空间,z >0的空间为真空。
将电荷为+q 的点电荷置于z 轴上z =h 处,则在xOy 平面上会产生感应电荷。
空间任意一点处的电场皆是由点电荷q 和导体表面上的感应电荷共同激发的。
已知静电平衡时导体内部场强处处为零,则在z 轴上z =ℎ3处的场强大小为(k为静电力常量)( )A .k 4qℎ2B .k45q 16ℎ2C .k32q 9ℎ2D .k40q 9ℎ2答案:B在z 轴上−ℎ3处,合场强为零,该点场强为q 和导体近端感应电荷产生电场的场强的矢量和;q 在−ℎ3处产生的场强为E 1=kq(43ℎ)2=9kq 16ℎ2由于导体远端离−ℎ3处很远,影响可以忽略不计,故导体在−ℎ3处产生场强近似等于近端在−ℎ3处产生的场强;−ℎ3处合场强为0,故导体在−ℎ3处产生场强大小E 2=E 1=9kq16ℎ2方向向上。
根据对称性,导体近端在ℎ3处产生的场强也为E 2=9kq16ℎ2,方向向下。
电荷q 在ℎ3处产生的场强为E 3=kq(23ℎ)2=9kq4ℎ2方向向下。
故在ℎ3处的合场强为E=E2+E3=9kq16ℎ2+9kq4ℎ2=k45q16ℎ2方向向下。
B正确。
故选B。
2、关于导线中的电场,下列说法正确的是()A.导线内的电场线可以与导线相交B.电路元件所积累的电荷分布是稳定的,故导线处于静电平衡状态C.导线内的电场E是由电源、导线等电路元件所积累的电荷共同形成的D.导线中的电场是静电场的一种答案:CA.导线内的电场线与导线是平行的,A错误;BD.导线内电场不为零,不是静电平衡状态,导线中的电场是恒定电场,并非静电场的一种,BD错误;C.导线中的电场是电源,导线等电路元件所积累的电荷共同形成的,C正确。
故选C。
3、如图所示平面中有A、B两个固定的等量正点电荷,在AB间作辅助连线,并在连线的垂直平分线上建立x 轴,O为AB连线的中点。
《静电场中的导体与电介质》选择题解答与分析
13静电场中的导体与电介质 13.1静电平衡1. 当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高. (D) 导体内任一点与其表面上任一点的电势差等于零. 答案:(D) 参考解答:静电平衡时的导体电荷、场强和电势分布的特点: (1) 电荷仅分布在导体的表面,体内静电荷为零.(2) 导体表面附近的场强方向与导体表面垂直,大小与导体表面面电荷密度成正比;(3) 导体为等势体,表面为等势面.答案(D)正确,而(A)(B)(C)均需考虑电势是一个相对量,在场电荷的电量以及分布确定的同时,还必须选定一个电势零点,在这样的情况下,场中各点电势才能确定。
给出参考解答,进入下一题:2. 设一带电导体表面上某点附近电荷面密度为σ,则紧靠该表面外侧的场强为0/εσ=E . 若将另一带电体移近,(1) 该处场强改变,公式0/εσ=E 仍能用。
(2) 该处场强改变,公式0/εσ=E 不能用。
上述两种表述中正确的是(A) (1) . (B) (2).答案:(A) 参考解答:处于静电平衡的导体,其表面上各处的面电荷密度与相应表面外侧紧邻处的电场强度的大小成正比,即0εσ=E . 将另一带电体移近带电导体,紧表面外侧的场强会发生改变,电荷面密度为σ也会改变,但公式0εσ=E 仍能用。
给出参考解答,进入下一题:3. 无限大均匀带电平面(面电荷密度为σ)两侧场强为)2/(0εσ=E ,而在静电平衡状态下,导体表面(该处表面面电荷密度为σ)附近场强为0/εσ=E ,为什么前者比后者小一半?参考解答:关键是题目中两个式中的σ不是一回事。
下面为了讨论方便,我们把导体表面的面电荷密度改为σ′,其附近的场强则写为./0εσ'=E对于无限大均匀带电平面(面电荷密度为σ),两侧场强为)2/(0εσ=E .这里的 σ 是指带电平面单位面积上所带的电荷。
