整式基本概念讲解与练习及单元测试题
整式的概念知识讲解及巩固练习
![整式的概念知识讲解及巩固练习](https://img.taocdn.com/s3/m/1ccefba7844769eae009edcc.png)
(2)分母中含有字母的式子一定不是整式.【典型例题】类型一、整式概念辨析1.指出下列各式中哪些是单项式?哪些是多项式?哪些是整式? 22x y +,x -,3a b +,10,61xy +,1x ,217m n ,225x x --,22x x +,7a 【答案与解析】单项式有:x -,10,217m n ,7a ; 多项式有:22x y +,3a b +,61xy +,225x x --; 整式有:22x y +,x -,3a b +,10,61xy +,217m n ,225x x --,7a . 【总结升华】22x x +不是整式,因为分母中含有字母; 212a a ++也不是多项式,因为1a 不是单项式.举一反三: 【变式】下列代数式:322332111;;;;2;-232a x y ab x x y x y y x+--++π①②③④⑤⑥,其中是单项式的是_______________,是多项式的是_______________.【答案】①②③,④⑥类型二、单项式2.指出下列代数式中的单项式,并写出各单项式的系数和次数.234a b -,a -,442x ,a mn ,223a y π,a -3,5-3,82-310tm ⨯,2x y 【答案与解析】234a b -,a -,442x ,223a y π,5-3,82-310tm ⨯,2x y 是单项式,其中 234a b -的系数是34-,次数是3;a -的系数是-1,次数是1;442x 的系数是42,次数是4;223a y π的系数是3π,次数是4;53-为非零常数,只有数字因式,系数是它本身,次数为0;82-310tm ⨯的系数仍按科学记数法表示为-3×108,次数是3;2x y 只含有字母因数,系数是l ,次数为字母指数之和为3.【总结升华】(1)要区分数字因数、字母因数;(2)不能见了指数就相加,如442x 中,42的指数4不能相加,次数为4;(3)有分数线的,分子、分母的数字都是系数;(4)π是常数,不能看作字母.举一反三:【变式1】单项式3x 2y 3的系数是 . 【答案】3. 【变式2】下列结论正确的是( ).A .没有加减运算的代数式叫做单项式.B .单项式237xy 的系数是3,次数是2. C .单项式m 既没有系数,也没有次数.D .单项式2xy z -的系数是-1,次数是4.【答案】D 类型三、多项式3.多项式24242153x y x y x -+-+,这个多项式的最高次项是什么?一次项的系数是什么?常数项是什么?这是几次几项式? 【答案与解析】这个多项式中共有四项,分别为:24242,,,153x y x y x --,它们的次数分别为:3,6,1,0;其中4223x y 的次数是6,是最高次项,一次项x -的系数是-1,常数项是1,它是六次四项式.【总结升华】确定多项式的次数时,分两步:(1)先求多项式中每一项的次数;(2)取这些次数中的最大的数即为多项式的次数.4. 已知多项式32312246753m x xy x y y x y ---+--. (1)求多项式各项的系数和次数.(2)如果多项式是七次五项式,求m 的值.【答案与解析】(1)依题意知此多项式是五项式,第一项26xy -的系数是-6,次数是3;第二项3127m x y --的系数是-7,次数是3m+1;第三项343x y 的系数是43,次数是4;第四项2x y -系数是-l ,次数3;第五项-5系数是-5,次数是0. (2)由多项式是七次五项式,可得3127m xy --的次数是7,即3m -1+2=7,解得m =2. 【总结升华】对于单项式3127m x y --的次数为3m+1的认识会不太习惯,通过适量的练习,会对用字母表示多项式的次数或系数有较深地认识.举一反三:【变式】多项式()34b a x x x b --+-是关于x 的二次三项式,求a 与b 的差的相反数.【答案】()()4042242 2.a ab b a b -==⎧⎧∴⎨⎨==⎩⎩∴--=--=-解:由题意得类型四、整式的应用5. 用整式填空:(1)某商场将一种商品A 按标价的9折出售(即优惠10%)仍可获利10%,若商场商品A 的标价为a 元,那么该商品的进价为________元(列出式子即可,不用化简).(2)甲商品的进价为1400元,若标价为a 元,按标价的9折出售;乙商品的进价是400元,若标价为b 元,按标价的8折出售,列式表示两种商品的利润率分别为甲:________ 乙:________.【答案】(1)90%10%1a +;(2)甲商品的利润率为90%14001400a -×100%,乙商品的利润率为: 80%400400b -×100%. 【解析】本例属于实际生活问题,应分清“进价”、“标价”、“利润”、“利润率”、“打折”等问题,打几折就是标价的十分之几.【总结升华】解答本例需弄清以下两个数量关系:(1)利润=售价-进价; (2)利润率=-售价进价进价. 举一反三:【变式】(2014秋•栖霞市期末)对下列代数式作出解释,其中不正确的是( )A. a ﹣b :今年小明b 岁,小明的爸爸a 岁,小明比他爸爸小(a ﹣b )岁B. a ﹣b :今年小明b 岁,小明的爸爸a 岁,则小明出生时,他爸爸为(a ﹣b )岁C. ab :长方形的长为acm ,宽为bcm ,长方形的面积为abcm2 D. ab :三角形的一边长为acm ,这边上的高为bcm ,此三角形的面积为abcm2 【答案】D.6. (2015•重庆)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A. 21B. 24C.27D. 30【答案】 B【解析】观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…第n 个图形有3+3n=3(n+1)个圆圈,当n=7时,3×(7+1)=24,故选B .【总结升华】找规律问题一般应经历四个阶级“特例引路”、“对比分析”、“总结规律”、“反思检验”等. 【巩固练习】一、选择题1.(2014秋•章丘市校级期末)下面的说法正确的是( )A. ﹣2不是代数式B. ﹣a 表示负数C. 的系数是3D. x+1是代数式2.已知单项式243x y -,下列说法正确的是( ). A .系数是-4,次数是3B .系数是43-,次数是3 C .系数是43,次数是3 D .系数是43-,次数是2 3.如果一个多项式的次数是3,那么这个多项式的任何一项的次数( ).A .都小于3B .都等于3C .都不小于3D .都不大于34.下列式子:a+2b ,2a b -,221()3x y -,2a,0中,整式的个数是( ). A .2个 B .3个 C .4个 D .5个 5..关于单项式3222x y z -,下列结论正确的是( ).A .系数是-2,次数是4B .系数是-2,次数是5C .系数是-2,次数是8D .系数是-23,次数是56.一组按规律排列的多项式:a b +,23a b -,35a b +,47a b -,…,其中第10个式子是( ).A .1019a b +B .1019a b -C .1017a b -D .1021a b -二、填空题7.代数式23mn ,2353x y ,2x y -,23ab c -,0,31a a +-中是单项式的是________,是多项式的是________.8.关于x 的多项式3(1)23nm x x x --+的次数是2,那么______,______m n ==. 9.多项式2x 2-3x+5是_ 次______项式.10.(2015•长春模拟)今年五.一假期,张老师一家四口开着一辆轿车去长春市净月潭森林公园度假.若门票每人a 元,进入园区的轿车每辆收费20元,则张老师一家开车进入净月潭森林公园园区所需费用是 元(用含a 的代数式表示). 11.有一组单项式:2a ,32a -,43a ,…,请观察它们的构成规律,用你发现的规律写出第10个单项式:________.12.关于x 的二次三项式的一次项的系数为5,二次项的系数为-3,常数项为-4,按照x 的次数逐渐降低排列,这个二次三项式为________.13.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒……按此规律,请你推测第n 组应该取种子数是________粒.14. 如图所示,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n ,…,请你探究出前n 行的点数和所满足的规律.若前n 行点数和为930,则n =________.三、解答题15.(2015•宜宾)如图,以点O 为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为多少?16.已知单项式4312x y -的次数与多项式21228m a a b a b +++的次数相同,求m 的值. 17.某电影院有20排座位,已知第一排有18个座位,后面一排都比前一排多2个座位,试用代数式表示出第n 排的座位数,并求第19排的座位数.18.已知多项式12111021112a a b a b ab b -+-++-,(1)请你按照上述规律写出该多项式的第5项,并指出它的系数和次数;(2)这个多项式是几次几项式?【答案与解析】一、选择题1. 【答案】D【解析】A 、﹣2是代数式,故此选项错误;B 、﹣a 不一定是负数,故此选项错误;C 、的系数是,故此选项错误;D 、x+1是代数式,故此选项正确.2.【答案】B3.【答案】D【解析】多项式的次数是该多项式中各项次数最高项的次数。
