武汉纺织大学概率论与数理统计总复习
概率论与数理统计总复习
pi
1 1 1 5 5
5 1 5 1 5
1
1 65 EXY xi y j Pij COV ( X , Y ) EXY EX EY 8 8 i j
COV ( X , Y ) 3 20 320 DX DY
6. 设随机变量X ~N (1,3 ), Y ~ N (0, 4 ),已知
X z M z Y z
由于 X 和 Y 相互独立,于是得到 M = max(X,Y) 的分布 函数为: FM(z) =P(X≤z)P(Y≤z)
即有 FM(z)= FX(z)FY(z)
2. N = min(X,Y) 的分布函数 FN(z)=P(N≤z) =1-P(N>z)
=1-P(X>z,Y>z)
例1 设 X 具有概率密度f X ( x ), 求 Y=X2 的概率密度.
解 设Y 和 X 的分布函数分别为 FY ( y)和 FX ( x),
2
注意到Y X 0, 故当y 0时有,FY ( y) P(Y y) 0
当 y>0 时,
2 P ( X y) FY ( y ) P(Y y )
P ( y X y ) FX ( y ) FX ( y )
FY y P Y y
求导可得
1 f X ( y ) f X ( y ) , dFY ( y ) fY ( y ) 2 y dy 0,
y0 y0
若
1 fX ( x) 2
2、解:设 X 表示电子管寿命,
Y 表示5个电子管使用1000小时后损坏的个数。则
Y ~ b(5, p),其中p P( X 1000 ) x 1 e 1000 , x 0 f ( x) 1000 0, 其他
概率论与数理统计期末复习
概率统计期末知识点复习一、概率计算⒈事件的关系和运算⑴ 子事件(事件的包含)B A ⊂:若A 发生,则B 必然发生; ⑵ 相等事件A B =:B A ⊂且A B ⊃; ⑶ 并事件B A :“,A B 中至少发生一个”; ⑷ 交(积)事件AB :“,A B 都发生”; ⑸ 互不相容(互斥)事件:AB =∅; ⑹ 对立事件:若AB =Ω,且AB =∅,称B 为A 的对立事件,记为A B =.⑺ 差事件B A -:“A 发生,而B 不发生”. ⑻ 事件的运算律 ①交换律:A B B A =,AB BA =;②结合律:()()A B C A B C =,()()AB C A BC =; ③分配律:()A B C ACBC =,()()()AB C A C B C =;④摩根律:AB A B =,AB A B =.⒉概率计算的基本公式⑴非负性:设A 为任一随机事件,则0()1P A ≤≤. ⑵规范性:()1P Ω=,()0P ∅=. ⑶并事件概率计算公式:()()()()P AB P A P B P AB =+-;()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+.如果事件12,n A A A ,,两两互不相容,则1212()()()()n n P A A A P A P A P A =+++.⑷差事件概率计算公式:()()()()()P A B P AB P A AB P A P AB -==-=-; 若B A ⊂,则①()()()P A B P A P B -=-; ②()()P B P A ≤. ⑸对立事件概率计算公式:()1()P A P A =-.1A 2A 3A nA 21(|)P A A 1()P A 312(|)P A A A11(|)nnP A AA -B2A ∙1A nA 1()P A 2()P A ()n P A 1()P B A 2()P B A ()n P B A ⒊条件概率公式、乘法公式 ⑴条件概率:()P B A .①公式法:()(),()0()P AB P B A P A P A =>;②代入法:改变样本空间直接计算.⑵乘法公式:()0P A >,有()()()P AB P A P B A =. 设12()0n P A A A >,2n ≥,则12()n P A A A 12131211()(|)(|)(|)-=n n P A P A A P A A A P A A A .适用范围:链式结构⒋全概公式、逆概公式 ⑴全概率公式:1,,n A A 为一完备事件组,则1()()()ni i i P B P A P B A ==∑.适用范围:并列结构⑵贝叶斯公式(逆概公式):1()()()()()i i i nkkk P A P B A P A B P A P B A ==∑.⒌古典概型、几何概型、贝努里概型 ⑴古典概型:()A P A =事件所含样本点的个数所有样本点的个数.掌握简单的排列组合.⑵几何概型:()A P A =Ω的几何测度的几何测度,其中几何测度分别为长度或面积.对比均匀分布.⑶贝努里概型:在n 重贝努里试验中事件A 恰好发生k 次的概率为(1)kkn kn C p p --,其中0,1,2,,k n =,()p P A =,01p <<.对比二项分布.⒍事件的独立性⑴事件A 和B 相互独立的直观理解为事件A 和B 各自发生与否没有任何关系.并会根据实际问题判断事件A 和B 的独立性.⑵事件,A B 相互独立()()()P AB P A P B ⇔=(|)()(()0)P B A P B P A ⇔=>.⑶,,A B C 两两独立⇔()()(),()()(),()()().P AB P A P B P AC P A P C P BC P B P C =⎧⎪=⎨⎪=⎩⑷,,A B C 相互独立⇔,,()()()().A B C P ABC P A P B P C ⎧⎨=⎩两两独立,⑸独立性的有关结论:①设()0P B >,则事件A 和B 相互独立的充要条件为()()P A B P A =.②设,A B 为两个随机事件,如果A 和B 相互独立,则A 和B 相互独立;A 和B 相互独立; A 和B 也相互独立.③设,A B 为两个随机事件,且0()1P B <<,则A 和B 相互独立的充要条件为()()P A B P A B =.④如果随机事件12,,,n A A A 相互独立,则12,,,n A A A 的任一部分事件(至少两个事件)也相互独立.⑤如果随机事件12,,,n A A A 相互独立,则分别将i A 不变或换成i A 后所得事件仍相互独立.例如12,,,n A A A ,12,,,n A A A 等也分别相互独立.⑥如果随机事件1212,,,,,,,m n A A A B B B 相互独立,则由12,,,m A A A 组成的随机事件与由12,,,n B B B 组成的随机事件相互独立.⒎切比雪夫不等式(估计概率) 设μ=EX,2σ=DX ,则对任意的0ε>,有22{}1P X σμεε-<≥- 或22{}P X σμεε-≥≤.⒏利用分布计算概率⑴利用分布函数计算概率:①{}()()P a X b F b F a <≤=-,000{}()(0)P X x F x F x ==--等等. ②1212{,}<≤<≤P x X x y Y y 22211211(,)(,)(,)(,)F x y F x y F x y F x y =--+. ⑵利用分布律计算概率:①{}P X L ∈=i ix Lp ∈∑. ②(,){(,)}i j ij x y DP X Y D p ∈∈=∑.⑶利用密度函数计算概率:①{}{}P a X b P a X b <≤=≤≤{}P a X b =≤<{}P a X b =<<()b af x dx =⎰.②{(,)}(,)DP X Y D f x y dxdy ∈=⎰⎰.③00{}()X Y LP X L Y y f x y dx ∈==⎰;00{}()Y X LP Y L X x f y x dy ∈==⎰.