红外吸收光谱(IR)的基本原理及应用
红外光谱的概念原理和应用
![红外光谱的概念原理和应用](https://img.taocdn.com/s3/m/3741bfd5dc88d0d233d4b14e852458fb770b38bd.png)
红外光谱的概念原理和应用概念介绍红外光谱是一种用来研究物质结构和性质的重要手段。
它是利用物质分子固有振动、转动以及与辐射场相互作用而产生的红外吸收或散射现象进行分析的方法。
原理介绍红外光谱的原理基于物质分子的振动和转动。
当物质受到红外辐射时,物质分子将吸收部分红外光子的能量,使得分子内部的振动和转动状态发生变化。
这些能量变化表现为红外光谱上的吸收带或峰。
每种物质的红外光谱都是独特的,可以用来鉴定物质的成分和结构。
应用领域红外光谱在许多领域中得到广泛应用,包括:1.化学分析:红外光谱可以用于物质的定性和定量分析,如药物、化妆品、食品和环境样品的分析。
2.材料科学:红外光谱可以用于研究材料的组成和结构,如聚合物材料、无机材料和纳米材料等。
3.制药工业:红外光谱可以用于药物的质量控制和成分分析,以及药物的药代动力学研究。
4.环境监测:红外光谱可以用于分析环境样品中的污染物,如大气中的有机物和水中的有机溶解物。
5.生命科学:红外光谱可以用于生物大分子的结构分析,如蛋白质、核酸和多糖的红外光谱研究。
6.石油化工:红外光谱可以用于石油和石油化工产品的分析和质量控制。
红外光谱仪的类型红外光谱仪是进行红外光谱分析的关键仪器,常见的红外光谱仪包括:1.傅里叶变换红外光谱仪(FTIR):这种光谱仪利用傅里叶变换的原理将红外光谱信号转换为可见光信号,具有高分辨率和快速扫描的优点。
2.红外光谱仪(IR):这种光谱仪利用红外辐射源和探测器对红外光谱信号进行检测,适用于常规的红外光谱分析。
3.偏振红外光谱仪:这种光谱仪利用偏振特性对红外光谱进行分析,可以提供更多样化的红外光谱信息。
红外光谱的优势和限制红外光谱具有以下优势:•非破坏性:红外光谱分析不需要对样品进行破坏性处理,可以保持样品的完整性。
•快速准确:红外光谱仪可以快速获取样品的光谱信息,有助于提高分析效率和准确性。
•高灵敏度:红外光谱可以检测到物质在低浓度下的存在,具有高灵敏度。
红外吸收光谱(IR)的基本原理及应用
![红外吸收光谱(IR)的基本原理及应用](https://img.taocdn.com/s3/m/feddda6276232f60ddccda38376baf1ffc4fe3b9.png)
当红外光照射物质份子时,其具有的能量引起振动能级和转动能级的跃迁,不同的份子和基团具有不同的振动,根据份子的特征吸收可以鉴定化合物和份子的结构.利用红外光谱对物质份子进行的分析和鉴定.将一束不同波长的红外射线照射到物质的份子上,某些特定波长的红外射线被吸收,形成这一份子的红外吸收光谱.每种份子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对份子进行结构分析和鉴定.红外吸收光谱是由份子不停地作振动和转动运动而产生的,份子振动是指分子中各原子在平衡位置附近作相对运动,多原子份子可组成多种振动图形.当份子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动〔例如伸缩振动和变角振动〕.份子振动的能量与红外射线的光量子能量正好对应, 因此当份子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发份子而振动而产生红外吸收光谱.份子的振动和转动的能量不是连续而是量子化的.但由于在份子的振动跃迁过程中也往往伴有转动跃迁,使振动光谱呈带状.所以份子的红外光谱属带状光谱. 份子越大,红外谱带也越多.用红外光谱鉴定化合物,其优点是简便、迅速和可靠;同时样品用量少、可回收;对样品也无特殊要求,无论气体、固体和液体均可以进行检测.有关化合物的鉴定包括下列几种:1、鉴别化合物的异同某个化合物的红外光谱图同熔点、沸点、折射率和比旋度等物理常数一样是该化合物的一种特征.特别是有机化合物的红外光谱吸收峰多达20 个以上,如同人的指纹一样彼此各不相同, 因此用它鉴别化合物的异同,可靠性比其它物理手段强.如果二个样品在相同的条件下测得的光谱彻底一致,就可以确认它们是同一化合物,例外较少.但当二个图有差别时,情况较复杂,须考虑下列因素,方能作出正确的结论:A.同质异晶体:此为化学结构彻底相同而晶形不同的化合物. 由于份子在不同晶体的晶格中罗列方式不一样, 因此对光的散射和折射不相同,导致同质异晶体的固相红外光谱有差异,而在溶液中测的液相光谱应是相同的.B、同系物:同系物仅是构成链的单元数不同, 因此它们的份子无序罗列的液相光谱往往相同, 固相光谱则因晶体内晶胞不同而有弱小的差别.所以在鉴定大分子的聚合物、多糖和长脂肪链的同系物时,最好同时对照固相和液相光谱的异同, 方能作出正确的判断.将二种同系物配成相同浓度的溶液,测量某些基团的吸收峰强度,如正脂肪酸同系物,可以根据亚甲基<2930>和甲基<2960>二个蜂的强度比进行识别.C、来源和精制方法:应注意到有些结构相同的化合物会因来源和精制方法的不同而使固相光谱有差异.D、溶剂和浓度:液相光谱鉴别化合物的异同须采用同一种溶剂和相同的浓度, 因为溶剂本身有一些吸收峰能把试样的弱吸收掩盖;此外氢键等溶剂效应在不同浓度下作用强弱不等,也能够引起光谱的变化.E、吸收峰的相对强度:对照光谱的异同不仅要注意每一个吸收峰的位置是否一致,而且要注意各个蜂彼此之间的相对强度是否符合,否则就可能是结构上的微小差别引起的.2、鉴别光学异构体:旋光性化合物的左、右对映体的固相红外光谱是相同的.对映体和外消旋体由于晶格中份子的罗列不同,使它们的固体光谱彼此不同, 而溶液或者熔融的光谱就彻底相同.非对映异构体因为是二种不同的化合物,所以无论是固相,还是液相光谱均不相同,特别在指纹区有各自的特征峰.但是大份子的差向异构体如高三尖杉酯碱与表高三尖衫酯碱, 由于彼此晶格不同, 固相光谱的差别较大,而液相光谱差别很小,这是应该注意的问题.3、区分几何<顺、反>异构体:对称反式异构体中的双键处于份子对称中心,在分子振动中链的偶极矩变化极小, 因此在光谱中不浮现双键吸收峰.顺式异构体无对称中心,偶极矩有改变,故有明显的双键特征峰, 以此可区分顺、反异构体.不对称的份子, 由于反式异构体的对称性比顺式异构体高, 因此双键的特征峰前者弱,后者强.4、区分构象异构体:同一种化学键在不同的构象异构体中的振动频率是不一样的. 