大学物理第9章静电场习题参考答案
第9章 静电场9-1 两小球处于如题9-1图所示的平衡位置时,每小球受到张力T ,重力mg 以及库仑力F 的作用,则有mg T =θcos 和F T =θsin ,∴θmgtg F =,由于θ很小,故lxmgmg mg x q F 2sin tg 41220=≈==θθπε ∴3/1022⎪⎪⎭⎫⎝⎛mg l q πε9-2 设q 1,q 2在C 点的场强分别为1E 和2E,则有210141AC r q E πε=14299m V 108.103.0108.1109--⋅⨯=⨯⨯⨯=方向沿AC 方向 220241BC r q E πε=14299m V 107.204.0108.1109--⋅⨯=⨯⨯⨯= 方向沿CB 方向∴ C 点的合场强E的大小为:24242221)107.2()108.1(⨯+⨯=+=E E E 14m V 1024.3-⋅⨯=设E 的方向与CB 的夹角为α,则有︒===--7.337.28.11211tg E E tg α 9-3 坐标如题9-3图所示,带电圆弧上取一电荷元l q d d λ=,它在圆心O 处的场强为201d 41d RlE λπε=,方向如题9-3图所示,由于对称性,上、下两带电圆弧中对应电荷元在圆心O 处产生的d E 1和d E 2在x 方向分量相互抵消。
习题9-1图习题9-3图习题9-2图0=∴x E ,圆心O 处场强E 的y 分量为⎪⎪⎭⎫⎝⎛-===⎰⎰2312sin d 412sin d 412026260R R R R lE y πελθθλπεθλπεππ方向沿y 轴正向。
9-4 (1)如题9-4图(a),取与棒端相距d 1的P 点为坐标原点,x 轴向右为正。
设带电细棒电荷元x q d d λ=至P 点的距离x ,它在P 点的场强大小为 20d 41d x xE P λπε=方向沿x 轴正向各电荷元在P 点产生的场强方向相同,于是 ⎰⎰-+-==11)(20d 41d d L d P P xxE E πε 132289110m V 1041.2102811081103109114----⋅⨯=⎪⎭⎫⎝⎛⨯-⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+-=L d d πελ方向沿x 轴方向。
第九章静电场中的导体和介质部分习题分析与解答
Q d d 1 2 U BA 0S d d 1 2 Q d d2 1 U AC 0S d 1 d 2
9-6 在真空中,将半径为R的金属球接地,与球心 O相距为r(r>R)处放置一点电荷q,不计接地导线上 电荷的影响。求金属球表面上的感应电荷总量。 解:金属球为等势体,金属 q’ 球上任一点的电势V等于点电 R q 荷q和金属球表面感应电荷q’ O 在球心处激发的电势之和。 r 而金属球接地,总电势为零。 所以球心处的电势为
解: (1)由于静电平衡时电荷只分布于导体的表面上, 故:球A在外表面带电QA=3.0 10-8 C,球壳B内表面 带电-QA= -3.0 10-8 C,球壳B外表面带电QA + QB = 5.0 10-8 C。 由电势的叠加,知球A和球壳B的电势分别为: Q Q Q 3 A A Q A B V 5 . 6 10 V A 4 R R R 0 1 4 0 2 4 0 3
QA qA VB 40R 3
R R Q 8 1 2 A 解得: q 2 . 12 10 C A R R R R R R 1 2 2 3 1 3
Q q 2 A A 得: V 7 . 92 10 V B 4 R 0 3
即,球A的外表面、球壳B的内、外表面所带的电荷 分别为:2.1210-8 C、 -2.1210-8 C、 -0.910-8 C.