二、随机变量的分布⒈分布函数及性质⑴一维随机变量的分布函数:(){},F x P X x x =≤-∞<<+∞. ⑵一维随机变量分布函数的性质:①0()1F x ≤≤; ②()0F -∞=,()1F +∞=; ③()F x 处处单调不减; ④()F x 处处右连续. ⑶二维随机变量的分布函数:(,){,}=≤≤F x y P X x Y y ,2(,)x y R ∈. ⑷二维随机变量分布函数的性质: ①0(,)1F x y ≤≤,其中2(,)x y R ∈;②(,)1,(,)(,)(,)0F F x F y F +∞+∞=-∞=-∞=-∞-∞=; ③(,)F x y 分别为关于变量x 和y 单调不减的函数; ④(,)F x y 分别关于变量x 和y 处处右连续. ⒉分布律及性质⑴一维离散型随机变量的分布律:{}i i P X x p ==,1,2,i =;或1212~i ix x x X p p p ⎛⎫⎪⎝⎭. ⑵一维离散型随机变量分布律的性质:①0i p ≥,1,2,i =; ②1iip=∑.⑶二维离散型随机变量的分布律:{,}i j ij P X x Y y p ===,1,2,,1,2,i j ==;或2j y121j p⑷二维离散型随机变量分布律的性质: ①0ij p ≥,1,2,,1,2,i j ==; ②1ijijp=∑∑.⒊密度函数及性质⑴一维连续型随机变量的密度()f x :()f x 满足()()x F x f t dt -∞=⎰,x -∞<<+∞.⑵一维连续型随机变量密度函数的性质: ①()0,(,)f x x ≥∈-∞+∞; ②()1f x dx +∞-∞=⎰.⑶二维连续型随机变量的密度(,)f x y :(,)f x y 满足(,)(,)x yF x y f u v dudv -∞-∞=⎰⎰,2(,)x y R ∈.⑷二维连续型随机变量密度函数的性质: ①(,)0≥f x y ,2(,)x y R ∈; ②(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰.⒋常见分布及其数字特征⑴01-分布~(1,)X B p :1{}(1)k k P X k p p -==-,0,1;,k EX p DX pq ===. ⑵二项分布(,)B n p :{}(1),0,1,2,,,01kkn kn P X k C p p k n p -==-=<<;,EX np DX npq ==.应用背景..:记X 为n 重贝努利试验中A 发生的次数..,则(,)X B n p .⑶泊松分布()P λ:{},0,0,1,2,!kP X k e k k λλλ-==>=,EX DX λ==.⑷均匀分布~[,]X U a b :1,,()0,a x b f x b a ⎧<<⎪=-⎨⎪⎩其它.()2,212b a a b EX DX -+==. ⑸指数分布()E λ:,0,()00,0.x e x f x x λλλ-⎧>=>⎨≤⎩,211,EX DX λλ==.⑹正态分布X ~),(2σμN:22()2()x f x μσ--=,x -∞<<+∞;2,EX DX μσ==.5.常见分布的性质⑴(了解)设随机变量12,,,n X X X 相互独立,且~(,),1,2,,i i X B n p i n =,则11~(,)nnii i i XB n p ==∑∑.特别地,设随机变量12,,,n X X X 相互独立,且~(1,),1,2,,i X B p i n =,则1~(,)nii XB n p =∑.反之,服从二项分布(,)B n p 的随机变量X 可以分解为n 个相互独立,且均服从(1,)B p 的随机变量12,,n X X X 之和.⑵(了解)设随机变量12,,,n X X X 相互独立,且~(),1,2,,i i X P i n λ=,则11~()nnii i i XP λ==∑∑.⑶(了解)设随机变量12,,,n X X X 相互独立,且~(),1,2,,i i X E i n λ=,则121min{,,,}~()nn i i X X X E λ=∑.⑷(了解)设随机变量12~[,]X U θθ,则12~[,](0)aX b U a b a b a θθ+++>;21~[,](0)aX b U a b a b a θθ+++<.⑸(了解)设二维随机变量(,)X Y 服从均匀分布,,,U aX bY V cX dY =+⎧⎨=+⎩且0ad bc -≠,则(,)U V 也服从均匀分布.⑹设随机变量2~(,)X N μσ,则22~(,)Y aX b N a b a μσ=++,其中0a ≠.特别地,~(0,1)X N μσ-.⑺设随机变量12,,,n X X X 相互独立,且2~(,),1,2,,i i i X N i n μσ=,12,,,n a a a 是不全为零的常数,则22111~(,)n n ni i i i i i i i i a X N a a μσ===∑∑∑.特别地,设随机变量12,,,n X X X 相互独立,且2~(,),1,2,,i X N i n μσ=,则211~(,)n i i X N n nσμ=∑. ⑻设二维随机变量(,)X Y 服从二维正态分布,,,U aX bY V cX dY =+⎧⎨=+⎩且0ad bc -≠,则(,)U V 也服从二维正态分布.⑼设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X 和Y 相互独立⇔0ρ=.⒌边缘分布 ⑴离散型{}i ij jP X x p ==∑,1,2,i =;{}j ijiP Y y p==∑,1,2,j =.关于X 的边缘分布律可对表中的i j p 进行纵向求和即得;关于Y 的边缘分布律可对表中的i j p 进行横向求和即得.⑵连续型()(,)X f x f x y dy +∞-∞=⎰,x -∞<<+∞;()(,)Y f y f x y dx +∞-∞=⎰,y -∞<<+∞.()X f x 可通过在给定点x 处,),(y x f 的纵向积分(对y 从-∞到+∞积分)求得,()Y f y 可通过在给定点y 处,),(y x f 的横向积分(对x 从-∞到+∞积分)求得.⒍条件分布 ⑴离散型1212()~i jj ij j jjjx x x p p p X Y y p pp⎛⎫⎪= ⎪ ⎪⎝⎭;1212()~j ij i i i iiiy y y p Y X x p p p p p ⎛⎫⎪= ⎪ ⎪⎝⎭. ⑵连续型(,)()()X Y Y f x y f x y f y =,x -∞<<+∞;(,)()()Y X X f x y f y x f x =,y -∞<<+∞.⒎随机变量的独立性⑴随机变量X 和Y 相互独立的直观意义是指X 和Y 的各自取值情况没有任何关系. ⑵利用分布函数:(,)()()X Y F x y F x F y =. ⑶利用分布律:ij i j p p p =,1,2,,1,2,i j ==.⑷利用密度函数:(,)()()X Y f x y f x f y =. ⑸随机变量独立性的有关结论①设随机变量X 与Y 相互独立,则对任意实数集合12,L L ,有1212{,}{}{}P X L Y L P X L P Y L ∈∈=∈∈.②如果随机变量12(,,,)m X X X 和12(,,,)n Y Y Y 相互独立,,g h 分别为m 元连续函数和n 元连续函数,则随机变量12(,,,)m g X X X 与12(,,,)n h Y Y Y 也相互独立.特别地,设随机变量X 与Y 相互独立,(),()g x h y 是连续函数,则随机变量()g X 与()h Y 也相互独立.⒏随机变量函数的分布⑴离散型随机变量函数的分布可直接列表求得. ⑵连续型随机变量函数分布采用分布函数法①()Y g X =:先求()(){}{()}()Y X g x yF y P Y y P g X y f x dx ≤=≤=≤=⎰,②(,)Z g X Y =:先求(,)(){}{(,)}(,)Z g x y zF z P Z z P g X Y z f x y dxdy ≤=≤=≤=⎰⎰,然后对y 或z 进行讨论然后求导数.