以构象固定的六元环上的C—Y 键为例,平展的C—Y 键伸缩振动频率高于直立键,原因在于直立的C—Y 键垂直于环的平面,其伸缩振动作用于碳上的复位力小;Y 若在平展键,C—Y 的伸缩振动使环扩X,复位力大,所以振动频率高.研究构象异构体要注意相的问题. 固态结晶物质通常惟独单一的构象,而液态样品大多是多种构象异构体的混合物, 因此二种相的光谱不尽相同.如果固相和液相光谱相同,则表明该化合物惟独一种构象.环状邻位双羟基化合物可以利用羟基之间的氢键推定构相.有份子内氢键的羟基特征峰波数低于游离羟基的波数.氢键越强,二者波数差越大.区分互变异构体:有机化学中时常碰到互变异构现象,如β-双酮有酮式和烯醇式二种,红外光谱极容易区分它们.在四氯化碳溶液中酮式在~ 1730cm-1 有二个峰,烯醇式惟独一个氢键鳌合的羰基,动频率降至1650 cm-1, 比酮式低80~100 cm-1 . 同时在1640~1600 cm-1 区有共轭双键特征峰,强度与羰基近似.根据主要的特征峰可以确定化合物中所含官能团, 以此鉴别化合物的类型.如某化合物的图谱中只显示饱和C-H 特征峰,就是烷烃化合物;如有=C-H 和C =C 或者C≡C 等不饱和键的峰,就属于烯类或者炔类;其它宫能团如H—X,X≡Y, >C=O 和芳环等也较易认定,从而可以确定化合物为醇、胺、脂或者羰基等.同一种官能团如果处在不同的化合物中,就会因化学环境不相同而影响到它的吸收峰位置,为推定化合物的份子结构提供十分重要的信息. 以羰基化合物为例, 有酯、醛和酸酐等,利用化学性质有的容易鉴别,有的却很艰难,而红外光谱就比较方便和可靠.红外光谱用于定性方面的另一长处是5000~1250 cm-1 区内官能团特征峰与紫外光谱一样有加和性,可用它鉴定复杂结构份子或者二聚体中含官能团的各个单体.红外分光光度计同其它分光光度计一样,可按照朗伯—比尔定律进行定量分析.式中I.为入射光强度;I 为透过光强度;c 为溶液浓度, 以克/升表示;l 是吸收池厚度, 以厘米表示;此时k 为吸光系数, 即单位长度和单位浓度溶液中溶质的吸收度.如果浓度是以摩尔数/升表示,则k 应为s<摩尔吸光系数>. 由于红外分光光度计狭缝远比普通光电比色计的宽,通过的光波长X 围大,使某一定波数处的最高吸收峰变矮变宽,影响直观的强度,加之吸收池、溶剂和制备技术不易标准化等各方面的因素,使其精密度较紫外光谱低.基于混合物的光谱是每一个纯成份的加和, 因此可以利用光谱中的特定峰测量混合物中诸成份的百分含量.有机化合物中官能团的力常数有相当大的独立性,故每一个纯成份可选一、二个特征峰,测其不同浓度下的吸收强度,得到浓度对吸收强度的工作曲钱.用同一吸收池装混合物,分别在其所含的每一个纯成份的特征峰处测定吸收强度,从相应的工作曲线上求取各个纯成份的含量.如杂质在同一处有吸收就会干扰含量,克服这个缺点的方法是对每一个成份同时测定二个以上特征峰的强度.并在选择各成份的特征峰时尽可能是它的强吸收峰,而其他成份在其附近吸收很弱或者根本无吸收.具体的测试方法这里不作详述.通常纯样品的光谱吸收峰较尖锐,彼此分辨清晰,如果含5%以上杂质, 由于多种份子各自的吸收峰互相干扰,常降低每一个峰的尖锐度,有的线条会含糊不清.加之有杂质本身的吸收,使不纯物的光谱吸收峰数目比纯品多,故与标淮图谱对照即可判断纯度.在化学反应过程中可直接用反应液或者粗品进行检测.根据原料和产物特征峰的消长情况,对反应进程、反应速度和反应时间与收率的关系等问题能与时作出判断.1. 物质对光的选择性吸收份子的紫外-可见吸收光谱是基于份子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法.当某种物质受到光的照射时,物质份子就会与光发生碰撞,其结果是光子的能量传递到了份子上.这样,处于稳定状态的基态份子就会跃迁到不稳定的高能态, 即激发态:m 〔基态〕+hv------m* 〔激发态〕这就是对光的吸收作用.由于物质的能量是不连续的, 即能量上一量子化的.惟独当入射光的能量〔hv〕与物质份子的激发态和基态的能量差相等时才干发生吸收△e=e2-e1= hv=hc/λ而不同的物质份子因其结构的不同而具有不同的量子化能级, 即△e 不同,故对光的吸收也不同.吸收光谱曲线〔光吸收曲线〕ppp7:它反映了物质对不同波长光的吸收情况.紫外-可见吸收光谱定性分析的依据:光吸收程度最大处的波长叫做最大吸收波长,用λmax 表示, 同一种吸光物质,浓度不同时,吸收曲线的形状不同, λmax 不变,只是相应的吸光度大小不同,这是定性分析的依据.紫外-可见吸收光谱定量分析的依据:朗伯- 比尔定律.分光光度计,紫外可见分光光度计,721 分光光度计,原子吸收分光光度计,荧光分光光度计,uv 分光光度计,kunke 分光光度计,分光光度计的原理,分光光度计使用方法,分光光度计品牌,分光光度计价格2. 朗伯- 比尔定律.紫外-可见分光光度计的定量分析的依据是朗伯- 比尔定律. 当单色光通过液层厚度一定的含吸光物质的溶液后,溶液的吸光度a 与溶液的浓度c 成正比,此公式的物理意义是,当一束平行的单色光通过均匀的含有吸光物质的溶液后,溶液的吸光度与吸光物质浓度与吸收层厚度成正比.应用:外可见吸收光谱应用广泛,不仅可进行定量分析,还可利用吸收峰的特性进行定性分析和简单的结构分析,测定一些平衡常数、配合物配位比等;也可用于无机化合物和有机化合物的分析,对于常量、微量、多组分都可测定.物质的紫外吸收光谱基本上是其份子中生色团与助色团的特征,而不是整个份子的特征.如果物质组成的变化不影响生色团和助色团,就不会显著地影响其吸收光谱,如甲苯和乙苯具有相同的紫外吸收光谱.此外,外界因素如溶剂的改变也会影响吸收光谱,在极性溶剂中某些化合物吸收光谱的精细结构会消失,成为一个宽带.所以, 只根据紫外光谱是不能彻底确定物质的份子结构,还必须与红外吸收光谱、核磁共振波谱、质谱以与其他化学、物理方法共同配合才干得出可靠的结论.1、化合物的鉴定利用紫外光谱可以推导有机化合物的份子骨架中是否含有共轭结构体系,如C=C-C=C、C=C-C=O、苯环等.利用紫外光谱鉴定有机化合物远不如利用红外光谱有效, 因为不少化合物在紫外没有吸收或者惟独微弱的吸收,并且紫外光谱普通比较简单,特征性不强.利用紫外光谱可以用来检验一些具有大的共轭体系或者发色官能团的化合物,可以作为其他鉴定方法的补充.<1>如果一个化合物在紫外区是透明的,则说明份子中不存在共轭体系,不含有醛基、酮基或者溴和碘.