( 1 ) Q r P ( 1 ) E ; n r 0 n 2 4 ( R d ) r ( 1 ) Q 8 2 r P 1 . 6 10 C m ; n 2 4 ( R d ) r
在介质内表面:
( 1 ) Q r P ( 1 ) E ; n r 0 n 2 4 rR ( 1 ) Q 8 2 r P 6 . 4 10 C m ; n 2 4 R r
普通物理学第五版第9章导体和电介质中的静电场章答案
结束 目录
在静电平衡时,内侧的合场强(导体内 部)应为零。 E内 = E1 + EΔ S = E1 EΔ S =0 ´
1E E1 = EΔ S = 2
F =σ Δ S E1 = σ Δ S eFra bibliotek202
结束 目录
9-4 一质量为 m、面积为S 的均质薄金 属盘 ,放置在一无限大导体平板上,平板 水平放置,最初盘和平板都不带电,然后逐 渐使它们带电。问电荷面密度增加到何值 时,金属盘将离开平板。
2
结束 目录
证:在导体表面取面元 Δ S 面元上电荷面密度为: σ
ΔS
σ 面元外侧场强为:E = e 0
E 内 =0 内侧场强: 面元外侧场强可视为面元Δ S在外侧所产 生的场强和导体其余部分电荷所产生的场 强E1之和,即: E = E1 + EΔ S
σ
面元Δ S还将在内侧所产生场强 EΔ S ´ 且
结束 目录
解:(1)内球电势为 1 q1 q1 q1+Q U1 = 4pe0 R1 R2 + R2
1×10-10 1×10-10 12×10-10 = 9.0×109 1×10-2 3×10-2 + 4×10-2 =3.3×102(V)
外球电势
q1 +Q 12×10-10 U2 = = 9.0×109× 4×10-2 4pe0 R3 =2.7×102(V)
q
q
d +q
结束 目录
q E+ =E = 4pe0 r2 E表面 = 2E+ cosq 2q cosq = 2 4pe0 r
E 表面
E+ E q r
q
σ E .dS = E表面 S cos1800 s E表面 Sσ =e 0 e0 E表面 = e0 q 2 cosq σ = 2pe0 r q d =r cosq = cos3q 2pd2
静电场中的导体和电介质答案ppt课件
(A) 0
+
-+
O
d +q
-
+
-
-+
+
q (B)
40d
q (C)
4 0 R
(D)
q
40
1 d
1 R
9
选择题8:三块相互平行的导体板,相互之间的距离
d1 和 d2 比板的线度小得多,外面两板用导线连接起 来。若中间板上带电,并假设其左、右两面上电荷
的内表面带电量为
-q
;外表面带电量
为
-q
。
+q -q
+q -2q
11
填空题2:两个点电荷在真空中相距为r1时相互作 用力等于它们在某一“无限大”各向同性均匀电
介质中相距为r2时的相互作用力,则该电介质的
相对介电常数r =
。
q1q2
4 0 r12
q1q2
4 0 2 r22
r
r12 r22
面密度分别为σ1 和σ2 ,如图所示。则比值σ1/σ2为:
-σ1 σ1 σ2 -σ2
+σ1
+σ2
d1
d2
(A) d1 d2
(C) 1
(B) d2 d1
(D)
d
2 2
d12
1 0
d1
2 0
d2
10
填空题1:如图所示,两同心导体球壳,内球壳带
电量+q,外球壳带电量 -2q . 静电平衡时,外球壳
We
1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: (1)由于静电感应,外球内表面电量为 -q,外表面电量为+q q 外球的电势为: U2 = 4pe0 r2 (2)外球内表面电量仍为-q,外表面电量为零 外球的电势为: ´ U2 = 0
(3)设内球电量为q1,内球电势为零 q1 q r1 U1 = q1 = r q 4pe0 r1 + 4pe0 r2 =0 2 q1 q U外 = 4pe0 r2
q1 q2 U1 = 4pe0 R1 + R2 q2 q1 = R1 4pe0 U1 R2
1
2700 -2 = 5.0×10 9.0×109 = 1.0×10-8(C) 8.0×10-9 8.0×10-2
结束 目录
两球接触后,内球电荷q1全部移至外球 壳,两球为等势体。
q1 + q2 U= = 2.03×103(V) 4pe0R2 ΔU内 = 2.7×103 2.03×103 = 6.7×102(V)
d +q
结束 目录
9-6 半径为r1 、 r2 (r1 < r2 )的两个同心导 体球壳互相绝缘,现把+q 的电荷量给予内 球,求: (1)外球的电荷量及电势; (2)把外球接地后再重新绝缘,外球的 电荷量及电势; (3)然后把内球接地,内球的电荷量及 外球的电势的改变(设内球离地球很远)。