⑶熟记1max i i nM X ≤≤=和1min i i nN X ≤≤=的分布函数和密度函数公式.①若随机变量12,,,n X X X 相互独立,i X 的密度函数为()i f x ,分布函数为()i F x ,1,2,,i n =,则M 和N 的分布函数(),()M N F x F x 和密度函数(),()M N f x f x 分别为12(){}()()()M n F x P M x F x F x F x =≤=,()()M Mf x F x '=; ()()()12(){}1[1][1][1]N n F x P N x F x F x F x =≤=----,()()N Nf x F x '=. ②当12,,,n X X X 独立同分布时,()()i f x f x =,()()i F x F x =,1,2,,i n =,则 ()[()]n M F x F x =,1()[()]()n M f x n F x f x -=;()1[1()]n N F x F x =--,1()[1()]()n N f x n F x f x -=-.⒐数字特征计算⑴数学期望(均值):①一维随机变量函数的数学期望:1(),(())()().i i i g x p E g X g x f x dx ∞=+∞-∞⎧⎪=⎨⎪⎩∑⎰注: 2,()EX E X 为其特例.②二维随机变量函数的数学期望:11(,),((,))(,)(,).i j i j i j g x y p E g X Y g x y f x y dxdy ∞∞==+∞+∞-∞-∞⎧⎪⎪=⎨⎪⎪⎩∑∑⎰⎰注: 22,(),,(),()EX E X EY E Y E XY 为其特例.⑵方差:222()()()DX E X EX E X EX =-=-.⑶协方差:ov(,)[()()]()C X Y E X EX Y EY E XY EXEY =--=-.⑷相关系数:XY ρ=.⑸数字特征的性质(见教材). ⑹不相关:①若0XY ρ=,称X 与Y 不相关;X 与Y 不相关的直观意义指X 与Y 没有线性关系. ②X 与Y 不相关ov(,)0C X Y ⇔=()D X Y DX DY ⇔±=+()E XY EXEY ⇔=.③设221212(,)~(,,,,)X Y N μμσσρ,则X 与Y 的相关系数XY ρρ=.④设221212(,)~(,,,,)X Y N μμσσρ,则X 和Y 相互独立⇔0ρ=⇔X 与Y 不相关.⑤如果X 与Y 相互独立,且X 与Y 的相关系数XY ρ存在,则X 与Y 不相关.反之未必.⒑中心极限定理的应用 ⑴设12,,n X X X 独立同分布,且2,0i i EX DX μσ==≠(1,2,)i =,则当n 充分大(30n ≥)时,有21~(,)nii XN n n μσ=∑近似.⑵设~(,)X B n p ,则当n 充分大(30n ≥)时,~(,(1))X N np np p -近似.三、计算过程中需要分段讨论的几种类型与方法⒈已知X 的分布律,求X 的分布函数()F x .三个特征: ⑴分1n +段;⑵每段上,将概率逐次累加(初始值为0,终值为1); ⑶每个区间为左闭右开. ⒉已知X 的密度函数()f x (分段函数),求X 的分布函数()F x . ⑴分1n +段;⑵每段上,将()f x 在(,]x -∞上积分;⑶由于()F x 为连续函数,故每个区间为开闭均可.⒊已知(,)X Y 的密度函数(,)f x y (分段函数),求X 的分布函数(,)F x y . ⑴结合(,)F x y 的原理图和(,)f x y 特征图,将全平面分若干块; ⑵每块上,将(,)f x y 在区域(,](,]x y D -∞⨯-∞上积分.⒋连续型随机变量函数的分布⑴一维连续型随机变量函数()Y g X =的分布函数()Y F y :①先确定()Y g X =取值范围;例如m Y M ≤≤,其中,m M 为实数,则采用三段式讨论.②当y m <时,()0Y F y =.③当m y M <≤时,利用定积分()()()Y X g x yF y f x dx ≤=⎰计算.④当y M ≥时,()1Y F y =.⑤当m =-∞或M =+∞或其它情况时,还可能采用两段式或四段式讨论等. ⑥若Y 为连续型随机变量,则Y 的密度函数()()Y Y f y F y '=. ⑵二维连续型随机变量函数(,)Z g X Y =的分布函数()Z F z :①确定(,)Z g X Y =的取值范围;例如m Z M ≤≤,其中,m M 为实数,则采用三段式讨论.②当z m <时,()0Z F z =.③当m z M <≤时,利用二重积分(,)()(,)Z g x y zF z f x y dxdy ≤=⎰⎰计算.④当z M ≥时,()1Z F z =.⑤当m =-∞或M =+∞或其它情况时,还可能采用两段式或四段式讨论等. ⑥若Z 为连续型随机变量,则Z 的密度函数()()Z Z f z F z '=. ⒌二维连续型随机变量(,)X Y 的边缘密度 ⑴()(,)X f x f x y dy +∞-∞=⎰,x -∞<<+∞.①作出),(y x f 的特征图.②用垂直直线x m =和x M =将D 夹住. ③当x m <或x M >时,()0X f x =. ④当m x M ≤≤时,()(,)X f x f x y dy +∞-∞=⎰.⑤当m =-∞或M =+∞或其它情况时,也可能采用其它方式讨论. ⑵()(,)Y f y f x y dx +∞-∞=⎰,y -∞<<+∞.①作出),(y x f 的特征图.②用水平直线y m =和y M =将D 夹住. ③当y m <或y M >时,()0Y f y =. ④当m y M ≤≤时,()(,)Y f y f x y dx +∞-∞=⎰.⑤当m =-∞或M =+∞或其它情况时,也可能采用其它方式讨论.四、数理统计的基础知识⒈总体X ,样本12(,,,)n X X X 和观察值的概念.关注简单随机样本的独立性和代表性.⒉常用统计量:样本均值∑==n i i X n X 11,样本方差2211()1n i i S X X n ==--∑, 顺序统计量*11min i i nX X ≤≤=,*1max n i i nX X ≤≤=.⒊常见分布⑴正态分布:见概率论中的内容. ⑵2χ分布:设12(,,,)n X X X 为来自总体~(0,1)X N 的一个样本,就称统计量22222121ni ni X X X X ===+++∑χ服从自由度为n 的2χ分布,记作)(~22n χχ. ①设)(~22n χχ,则2()E n =χ,2()2D n =χ. ②设~(0,1)X N ,则22~(1)X χ.③设22~()i i n χχ,1,2i =,且2212,χχ相互独立,则2221212~()n n ++χχχ.⑶ t 分布:设随机变量~(0,1)X N ,2~()Y n χ,且X 与Y 相互独立,就称T =服从自由度为n 的t 分布,记作)(~n t T .⑷F 分布:设随机变量)(~12n X χ,)(~22n Y χ,且X 与Y 相互独立,就称21n Y n X F =服从第一自由度为1n ,第二自由度为2n 的F 分布,记作),(~21n n F F . ①如果~()T t n ,则2~(1,)T F n . ②如果12~(,)F F n n ,则211~(,)F n n F. ⒋上侧分位点p x :{},{}1p p P X x p P X x p ≥≥≤≥-. 如U α,2()t n α,21()n αχ-,2121(,)Fn n α-等等(下标为该点处右侧的面积). 注意:1U U αα-=-,1()()t n t n αα-=-,112211(,)(,)F n n F n n αα-=.