整式章节单元测试题及答案
![整式章节单元测试题及答案](https://img.taocdn.com/s3/m/f3eeaae9f021dd36a32d7375a417866fb94ac071.png)
整式章节单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是单项式?A. 3xB. -2C. 5x²D. 4x³2. 多项式3x² - 4x + 1的次数是多少?A. 1B. 2C. 3D. 43. 多项式2x³ - x² + 5x - 3的首项系数是?A. 2B. -1C. 5D. 34. 合并同类项后,2x² + 3x - 5与3x² - 4x + 6的和是?A. 5x² - x - 1B. 5x² - x + 1C. 5x² + x - 1D. 5x² + x + 15. 如果多项式f(x) = ax³ + bx² + cx + d,其中 a = 2,b = -3,c = 4,d = -5,那么f(1)的值是?A. -2B. -1C. 0D. 1二、填空题(每题2分,共10分)6. 单项式-5x的系数是________。
7. 多项式4x³ - 2x² + 3x - 1的常数项是________。
8. 如果多项式f(x) = 2x³ - x² + 5x + 3,那么f(-1) =________。
9. 两个多项式的和是5x³ - 2x² + 3x + 1,其中一个多项式是3x³ + x² - 2x + 5,另一个多项式是________。
10. 如果多项式f(x) = 3x³ + 2x² - 5x + 7,那么f(0)=________。
三、解答题(每题5分,共30分)11. 计算多项式2x³ - 3x² + x - 5与多项式4x³ + x² - 2x + 3的差。
12. 求多项式3x³ - 2x² + 5x - 7与多项式2x³ + 3x² - 4x + 6的乘积。
第02讲 整式的基本概念(解析版)
![第02讲 整式的基本概念(解析版)](https://img.taocdn.com/s3/m/0d9265f1dc88d0d233d4b14e852458fb770b388f.png)
原创精品资源学科网独家享有版权,侵权必究!1第02讲整式的基本概念模块一:整式的基本概念1、单项式:由数字与字母的积或字母与字母的积所组成的代数式叫做单项式.也就是说单项式中不存在数字与字母或字母与字母的加、减、除关系,特别的单项式的分母中不含未知数.单独的一个字母或数也叫做单项式.(1)单项式的次数:是指单项式中所有字母的指数和.例如:单项式212ab c -1214++=,是四次单项式.单独的一个数(零除外),它们的次数规定为零,叫做零次单项式;(2)单项式的系数:单项式中的数字因数叫做单项数的系数.2、多项式:由几个单项式的和组成的代数式叫做多项式.例如:27319x x -+是多项式.(1)多项式的项:其中每个单项式都是该多项式的一个项.多项式中的各项包括它前面的符号.多项式中不含字母的项叫做常数项.(2)多项数的次数:多项式里,次数最高项的次数就是这个多项式的次数.(3)多项式的降(升)幂排列:按照同一个字母的指数从大到小(或从小到大)的顺序排列.3、整式:单项式和多项式统称整式.【例1】在代数式2211253x x y b x -,,,221135()63x x y m n a +-+,,,0,269y y ++中,哪些是单项式?哪些是多项式?哪些是整式?【答案】单项式:212x y ,215b -,0;多项式:2213563x x y +-,,269y y ++;整式:212x y ,215b -,2213563x x y +-,,0,269y y ++.【解析】1()3x m n x a+和分母中含有字母,是分式的形式,不属于整式,单项式和多项式都是整式.【总结】本题主要考查单项式、多项式和整式的概念.【例2】找出下列各代数式中的单项式,并写出各单项式的系数和次数.223xy ,a -,a bc ,32mn +,572t ,233a b c -,2,x π-.【答案】以上代数式是单项式的有:223xy ,a -,572t ,233a b c -,2,xπ-.223xy 的系数为23,次数为3;a -的系数为-1,次数为1;572t ,系数为52,次数为7;233abc -,系数为-3,次数为6;2,系数为2,次数为0;x π-,系数1π-,次数为1.【解析】此题主要考查单项式的相关概念,属于基础题目.【例3】多项式44222315352y x x y xy x y -+--是几次几项式?【答案】五次五项式.【解析】多项式中所包含的单项式的次数最高的项是235x y -,是五次单项式,故此多项式的次数为五次,共五项,所以是五次五项式.【总结】本题主要考查几次几项式的概念.【例4】下面是按一定规律写出的一列单项式中的前四个:12a ,213a -,314a ,415a -,……如果按此规律继续写下去,排在第21个的是什么样的单项式?【答案】21122a .【解析】根据观察,可以发现规律为111n nan ++(-),根据规律可得答案.【总结】这是一道找规律的题目,做题时要注意每一项的特征.原创精品资源学科网独家享有版权,侵权必究!3模块二:合并同类项1、同类项的概念:所含的字母相同,且相同字母的指数也相同的单项式叫做同类项.2、合并同类项:合并同类项的法则:在合并同类项时,把同类项的系数相加的结果作为合并后的系数,字母和字母的指数不变.【例5】下列各组单项式中属于同类项的是:①22m n 和22a b ;②312x y -和3yx ;③6xyz 和6xy ;④20.2x y 和20.2xy ;⑤xy 和yx -;⑥12-和2.【答案】②⑤⑥.【解析】①③两个单项式所含字母不相同;④相同字母的次数不相同.【总结】本题主要考查同类项的概念:所含字母相同,并且相同字母的指数也分别相同的单项式,注意同类项与字母的顺序无关.【例6】合并下列同类项:(1)2222210.120.150.12x y x y y x yx +-+;(2)122121342n n n n n x y x y y x y x +++---;(3)2220.86 3.25a b ab a b ab a b --++.【答案】(1)22220.620.150.1x y x y y x +-;(2)4n n x y -;(3)21.4a b ab --.【解析】(1)原式2222222221(0.12)0.150.10.620.150.12x y yx x y y x x y x y xy =++-=+-;(2)原式121212(32)44n n n n n n n x y x y x y x y x y +++=---=-;(3)原式222(0.8 3.2)(65) 1.4a b a b ab ab a b ab =-++-+=--.【总结】本题主要考查的是合并同类项,若是同类项只需将相应的系数相加减即可.【例7】多项式22523431x mxy y xy x --+-+中不含xy 项,求32322124m m m m m m -+-+--+-的值.【答案】19-.【解析】因为多项式22523431x mxy y xy x --+-+中不含xy 项,所以240m -+=,解得:2m =.所以32322124m m m m m m -+-+--+-332322319m =--=-⨯-=-.【总结】本题一方面考查合并同类项的概念,另一方面考查对多项式中不含某一项的理解.原创精品资源学科网独家享有版权,侵权必究!5原创精品资源学科网独家享有版权,侵权必究!7原创精品资源学科网独家享有版权,侵权必究!9的个数的个数原创精品资源学科网独家享有版权,侵权必究!111.下列说法中错误的是(5y是四次单项式A.4原创精品资源学科网独家享有版权,侵权必究!13原创精品资源学科网独家享有版权,侵权必究!15∵06152433+=+=+=+=⋯⋯6=,∴6a b +=.【点睛】本题考查了代数式求值、数字类规律探究,找到规律是解题的关键.。
整式概念单元测试卷(人教版)
![整式概念单元测试卷(人教版)](https://img.taocdn.com/s3/m/489fb18928ea81c758f57872.png)
第二章整式概念单元测试卷(人教版)(时间:80分钟,120分)班级:姓名:得分:一、填空题:(1-15每题1分,16-25每题2分,共35分)1、单项式:3234y x -的系数是,次数是。
2345678911、三个连续奇数的第一个是n,则三个连续奇数的和是。
12、-23ab 的系数是,次数是次。
13、当a=____________时,整式x 2+a -1是单项式。
14、用整式表示“比a 的平方的一半小1的数”是。
15、如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n 。
216、已知单项式23m a b 与4112n a b --的和是单项式,那么m=,n=。
17、已知a是一个两位数,b是一个一位数(b≠0),如果把b放置于a的左边组成一个三位数,则这个三位数是_________。
18、若2313m x y z -与2343x y z 是同类项,则m=。
19、一个n 次多项式,它的任何一项的次数都___________。
12345、x 2―2x+5的项是3x 2,2x ,5。
()6、2x +3y +4z 不是整式。
() 7、一个多项式的次数是6,则这个多项式中只有一项的次数是6。
()8、多项式-23m 2-n 2是五次二项式。
()9、一个多项式的次数是6,则这个多项式中只有一项的次数是6。
10、多项式8)1(32x -中x 2的系数是-3。