结束 目录
结束 目录
9-11 三平行金属板A、B 、C面积均为 200cm2,A、B 间相距4.0mm, A、C 间 相距2.0mm,B 和C 两板都接地。如果使A 板带正电3.0×10-7C ,求: (1)B 、C 板上感应电荷; (2)A 板的电势。 2mm 4mm C A B
目录
解:设A板带电为q =q1+q2,B、C两板的感 应电荷分别为- q1及- q2 。 EAB dAB = EAC dAC UA UB = UA UC q2 q1 EAC = EAB = e0S 2mm 4mm e0 S q1 EAB dAC 1 C A B = E =d = 2 q2 AC AB q1 q2 q1= 1.0×10-7(C) -q1 -q2 q2= 2.0×10-7(C) qB= -q1= -1.0×10-7(C) qC= -q2= -2.0×10-7(C)
´ EΔ S = EΔ S
结束 目录
在静电平衡时,内侧的合场强(导体内 部)应为零。 E内 = E1 + EΔ S = E1 EΔ S =0 ´
1E E1 = EΔ S = 2
F =σ Δ S E1 = σ Δ S e 20
2
结束 目录
9-4 一质量为 m、面积为S 的均质薄金 属盘 ,放置在一无限大导体平板上,平板 水平放置,最初盘和平板都不带电,然后逐 渐使它们带电。问电荷面密度增加到何值 时,金属盘将离开平板。
结束 目录
解:
F = qE =m a
σ q ma 2e 0 = σq a = 2e m 0
v = 2ad = σ qd 2e 0m
4e 0m d v σ qd . 2e 0m t =a = 2e 0m σ q = σ q
结束 目录
9-2 有一块很大的带电金属板及一小球, 已知小球的质量为m =1.0×10-3g,带有电 荷量q =2.0×10-8C,小球悬挂在一丝线的 下端,平衡时悬线与金属板面间的夹角为 300,如图所示。试计算带电金属板上的电 荷面密度σ 。 +σ
结束 目录
解:(1) U R 2=
q 4.0×10-10 = 9.0×109× 3.0×10-2 4pe0 R2
=120(V) (2)由静电感应和电势叠加原理 q q 1 q Ur = 4pe0 r R1 + R2
1 = 9.0×109×4×10-10× 1×10-2 =300(V)
1 1 -2 + 2×10 3×10-2
(3)因不影响导体壳外表面电荷,所以电势
与(1)相同。
结束 目录
9-8 有直径为16cm及10cm的非常薄的两 个铜制球壳,同心放置时,内球的电势为 2700V,外球带有电荷量为8.0×10-9C,现 把内球和外球接触,两球的电势各变化多少?
结束 目录
解:设内球电势为U1 ,电量为q1,外球 电势为U2 ,电量为q2
A
C1 C3
C2
B结束 目录解:Fra bibliotek(1)
C12 = C1+C2 =10.0+5.0=15(mF)
C12C3 15×5 CAB = =3.75(mF) = C12+C3 15+5
(2) 5 × UAB = 100 U2= U12 = C12+C3 5+15 =25(V) Q2= C2 U2 =5.0×10-6×25 C3
Q5 = Q6 = CbUAB = 2.0×10-6×200
=4.0×10-4(C) Q2 = Q4 = Q13 = CaUAB = 0.86×10-6×200
=1.72×10-4(C)
结束 目录
C1 Q 2.0 ×1.7×10-4 Q1 = C1 + C3 13 = 2.0+4.0
=5.7×10-5(C)
目录
9-12 两个半径相同的金属球,其中一 个是实心的,另一个是空心的,电容是否相 同?如果把地球看作半径为6400km的球形 导体,试计算其电容。
结束 目录
解:两导体的电容相同 地球的电容为:
600×102 C地 = 4pe0 R = 9.0×109
=7.1×10-4(F)
结束 目录
9-13 如图所示,证明A、B间的总电容等 于C2的条件是C2=0.618C1。 A C1
+σ
q
m
结束 目录
解: T cos q =mg
σ σ
q
T
F mg
σ q mg tg q = 2e 0
T sinq = qE = σ q 2e
0
σ=
2e 0 mg tg q
q
=5.0×10-9(C/m2)
结束 目录
9-3 证明在静电平衡时,导体表面某面 元Δ S所受的静电力为:
F = σ Δ S en 2e0
1 2 3 4
结束 目录
解:设两个板四个面的电荷面密度分别为 s1, s2, s3, s4, q2 q1
σ
1
E1 E 4 E 1 E 2 E3 E 3 E2 E4 静电平衡时,导体内部任意一点的场强为零
∴
.