⒌单正态总体2~(,)X N μσ中X 和2S 的分布(其中12(,,,)n X X X 为样本): ⑴2~(,)X N nσμ,或nX /σμ-~)1,0(N ;⑵nS X /μ-~)1(-n t ;⑶2212()()nii Xn μχσ=-∑;⑷222122()(1)(1)nii XX n Sn χσσ=--=-∑,且X 与2S 相互独立.五、参数估计⒈点估计 ⑴矩估计:①原理:用样本矩估计理论矩.②方法:建立方程(组)11()n rr i i X E X n ==∑,1,2,r =,解出θ,得θ的矩估计θ.⑵最大似然估计:①原理:概率最大的事件最有可能出现. ②方法:构造似然函数)(L θ=12)(,,,;n L x x x θ(似然函数体现了样本12(,,,)n X X X 出现的概率大小),求似然函数L 的最大值点,即为θ的极大使然估计θ. ③步骤:第一步:写出似然函数)(L θ.如果连续型总体X 的密度函数为(;)f x θ,则1()(;)n i i L f x θθ==∏.如果离散型总体X 的分布律为(;)p x θ,则1()(;)ni i L p x θθ==∏. 第二步:取对数ln )(L θ,并令ln 0)(d d L θθ=,或ln 0)(i L θθ∂=∂,1,2,,i k =,建立方程(组).如果从中解得惟一驻点θˆ,则θˆ即为θ的最大似然估计; 第三步:如果上述方程无解,则通过单调性的讨论,在某边界点处,求出θ的最大似然估计量θˆ. ⒉估计量的评价标准⑴无偏性:如果E θθ=,就称θ为θ的无偏估计.主要结论有:①如果总体X 的数学期望EX 存在,则X 是μ的无偏估计,即E X μ=. ②如果总体X 的方差DX 存在,则2S 是2σ的无偏估计,即22()E S σ=.③设估计量12ˆˆˆ,,m θθθ均为θ的无偏估计,12,,,m c c c 为常数,且11mi i c ==∑,则1ˆmi i i c θ=∑仍为θ的无偏估计.注意:即使ˆθ为θ的无偏估计,而ˆ()g θ未必为...()g θ的无偏估计. ⑵(较)有效性:设21ˆ,ˆθθ均为θ的无偏估计,如果12ˆˆD D θθ<,就称1ˆθ比2ˆθ有效.⑶一致性(相合性):设ˆθ为θ的估计量,如果对任意的0ε>,均有ˆl i m {}1n P θθε→∞-<=,就称θˆ为θ的一致估计量或相合估计量. ⒊单正态总体2(,)N μσ中2,σμ的区间估计⑴2σ已知,μ的置信度1α-的置信区间为22X u X u αα⎛⎫-+ ⎝. ⑵2σ未知,求μ的置信度为1α-的置信区间为2(X t n α⎛⎫±- ⎝. ⑶2σ的置信度为1α-的置信区间为2222122(1)(1),(1)(1)n Sn S n n ααχχ-⎛⎫-- ⎪ ⎪-- ⎪⎝⎭. 六、假设检验⒈假设检验的有关概念了解假设检验的背景,假设的提法,假设检验中的反证法思想,假设检验的基本原理,显著性检验,双侧检验和单侧检验等相关内容.⒉假设检验的两类错误⒊假设检验的四个步骤⑴根据给定的问题,建立假设检验问题01(,)H H . ⑵根据检验问题01(,)H H 及条件,选择检验统计量12(,,,)n g X X X .当0H 为成立时,确定该统计量12(,,,)n g X X X 的分布.⑶根据显著性水平α,确定临界值和原假设0H 的拒绝域W . ⑷通过样本值12(,,,)n x x x ,计算统计量12(,,,)n g X X X 的值12(,,,)n g x x x .若12(,,,)n g x x x W ∈,则拒绝0H ,否则接受0H .⒋单正态总体中均值和方差的假设检验。
概率论与数理统计总复习
概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。
随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。
2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。
6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。
例:从甲、乙两班各选一个代表。
②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。
大学概率论与数理统计复习资料(word文档良心出品)
第一章 随机事件及其概率知识点:概率的性质 事件运算 古典概率事件的独立性 条件概率 全概率与贝叶斯公式常用公式)()()()()()2(加法定理AB P B P A P B A P -+= ),,()()(2111有限可加性两两互斥设n ni i ni i A A A A P A P ∑===),(0)()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==)()()()()5(AB P A P B A P B A P -==-)()()()()(时当A B B P A P B A P B A P ⊂-==-))0(,,()()/()()()6(211>Ω=∑=i n ni i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ),,()](1[1)(2111相互独立时n ni i n i i A A A A P A P ∏==--=)/()()/()()()4(B A P B P A B P A P AB P ==)(/)()/()3(A P AB P A B P =)()/()()/()()/()7(1逆概率公式∑==ni iii i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L AP nr A P ==应用举例1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。
2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。
3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。
4、若,3.0)(=A P===)(,5.0)(,4.0)(B A B P B A P B P ()。
5、,,A B C 是三个随机事件,C B ⊂,事件()A C B -与A 的关系是( )。
概率论与数理统计复习要点
第一章 随机事件及其概率一、随机事件及其运算 1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。
2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生; ②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生;③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。
④互逆关系(对立):A ,事件A 发生事件A 必不发生,反之也成立;互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。
) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。
若AB =∅,则A B A B ⋃=+;②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。