三、选择题(每题2分,共30分)1、在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+x 2-3中,多项式有() A .2个B .3个C .4个D5个2、多项式-23m 2-n 2是()345A 678、系数为-21且只含有x 、y 的二次单项式,可以写出()A .1个B .2个C .3个D .4个9、下列说法正确的是()A 、3x 与3mx 是同类项。
B 、2a b 与-5a b 是同类项。
整式知识点总结(含例题)
![整式知识点总结(含例题)](https://img.taocdn.com/s3/m/a34eb9fa767f5acfa0c7cd08.png)
整式知识点总结1.用字母表示数(1)用字母或含有字母的式子表示数或数量关系,为我们今后的学习和研究带来了极大的方便.从具体的数字抽象到用字母表示数,在认识上是一个重大飞跃.(2)同一问题中不同的数量要用不同的字母表示;不同的问题中不同的数量可以用相同的字母表示;一个字母表示的数往往不止一个,具有任意性,但要受实际问题的限制.2.单项式(1)单项式:由__________组成的式子叫做单项式.如12ab,m2,–x2y.特别地,单独的__________或__________也是单项式.单项式的系数:单项式中的__________.单项式的次数:一个单项式中,__________.(2)注意:①圆周率π是常数,单项式中出现π时,要将其看成系数.②当一个单项式的系数是“1”或“–1”时,“1”通常省略不写,如a2,–m2;次数为“1”时,通常也省略不写,如x.③单项式的系数包括它前面的符号,且只与数字因数有关.④单项式中的数与字母是乘积关系,如23a不是单项式.⑤单项式的次数与数字因数无关,只与字母有关,是单项式中所有字母的指数的和,如单项式b的次数是1,而不是0,常数–5的次数是0,9×103a2b3c的次数是6,与103无关.3.多项式(1)多项式:几个__________的和叫做多项式.如x2+2xy+2,a2–2.在多项式中,每个单项式叫做多项式的项,不含字母的项叫做__________.多项式里,次数最高项的次数,叫做这个多项式的__________.(2)注意:①多项式的每一项都包括它前面的符号,且每一项都是单项式.②多项式的次数是多项式中次数最高项的次数,而不是所有项的次数之和.③一个多项式有几项,就叫它几项式.4.整式:单项式与多项式统称__________.如果一个式子既不是单项式,也不是多项式,那么它一定不是整式.K知识参考答案:2.(1)数或字母的积,一个数,一个字母,数字因数,所有字母的指数的和3.(1)单项式,常数项,次数4.整式一、用含字母的式子表示数或数量关系列式时要注意:1.数与字母相乘或字母与字母相乘,通常将乘号写作“·”或省略不写.2.数与字母相乘,数写在字母前面.3.数字因数为“1”或“–1”时,常省略“1”.4.当数字因数为带分数时,要写成假分数.5.除法运算要用分数线.6.式子后面有单位且式子是和或差的形式时,应把式子用括号括起来.【例1】用含字母的式子表示下列数量关系.(1)小雪买单价为a元的笔记本4本,共花_________元;(2)三角形的底为a,高为h,则三角形的面积是_________;(3)若正方体的棱长是a–1,则正方体的表面积为_________;(4)自来水每吨m元,电每度n元,则小明家本月用水8吨,用电100度,应交费_________元.【答案】4a;ah;6(a–1)2;(8m+100n)【解析】(1)笔记本4本共花4a元;(2)三角形的面积是ah;(3)正方体的表面积为6(a–1)2;(4)用水8吨花费8m元,用电100度花费100n元,共花费(8m+100n)元;故答案为:4a;ah;6(a–1)2;(8m+100n).【名师点睛】列式子表示数量关系,一定要弄清“和”“差”“积”“倍”等关系.二、单项式(1)一个式子是单项式需具备两个条件:①式子中不含运算符号“+”号或“–”号;②分母中不含有字母.(2)确定单项式系数的方法是把式子中的所有字母及其指数去掉,剩余的为其系数.(3)计算单项式的次数时要注意:①没有写指数的字母,实际上其指数为1,计算时不能将其遗漏;②不能将系数的指数计算在内.【例2】指出下列各代数式中的单项式,并写出各单项式的系数和次数,−5,−a,xy2,,−,23ab,+b,.【答案】见解析【名师点睛】注意π是圆周率,是一个常数.三、多项式一个式子是多项式需具备两个条件:(1)式子中含有运算符号“+”或“–”;(2)分母中不含有字母.【例3】多项式–5x2–xy4+26xy+3共有__________项,该多项式的次数为__________,最高次项的系数是__________.【答案】4,5,–1【解析】多项式–5x2–xy4+26xy+3共有4项,该多项式的次数为5,最高次项的系数是–1.故答案为:4,5,–1.【名师点睛】多项式的每一项都包括它前面的符号,多项式中次数最高项的次数就是这个多项式的次数.。
初一数学上册整式知识点归纳及单元测试题
![初一数学上册整式知识点归纳及单元测试题](https://img.taocdn.com/s3/m/df4a1bfd58f5f61fb73666de.png)
初一数学上册第二单元整式一.整式的加减。
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.二.整式分类为。
1.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.2.合并同类项法则:系数相加,字母与字母的指数不变.3.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.4.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.5.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.整式的加减概念、定义:1、都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。
2、单项式中的数字因数叫做这个单项式的系数。
3、 一个单项式中,所有字母的指数的和叫做这个单项式的次数。
4、几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
5、多项式里次数最高项的次数,叫做这个多项式的次数。
6、把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
整式的概念知识点总结与习题(K12教育文档)
![整式的概念知识点总结与习题(K12教育文档)](https://img.taocdn.com/s3/m/c475ab591a37f111f1855bff.png)
整式的概念知识点总结与习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(整式的概念知识点总结与习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为整式的概念知识点总结与习题(word版可编辑修改)的全部内容。
整式【知识要点】一、二:单项式:数与字母的乘积的代数式(1)单项式中不含加减运算.如22+x ,32-a 等都不是单项式 (2)π是常数,在单项式中相当于数字因数。
(3)定义中的“数”可以是小数,也可以是整数、分数(分数要写成假分数形式) (4) 系数:单项式中的数字因数(包括前面的正负号)叫做单项式的系数. (只含字母的,它的系数是1或—1,如-x 的系数为-1)(5) 次数:所有字母的指数和★注:①没有写指数的字母,次数为1。
如2x 的次数是1,;34ab 的次数为4 ②单独一个非零数的次数为0,数字0没有次数。
如5的次数为0③单项式的次数仅与字母有关,与系数指数和π的指数无关。
如3223y x π的次数是5.三、多项式A 、 项:多项式中,每个单项式叫做多项式的项B 、 项数:多项式中单项式的个数C 、 次数:最高次项的次数叫做这个多项式的次数D 、 一个多项式含有几项,最高次项是几次就叫几次几项式.如1322-+b b a 是三 代数式 整式:分母不能含有字分式:分母可以含有单项式:数与字母的乘积的代数式 多项式:几个单项式的次三项式【典型例题】【例1】在下列代数式5ab ,x 4-,abc 31-,a ,0,b a -,0。
95,x ab 2,x xy 4中, 单项式有( )A 、5个B 、6个C 、7个D 、8个【例2】(1)多项式13522-+-xy y x x 的有 项,分是 、 、 、 ,其中最高次项是 ,最高次项的次数为 次,所以这个多项式的次数为 次,叫做 次 项式.(2)多项式3213824x x x -+-是______次______项式,次数最高的项是______,常数项是______。
七年级整式知识点及题
![七年级整式知识点及题](https://img.taocdn.com/s3/m/6c891476e418964bcf84b9d528ea81c758f52ef7.png)
七年级整式知识点及题解析整式是初中数学学习中的重要内容,也是高中数学学习的基础,本文将对七年级整式的知识点进行讲解,并提供一些题目解析,以便广大学生更好地掌握整式知识。
一、整式的概念整式是由常数和变量的积以及常数所组成的代数式,其中没有分母,除数和指数为非负整数,例如:$3x^2+5xy+2$ 就是一个整式。
二、整式的运算1、整式的加减运算整式的加减运算是指将两个或多个整式相加或相减的运算。
加减运算的规律如下:- 将同类项的系数相加或相减,其它不变。
- 合并同类项后,可按项的次数从高到低排列。