可能是脂肪族碳氢化合物、胺、腈、醇等不含双键或者环状共轭体系的化合物.<2>如果在210~250nm 有强吸收,表示有K 吸收带,则可能含有两个双键的共轭体系,如共轭二烯或者α, β-不饱和酮等. 同样在260,300,330nm 处有高强度K 吸收带,在表示有三个、四个和五个共轭体系存在.<3>如果在260~300nm 有中强吸收< ε=200~1 000>,则表示有B 带吸收,体系中可能有苯环存在.如果苯环上有共轭的生色基团存在时,则ε可以大于10 000.<4>如果在250~300nm 有弱吸收带<R 吸收带>,则可能含有简单的非共轭并含有n 电子的生色基团,如羰基等.2、纯度检查如果有机化合物在紫外可见光区没有明显的吸收峰,而杂质在紫外区有较强的吸收,则可利用紫外光谱检验化合物的纯度.3、异构体的确定对于异构体的确定,可以通过经验规则计算出λmax 值,与实测值比较, 即可证实化合物是哪种异构体.如: 乙酰乙酸乙酯的酮-烯醇式互变异构4、位阻作用的测定由于位阻作用会影响共轭体系的共平面性质, 当组成共轭体系的生色基团近似处于同一平面,两个生色基团具有较大的共振作用时, λmax 不改变, εmax 略为降低,空间位阻作用较小;当两个生色基团具有部份共振作用,两共振体系部份偏离共平面时, λmax 和εmax 略有降低;当连接两生色基团的单键或者双键被扭曲得很厉害, 以致两生色基团基本未共轭,或者具有极小共振作用或者无共振作用,剧烈影响其UV 光谱特征时,情况较为复杂化.在多数情况下,该化合物的紫外光谱特征近似等于它所含孤立生色基团光谱的"加合".5、氢键强度的测定溶剂份子与溶质份子缔合生成氢键时,对溶质份子的UV 光谱有较大的影响. 对于羰基化合物,根据在极性溶剂和非极性溶剂中R 带的差别,可以近似测定氢键的强度.6、定量分析朗伯- 比尔定律是紫外-可见吸收光谱法进行定量分析的理论基础,它的数学表达式为: A = ε b c。
红外光谱使用说明
![红外光谱使用说明](https://img.taocdn.com/s3/m/67d796155f0e7cd1842536cc.png)
一.红外光谱基本原理红外光谱(Infrared Spectrometry,IR)又称为振动转动光谱,是一种分子吸收光谱。
当分子受到红外光的辐射,产生振动能级(同时伴随转动能级)的跃迁,在振动(转动)时伴有偶极矩改变者就吸收红外光子,形成红外吸收光谱。
用红外光谱法可进行物质的定性和定量分析(以定性分析为主),从分子的特征吸收可以鉴定化合物的分子结构。
傅里叶变换红外光谱仪(简称FTIR)和其它类型红外光谱仪一样,都是用来获得物质的红外吸收光谱,但测定原理有所不同。
在色散型红外光谱仪中,光源发出的光先照射试样,而后再经分光器(光栅或棱镜)分成单色光,由检测器检测后获得吸收光谱。
但在傅里叶变换红外光谱仪中,首先是把光源发出的光经迈克尔逊干涉仪变成干涉光,再让干涉光照射样品,经检测器获得干涉图,由计算机把干涉图进行傅里叶变换而得到吸收光谱。
红外光谱根据不同的波数范围分为近红外区(13330—4000 cm-1)、中红外区(4000-650 cm-1)和远红外区(650-10 cm-1)。
VECTOR22 VECTOR22 FTIR光谱仪提供中红外区的分测试。
二.试样的制备1. 对试样的要求(1)试样应是单一组分的纯物质(2)试样中不应含有游离水(3)试样的浓度或测试厚度应合适2.制样方法(1) 气态试样使用气体池,先将池内空气抽走,然后吸入待测气体试样。
(2) 液体试样常用的方法有液膜法和液体池法。
液膜法:沸点较高的试样,可直接滴在两片KBr盐片之间形成液膜进行测试。
取两片KBr盐片,用丙酮棉花清洗其表面并晾干。
在一盐片上滴1滴试样,另一盐片压于其上,装入到可拆式液体样品测试架中进行测定。
扫描完毕,取出盐片,用丙酮棉花清洁干净后,放回保干器内保存。
粘度大的试样可直接涂在一片盐片上测定。
也可以用KBr粉末压制成锭片来替代盐片。
注意盐片易吸水,取盐片时需戴上指套。
盐片装入液体样品测试架后,螺丝不宜拧得过紧,以免压碎盐片。
红外光谱的原理及应用综述
![红外光谱的原理及应用综述](https://img.taocdn.com/s3/m/de9a622950e2524de4187e7d.png)
红外光谱分析基本原理及应用摘要红外光谱分析技术具有很快速,非破坏性,低成本及同时测定多种成分等特点,在很多领域得到了广泛应用。
本文介绍了红外光谱技术的检测原理,红外光谱仪的构造,指出了其检测的优点与不足。
综述了红外光谱法的发展、应用以及对红外光谱研究前景的展望.关键词: 红外光谱原理构造发展1。
引言红外光谱法(infrared spectrometry,IR)是根据物质对红外辐射的选择性吸收特性而建立起来的一种光谱分析方法.分子吸收红外辐射后发生振动和转动能级跃迁。
所以,红外光谱法实质是根据分子内部振动原子间的相对振动和分子转动等信息来鉴别化合物和确定物质分子结构的分析方法.2。
红外光谱分析的基本原理2.1 红外光谱产生的条件物质分子吸收红外辐射发生振动和转动能级跃迁,必须满足以下两个条件:一是辐射光子的能量与发生转动和转动能级跃迁所需的能量相等;二是分子转动必须伴随有偶极距的变化,辐射与物质间必须有相互作用。
2.2 红外吸收光谱的表示方法红外吸收光谱一般用T_σ曲线或T_λ曲线来表示,λ与σ的关系式为:σ(cm-1)=1/λ(cm)=10^4/λ(μm)2.3 分子的振动与红外吸收2。
3.1 双原子分子的振动若把双原子分子(A—B)的两个原子看成质量分别为M1,M2的两个小球,中间的化学键看做不计质量的弹簧,那么原子在平衡位置附近的伸缩振动可以近似地看成沿键轴方向的简谐振动.量子力学证明,分子振动的总能量为:E=(u+1/2)hv当分子发生△v=1 的振动能级跃迁时(由基态跃迁到第一激发态)根据胡克(Hooke)定律它所吸收的红外光波数σ为:σ=(1/2пc)√(k/μ)其中:c—光速,3×10^8cm/s;k—化学键力常数N/cm;μ—两个原子的折合质量,g,μ=(m1。
m2)/(m1+m2)显然,振动频率σ与化学键力常数k成正比,与两个原子的折合质量成反比。
不同化合物k和μ不同,所以不同化合物有自己的特征红外光谱。
简述红外光谱的原理及应用
![简述红外光谱的原理及应用](https://img.taocdn.com/s3/m/5fbd60c0d5d8d15abe23482fb4daa58da1111c51.png)