4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂ ④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃对于n 个事件,有1111,n ni i i i nni ii i A A A A ======二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质: (1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21 ,有∑∑===ki i ki i A P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质 ①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如 若),()(B P A P ≤则B A ⊂。
《概率论与数理统计》综合复习资料全
《概率论与数理统计》综合复习资料一、填空题1、一个盒子中有10 个球,其中有 3 个红球, 2 个黑球, 5 个白球,从中取球两次,每次取一个(无放回),则:第二次取到黑球的概率为;取到的两只球至少有一个黑球的概率为。
2、 X 的概率密度为 f ( x)1 e x2 2 x 1(x) ,则DX。
3、已知随机变量X ~N(1,1),Y~N(3,1) 且 X 与Y 相互独立,设随机变量Z 2X Y 5,则EX;DX。
4、已知随机变量X 的分布列为X-102P k0.40.2p则: EX=;DX =。
5、设X与Y独立同分布,且X~N(2,22) ,则D( 3X2Y) =。
6、设对于事件A、B、 C有 P(A)P(B)1,P(ABC)1P(C),412P( AB) P( BC )P(AC)1。
,则 A 、 B、 C 都不发生的概率为87、批产品中一、二、三等品各占60% 、30%、 10%,从中任取一件,结果不是三等品,则取到的是二等品的概率为。
8、相互独立,且概率分布分别为1,1 y 3f (x)e ( x 1)x) ;( y)(,其它则:E(X Y)=;E(2X3 2 )=。
Y9 、已知工厂A、 B 生产产品的次品率分别为2%和1%,现从由A、 B 工厂分别占30%和70%的一批产品中随机抽取一件,发现是次品,则该产品是 B 工厂的概率为。
10、设X、Y的概率分布分别为, 1 x 54e4 y,y01/ 4( x);( y),,其它0y0则: E(X 2Y) =;(X 2 4 ) =。
E Y二、选择题1、设X 和 Y 相互独立,且分别服从N(1,22) 和N (1,1),则。
A .P{ X Y 1}1/ 2B.P{ X Y0}1/ 2C .P{ X Y0}1/ 2D.P{ X Y 1}1/ 22、已知P( A)0.4,P(B)0.6,P(B | A)0.5 ,则P( A B)。
A .1B.0.7C .0.8D .0.53、设某人进行射击,每次击中的概率为1/3,今独立重复射击10 次,则恰好击中 3 次的概率为。
大学概率论与数理统计复习资料(精编文档).doc
【最新整理,下载后即可编辑】第一章 随机事件及其概率知识点:概率的性质 事件运算 古典概率事件的独立性 条件概率 全概率与贝叶斯公式常用公式应用举例1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。
2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k )()()()()()2(加法定理AB P B P A P B A P -+= ),,()()(2111有限可加性两两互斥设n ni i ni i A A A A P A P ∑===),(0)()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==)()()()()5(AB P A P B A P B A P -==-)()()()()(时当A B B P A P B A P B A P ⊂-==-))0(,,()()/()()()6(211>Ω=∑=i n ni i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ),,()](1[1)(2111相互独立时n ni i n i i A A A A P A P ∏==--=)/()()/()()()4(B A P B P A B P A P AB P ==)(/)()/()3(A P AB P A B P =)()/()()/()()/()7(1逆概率公式∑==ni i i i i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L A P nr A P ==( )。
3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。
4、若,3.0)(=A P ===)(,5.0)(,4.0)(B A B P B A P B P ( )。
概率论与数理统计总复习-
一. 二维离散型r.v.
概率统计-总复习-13
1. 联合分布律(2个性质)
P(Xxi,Yyj)pij,
2.联合分布函数(5个性质)
F ( x , y ) P X x , Y y
3.联合分布律与联合分布函数关系
F(x,y)pij, xixyjy
4. 边缘分布律与边缘分布函数
n
Xi
n
E( Xi )
i1 i1
D
n
Xi
n
D( Xi )
i1 i1
X1,,Xn 相互独立
常见离散r.v.的期望与方差
概率统计-总复习-27
分布 概率分布
期望 方差
参数p的 0-1分布
P (X 1 )p ,P (X 0) q
2. 联合分布函数(5个性质)
xy
F(x,y) p(u,v)dvdu
3.联合密度与联合分布函数关系 2F( x,y) p( x,y)
xy
4.边缘密度与边缘分布函数
p (x) p( x,y)dy p ( y) p( x,y)dx
X
Y
FX( x) F(x, ) FY ( y ) F(, y)
5.全概率公式:分解 P(B) P(Ai)P(B|Ai),B
i1
6.贝叶斯公式
P(Aj |B)
P(Aj )P(B| Aj )
,j
P(Ai )P(B|Ai )
i1
四. 概率模型
概率统计-总复习-6
1.古典概型: 摸球、放球、随机取数、配对
2. n重伯努利概型:
概率论与数理统计复习提纲
概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。
概率论与数理统计总复习知识点归纳
D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
概率论与数理统计复习资料知识点总结
《概率论与数理统计》第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
概率论与数理统计总复习
随
机 试 验
可能结果
基 本 事 件
Ai
只有两个
不含任何ω Φ
Ai Aj 完
不可能 i j 备 Ai任何组合事件A p(Ai ) 0事
Ai
i
必然
Ωi
Ai
件 组
Ai
等
1 P(A i) n
概 完
i 1,2, n 备
事
件
可能结果
条件:
组
贝努利试验
n次重复
定义 随机变量 X 的取值可以一一列举(有限或无限)
称X 为离散型随机变量。
分布律(分布列) 表示法
公式法
PX xk pk
k 1,2,
列表法 X x1 x2
xk
xn
pk p1 p2
pk
pn
性质
1. PX xk 0 k 1,2,
n
2. pk 1
7 7
k 1
2、连续性随机变量 定义 对于随机变量X,若存在非负函数
将 F( y) 用 F[h( y)] 及有关函数表述出来。
利用 F '( y) f ( y) 求出Y的密度函数。
f
(
y)
F
(h(
y))'
h(
y)
h'
(
y)
0
y
其他
14
14
三、二维随机变量及其分布
(一)二维随机变量(X,Y) 的分布函数
定义 对于任意实数 x, y 二元函数
F(x, y) P{X x,Y y}
X为离散型其分布列为 PX xk pk
k 1,2,, n.