例如:$(3x^2+5xy+2)+(2x^2+4xy+1)=5x^2+9xy+3$2、整式的乘除运算整式的乘法运算是指将两个或多个整式相乘的运算。
乘法运算的规律如下:- 先用被乘数的每一项去乘乘数的每一项,然后将所得积相加,即为乘积。
- 同类项相加原则同加减运算。
例如:$(3x^2+5xy+2)\times (2x+1)=6x^3+11x^2y+4x+5xy^2+2$整式的除法运算是指将一个整式除以另一个整式的运算。
由于除法运算涉及到因式分解,所以这里不做过多解释。
三、整式的应用1、整式的因式分解因式分解是指将一个多项式表示为两个或两个以上的乘积的形式的过程,类似于数的因数分解。
因式分解的具体方法有以下几种:- 提取公因式法- 十字相乘法- 公式法例如:$2x^2+4xy=2x(x+2y)$ 就是一个易于进行因式分解的整式。
2、整式的代数方程在各种数学应用问题中,往往要用到代数方程,其中也涉及到整式的应用。
代数方程是指具有以下形式的等式:$f(x)=0$,其中$f(x)$ 是整式。
解代数方程的基本思想是根据某些定理或方法将复杂的各种式子化为简单的等式、不等式或变量间的关系,从而得出未知数的解。
例如:$3x^2-2x=5$ 是一个简单的代数方程,解得$x=\dfrac{5}{3}$ 或 $x=-1$。
以上就是本文对七年级整式知识点及题解析的全面讲解,希望能对广大学生有所帮助与启示。
2.1整式(讲+练)【10大题型】
![2.1整式(讲+练)【10大题型】](https://img.taocdn.com/s3/m/1d67c5d96429647d27284b73f242336c1eb930ee.png)
2.1 整式单项式 单项式的概念:如22xy -,13mn ,-1,它们都是数与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式.注意:(1)单项式包括三种类型:①数字与字母相乘或字母与字母相乘组成的式子;②单独的一个数;③单独的一个字母.(2)单项式中不能含有加减运算,但可以含有除法运算.如:2st 可以写成12st 。
但若分母中含有字母,如5m就不是单项式,因为它无法写成数字与字母的乘积.题型1:列代数式1.下列单项式书写规范的是( )A .a 4bB .﹣1x 2C .2xy 3D .【变式1-1】下列各式中,符合代数式书写规则的是( )A .x×5B .xyC .D .x-1÷y题型2:用字母表示数量关系2.苹果每千克a 元,梨每千克b 元,则整式2a +b 表示购买 .【变式2-1】用代数式表示:a、b两数的平方差为 ,a、b两数差的平方为 ,a、b两数的平均值为 .题型3:用字母表示图形面积3.已知如图,计算图中阴影部分的面积,最简结果为 .【变式3-1】如图,把7个长和宽分别为a,b的小长方形(图1),拼接在一起构成如图2所示的长方形ABCD,则图中阴影部分的面积为 .(用含有a,b的代数式表示)【变式3-2】如图,某广场长为a米,宽为b米,四个角铺了四分之一圆的草地面积,若圆的半径为r米,用含a、b、r的代数式表示空白广场面积共有 平方米.单项式的系数:单项式中的数字因数叫做这个单项式的系数.注意:(1)确定单项式的系数时,最好先将单项式写成数与字母的乘积的形式,再确定其系数;(2)圆周率π是常数.单项式中出现π时,应看作系数;(3)当一个单项式的系数是1或-1时,“1”通常省略不写;(4)单项式的系数是带分数时,通常写成假分数,如:2114x y写成254x y.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.注意:单项式的次数是计算单项式中所有字母的指数和得到的,计算时要注意以下两点:(1)没有写指数的字母,实际上其指数是1,计算时不能将其遗漏;(2)不能将数字的指数一同计算.题型4:确定单项式的系数和次数4.单项式的系数和次数分别是( )A.和3B.和2C.和4D.和2【变式4-1】单项式﹣3πxy2z3的系数和次数分别是( )A.﹣3π,6B.3π,6C.3,7D.﹣3,7【变式4-2】单项式系数为 ,次数为 .题型5:单项式的概念与求字母的值5.若单项式的系数是m,次数是n,则m+n=( )A.B.C.D.【变式5-1】若关于x、y的单项式2xy m与﹣ax2y2系数、次数相同,试求a、m的值?【变式5-2】若(m+n)x2y n+1是关于x,y的五次单项式且系数为6,试求m,n的值.【变式5-3】已知﹣ax b y a 是关于字母x、y的一个五次单项式,且系数为4,求(a+b)(a﹣b)+a的值.多项式多项式的概念:几个单项式的和叫做多项式.多项式的项:每个单项式叫做多项式的项,不含字母的项叫做常数项.多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数.注意:(1)多项式的每一项包括它前面的符号.(2)一个多项式含有几项,就叫几项式,如:2627x x--是一个三项式.(3)多项式的次数不是所有项的次数之和,而是多项式中次数最高的单项式的次数.(4)一个多项式中的最高次项有时不止一个,在确定最高次项时,都应写出.题型6:多项式的相关概念及识别6.下列各式中,﹣xyz+1,r2,π﹣1,﹣1,是多项式的有( )A.1个B.2个C.3个D.4个【变式6-1】对于多项式2x3+3x2﹣1,下列说法中错误的是( )A.多项式的次数是3B.二次项系数为3C.一次项系数为0D.常数项为1【变式6-2】多项式是 次 项式.题型7:多项式的相关概念求字母的值7.若﹣x n y2n+1z+x2y+4是五次三项式,求正整数n的值.【变式7-1】已知多项式﹣3x2y m﹣1+x3y﹣3x4﹣1是五次四项式,且单项式2x2n y的次数与该多项式的次数相同.(1)求m、n的值;(2)把这个多项式按x的降幂排列.【变式7-2】已知多项式﹣3x3y m +1+xy 2﹣x 3+6是六次四项式,单项式πx n y 5﹣m 的次数与这个多项式的次数相同,求m n的值.整式单项式与多项式统称为整式.注意:(1)单项式、多项式、整式这三者之间的关系如图所示.即单项式、多项式必是整式,但反过来就不一定成立.(2)分母中含有字母的式子一定不是整式.题型8:整式概念及分类8.下列式子中:﹣a,,x﹣y,,8x3﹣7x2+2,整式有( )A.2个B.3个C.4个D.5个【变式8-1】下列代数式:(1)mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有( )A.3个B.4个C.6个D.7个【变式8-2】已知:m,2x+6,﹣xy,,0,π,,其中整式有( )A.3个B.4个C.6个D.7个把下列代数式的序号填入相应的横线上:①a2b+ab2+b3②③④⑤0⑥﹣x+⑦⑧3x2+⑨⑩(1)单项式 (2)多项式 (3)整式 (4)二项式 .题型9:代入法求整式的值9.已知:2a﹣b=3,m+3n=4,求代数式6a﹣3b﹣m﹣3n的值.【变式9-1】已知|a ﹣2|+|b ﹣3|+|c +|=0,求2a ﹣3b +c 的值.【变式9-2】若x ﹣2y 2+1的值为3,求代数式3x ﹣6y 2+4的值.题型10:利用整式表示图形变化规律10.为了庆祝六一儿童节,某一幼儿园举行用火柴摆“金鱼”比赛,如图所示:按照上面的规律,摆N 个金鱼需要用火柴棒的根数为( )A .2+6nB .6n +8C .8nD .4n +4【变式10-1】搭一个正方形需要4根火柴棒,按照图中的方式搭n 个正方形需要( )根火柴棒.A .4nB .4+3(n ﹣1)C .3nD .4n ﹣(n +1)【变式10-2】观察下列图形的构成规律,根据此规律,第9个图形中有 个圆.一、单选题1.下列各式 −15a 2b 2 , 12x−1 ,-25, x−y 2 , a 2−2ab +b 中单项式的个数有( ) A .4个B .3个C .2个D .1个2.多项式x﹣xy+1的次数与最高次数项的系数分别是( )A.1,﹣1B.2,﹣1C.2,1D.1,13.多项式x2+2xy−y3−1是( )4A.三次三项式B.二次四项式C.三次四项式D.二次三项式4.多项式2a2b−a b2−a的项数及次数分别是( )A.3,3B.3,2C.2,3D.2,25.若(x+3)(x﹣1)=x2﹣mx+n,则m+n的值为( )A.﹣5B.2C.1D.﹣16.下列说法中正确的是( )A.a是单项式B.2πr2的系数是2abc的次数是1D.多项式9m2﹣5mn﹣17的次数是4 C.﹣23二、填空题7.πx2y系数是 ;次数是 .78.单项式−2πa2b的系数是 。
整式的加减单元复习与巩固(基础)知识讲解及巩固练习
![整式的加减单元复习与巩固(基础)知识讲解及巩固练习](https://img.taocdn.com/s3/m/35b886dae53a580217fcfe04.png)
2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、整式的相关概念1.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式.(1)3a - (2)5 (3)2b a - (4)2x y - (5)3xy (6)x π (7)5m n + (8)1+a% (9)1()2a b h + 【答案与解析】解:整式:(1)、(2)、(4)、(5)、(6)、(7)、(8)、(9)单项式:(2)、(5)、(6),其中:5的系数是5,次数是0;3xy 的系数是3,次数是2;x π的系数是1π,次数是1. 多项式:(1)、(4)、(7)、(8)、(9),其中: 3a -是一次二项式;2xy -是一次二项式;5m n +是一次二项式;1+a%是一次二项式; 1()2a b h +是二次二项式。