简述红外光谱的原理及应用1. 红外光谱的原理红外光谱(Infrared Spectroscopy,简称IR)是一种通过测量样品对红外辐射吸收和散射的特性来研究样品的化学组成和结构的分析技术。
红外光谱利用物质在红外辐射下的能量吸收特性来确定样品中的化学键类型和它们之间的化学结构。
其原理基于分子振动和旋转产生的能级跃迁。
红外辐射的频率范围是10^12 Hz至10^14 Hz(波长范围:0.78 μm至1000 μm)。
分子中的化学键振动导致了特定频率的红外辐射吸收,因此红外光谱可以提供关于样品中化学键类型和它们之间的距离、角度和对称性的信息。
2. 红外光谱的应用2.1 化学分析红外光谱广泛应用于化学分析领域。
利用红外光谱仪器可以进行定性分析和定量分析,鉴定和测定样品中的化学物质。
a. 定性分析红外光谱可以用于鉴定和确认化学物质的组成和结构。
不同化学键的振动模式具有特征性,可以通过比对样品的红外光谱图与已知物质的库谱进行匹配来确定样品中的化合物。
b. 定量分析红外光谱还可用于测定样品中特定成分的含量。
通过校正曲线和峰面积的积分计算,可以获得样品中目标成分的浓度。
2.2 药物研发红外光谱在药物研发领域中扮演着重要角色。
药物研发包括药物合成、纯化、鉴定等多个环节,红外光谱可以用于各个环节的分析。
a. 药物合成红外光谱可用于合成药物的中间体和最终产物的鉴定。
通过与已知化合物的红外光谱进行比对,可以确认目标产物的合成成功。
b. 药物纯化红外光谱还可用于药物纯化过程的监控和控制。
通过对纯化后的样品进行红外光谱分析,可以确保药物的纯度达到要求。
c. 药物鉴定红外光谱可以用于鉴定药物的纯度和结构。
药物的红外光谱图与已知的红外光谱库进行对比,可以判断药物是否为目标药物,以及杂质的种类和含量。
2.3 食品安全红外光谱在食品安全领域有着广泛应用。
它可以用于鉴定和检测食品中的添加剂、污染物、营养成分等。
a. 食品添加剂检测红外光谱可以快速、非破坏性地鉴定食品中的添加剂,如防腐剂、甜味剂等。
红外吸收光谱基本原理及应用
![红外吸收光谱基本原理及应用](https://img.taocdn.com/s3/m/eadf4bba951ea76e58fafab069dc5022aaea4639.png)
红外吸收光谱基本原理及应用
红外吸收光谱(IR)是一种分析技术,利用物质的分子振动和转动产生
的特定吸收窗口,实现对物质结构、组成和化学键的定性和定量分析。
红
外光谱技术不需要对物质进行分离和纯化,具有非破坏性、灵敏度高、分
析速度快等优点,被广泛应用于化学、生物、环境、医药等领域。
红外光谱的应用非常广泛。
下面将介绍几个主要的应用领域:
1.有机化学领域:红外光谱可以用于有机化学品的鉴定和结构分析。
通过红外光谱可以确定化合物中的官能团,从而判断其化学性质和结构。
红外光谱还可以用于有机合成的反应监测和催化剂的评价。
2.无机化学领域:红外光谱在无机化学中的应用主要是对无机物质的
结构分析和表征。
通过测定无机物质的红外吸收光谱,可以确定其化学键
类型和强度,进而了解其分子结构和化学性质。
3.生物医学领域:红外光谱在生物医学领域的应用非常广泛。
红外光
谱可以用于分析生物体内的有机物和无机物,研究生物分子的结构和组成。
另外,红外光谱还可以用于红外光热治疗、红外光谱诊断等。
4.环境监测领域:红外光谱在环境监测中可以用于检测空气中的污染物、土壤和水中的污染物等。
利用红外光谱可以快速分析环境中的有机物
和无机物,为环境保护和治理提供依据。
总之,红外吸收光谱是一种重要的分析技术,具有广泛的应用。
它在
化学、生物、医药和环境等领域中发挥着重要的作用。
随着科学技术的不
断发展,红外吸收光谱将会在更多领域得到应用和发展。
第2章 红外光谱
![第2章 红外光谱](https://img.taocdn.com/s3/m/90ae993be2bd960590c6775c.png)
共轭效应使 电子离域,双键性 ,K
(3)中介效应(使振动频率移向低波数区) 含有孤对电子的 O、N 和 S 等原子,能与 相邻的不饱和基团共轭(p-π共轭),其结果 使不饱和基团的振动频率降低,而自身连接 的化学键振动频率升高。
羰基的双键性
K
3、空间效应
(1)环的张力:环减小→环张力增大 →环内各键 被削弱→伸缩振动频率降低→环外的键却增强→ 伸缩振动频率升高。 环酮:环张力增大, 羰基v 增大。 环烯:环张力增大, 双键v 减小。 (2)空间障碍:共轭体系的共平面性被偏离或被 破坏时, v 增大。
O-H(缔合)
2843 cm-1
~ (游离) 3615~3605 cm-1 O-H
2.3 红外光谱仪及样品制备技术
一、红外光谱仪
红外光谱按其发展历程分为三代: 第一代是以棱镜作为单色器 第二代是以光栅作为单色器 第三代干涉型分光光度计
1、色散型红外光谱仪
(1)仪器的工作原理
仪器组成:光源,吸收池,单色器、 检测器、放大器和记录器。 仪器的工作原理:依据“光学零位平衡”
分子振动频率有以下规律:
(1)K:化学键的力常数是衡量价键性质的一个重要 参数(质量相近的基团)。 因 Kc≡c>Kc=c>Kc-c 则红外频率νc≡c>ν c=c> νc-c
(2)与氢原子相连的化学键的折合质量都小,红外吸
收在高波数区(X—H),C-H伸缩振动吸收位于
3000cm-1,O-H伸缩振动吸收位于3000-3600 cm-1,NH伸缩振动吸收位于3300 cm-1。
化学键弯曲振动的类型
弯曲振动
面内弯曲振动 剪式振动 面内摇摆振动 面外弯曲振动 面外摇摆振动 面外扭曲振动
红外光谱(IR)的原理及其谱图的分析
![红外光谱(IR)的原理及其谱图的分析](https://img.taocdn.com/s3/m/ede3b49fb84ae45c3a358ce1.png)
υC=O 1715 cm-1
υC=O 1780 cm-1 υC=O 1650 cm-1
吸电子效应:高波数移动精;选课推件 电子效应:低波数移动
2.峰强 峰的强度取决于分子振动时偶极矩的变化。 偶极矩的变化越小,谱带强度越弱。
• 极性大的基团,吸收强度大。 C=O 比 C=C 强, CN 比 C C 强 使基团极性降低的诱导效应,吸收强度减小, 使基团极性增大的诱导效应,吸收强度增加。
2、电子效应
a. 诱导效应
b. 诱导效应使基团电荷分布发生变化,从而改变
了键的力常数,使振动频率发生变化.