X为连续型其密度函数为 f (x).
概率论与数理统计期末复习重要知识点及公式整理
概率论与数理统计期末复习重要知识点及公式整理2010-2011学年第一学期期末复习资料概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量XP{X x1}p,P{X x2}1p只有两个可能取值,且其分布为(0p1),则称X服从x1,x2处参数为p的两点分布。
两点分布的概率分布:两点分布的期望:(2)二项分布:P{X x1}p,P{X x2}1p(0p1) E(X)p;两点分布的方差:D(X)p(1p)若一个随机变量X的概率分布由式给出,则称X服从参数为n,p的二项分布。
记为X~b(n,p)(或B(n,p)).两点分布的概率分布:二项分布的期望:(3)泊松分布:P{x k}Cnp(1p)kkn kkkn k,k0,1,...,n. P{x k}Cnp(1p),k0,1,...,n. E(X)np;二项分布的方差:D(X)np(1p)kP{X k} e若一个随机变量X的概率分布为数为的泊松分布,记为X~P () k!,0,k0,1,2,...,则称X服从参P{X k} e泊松分布的概率分布:泊松分布的期望:4.连续型随机变量:kk!,0,k0,1,2,... E(X);泊松分布的方差:D(X)如果对随机变量X的分布函数F(x),存在非负可积函数F(x)P{X x}f(x),使得对于任意实数x,有xf(t)dt,则称X为连续型随机变量,称f(x)为X的概率密度函数,简称为概率密度函数。
2010-2011学年第一学期期末复习资料5.常用的连续型分布:(1)均匀分布:1,若连续型随机变量X的概率密度为f(x)b a 0,a x b其它,则称X在区间(a,b)上服从均匀分布,记为X~U(a,b)1,均匀分布的概率密度:f(x)b a0,a b2a xb 其它均匀分布的期望:(2)指数分布:E(X);均匀分布的方差:D(X)(b a)122e xf(x)0若连续型随机变量X的概率密度为x00,则称X服从参数为的指数分布,记为X~e ()x0e xf(x)0指数分布的概率密度:指数分布的期望:(3)正态分布:E(X)1;指数分布的方差:D(X)2f(x)(x)222x若连续型随机变量X的概率密度为则称X服从参数为和22的正态分布,记为X~N(,)(x)222f(x)正态分布的概率密度:正态分布的期望:E(X)xD(X)x22;正态分布的方差:(4)标准正态分布:0,21(x),2(x)xet22标准正态分布表的使用:(1)x0(x)1(x)2010-2011学年第一学期期末复习资料X~N(0,1)P{a x b}P{a x b}P{a x b}P{a x b}(b)(a)X~N(,),Y2(2)X(3)P{a X b}P{a~N(0,1),F(x)P{X x}P{X故b}(b)(a)x(x) Y2Y定理1:设X~N(,),则X~N(0,1)6.随机变量的分布函数:设X是一个随机变量,称分布函数的重要性质:0F(x) 1P{x1X x2}P{X x2}P{X x1}F(x2)F(x1)x1x2F(x1)F(x2)F()1,F()0F(x)P{X x}为X的分布函数。
《概率论与数理统计》总复习资料
《概率论与数理统计》总复习资料概率论部分1.古典概型中计算概率用到的基本的计数方法。
例1:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数:915C n ==5005事件B 包含的样本点:563514C C C r ==240,则P (B )=240/5005=0.048例2:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数}。
若允许千位数为0,此时个位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个。
其中,千位数为0的“四位偶数”有多少个?此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A 种选法;从而共有428A =224个。
因此410283945)(A A A B P -==2296/5040=0.4562.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。
例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A B )解:P (AB )=P (A )P (B )=0.3,P (A -B )=P (A )-P (AB )=0.2,P (A B )=P (A )+P (B )-P (AB )=0.8例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求:P (A -B ),P (A B ),)|(B A P ,)|(B A P ,)|(B A P 解:P (A -B )=0.1,P (A B )=0.8,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,|(B A P =)(1)()()(B P B A P B P B A P -==2/33.准确地选择和运用全概率公式与贝叶斯公式。
《概率论与数理统计》复习-知识归纳整理
《概率论与数理统计》复习大纲第一章 随机事件与概率基本概念随机试验E----指试验可在相同条件下重复举行,试验的结果具有多种可能性(每次试验有且仅有一个结果闪现,且事先知道试验可能闪现的一切结果,但不能预知每次试验确实切结果。
样本点ω ---随机试验E的每一具可能闪现的结果样本空间Ω----随机试验E的样本点的全体随机事件-----由样本空间中的若干个样本点组成的集合,即随机事件是样本空间的一具子集。
必然事件---每次试验中必然发生的事件。
不可能事件∅--每次试验中一定不发生的事件。
事件之间的关系包含A⊂B相等A=B对立事件,也称A的逆事件互斥事件AB=∅也称不相容事件A,B相互独立P(AB)=P(A)P(B)例1事件A,B互为对立事件等价于( D )A、A,B互不相容B、A,B相互独立C、A∪B=ΩD、A,B构成对样本空间的一具剖分例2设P(A)=0,B为任一事件,则(C )A、A=∅B、A⊂BC、A与B相互独立D、A与B互不相容事件之间的运算事件的交AB或A ∩B 例1设事件A、B满足A B¯=∅,由此推导不出(D)A、A⊂BB、A¯⊃B¯C、A B=BD、A B=B例2若事件B与A满足B – A=B,则一定有(B)A、A=∅B、AB=∅C、AB¯=∅D、B=A¯事件的并A∪B事件的差A-B 注意:A-B= A B= A-AB = (A∪B)-BA1,A2,…,An构成Ω的一具完备事件组(或分斥)−−指A1,A2,…,An两两互不相容,且∪i=1nAi=Ω运算法则交换律A∪B=B∪A A∩B=B∩A结合律(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C)分配律(A∪B)∩C=(AC)∪(BC) (A∩B)∪C=(A∪C)∩(B∪C) 对偶律A∪B=A∩B A∩B=A∪B文氏图事件与集合论的对应关系表记号概率论集合论Ω样本空间,必然事件全集∅不可能事件空集ω基本事件元素A 事件全集中的一具子集A A的对立事件A的补集A⊂B 事件A发生导致事件B发生A是B的子集A=B 事件A与事件B相等A与B相等A∪B 事件A与事件B至少有一具发生A与B的并集AB 事件A与事件B并且发生A与B的交集知识归纳整理A-B事件A 发生但事件B 不发生A 与B 的差集 AB=∅ 事件A 与事件B 互不相容(互斥) A 与B 没有相同的元素古典概型 古典概型的前提是Ω={ω1,ω2, ω3,…, ωn ,}, n 为有限正整数,且每个样本点ωi 出现的可能性相等。
《概率论与数理统计》(公共)复习提纲
概率论与数理统计(公共课)复习提纲 注:方框标示的内容为重点。
第1章 随机事件及其概率1. 样本点与样本空间、事件的关系与运算;2. 事件的运算规律;(1) 交换律 A ∪B =B ∪A , A ∩B =B ∩A ;(2) 结合律 (A ∪B )∪C =A ∪(B ∪C ), (A ∩B )∩C =A ∩(B ∩C );(3) 分配律 (A ∪B )∩C =(A ∩C )∪(B ∩C ), (A ∩B )∪C =(A ∪C )∩(B ∪C)3. 事件概率的定义及其性质、古典概型的概率计算;条件概率 P (B |A ) = P (AB ) / P (A );乘法公式 P (AB ) = P (A )P (B |A ) 或 P (AB ) = P (B )P (A |B )全概率公式 P (B ) = P (A 1)P (B |A 1) + … + P (A n )P (B |A n ) + …n = 2的情形(样本空间被对立事件划分) )|()()|()()(A B P A P A B P A P B P += n = 3的情形 )|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++=贝叶斯公式(已知事件B 发生后,求其由A i 所引起的概率),...2,1,)|()()|()()()()|(===∑i A B P A P A B P A P B P B A P B A P jj j i i i i事件的独立性 P (AB ) = P (A )P (B );9.有限事件的两两独立与相互独立;伯努利概型及其概率计算;随机变量及其分布与数字特征1. 