【总结升华】①分母中出现字母的式子不是整式,故2b a -不是整式;②π是常数而不是字母,故x π是整式,也是单项式;③(7)、(9)表示的是加、减关系而不是乘积关系,而单项式中不能有加减.如5m n +其实质为55m n +,1()2a b h +其实质为1122ah bh +. 举一反三:【变式1】(1)3xy -的次数与系数的和是________;(2)已知单项式26x y 的系数是等于单项式52m x y -的次数,则m =________;(3)若n ma b 是关于a 、b 的一个五次单项式,且系数为9,则-m+n =________.【答案】 (1)3 (2)1 (3)-5【变式2】多项式432231y y y y -+-+是________次________项式,常数项是________,三次项是________.【答案】四,五, 1 , 3y -【变式3】把多项式321325x x x --+按x 的降幂排列是________.【答案】322531x x x -+-+ 类型二、同类项及合并同类项2.(2015•遵义)如果单项式﹣xy b+1与x a ﹣2y 3是同类项,那么(a ﹣b )2015= . 【答案】1.【解析】解:由同类项的定义可知a ﹣2=1,解得a=3,b+1=3,解得b=2,所以(a ﹣b )2015=1.【总结升华】考查了同类项,要求代数式的值,首先要求出代数式中的字母的值,然后代入求解即可.举一反三:【变式】若47a x y 与579b x y -是同类项,则a =________,b =________. 【答案】 5 , 4 类型三、去(添)括号3. 计算 22232(12)[5(436)]x x x x x -----+【答案与解析】解法1: 22232(12)[5(436)]x x x x x -----+222324(5436)x x x x x =-+--+- 2234236x x x x =+---+224x x =++解法2:22232(12)[5(436)]x x x x x -----+2223245(436)x x x x x =-+-+-+ 22242436x x x x =-+-+-+224x x =++【总结升华】根据多重括号的去括号法则,可由里向外,也可由外向里逐层推进,在计算过程中要注意符号的变化.若括号前是“-”号,在去括号时,括号里各项都应变号,若括号前有数字因数,应把数字因数乘到括号里,再去括号.举一反三:【变式1】下列式子中去括号错误的是( ).A .5x -(x -2y +5z )=5x -x +2y -5zB .2a 2+(-3a -b )-(3c -2d )=2a 2-3a -b -3c +2dC .3x 2-3(x +6)=3x 2-3x -6D .-(x -2y )-(-x 2+y 2)=-x +2y +x 2-y 2【答案】C【变式2】化简:-2a+(2a -1)的结果是( ).A .-4a -1B .4a -1C .1D .-1【答案】D类型四、整式的加减4. 求比多项式22523a a ab b --+少25a ab -的多项式.【答案与解析】解:依题意,列式为:222(523)(5)a a ab b a ab --+-- 2225235a a ab b a ab =--+-+222a ab b =--+【总结升华】当整式是一个多项式,不是一个单项式时,应用括号把一个整式作为一个整体来加减.举一反三: 【变式】计算:11(812)3(22)32a abc c b ---+-+ 【答案】原式11466632a abc c b =-++-+ 1106a b =-+类型五、化简求值5. (1)直接化简代入已知12x =,1y =-,求225(23)2(43)x y x x x y ---的值. (2)条件求值 (烟台)若523m x y +与3n x y 的和是单项式,则n m =________.(3)整体代入已知x 2-2y =1,那么2x 2-4y+3=________.【答案与解析】解:(1)5(2x 2y -3x )-2(4x -3x 2y )=10x 2y -15x -8x+6x 2y=16x 2y -23x当12x =,y =-1时,原式=211233116(1)2342222⎛⎫⨯⨯--⨯=--=- ⎪⎝⎭. (2) 由题意知:523m xy +和3n x y 是同类项,所以m+5=3,n =2,解得,m =-2,n =2,所以2(2)4n m =-=.(3)因为222432(2)3x y x y -+=-+, 而221x y -=所以22432135x y -+=⨯+=.【总结升华】整体代入求值的一般做法是对代数式先进行化简,然后找到化简结果与已知条件之间的联系.举一反三:【变式1】(2015•娄底)已知a 2+2a=1,则代数式2a 2+4a ﹣1的值为( )A .0B .1C .﹣1D .﹣2【答案】B【变式2】已知25m n -+=,求25(2)6360m n n m -+--的值.【答案】225(2)63605(2)3(2)60m n n m m n n m -+--=-+-- 225m n n m -+=-=所以,原式=255356080⨯+⨯-=. 类型六、综合应用6. 已知多项式 是否存在m ,使此多项式与x 无关?若不存在,说明理由;若存在,求出m 的值.【答案与解析】 解:原式要使原式与x 无关,则需该项的系数为0,即有260m -=,所以3m = 答:存在m 使此多项式与x 无关,此时m 的值为3.【巩固练习】一、选择题1.已知a 与b 互为相反数,且x 与y 互为倒数,那么|a+b|-2xy 的值为( ).A .2B .-2C .-1D .无法确定2.(2015•厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .﹣2xy 2B . 3x 2C . 2xy 3D .2x 3()()22222mx -x +3x +1-5x -4y +3x 2222(215)(33)41(26)41m x x y m x y =--+-++=-++3.有下列式子:12x yz +,2b ,2323x x --,abc ,0,y x ,x ,a b ab+,对于这些式子下列结论正确的是( ).A .有4个单项式,2个多项式B .有5个单项式,3个多项式C .有7个整式D .有3个单项式,2个多项式4.对于式子421.210x y -⨯,下列说法正确的是( ).A .不是单项式B .是单项式,系数为-1.2×10,次数是7C .是单项式,系数为-1.2×104,次数是3D .是单项式,系数为-1.2,次数是35.下面计算正确的是( ).A .32x -2x =3B .32a +23a =55aC .3+x =3xD .-0.25ab +41ba =0 6.2a -(5b -c+3d -e )=2a □5b □c □3d □e ,方格内所填的符号依次是( ).A .+,-,+,-B .-,-,+,-C .-,+,-,+D .-,+,-,-7.某工厂现有工人a 人,若现有工人数比两年前减少了35%,则该工厂两年前工人数为( ).A .135%a +B .(1+35%)aC .135%a - D .(1-35%)a 8.若2237y y ++的值为8,则2469y y +-的值是( ).A .2B .-17C .-7D .7二、填空题9.比x 的15%大2的数是________.10.(2015•岳阳)单项式﹣x 2y 3的次数是 .11.22372x y x -++是________次________项式,最高次项的系数是________. 12.化简:2a -(2a -1)=________.13.如果24a ab +=,21ab b +=-,那么22a b -=________.14.一个多项式减去3x 等于2535x x --,则这个多项式为________.15.若单项式22m n x y +-与单项式323m y x 的和是单项式,那么3m n -= .16.如图所示,外圆半径是R 厘米,内圆半径是r 厘米,四个小圆的半径都是2厘米,则图中阴影部分的面积是________平方厘米.三、解答题17.(2014秋•镇江校级期末)合并同类项①3a ﹣2b ﹣5a+2b②(2m+3n ﹣5)﹣(2m ﹣n ﹣5) ③2(x 2y+3xy 2)﹣3(2xy 2﹣4x 2y )18.已知:2263A x x =+-,213B x x =--,2451C x x =--,当32x =-时,求代数式32A B C -+的值.19. 计算下式的值:其中114x ,y ,==-甲同学把14x =错抄成14x =-,但他计算的结果也是正确的,你能说明其中的原因吗?【答案与解析】一、选择题1. 【答案】B【解析】根据已知条件,a 与b 互为相反数,即a+b =0,x 与y 互为倒数,即xy =1,所以|a+b |-2xy =0-2×1=-2,故选B .2.【答案】D .【解析】此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A 、﹣2xy 2系数是﹣2,错误;B 、3x 2系数是3,错误;C 、2xy 3次数是4,错误;D 、2x 3符合系数是2,次数是3,正确;故选D .3. 【答案】A【解析】单项式有2b ,abc ,0,x ;多项式有12x yz +,2323x x --,其中y x ,a b ab +不是整式.4.【答案】 C【解析】此单项式的系数是以科学记数法形式出现的数,所以系数为-1.2×104,次数应为x 与y 的指数之和,不包括10的指数4,故次数为3.不要犯“见指数就相加”的错误.所以正确答案为C .5. 【答案】D6.