O 例: R C X
X= R/
H
1715 1730
OR/ 1740
Cl
F
1800 1850
精选课件
O
RCX
X= R/
H
1715 1730
OR/ 1740
Cl
F
1800 1850
• 推电子基,C=O电荷中心向O移动,C=O极性增强, 双键性降低,低频移动; • 吸电子基, C=O电荷中心向几何中心靠近, C=O极 性降低,双键性增强,高频移动。
精选课件
H2O有3种振动形式,相应的呈现3个吸收谱带。
精选课件
结论:
产生红外光谱的必要条件是:
1. 红外辐射光的频率与分子振动的频率相等,才 能发生振动能级跃迁,产生吸收吸收光谱。
2. 只有引起分子偶极矩发生变化的振动才能产生 红外吸收光谱。
精选课件
1.6 IR光谱得到的结构信息
1 峰位:吸收峰的位置(吸收频率) 2 峰强: 吸收峰的强度
化学 键
C―C
C=C
C≡C
键长 (nm)
仪器分析 第4章 红外吸收光谱法
![仪器分析 第4章 红外吸收光谱法](https://img.taocdn.com/s3/m/cba2ae67561252d380eb6e5d.png)
4.2 基本原理
4.2.3 多原子分子的振动类型(P56)
伸缩振动 (υ):键长发生变化 1.简正振动基本形式 变形振动 (δ):键角发生变化
伸缩振动(υ)
对称伸缩振动(υs)
不对称伸缩振动(υas)
变形振动(δ)
面内变形振动(β)
面外变形振动(γ)
亚甲基的各种振动形式
2. 基本振动的理论数(分子振动自由度)
4.4 试样的处理和制备
4.4 试样的处理和制备
4.4.1 红外光谱法对试样的要求 (1)单一组分纯物质,纯度 > 98%; (2)样品中不含游离水; (3)要选择合适的浓度和测试厚度, 使大多数吸收峰透射比处于10%~80%。
4.4 试样的处理和制备
4.4.2 制样方法 1.气体样品的制备 2.液体和溶液样品的制备 3.固体样品的制备
分子振动自由度:多原子分子的基本振动
数目,也就是基频吸收峰的数目。
基频吸收峰:分子吸收一定频率的红外光后,
其振动能级由基态跃迁到第一
激发态时所产生的吸收峰。
2. 基本振动的理论数
线型分子振动自由度 = 3N – 5(如CO2)
非线型分子振动自由度 = 3N – 6(如H2O)
图5.12 CO2分子的简正振 动形式
来指导谱图解析。
基本概念
基团频率区: 在4000~1300cm-1 范围内的吸收峰,有一 共同特点:既每一吸收峰都和一定的官能 团相对应,因此称为基团频率区。
在基团频率区,原则上每个吸收峰都可以找到归属。
基本概念
指纹区: 在1300~400cm-1范围内,虽然有些吸收也对应 着某些官能团,但大量吸收峰仅显示了化合物 的红外特征,犹如人的指纹,故称为指纹区。
红外光谱分析
![红外光谱分析](https://img.taocdn.com/s3/m/275f566b5f0e7cd1842536cf.png)
红外光谱分析一.基本原理红外吸收光谱(Infrared Absorption Spectrum,IR)是利用物质的分子吸收了红外辐射后,并由其振动或转动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,得到分子振动能级和转动能级变化产生的振动-转动光谱,因为出现在红外区,所以称之为红外光谱。
利用红外光谱进行定性、定量分析及测定分子结构的方法称为红外吸收光谱法。
当分子受到红外光的辐射,产生振动能级的跃迁,在振动时伴有偶极矩改变者就吸收红外光子,形成红外吸收光谱。
若用单色的可见光照射(今采用激光,能量介于紫外光和红外光之间),入射光被样品散射,在入射光垂直面方向测到的散射光,构成拉曼光谱。
通常将红外光谱区按波长分为3个区域,即近红外区、中红外区、远红外区,如下表所示:1. 分子振动类型有机分子中诸原子通过各类化学键联结为一个整体,当它受到光的辐射时,发生转动和振动能级的跃迁。
简单的双原子化合物如A-B 的振动方式是A 和B 两个原子沿着键的方向作节奏性伸和缩的运动,可以形象地比作连着A、B 两个球的弹簧的谐振运动。
为此A-B 键伸缩振动的基频可用胡克定律推导的公式计算其近似值式中,f 是键的振动基频,单位为cm-1;c 是光速;k 是化学键力常数,相当于胡克弹簧常数,是各种化学键的属性,代表键伸缩和张合的难易程度,与原子质量无关;m 是原子的折合质量,即m=m1·m2/(m1+m2)。
上式表明键的振动基频与力常数成正比,力常数越大,振动的频率越高。
振动的基频与原子质量成反比,原子质量越轻,连接的键振动频率越高。
上述是双原子化合物。
多原子组成的非线型分子的振动方式就更多。
含有n 个原子就得用3n 个坐标描述分子的自由度,其中3 个为转动、3 个为平动、剩下3n-6 个为振动自由度。
每一种振动按理在红外光谱中都应该有其吸收峰,但是事实上只有在分子振动时有偶极矩的改变才会产生明显的吸收峰。
红外吸收光谱ir的基本原理及应用
![红外吸收光谱ir的基本原理及应用](https://img.taocdn.com/s3/m/07183529a88271fe910ef12d2af90242a895ab05.png)
红外吸收光谱(IR)的基本原理及应用1. 红外吸收光谱(IR)的概述•红外光谱是指电磁波谱中波长范围在红光与微波之间的区域,其波长范围大约为0.78~1000微米。
•红外光谱可分为近红外(NIR)波段(0.782.5微米)、中红外(MIR)波段(2.525微米)和远红外(FIR)波段(25~1000微米)。
•红外吸收光谱是利用物质分子对入射红外光的吸收来研究化学成分和分子结构的一种非常重要的分析技术。
2. 红外吸收光谱的基本原理•红外光谱采用红外光通过样品后的吸收强度与波长的关系来表征样品的化学组成和结构。
•红外光与样品中的化学键振动、分子转动等相互作用,导致了特定波长的红外光被吸收。
•红外光谱图是以波数(单位:cm^(-1))或波长(单位:微米)为横坐标,红外光吸收强度为纵坐标绘制的曲线图。
3. 红外光谱仪的工作原理•红外光谱仪由光源、样品室、光谱仪和检测器等组成。
•光源产生红外光,通过样品室后,红外光与样品相互作用并发生吸收。
•吸收的红外光经过光谱仪的分光装置分解成不同波长的光,然后通过检测器进行信号转换和放大,最后生成红外光谱图。
4. 红外吸收光谱的应用4.1 分析化学领域•红外光谱是分析化学中常用的手段之一,可用于定性分析、定量分析和结构鉴定等。
•红外光谱可用于分析无机物、有机物、大分子化合物、生物分子等不同类型的样品。
4.2 药物研究与制药工业•红外光谱可用于药物的研究与开发,包括药物的成分分析、相互作用研究和质量控制等方面。
•在制药工业中,红外光谱被广泛应用于药物的质量检验、药物的鉴别、药物的含量测定等。
4.3 环境与食品安全监测•红外光谱可用于环境监测和食品安全监测,通过检测样品中的化学成分和有害物质来评估环境和食品的安全性。
•红外光谱还可用于检测食品中的添加剂、农药残留和毒素等。
4.4 材料科学和工业控制•红外光谱在材料科学和工业控制中有着广泛的应用,可用于材料的组分分析、结构表征和物性研究等。
简述红外光谱的原理和应用
![简述红外光谱的原理和应用](https://img.taocdn.com/s3/m/6ebb94725b8102d276a20029bd64783e08127d4f.png)
简述红外光谱的原理和应用1. 红外光谱的原理红外光谱(Infrared Spectroscopy),简称IR光谱,是一种通过分析物质在红外区域的吸收、散射、干涉和光敏特性,来研究物质的结构和特性的技术。
其原理基于红外辐射能与物质发生相互作用时,分子中特定的化学键或功能基团会吸收一定频率的红外辐射,产生特征波长和强度的吸收峰。
红外光谱主要包括近红外光谱(NIR)和中红外光谱(MIR)。