常用离散型概率分布两点分布(0-1分布) P { X = x 1 } = p , P { X = x 2 } = 1 – p (0 < p < 1) E (X ) = p , D (X ) = p (1 – p )二项分布 X ~ b (n , p ) n k p p C k X P k n k k n ,...,1,0,)1(}{=-==-E (X ) = np , D (X ) = np (1 – p )泊松分布 X ~ P (λ) ,...2,1,0,!}{===-k e k k X P k λλE (X ) = D (X ) = λ2. 二项分布的泊松近似100,10,!)1(><=≈---n np e k p p C kk n k kn λλλ 3. 随机变量的分布函数(1) 定义:F (x ) = P { X ≤ x };(2) 性质:a. 单调非减;b. F (-∞) = 0、F (+∞) = 1;c. 右连续;4. 常用连续型概率分布均匀分布 X ~ U (a , b )密度函数:b x a a b x f <<-=,1)(,分布函数:⎪⎪⎩⎪⎪⎨⎧≥<≤--<=bx b x a ab a x a x x F ,1,,0)( 2)(a b X E -=, 12)()(2a b X D -= 指数分布 X ~ e(λ)密度函数:0,)(>=-x ex f x λλ,分布函数:⎩⎨⎧>-=-其它,00,1)(x e x F x λ λ1)(=X E , 21)(λ=X D正态分布 X ~ N (μ, σ2) μ=)(X E , 2)(σ=X D标准正态分布 X ~ N (0, 1),E (X ) = 0, D (X ) = 1;5. 随机变量函数 Y = f ( X ) 的分布离散型:列出分布律;连续型:(1)用概率的方法求出函数 Y 的分布函数后,再求其密度函数;(2)如果函数 Y = f (X ) 满足严格单调,则可使用公式直接求 Y 的密度函数: 的反函数为其中)()(,|,)(|))(()(x f y y h y y h y h f y f X Y =<<'=βα6. 随机变量函数 Y = f ( X ) 的数学期望离散型:∑==ii i p x g X g E X E )()]([)(连续型:⎰+∞∞-==x x f x g X g E X E d )()()]([)( 7. 方差的计算D (X ) =E [ X – E (X ) ]2 = E (X 2) – [E (X )]28. 数学期望与方差的性质(E (X ), E (Y ), D (X ), D (Y )均存在)E (aX ± bY ) = aE (X ) ± bE (Y ) D (aX ± bY ) = a 2D (X ) + b 2D (Y )9. 中心极限定理定理3 设随机变量 X 1, X 2, …, X n , … 相互独立,服从同一分布,且 E (X i ) = μ, D (X i ) = σ2, ( i = 1, 2, …),则)(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→σμ或),(~2n n N X X n i i σμ ∑= 即n 个随机变量的和的极限分布是正态分布。
《概率论与数理统计》复习资料要点总结
《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则(1)BAAB A B B A =⋃=⋃ (2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃(4)BA AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质:(1)1)(0≤≤A P (2)1)(=ΩP (3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()( (n 可以取∞)(4)0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤(7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式:∑==ni iiB A P B P A P 1)|()()((4)Bayes 公式:∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性:B A ,独立)()()(B P A P AB P =⇔(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2.连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,pq X P -===1)0(p pq 二项式分布),(p n B n k q p C k X P kn k k n ,2,1,0,)(===-,npnpqPoisson 分布)(λP,2,1,0,!)(===-k k e k X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P k p 12p q 均匀分布),(b a U b x a a b x f ≤≤-= ,1)(,2b a +12)(2a b -指数分布)(λE 0,)(≥=-x e x f x λλλ121λ正态分布),(2σμN 222)(21)(σμσπ--=x ex f μ2σ4.分布函数)()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续;(4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5.正态分布的概率计算以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==>6.随机变量的函数)(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
《概率论与数理统计》复习总结(已完成)
大学教案总结之《概率论与数理统计》期末复习目录第一章 (4)定义:一般的,称试验E 的样本空间Ω的子集为E 的随机事件。
.......................... 4 事件间的关系与运算 ....................................................................................................... 4 定义: ............................................................................................................................... 4 概率的性质: ................................................................................................................... 4 古典概率 ................................................................................................................................... 4 条件概率 .. (4)定义: (4)⑴条件概率的乘法公式:()()()A P A B P AB P |= (5)⑵全概率公式 ................................................................................................................... 5 ⑶贝叶斯公式 ................................................................................................................... 5 随机事件的独立性 ................................................................................................................... 5 第二章 一维随机变量及其分布 .. (6)定义:一维随机变量。
武汉纺织大学概率论与数理统计总复习共48页文档
•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
•
30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
习
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整Байду номын сангаас命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此时
将
10 x , 0 x 10, p( x) 50 其它. 0,
第三章 随机变量的数字特征
一. 主要内容 1. 随机变量的数学期望 2. 随机变量函数的数学期望 3. 数学期望的性质 4. 随机变量的方差 5. 随机变量函数的方差 6. 随机变量方差的性质 7. 随机变量的协方差及其性质 8. 两个随机变量的相关系数及其计算公式
4
(8)、二项概率计算公式 二. 应记忆的公式 1. 德莫根律
i 1
Ai Ai ,
i 1
n
n
i 1
Ai Ai
i 1
n
n
2. 3. 4. 5. 6. 7. 8.