【答案】 C【解析】因为括号前是“-”号,所以去括号时,括号里各项都变号,故选C .7. 【答案】C【解析】把减少前的工人数看作整体“1”,已知一个数的(1-35%)是a ,求这个数,则是135%a -,注意列式时不能用“÷”号,要写成分数形式. 8.【答案】C)4()2()242(33432242234y y x x y y x x y x y x x -+-++----【解析】22378y y ++=,2231y y +=,22462(23)212y y y y +=+=⨯=,故24697y y +-=-.二、填空题9.【答案】15%x+210.【答案】5.11.【答案】三, 三 , 12- 【解析】多项式的次数取决于次数最高项的次数,确定系数时不要忽视前面的“-”号.12.【答案】1【解析】先根据去括号法则去括号,然后合并同类项即可,2a -(2a -1)=2a -2a+1=1.13.【答案】5【解析】用前式减去后式可得225a b -=.14.【答案】255x -【解析】要求的多项式实际上是2(535)3x x x --+,化简可得出结果.15.【答案】 1【解析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义,可得1m =,2n =.16.【答案】22(16)R r πππ--【解析】阴影部分的面积=大圆面积-最中间的圆的面积-4个小圆的面积.三、解答题17.【解析】解:(1)原式=(3a ﹣5a )+(﹣2b+2b )=﹣2a ;(2)原式=2m+3n ﹣5﹣2m+n+5=(2m ﹣2m )+(3n+n )+(﹣5+5)=4n ;(3)原式=2x 2y+6xy 2﹣6xy 2+12x 2y=(2x 2y+12x 2y )+(6xy 2﹣6xy 2)=14x 2y .18.【解析】解:∵222263,31,45 1.A x x B x x C x x ⎧=+-⎪=--+⎨⎪=--⎩ ∴ 222263,3393,2810 2.A x x B x x C x x ⎧=+-⎪⎪-=+-⎨⎪=--⎪⎩∴2321358A B C x x -+=+- 当32x =-时, 32A B C -+33915117303213()5()81388132242444=⨯-+⨯--=⨯--=--=. 19. 【解析】解: ∵化简结果与x 无关 ∴将x 抄错不影响最终结果.43224223433432242234333(242)(2)(4)242242yx x y x y x x y y x x y y x x y x y x x y y x x y y ----++-+-----+-- =+- = 。
(完整)整式知识点梳理、经典例题、课堂练习(带答案解析),推荐文档
![(完整)整式知识点梳理、经典例题、课堂练习(带答案解析),推荐文档](https://img.taocdn.com/s3/m/c040c98ce2bd960591c6774b.png)
n 个图中平行四边形的个数是( )
A. 3n
B. 3n(n 1)
(1
(2
(3
)
图)2
)
……
C. 6n
D. 6n(n 1)
11.(2008 枣庄)已知代数式 3x2 4x 6 的值为 9,则 x2 4 x 6 的值为( ) 3
A.18
B.12
C.9
D.7
12.(2010 北京西城) x 1 y 3 2 0 ,则 (xy)2 的值是( )
m3 4m m(m2 4) m(m 2)(m 2)
【答案】: m(m 2)(m 2)
【例 4】(2009 山西,19(1),4 分)计算: (x 3)2 (x 1)(x 2) .
【解析】原式= x2 6x 9 (x2 3x 2)
= x2 6x 9 x2 3x 2) =9 x 7
(2) 多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单
项式,再把所得的商相加。
12、分解因式:把一个多项式化成几个整式的积的形式。 13、分解因式的一般方法: (1) 提公共因式法; (2) 运用公式法;
(3) 十字相乘法;
14、分解因式的步骤:
(1) 先看各项有没有公因式,若有,则先提取公因式; (2) 再看能否使用公式法; (3) 用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的
1.3 整式
【考纲说明】
1、理解整式加、减、乘法运算的法则,会进行简单的整式加、减、乘法运算。 2、用平方差公式、完全平方公式进行简单计算,用提取公因法、公式法进行因式分解。
【知识梳理】
1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算, 但除式中不含字母的一类代数式。
中考数学复习之整式,整式的概念与整式的运算基础练习题
![中考数学复习之整式,整式的概念与整式的运算基础练习题](https://img.taocdn.com/s3/m/9650df68b207e87101f69e3143323968011cf4ce.png)
3. 整式知识过关2. 整式的加减 (1)同类项:_______相同,且_____和___也分别相同的项,所有的____都是同类项. (2)合并同类项的法则:_____和____不变,________.(3)去括号法则:当括号前面是“+”时,把括号和它前面的“+”去掉,括号内各项都___; 当括号前面是“—”时,把括号和它前面的“—”去掉,括号内各项都_______。
(4)整式的加减:先_______,再________5. 乘法公式(1)平方差公式:=-+))((b a b a __________ (2)完全平方式:=±)(b a _________ 考点分类:考点1 同类项的概念例1若a y x 3-与y x b 是同类项,则a+b 的值是( )A.2B.3C.4D.5考点2 幂的运算例2下列运算正确的是( )A. 6328)2(a a -=-B.6332a a a =+C.236a a a =÷D.3332a a a =⋅考点3 整式的运算例3 下列运算正确的是( )A. 22223x x x =-B.222)2(a a -=-C.222)(b a b a +=+D.12)1(2--=--a a考点4 乘法公式例4 下列计算正确的是( )A. 222)(y x y x +=+B.2222)(y xy x y x --=-C.222)2)(2(y x y x y x -=-+D.2222)(y xy x y x +-=+-考点5代数式的值例5 (1)先化简再求值:(a +2)(a -2)+a (1-a ),其中a =5(2) 已知352=-x x ,求代数式的值:1)1()12)(1(2++---x x x方法指引:整体代入思想若0532=--y x ,则6262--x y =_________.真题演练1.下列运算正确的是()A.a2•a2=2a4B.a3+a3=2a6C.(a3)2=a6D.a6÷a2=a3 2.若关于x的二次三项式4x2+(m﹣1)x+1是一个完全平方式,则m的值为()A.m=﹣5B.m=﹣3C.m=5或m=﹣3D.m=﹣5或m=3 3.下列计算正确的是()A.a3•a4=a6B.(﹣a)3÷(﹣a)2=﹣aC.a2+a2=2a4D.(﹣3mn)2=﹣6m2n24.若a m=3,a n=2,则a2m﹣n的值为()A.6B.9C.4.5D.15.若x m=2,x m+n=6,则x n=()A.2B.3C.6D.126.代数式x2+2,1a +4,3ab27,abc,5,1π,﹣x中,整式的个数是()A.7B.6C.5D.4 7.已知(x+y)2=49,(x﹣y)2=25,则xy=()A.﹣6B.6C.12D.248.若m,n互为相反数,则2(2m﹣n﹣5)﹣9(m+13n)的值为()A.﹣5B.﹣10C.5D.10 9.下列说法正确的是()A.多项式x2﹣2x﹣1的常数项是1B.0不是单项式C.多项式2ab﹣3b+2的次数是3D.−πab24的系数是−π4,次数是310.已知(m+3)x|m+1|y3是关于x、y的五次单项式,则m的值为()A.﹣1B.1C.﹣3D.311.计算(﹣1)2n+1﹣(﹣3)2(其中n为正整数)的结果是.12.若3x=4,9y=7,则3x﹣2y的值为.13.若9x2+mxy+y2是一个完全平方式,则m=.14.已知线段AB=m,BC=n,且m2﹣mn=28,mn﹣n2=12,则m2﹣2mn+n2等于.15.若12a 6+xb 3y 与3a 3b 6是同类项,则3y 3+4x 2y ﹣4y 3﹣2x 2y = .16.计算:(1)[3xy 3+(xy )2]÷xy ; (2)(x +1)2﹣(x +2)(x ﹣2).课后作业1.一个多项式与x 2﹣3x +2的和是2x +5,则这个多项式为( ) A .x 2﹣x ﹣7B .﹣x 2﹣x ﹣3C .﹣x 2+5x +3D .x 2﹣5x ﹣32.单项式﹣3π2x 3y 的系数和次数分别是( ) A .﹣3和6B .﹣3和5C .﹣3π2和4D .﹣3π2和33.下列计算结果正确的是( ) A .a 8÷a 4=a 2 B .(﹣2ab 2)3=﹣8a 3b 6 C .(a 3)2=a 5D .(1+2a )2=4a 2+2a +14.下列计算中,正确的是( ) A .y =3x +2 B .a 6÷a 2=a 3 C .(a 2)3=a 6D .2a 2+3a 2=5a 4 5.已知单项式﹣2x m y 2的次数为5,求m 的值 . 6.添括号:x 2﹣xy +y 2=x 2﹣( ).7.我们学习的平方差公式不但可以使运算简便,也可以解决一些复杂的数学问题.尝试计算(1+12)(1+122)(1+124)(1+128)+1215的值是 . 8.已知多项式(﹣2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1)的值与字母x 的取值无关,则a = ,b = .9.若10x =a ,10x +y +2=100ab ,则10y = . 10.计算:(512)2022×(−2.4)2023= .11.若x 2﹣2(m ﹣1)xy +16y 2是完全平方式,则m = . 12.请写出一个只含有字母x ,y ,且次数不超过3的多项式: . 13.若x ﹣y ﹣3=0,则代数式x 2﹣y 2﹣6y ﹣2的值等于 .14.计算(1)(2x﹣3)(3x+2)﹣(﹣3x)2;(2)(x﹣y)2﹣(﹣x+y)(y+x);(3)先化简,再求值:[3a(ab﹣2b)﹣(ab﹣3)2+9]÷(﹣2ab),其中a=−23,b=2.15.计算:(1)(x+3)(2x﹣1)﹣5x2;(2)4x(x﹣2y)﹣(2x﹣3y)2;(3)先化简,再求值:(a+2b)2﹣(a﹣2b)(﹣a﹣2b)﹣(3a)2,其中a=﹣1,b=1 2.冲击A+18.在△ABC中,P为边AB上一点(1)如图1,若△ACP=△B,求证:AC2=AP∙AB;(2)若M为CP的中点,AC=2,△如图2,若△PBM=△ACP,AB=3,求BP的长;△如图3,若△ABC=45°,△A=△BMP=60°,直接写出BP的长.。