近红外光谱范围通常为800-2500纳米,而中红外光谱范围通常为2.5-20微米。
红外光谱被广泛应用于化学、材料科学、制药、环境监测、食品安全等领域。
2. 红外光谱的应用2.1 有机物分析红外光谱在有机物分析中有着广泛的应用。
有机化合物中的化学键和功能基团在红外光谱中表现出一定的吸收特征。
通过红外光谱的分析,可以确定有机物分子中的官能团、骨架结构和功能基团的种类。
例如,红外光谱可以用来鉴定有机物中的醛基、羟基、羧基等官能团,从而确定有机物的结构和化学性质。
2.2 红外光谱成像红外光谱成像是一种非破坏性的分析方法,通过将红外光谱技术与光学显微镜相结合,可以实现对样品的红外吸收分布图像的获取。
红外光谱成像可以用于药物分析、生物医学研究、化工过程监测等领域。
例如,在药物分析中,红外光谱成像可以用于药片的成分分析和质量控制,提高药物的安全性和稳定性。
2.3 环境监测红外光谱技术在环境监测中有着广泛的应用。
通过红外光谱对大气中的空气污染物进行监测和分析,可以提供关于空气质量的信息。
红外光谱还可以用于水质分析,通过检测水中有机物和无机物的红外吸收特征,可以判断水质是否受到污染和污染程度。
2.4 材料表征红外光谱在材料科学和工程领域的应用非常广泛。
通过红外光谱的分析,可以对材料的结构、成分和性质进行表征。
例如,红外光谱可以用于聚合物材料的表征,通过检测聚合物中的C-H伸缩振动和C=O伸缩振动等特征峰来确定聚合物的结构和组成。
3. 总结红外光谱作为一种非常有用的分析技术,在化学、材料科学、制药、环境监测等领域发挥着重要作用。
有机化学中的红外光谱(IR)技术
![有机化学中的红外光谱(IR)技术](https://img.taocdn.com/s3/m/bdc40049773231126edb6f1aff00bed5b9f3731a.png)
有机化学中的红外光谱(IR)技术红外光谱(IR)技术是一种在有机化学中广泛应用的分析方法。
通过测量有机物分子中化学键振动引起的特定光谱吸收峰,科学家们可以确定化合物的结构和功能基团。
本文将详细介绍红外光谱技术在有机化学中的应用、原理和分析步骤。
一、红外光谱技术在有机化学中的应用红外光谱技术在有机化学领域中有着广泛的应用。
首先,它可以用于有机物的鉴定和验证。
红外光谱图谱中的特定吸收峰可以和已知物质的光谱数据进行比对,从而确定待测物质的结构和成分。
其次,红外光谱技术可以用于功能基团的鉴定。
不同的化学键和功能基团在红外光谱图谱中具有独特的吸收特征,这使得科学家们能够准确识别有机分子中存在的官能团。
此外,红外光谱技术还可以用于反应过程的监测和控制。
通过在反应过程中对产物和废物进行红外光谱分析,可以实时监测反应的进程,并对反应条件进行调节,以提高产率和选择性。
二、红外光谱技术的原理红外光谱技术是基于分子中化学键振动产生的光谱吸收现象。
当红外辐射通过待测物质时,分子中的化学键会因为固有的频率而吸收特定波长的红外光。
这些吸收峰的强度和位置与分子的结构和功能基团密切相关。
具体来说,红外光谱图谱中的吸收峰对应于不同类型的化学键振动。
例如,羰基(C=O)具有独特的吸收峰,可以帮助确定酮和醛的存在;氨基(N-H)具有特定的吸收峰,可以用于鉴定胺类化合物等。
三、红外光谱分析步骤在进行红外光谱分析前,需要准备样品并操作仪器。
以下是一般的分析步骤:1. 准备样品:将待测物质制备成固体样品或液体样品,尽量保持无水和无杂质。
2. 设置仪器参数:根据待测物质的性质和所需分析精度,调整红外光谱仪的参数,如波数范围和光谱分辨率。
3. 测量红外光谱:将样品放置在红外光谱仪的样品室中,以获得样品的红外光谱图谱。
通常需要多次测量取平均值以提高信噪比。
4. 数据分析:将所得的红外光谱图谱与参考库中的数据进行比对,并确定样品中存在的化学键和功能基团。
红外吸收光谱基本原理和技术简析
![红外吸收光谱基本原理和技术简析](https://img.taocdn.com/s3/m/6fab9920804d2b160a4ec007.png)
沿轴振动,只改变键长,不改变键角
2、弯曲振动(Bending Vibration) 又称为变形振动或变角振动。用δ表示。 特点:基团的键角发生周期性的变化,而其键长保持不变。 分子中原子数≥3时,可产生面内弯曲振动和面外弯曲振动。
弯曲振动只改变键角,不改变键长
3.振动自由度与峰数 多原子分子中每个原子的空间位置可由X、Y、Z 三个坐标 来确定。故其在空间的运动有三个子自由度。
1、伸缩振动(Stretching Vibration)
用v 表示。 特点:成键原子沿键轴方向伸缩,键长发生周期性的变化,其 键角不变。 当分子中原子数≥3 时,可产生对称伸缩振动(vs)和反对称 伸缩振动(vas)。
对称伸缩振动(vs) (2853cm-1)
不对称伸缩振动(vas) (2926cm-1)
故 线性分子的振动自由度= 3n-5 非线性分子的振动自由度= 3n-6
例:水分子(非线性分子) 振动自由度数=3 ×3 -6 =3
红外谱图上的峰数往往少于基本振动的数目。原因: (1)红外非活性振动:分子偶极距不发生变化 (2)峰的简并:振动频率完全相同,吸收带重合 (3)峰的掩盖:宽而强的吸收峰掩盖频率相近的窄
结论: (1)化学键越强,K 越大,振动频率越高; (2)二原子μ越大,振动频率越低。
二、分子的振动能级与吸收峰位置
分子的振动能级是量子化的,相应能级的能量为: E振=(V+1/2)hν
V :振动量子数,其值可取0,1,2,3 …等整数 ν :化学键的振动频率
E1 = 1/2 hν E2 = 3/2 hν ……
I :表示透过光的光强 I0:表示入射光的光强
吸收峰位置由振动能级差的大小决定,取决于基频峰的吸收频率 。每一个较大的吸收峰都代表了分子的一种基本振动的形式。
红外光谱的应用和基本原理
![红外光谱的应用和基本原理](https://img.taocdn.com/s3/m/0c365e5053d380eb6294dd88d0d233d4b14e3fcf.png)
红外光谱的应用和基本原理一、引言红外光谱(Infrared Spectroscopy)是一种分析化学技术,广泛应用于物质结构和功能研究、药物分析、环境监测、食品安全、材料科学等领域。
本文将介绍红外光谱的基本原理以及其在不同领域的应用。
二、基本原理红外光谱是利用物质吸收、发射和散射红外光的规律研究样品的结构、组成和性质的方法。
其中主要原理包括: 1. 分子振动:物质中的分子由原子组成,分子内部存在着各种振动模式,如对称伸缩、非对称伸缩、弯曲和扭转等。
这些振动会导致特定波数的红外光被吸收。
2. 振动频率:各种分子振动模式对应的频率和红外光谱上的波数成正比关系,常用单位为cm^-1。
不同分子的特征峰位于红外光谱的不同位置,可以用于分析物质的结构和组成。
3. 能量转换:当红外光作用在物质上时,分子振动会吸收光的能量,并发生能量转换。
被吸收的特定波长的光将被特定物质所吸收,从而产生光谱图。
三、仪器和操作为获取物质的红外光谱,需要使用红外光谱仪,常见的有傅里叶红外光谱仪(FT-IR)和分散式红外光谱仪(Dispersive IR)。
操作步骤如下: 1. 准备样品:将待测样品置于透明的红外光谱样品盆中,盖紧并确保样品表面均匀平整。
2. 启动红外光谱仪:打开红外光谱仪,调节仪器使其稳定并进入工作状态。
3. 标定仪器:使用一些已知物质进行仪器的标定,以确保测试结果的准确性和可靠性。
4. 测量样品:将样品盆放置在红外光谱仪的样品室,启动测量程序并记录光谱数据。
5. 数据分析:对测量到的谱图进行分析和解读,确定样品的结构和组成。
四、应用领域红外光谱在许多领域有着广泛的应用。
以下为红外光谱在一些常见领域中的应用示例:1. 化学和材料科学•分析未知物质:通过与已知谱图进行对比,可以确定未知物质的结构和成分。