a
σ σ
2
3
.
b
o
σ
4
a点: 2 ε
σ
1
σ
2 ε
2
σ
2 ε
3
σ b点:
o
1
+2 2 o ε ε
结束 目录
解:
σ = σ 2S m g =q E = S σ 2 2 e0 e0 e 2 0mg σ= S σ>
e 2 0mg S
使金属板离开的条件为:
结束 目录
9-5 在一无限大接地导体平板附近有一 点电荷q,它离板面的距离为 d。求导体表 面上各点的感应电荷面密度σ 。
q
d q
结束 目录
解:因为导体是一等势面。可以设想若在 左侧对称位置上放置一带电量为-q的点电荷, 那么由这两个点电荷所形成的电场在板上仍 然为一等势面,即用-q去代替板上的感应电 荷,所产生的场是是一样的。 r
这里是普通物理学第五版
1、本答案是对普通物理学第五版第九章的 答案,本章共9节内容,习题有45题,希
望大家对不准确的地方提出宝贵意见 。 2、答案以ppt的格式,没有ppt的童鞋请自 己下一个,有智能手机的同学可以下一 个软件在手机上看的哦,亲们,赶快行 动吧。
9-1 一块很大的带电金属薄板,其电荷 面密度为σ ,离金属板为d处有一质量为m、 电荷量为-q的点电荷从静止释放,计算电荷 的加速度及落到板上时的速度和时间。 (忽略重力和-q 对金属板上电荷分布的影 响) σ -q m d
Q1=Q13 Q1 = 1.7×10-4
5.7×10-5
=1.1×10-4(C)
2 Q1 1 Q3 W1= 1 -4(J) W3= =8.1×10 =1.6×10-4(J) 2 C1 2 C3 2 2 Q4 1 Q2 W2= -3(J) W4= 1 =7.3×10 =7.3×10-3(J) 2 C2 2 C4 2 1 Q5 W5= W6 = =2.0×10-2(J) 结束 目录 2 C5 2
q
q
d +q
结束 目录
q E+ =E = 4pe0 r2 E表面 = 2E+ cosq 2q cosq = 2 4pe0 r
E 表面
E+ E q r
q
σ E .dS = E表面 S cos1800 s E表面 Sσ =e 0 e0 E表面 = e0 q 2 cosq σ = 2pe0 r q d =r cosq = cos3q 2pd2
结束 目录
解:(1)内球电势为 1 q1 q1 q1+Q U1 = 4pe0 R1 R2 + R2
1×10-10 1×10-10 12×10-10 = 9.0×109 1×10-2 3×10-2 + 4×10-2 =3.3×102(V)
外球电势
q1 +Q 12×10-10 U2 = = 9.0×109× 4×10-2 4pe0 R3 =2.7×102(V)
Δ U外 =0
外球电势不变。
结束 目录
9-9 半径为R1=1.0cm的导体球,带有电荷 q1=1.0×10-10C,球外有一个内、外半径分别 为R2=3.0cm 、 R3=4.0cm的同心导体球壳, 壳上带有电荷Q =11×10-10C,试计算: (1)两球的电势U1和U2; (2)用导线把球和壳联接在一起后U1和 V2分别是多少? (3)若外球接地,U1和U2为多少?