七年级整式知识点与习题
![七年级整式知识点与习题](https://img.taocdn.com/s3/m/5bb97f53001ca300a6c30c22590102020740f297.png)
七年级整式知识点与习题在七年级数学中,整式是一个重要的知识点。
它作为一个基础概念,会在后续的数学学习中起着重要的作用。
下面我们将详细介绍整式的概念和相关习题,帮助大家更好地理解和掌握这个知识点。
一、概念1.整式的定义整式是由常数、变量和它们的乘积和幂次构成的代数和。
例如:3x²-5x+24y³-2y其中,常数3,-5,2和变量x构成了第一个整式,常数4,-2和变量y³组成了第二个整式。
2.整式的分类目前,整式可以分为以下两类:(1)一元整式一元整式只含有一个变量,其中幂次只能为正整数。
例如:3x-54x²+2x+1(2)多元整式多元整式含有两个或两个以上的变量,其中幂次只能为非负整数。
例如:3x²y+2xy²+1x²+y二、运算法则1.加法相同幂次的项的系数相加即可。
例如:2x²+3x+1+4x²+5x-2=6x²+8x-12.减法相同幂次的项的系数相减即可。
例如:2x²+3x+1-(4x²+5x-2)=-2x²-2x+33.乘法分配律法则可用来计算多项式的乘法。
例如:(2x+3)(x-4)=2x²-5x-124.除法两个多项式相除的结果是商和余数。
例如:(2x³+4x²+3x+5)÷(x+1)=2x²+2x+1余-4三、习题1.简化下列整式:(1)6x²+2x³-4x+3x²(2)5y²+3y+2-2y²+12.请将下列整式相加或相减:(1)2x²+3x-1,3x²+2x+1(2)5y²+6y-4,-2y²-y+23.计算下列整式的积:(1)3x+4,2x-1(2)4y+1,y-34.计算下列各式子的商和余数:(1)2x³+5x²+3x+7,x+2(2)y³-3y²+5y-1,y-1以上就是关于整式知识点和习题的详细解析。
整式基本概念(通用版)(含答案)
![整式基本概念(通用版)(含答案)](https://img.taocdn.com/s3/m/1c3b25d303d8ce2f01662386.png)
整式基本概念(通用版)试卷简介:理解单项式、多项式、同类项的定义及单项式的次数与系数、多项式的项数与次数等,为后面整式的加减运算做知识准备.一、单选题(共15道,每道6分)1.下列代数式中,是单项式的是( )①;②;③;④0;⑤.A.①③⑤B.①③④C.①②③④⑤D.①④答案:D解题思路:由单项式的定义可知,①④是单项式,②③是多项式,⑤不是整式,是分式.故选D.试题难度:三颗星知识点:单项式的定义2.下列两项中,属于同类项的是( )A.与B.与C.与D.和答案:D解题思路:所含字母相同,并且相同字母的指数也相同的项叫做同类项.A选项:是常数,所以和不是同类项;B选项:所含字母不同,所以不是同类项;C选项:相同字母的指数不相同,所以不是同类项;D选项:由同类项的定义可知,是同类项.故选D.试题难度:三颗星知识点:同类项的定义3.下列各式不是同类项的是( )A.与B.与C.与D.和答案:A解题思路:A选项:所含字母相同,但是相同字母的指数不相同,所以不是同类项;B选项:是常数,由同类项的定义可知,是同类项;C选项:由同类项的定义可知,是同类项;D选项:由同类项的定义可知,是同类项.故选A.试题难度:三颗星知识点:同类项的定义4.下列说法正确的是( )A.单项式的系数是B.单项式的系数是-2,次数是4C.多项式是二次三项式D.多项式的项是和3答案:C解题思路:A选项:单项式的系数是,故A选项错误;B选项:是常数,不是字母,所以单项式的系数是,次数是3,故B选项错误;D选项:几个单项式的和叫做多项式,所以多项式的项是和-3,故D选项错误.故选C.试题难度:三颗星知识点:多项式的定义5.下列叙述中正确的是( )A.单项式的系数为-7B.单项式的系数为0C.单项式的系数为D.多项式是四项式答案:D解题思路:A选项:单项式的系数是,故A选项错误;B选项:单项式的系数为1,故B选项错误;C选项:是常数,不是字母,所以单项式的系数是,故C选项错误.故选D.试题难度:三颗星知识点:多项式的项数6.若单项式与是同类项,则的值为( )A.32B.3C.6D.12答案:C解题思路:由同类项的定义可知,,所以,.故选C.试题难度:三颗星知识点:同类项的定义7.多项式的次数、项数分别为( )A.6,4B.4,3C.3,2D.4,4答案:D解题思路:该多项式的最高次项是,由多项式的次数和项数的定义可知,该多项式的次数是4,项数是4.故选D.易错点:是常数,但误把当成了字母,错选A.试题难度:三颗星知识点:多项式的次数、项数8.多项式是( )A.四次五项式B.二次四项式C.五次四项式D.五次三项式答案:C解题思路:该多项式的最高次项是,由多项式的次数和项数的定义可知,该多项式的次数是5,项数是4,所以是五次四项式.故选C.试题难度:三颗星知识点:多项式的次数、项数9.代数式中最高次项的系数、次数分别为( )A.9,3B.-7,5C.7,5D.,6答案:B解题思路:该多项式的最高次项是,由单项式的次数和系数的定义可知,最高次项的次数是5,系数是-7.故选B.易错点:是常数,但误把当成了字母,错把当成最高次项,错选D.试题难度:三颗星知识点:多项式的定义10.已知多项式,则各项系数之和为( )A.-1B.C.0D.答案:A解题思路:由题意知,该多项式有三项,三项的系数分别为,所以各项系数之和为.故选A.试题难度:三颗星知识点:单项式的系数11.若单项式与是同类项,则的值分别为( )A.3,-2B.3,2C.-3,2D.-3,-2答案:B解题思路:由同类项的定义可知,,所以.故选B.试题难度:三颗星知识点:同类项的定义12.如果一个多项式的次数是6,则这个多项式的任何一项的次数都( )A.不小于6B.等于6C.不大于6D.小于6答案:C解题思路:多项式中次数最高的项的次数叫做多项式的次数.若这个多项式的次数是6,则这个多项式的任何一项的次数都不大于6.故选C.试题难度:三颗星知识点:多项式的次数13.若是关于的一个单项式,且系数是3,次数是4,则的值分别为( )A.3,4B.3,1C.-3,4D.-3,1答案:D解题思路:由单项式的次数和系数的定义可知,,所以.故选D.试题难度:三颗星知识点:单项式的次数、系数14.若单项式与的和仍是一个单项式,则的值分别为( )A.5,4B.4,5C.8,5D.无法确定答案:B解题思路:由题意知,这两个单项式是同类项.又由同类项的定义可知,,所以.故选B.试题难度:三颗星知识点:同类项的定义15.某班级中一个小组10人,在一次测试中,小华得了84分,其余9人的平均分为分,则这个小组的平均分数是( )A. B.C. D.答案:A解题思路:由得,这个小组的平均分数是.故选A.试题难度:三颗星知识点:列代数式。
整式的加减知识梳理、例题讲解
![整式的加减知识梳理、例题讲解](https://img.taocdn.com/s3/m/3d1904f4fab069dc50220180.png)