•聚合物研究:可分析聚合物的结构、分子量和聚合度等参数。
•功能材料研究:可通过红外光谱研究材料的特定功能性质,如光学性能、表面活性等。
红外吸收光谱法及其基本原理
![红外吸收光谱法及其基本原理](https://img.taocdn.com/s3/m/029c87cc51e2524de518964bcf84b9d528ea2cc9.png)
红外吸收光谱法及其基本原理红外吸收光谱法(infrared absorption spectroscopy;IR)是以连续波长的红外光为光源照射样品,引起分子振动能级之间跃迁,从而研究红外光与物质之间相互作用的方法。
所产生的分子振动光谱,称红外吸收光谱。
在引起分子振动能级跃迁的同时不可避免的要引起分子转动能级之间的跃迁,故红外吸收光谱又称振-转光谱。
IR 在化学领域中主要用于分子结构的基础研究以及化学组成的分析,但其中应用最广泛的还是化合物的结构鉴定。
根据红外光谱的峰位、峰强及峰形,判断化合物中可能存在的官能团,从而推断出未知物的结构,因此IR 是有机药物的结构测定和鉴定最重要的方法之一。
波长在0.76 μm ~1 000 μm 的电磁辐射称为红外光(infrared ray),该区域称为红外光谱区或红外区。
红外光又可划分为近红外区(0.76 μm ~2.5 μm 或1 3158 cm -1~4 000 cm -1)、中红外区(2.5 μm ~ 50 μm 或4 000 cm -1~200 cm -1)、远红外区(50 μm ~1000 μm 或200 cm -1~10 cm -1)。
其中中红外区是研究分子振动能级跃迁的主要区域。
图2-1为乙酰水杨酸(阿司匹林)的红外光谱图。
图2-1 乙酰水杨酸(阿司匹林)的红外光谱图红外吸收光谱中吸收峰的位置即横坐标可用波长(λ)或波数(ν~)来表示。
横坐标不同,光谱的形状不同,如不注意横坐标的表示,很可能把不同的横坐标表示的同一物质红外光谱误认为不同化合物,得出错误的结论。
红外光谱法的基本原理一、分子的振动能级与振动光谱原子与原子之间通过化学键连接组成分子。
分子是有柔性的,因而可以发生振动。
我们把不同原子组成的双原子分子的振动模拟为不同质量小球组成的谐振子振动(harmonicity),即把双原子分子的化学键看成是质量可以忽略不计的弹簧,把两个原子看成是各自在其平衡位置附近作伸缩振动的小球(见图2-2)。
有机化学基础知识点整理红外光谱的基本原理与应用
![有机化学基础知识点整理红外光谱的基本原理与应用](https://img.taocdn.com/s3/m/b8c8111e302b3169a45177232f60ddccda38e60e.png)
有机化学基础知识点整理红外光谱的基本原理与应用红外光谱是一种常用的有机化学分析技术,通过测量样品在红外辐射作用下吸收的光的特征来获取有关有机物的结构和功能基团信息。
本文将对红外光谱的基本原理和应用进行整理。
一、红外光谱的基本原理红外光谱是在红外区域(波长为0.78-1000微米)的电磁波谱。
有机物分子具有众多振动模式,其中主要有拉伸振动和弯曲振动两种。
当红外辐射作用于有机物时,分子中的化学键因振动而产生变化,吸收电磁辐射的能量,使光谱图产生吸收峰,用于表示化学键的类型和特定的功能基团。
二、红外光谱的应用1. 结构表征红外光谱被广泛应用于有机化合物的结构表征,能够确定分子中的官能团和它们的位置。
通过与已知标准物质进行比较,可以对未知有机物进行鉴定和确认。
2. 官能团分析红外光谱还可以用于官能团分析。
不同官能团在红外区域具有特定的吸收峰,通过观察和解析红外光谱图上的吸收峰,可以确定有机化合物中存在的官能团。
3. 质谱联用红外光谱可以与质谱等其他分析方法联用,提高分析的准确性和灵敏度。
质谱结合红外光谱可用于鉴定复杂有机物的分子结构和组成。
4. 药物分析红外光谱在药物分析中有着广泛的应用。
通过红外光谱的分析可以确定药物中的特定官能团,帮助药物研发和质量控制。
5. 环境监测红外光谱可以用于环境监测。
通过分析空气、水、土壤等样品的红外光谱,可以确定其中的污染物种类和浓度,提供有关环境质量的信息。
6. 食品质量检测红外光谱可以应用于食品质量检测。
通过对食品样品的红外光谱进行分析,可以判断其成分和质量,检测其中是否存在污染物或添加剂。
7. 化学反应跟踪红外光谱也可以用于化学反应的跟踪。
通过在反应过程中测量红外光谱的变化,可以了解反应物的转化和产物的生成情况,为反应的优化提供依据。
三、红外光谱的实验技术红外光谱分析需要使用红外光谱仪。
常见的红外光谱仪有傅里叶红外光谱仪(FT-IR)和单波长红外光谱仪。
傅里叶红外光谱仪具有较高的分辨率和灵敏度,可以获取更精细的光谱信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外吸收光谱(IR)的基本原理及应用基本原理当红外光照射物质分子时,其具有的能量引起振动能级和转动能级的跃迁,不同的分子和基团具有不同的振动,根据分子的特征吸收可以鉴定化合物和分子的结构。
利用红外光谱对物质分子进行的分析和鉴定。
将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。
每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。
红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。
当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。
分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。
分子的振动和转动的能量不是连续而是量子化的。
但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。
所以分子的红外光谱属带状光谱。
分子越大,红外谱带也越多。
红外光谱的应用(一)化合物的鉴定用红外光谱鉴定化合物,其优点是简便、迅速和可靠;同时样品用量少、可回收;对样品也无特殊要求,无论气体、固体和液体均可以进行检测。
有关化合物的鉴定包括下列几种:1、鉴别化合物的异同某个化合物的红外光谱图同熔点、沸点、折射率和比旋度等物理常数一样是该化合物的一种特征。
尤其是有机化合物的红外光谱吸收峰多达20个以上,如同人的指纹一样彼此各不相同,因此用它鉴别化合物的异同,可靠性比其它物理手段强。
如果二个样品在相同的条件下测得的光谱完全一致,就可以确认它们是同一化合物,例外较少。
但当二个图有差别时,情况较复杂,须考虑下列因素,方能作出正确的结论:A.同质异晶体:此为化学结构完全相同而晶形不同的化合物。
由于分子在不同晶体的晶格中排列方式不一样,因此对光的散射和折射不相同,致使同质异晶体的固相红外光谱有差异,而在溶液中测的液相光谱应是相同的。
B、同系物:同系物仅是构成链的单元数不同,因此它们的分子无序排列的液相光谱往往相同,固相光谱则因晶体内晶胞不同而有微小的差别。
所以在鉴定大分子的聚合物、多糖和长脂肪链的同系物时,最好同时对比固相和液相光谱的异同,方能作出正确的判断。
将二种同系物配成相同浓度的溶液,测量某些基团的吸收峰强度,如正脂肪酸同系物,可以根据亚甲基(2930)和甲基(2960)二个蜂的强度比进行识别。
C、来源和精制方法:应注意到有些结构相同的化合物会因来源和精制方法的不同而使固相光谱有差异。
D、溶剂和浓度:液相光谱鉴别化合物的异同须采用同一种溶剂和相同的浓度,因为溶剂本身有一些吸收峰能把试样的弱吸收掩盖;另外氢键等溶剂效应在不同浓度下作用强弱不等,也能够引起光谱的变化。
E、吸收峰的相对强度:对比光谱的异同不仅要注意每个吸收峰的位置是否一致,而且要注意各个蜂彼此之间的相对强度是否符合,否则就可能是结构上的微小差别引起的。
2、鉴别光学异构体:旋光性化合物的左、右对映体的固相红外光谱是相同的。
对映体和外消旋体由于晶格中分子的排列不同,使它们的固体光谱彼此不同,而溶液或熔融的光谱就完全相同。
非对映异构体因为是二种不同的化合物,所以无论是固相,还是液相光谱均不相同,尤其在指纹区有各自的特征峰。
但是大分子的差向异构体如高三尖杉酯碱与表高三尖衫酯碱,由于彼此晶格不同,固相光谱的差别较大,而液相光谱差别很小,这是应该注意的问题。
3、区分几何(顺、反)异构体:对称反式异构体中的双键处于分子对称中心,在分子振动中链的偶极矩变化极小,因此在光谱中不出现双键吸收峰。
顺式异构体无对称中心,偶极矩有改变,故有明显的双键特征峰,以此可区分顺、反异构体。
不对称的分子,由于反式异构体的对称性比顺式异构体高,因此双键的特征峰前者弱,后者强。
4、区分构象异构体:同一种化学键在不同的构象异构体中的振动频率是不一样的。
以构象固定的六元环上的C—Y键为例,平展的C—Y键伸缩振动频率高于直立键,原因在于直立的C—Y键垂直于环的平面,其伸缩振动作用于碳上的复位力小;Y若在平展键,C—Y的伸缩振动使环扩张,复位力大,所以振动频率高。
研究构象异构体要注意相的问题。
固态结晶物质通常只有单一的构象,而液态样品大多是多种构象异构体的混合物,因此二种相的光谱不尽相同。
如果固相和液相光谱相同,则表明该化合物只有一种构象.环状邻位双羟基化合物可以利用羟基之间的氢键推定构相。
有分子内氢键的羟基特征峰波数低于游离羟基的波数。
氢键越强,二者波数差越大。
5、区分互变异构体:有机化学中经常碰到互变异构现象,如β-双酮有酮式和烯醇式二种,红外光谱极容易区分它们。
在四氯化碳溶液中酮式在~1730cm -1有二个峰,烯醇式只有一个氢键鳌合的羰基,动频率降至1650 cm-1,比酮式低80~100 cm-1。
同时在1640~1600 cm-1区有共轭双键特征峰,强度与羰基近似。
(二)定性分析根据主要的特征峰可以确定化合物中所含官能团,以此鉴别化合物的类型。
如某化合物的图谱中只显示饱和C-H特征峰,就是烷烃化合物;如有=C-H 和C=C或C≡C等不饱和键的峰,就属于烯类或炔类;其它宫能团如H—X,X ≡Y,>C=O和芳环等也较易认定,从而可以确定化合物为醇、胺、脂或羰基等。
同一种官能团如果处在不同的化合物中,就会因化学环境不相同而影响到它的吸收峰位置,为推定化合物的分子结构提供十分重要的信息。
以羰基化合物为例,有酯、醛和酸酐等,利用化学性质有的容易鉴别,有的却很困难,而红外光谱就比较方便和可靠。
红外光谱用于定性方面的另一长处是5000~1250 cm-1区内官能团特征峰与紫外光谱一样有加和性,可用它鉴定复杂结构分子或二聚体中含官能团的各个单体。
(三)定量分析红外分光光度计同其它分光光度计一样,可按照朗伯—比尔定律进行定量分析。
式中I。
为入射光强度;I为透过光强度;c为溶液浓度,以克/升表示;l 是吸收池厚度,以厘米表示;此时k为吸光系数,即单位长度和单位浓度溶液中溶质的吸收度。
如果浓度是以摩尔数/升表示,则k应为s(摩尔吸光系数)。
由于红外分光光度计狭缝远比一般光电比色计的宽,通过的光波长范围大,使某一定波数处的最高吸收峰变矮变宽,影响直观的强度,加之吸收池、溶剂和制备技术不易标准化等各方面的因素,使其精密度较紫外光谱低。
基于混合物的光谱是每个纯成分的加和,因此可以利用光谱中的特定峰测量混合物中诸成分的百分含量。
有机化合物中官能团的力常数有相当大的独立性,故每个纯成分可选一、二个特征峰,测其不同浓度下的吸收强度,得到浓度对吸收强度的工作曲钱。
用同一吸收池装混合物,分别在其所含的每个纯成分的特征峰处测定吸收强度,从相应的工作曲线上求取各个纯成分的含量。
如杂质在同一处有吸收就会干扰含量,克服这个缺点的方法是对每个成分同时测定二个以上特征峰的强度.并在选择各成分的特征峰时尽可能是它的强吸收峰,而其他成分在其附近吸收很弱或根本无吸收。
具体的测试方法这里不作详述。
(四)鉴定样品纯度和指导分离操作通常纯样品的光谱吸收峰较尖锐,彼此分辨清晰,如果含5%以上杂质,由于多种分子各自的吸收峰互相干扰,常降低每个峰的尖锐度,有的线条会模糊不清。
加之有杂质本身的吸收,使不纯物的光谱吸收峰数目比纯品多,故与标淮图谱对比即可判断纯度。
(五)研究化学反应中的问题在化学反应过程中可直接用反应液或粗品进行检测。
根据原料和产物特征峰的消长情况,对反应进程、反应速度和反应时间与收率的关系等问题能及时作出判断。
紫外原理1. 物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法。
当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。
这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发态:m(基态)+hv------m*(激发态)这就是对光的吸收作用。
由于物质的能量是不连续的,即能量上一量子化的。
只有当入射光的能量(hv)与物质分子的激发态和基态的能量差相等时才能发生吸收△e=e2-e1= hv=hc/λ而不同的物质分子因其结构的不同而具有不同的量子化能级,即△e 不同,故对光的吸收也不同。
吸收光谱曲线(光吸收曲线)ppp7:它反映了物质对不同波长光的吸收情况。
紫外-可见吸收光谱定性分析的依据:光吸收程度最大处的波长叫做最大吸收波长,用λmax表示,同一种吸光物质,浓度不同时,吸收曲线的形状不同,λmax不变,只是相应的吸光度大小不同,这是定性分析的依据。
紫外-可见吸收光谱定量分析的依据:朗伯-比尔定律。
分光光度计,紫外可见分光光度计,721分光光度计,原子吸收分光光度计,荧光分光光度计,uv分光光度计,kunke分光光度计,分光光度计的原理,分光光度计使用方法,分光光度计品牌,分光光度计价格2.朗伯-比尔定律。
紫外-可见分光光度计的定量分析的依据是朗伯-比尔定律。
当单色光通过液层厚度一定的含吸光物质的溶液后,溶液的吸光度a与溶液的浓度c成正比,此公式的物理意义是,当一束平行的单色光通过均匀的含有吸光物质的溶液后,溶液的吸光度与吸光物质浓度及吸收层厚度成正比。
应用:外可见吸收光谱应用广泛,不仅可进行定量分析,还可利用吸收峰的特性进行定性分析和简单的结构分析,测定一些平衡常数、配合物配位比等;也可用于无机化合物和有机化合物的分析,对于常量、微量、多组分都可测定。
物质的紫外吸收光谱基本上是其分子中生色团及助色团的特征,而不是整个分子的特征。
如果物质组成的变化不影响生色团和助色团,就不会显著地影响其吸收光谱,如甲苯和乙苯具有相同的紫外吸收光谱。
另外,外界因素如溶剂的改变也会影响吸收光谱,在极性溶剂中某些化合物吸收光谱的精细结构会消失,成为一个宽带。
所以,只根据紫外光谱是不能完全确定物质的分子结构,还必须与红外吸收光谱、核磁共振波谱、质谱以及其他化学、物理方法共同配合才能得出可靠的结论。
1、化合物的鉴定利用紫外光谱可以推导有机化合物的分子骨架中是否含有共轭结构体系,如C=C-C=C、C=C-C=O、苯环等。
利用紫外光谱鉴定有机化合物远不如利用红外光谱有效,因为很多化合物在紫外没有吸收或者只有微弱的吸收,并且紫外光谱一般比较简单,特征性不强。
利用紫外光谱可以用来检验一些具有大的共轭体系或发色官能团的化合物,可以作为其他鉴定方法的补充。
(1)如果一个化合物在紫外区是透明的,则说明分子中不存在共轭体系,不含有醛基、酮基或溴和碘。
可能是脂肪族碳氢化合物、胺、腈、醇等不含双键或环状共轭体系的化合物。
(2)如果在210~250nm有强吸收,表示有K吸收带,则可能含有两个双键的共轭体系,如共轭二烯或α,β-不饱和酮等。