《整式及整式的加减》要点梳理及经典例题一、整式的有关概念1.单项式(1)概念:注意:单项式中数与字母或字母与字母之间是乘积关系,例如:2x 可以看成12x ⋅,所以2x 是单项式;而2x 表示2与x 的商,所以2x 不是单项式,凡是分母中含有字母的就一定不是单项式. (2)系数:单项式中的数字因数叫做这个单项式的系数. 例如:212x y -的系数是12-;2r π的系数是2.π 注意:①单项式的系数包括其前面的符号;②当一个单项式的系数是1或1-时,“1”通常省略不写,但符号不能省略. 如:23,xy a b c -等;③π是数字,不是字母.(3)次数:一个单项式中,所有字母指数的和叫做这个单项式的次数.注意:①计算单项式的次数时,不要漏掉字母的指数为1的情况. 如322xy z 的次数为1326++=,而不是5;②切勿加上系数上的指数,如522xy 的次数是3,而不是8;322x y π-的次数是5,而不是6.2.多项式(1)概念:几个单项式的和叫做多项式. 其含义是:①必须由单项式组成;②体现和的运算法则.(2)项:在多项式中,每一个单项式叫做多项式的项,其中不含字母的项叫常数项;一个多项式含有几个单项式就叫几项式.例如:2231x y --共含有有三项,分别是22,3,1x y --,所以2231x y --是一个三项式.注意:多项式的项包括它前面的符号,如上例中常数项是1-,而不是1.(3)次数:多项式中,次数最高项的次数,就是这个多项式的次数.注意:要防止把多项式的次数与单项式的次数相混淆,而误认为多项式的次数是各项次数之和. 例如:多项式2242235x y x y xy -+中,222x y 的次数是4,43x y -的次数是5,25xy 的次数是3,故此多项式的次数是5,而不是45312++=.3.整式:单项式和多项式统称做整式.4.降幂排列与升幂排列(1)降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来叫做把这个多项式按这个字母的降幂排列.(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来叫做把这个多项式按这个字母的升幂排列.注意:①降(升)幂排列的根据是:加法的交换律和结合律;②把一个多项式按降(升)幂重新排列,移动多项式的项时,需连同项的符号一起移动;③在进行多项式的排列时,要先确定按哪个字母的指数来排列. 例如:多项式24423332xy x y x y x y ----按x 的升幂排列为:42233432y xy x y x y x -+---;按y 的降幂排列为:42323432y x y xy x y x --+--.二、整式的加减1.同类项:所含的字母相同,并且相同字母的指数也分别相同的项叫做同类项.注意:同类项与其系数及字母的排列顺序无关. 例如:232a b 与323b a -是同类项;而232a b 与325a b 却不是同类项,因为相同的字母的指数不同.2.合并同类项(1)概念:把多项式中相同的项合并成一项叫做合并同类项.注意:①合并同类项时,只能把同类项合并成一项,不是同类项的不能合并,如235a b ab +=显然不正确;②不能合并的项,在每步运算中不要漏掉.(2)法则:合并同类项就是把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.注意:①合并同类项,只是系数上的变化,字母与字母的指数不变,不能将字母的指数相加;②合并同类项的依据是加法交换律、结合律及乘法分配律;③两个同类项合并后的结果与原来的两个单项式仍是同类项或者是0.3.去括号与填括号(1)去括号法则:括号前面是“+”,把括号和它前面的“+”去掉,括号内的各项都不变号;括号前面是“-”,把括号和它前面的“-”去掉,括号内的各项都改变符号.注意:①去括号的依据是乘法分配律,当括号前面有数字因数时,应先利用分配律计算,切勿漏乘;②明确法则中的“都”字,变符号时,各项都变;若不变符号,各项都不变. 例如:()();a b c a b c a b c a b c +-=+---=-+;③当出现多层括号时,一般由里向外逐层去括号,如遇特殊情况,为了简便运算也可由外向内逐层去括号.(2)填括号法则:所添括号前面是“+”号,添到括号内的各项都不变号;所添括号前面是“-”号,添到括号内的各项都改变符号.注意:①添括号是添上括号和括号前面的“+”或“-”,它不是原来多项式的某一项的符号“移”出来的;②添括号和去括号的过程正好相反,添括号是否正确,可用去括号来检验. 例如:()();.a b c a b c a b c a b c +-=+--+=--4.整式的加减整式的加减实质上是去括号和合并同类项,其一般步骤是:(1)如果有括号,那么先去括号;(2)如果有同类项,再合并同类项.注意:整式运算的结果仍是整式.经典例题透析类型一:用字母表示数量关系1.填空题:(1)香蕉每千克售价3元,m千克售价____________元。
北师大版七年级数学下册第一章整式的运算复习及其整理(带练习)
![北师大版七年级数学下册第一章整式的运算复习及其整理(带练习)](https://img.taocdn.com/s3/m/7687c7fb9e31433238689301.png)
第一章 整式的运算第一节 整式1.整式的有关概念:(1)单项式的定义:像1.5V ,28n π,h r 231π等,都是数与字母的乘积,这样的代数式叫做单项式.(2)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(3)多项式的概念:几个单项式的和叫做多项式.(4)多项式的次数:一个多项式中,次数最高项的次数,叫做这个多项式的次数.(5)整式的概念:单项式和多项式统称为整式.2.定义的补充: (1)单项式的系数:单项式中的数字因数叫做单项式的系数.(2)多项式的项数:多项式中单项式的个数叫做多项式的项数.(3)区别是否是整式:关键:分母中是否含有字母?分母有字母的为分式,如a 分之3是分式。
3.例题讲解:例1:下列代数式中,哪些是整式?单项式?多项式?并指出它们的系数和次数? (!)ab +c (2)ax 2+bx +c (3)-5(4)π.2y x - (5)12-x x 例2:求多项式363222+--b ab a 的各项系数之和?第二节 整式的加减一、 知识点复习:1、填空:整式包括单项式和多项式.2、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.3、所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
4、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
二、练习: 例1:下列各式,是同类项的一组是( ) (A )y x 222与231yx (B )n m 22与22m n 例2、计算:(1))134()73(22+-++k k k k (2))2()2123(22x xy x x xy x +---+例3:先化简,再求值:()[],673235222x x x x x x +++--其中x=21 例4、已知:A=x 3-x 2-1,B=x 2-2,计算:(1)B -A (2)A -3B第三节 同底数幂的乘法一、复习提问2.指出下列各式的底数与指数:(1)34;(2)a 3;(3)(a+b)2;(4)(-2)3;(5)-23.3、同底数幂的乘法法则: m n m n a a a += (,m n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 m n p m n p a a a a++=(其中m 、n 、p 均为正数);⑤公式还可以逆用: m n m n aa a +=(m 、n 均为正整数)二、巩固练习(1)107×104; (2)x 2·x 5;(3)10·102·104;(4)-a ·(-a)3;(5)(-a)2·(-a)3三、小结1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a 的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.-a 2的底数a ,不是-a .计算-a 2·a 2的结果是-(a 2·a 2)=-a 4,而不是(-a)2+2=a 4.5.若底数是多项式时,要把底数看成一个整体进行计算第四节 幂的乘方与积的乘方一、知识点复习:1. 幂的乘方法则:()m n mn a a =(,m n 都是正整数)幂的乘方,底数不变,指数相乘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式基本概念及加减运算练习
姓名________________
1.单项式233xy z π-的系数和次数分别是________________.
2. 在代数式322211231443
xy x x y m n x ab x x --+---+,,,,,,,,中,单项式有____个,多项式有____个. 3.已知单项式23m a b 与4112n a b --
的和是单项式,那么m = ,n = ; 4.多项式22352x y x --是________次_________项式,常数项是___________.
5. 一个多项式与2x -2x +1的和是3x -2,则这个多项式为_______________.
6.已知35x y -+=,则()()253835x y x y ----的值为_________________.
7.将多项式22334431x y xy x y x y -+--按字母x 的降幂排列_________________________.
8.化简()
2222333a b a b ab ab ---= . 9.计算:
(1)()()22m n m n +-- (2)()()234x x ---+
10.计算:
(1)()()23232332x x y x x y z --++-+ (2)()()4234xy z xy xy z -----
11.计算:
(1)()22284225m m m m m ⎡⎤----⎣⎦ (2)()()22223252ab a b ba a ab ⎡⎤----++⎣⎦
12.先化简,再求值:
(1)()22222235432x y xy xy x y ⎡⎤---+⎣⎦
,其中3x =-,2y =.
(2)()22223224x y x y xyz x y x z xyz ⎡⎤-----⎣⎦
,其中2x =-,3y =-,1z =.
13.已知A =33222334x y x y xy xy -++-+,B=33224333y x x y xy xy ----+,C=322266y x y xy xy +++-,试说明对于x ,y 的任何值A+B+C 是常数.
14.贺思轩在计算某多项式减去2235a a +-的差时,误认为是加上2235a a +-.此时求得的结果为24a a +-.(1)求这个多项式;(2)正确结果是多少?。