加法公式 P( AUB) P( A) P( B) P( AB) 当A与B互斥时 P( AUB) P( A) P( B) 条件概率公式 乘法概率公式 全概率公式 贝叶斯公式 相互独立事件的概率计算公式
P ( B | A), P ( A B ), P( A UB)
解
P ( B | A) P ( AB) / P ( A) (1 / 4) /(1 / 2) 1 / 2 P ( A B ) P ( AUB) 1 P ( AUB) 1 P ( A) P ( B ) P ( AB) 1 1 / 2 1 / 3 1 / 4 5 / 12
1.0556
23
例2.设随机变量X的分布律为 求 解
X
P
-2
0.4
0
0.3
2
0.3
E ( X ) , E ( X 2 ) , E(3X 2 5) E ( X ) (2) 0.4 0 0.3 2 0.3 0.2 E( X 2 ) (2) 2 0.4 0 2 0.3 2 2 0.3 2.8
故 X 的分布律为
X P 1 10/13 2 5/26 3 5/143 4 1/286
13
2 N ( 10 , 2 ) 例2 已知随机变量X~
P{|X-10|<c}=0.95,P{X<d}=0.023,确定c和d的值。 解:已知 P{|x-10|<c}=P{|X-10|/2<c/2} = 2(c / 2) 1 0.95
)
P( X x) 1 (
x-
P( x1 X x2 ) (
x2 -
P(| X | b) 1 P(| X | b) 1 P(b X b) b- -b- 1 [ ( ) - ( )]
) - (
x1 -
)
12
20
二. 应记忆的公式或结果 1 2 3 4 随机变量的数学期望和方差的计算公式 随机变量函数的数学期望和方差的计算公式 随机变量的协方差、相关系数的计算公式 常见7种随机变量的数学期望及方差 (1) 两点分布 (2)二项分布 (3)泊松分布 (4)几何分布 (5)均匀分布 (6)正态分布 (7)指数分布 三 例题分析
E (3 X 2 5) [3 (2) 2 5] 0.4 [3 0 2 5] 0.3 [3 2 2 5] 0.3 13.4
或由期望的性质
E(3X 2 5) 3E( X 2 ) 5 3 2.8 5 13.4
24
例3.设随机变量的概率密度为 e x x 0 f ( x) 0 x0 求(1)Y=2X; (2)Y e 2 X 的数学期望。
红钢笔,2支蓝钢笔,丙盒中装有3支红钢笔,3支蓝钢笔,今从中任取 一支,设到3只盒中取物的机会相同,求该支钢笔是红钢笔的概率。
解 设A表示取到的一支钢笔为红色笔,Bi 分别表示在 甲、乙、丙盒中取钢笔, i=1,2,3, 则 P(Bi)=1/3, P ( A | B1 ) 2 / 6 1 / 3, P ( A | B2 ) 4 / 6 2 / 3
解
由题意知 R 的概率密度为
pR ( z ) p( x) p( z x) d x.
x
x 10
xz
x z 10
O
10
20
z
0 x 10, 当 0 z x 10,
0 x 10, 即 时, z 10 x z ,
x y 2 arctan x arctan y
2
(arctan x
2
)(arctan y
2
)
16
,两电阻 R1 和 R2 串联联接, 例5 在一简单电路中 设 R1 , R2 相互独立, 它们的概率密度均为 10 x , 0 x 10, p( x ) 50 0, 其它. 求电阻 R R1 R2 的概率密度.
(c / 2) 0.975 所以 查表得 c/2=1.96 故 c=3.92 d 10 ) 0.023 又已知 P{X<d}= ( 2 查表得 既 d=6
14
例3 设二维随机变量(X,Y)的分布密度函数为
8 xy, 0 x 1, 0 y 1 p ( x, y ) 其它 0,
5
P( A1U UAn ) 1 P( A1U UAn ) 1 P( A1 A2 An ) 1 P( A1 ) P( An )
9. 二项概率计算公式 三. 例题分析
6
例1 若 P ( A) 1 / 2, P ( B ) 1 / 3, P ( AB) 1 / 4, 求
21
例1.某产品的次品率为0.1,检验员每天检验4次,每次随机 地取10件产品检验 ,如发现其中的次品数多于 1,就去调整 设备.以X表示一天中调整设备的次数,试求 E(X) (设诸产品是否为次品是相互独立的). 解 : 记 随 机 的 取 10 件 产 品 , 其 中 的 次 品 数 为 Y , 则 Y~B(10, 0.1) .则不必调整设备的概率为 p PY 0 PY 1
P ( A | B3 ) 3 / 6 1 / 2,
则由全 概率公 式
P ( A) P ( Bi )P ( A | Bi )
i 1
3
1 / 3 1 / 3 1 / 3 2 / 3 1 / 3 1 / 2 1 / 2
8
第二章 随机变量及其分布
一 主要内容 (一). 一维随机变量及其分布 1. 随机变量的分布函数 2. 分布函数的性质 3. 离散型随机变量及其分布函数 4.常见离散型随机变量及其分布律 (1).两点分布, (2) 二项分布 (3) 泊松分布 (4) 几何分布 5. 连续型随机变量及其分布函数
问X与Y是否相互独立,并说明理由。 解:关于X的边缘密度为 关于Y的边缘分布密度为
1 8xydy 4 x, 0 x 1 p X ( x) 0 0, 其它
1 0 8 xydx 4 y, 0 y 1 pY ( y ) 其它 0,
在 0 x 1, 0 y 1 中,均有 故X与Y不独立。
p( x, y) pX ( 量(X,Y)的分布密度
1 p ( x, y ) 2 (1 x 2 )(1 y 2 )
解
求分布函数 F(x,y).
F ( x, y)
1 1 1
x
x
y
p( x, y)dxdy
y 1 1 2 dx dy 2 2 1 x 1 y
解(1)E(Y ) E(2 X )
0 2 xe x dx 2
(2)
2xf ( x)dx
2 X
E(Y ) E(e
P( A UB) P( A ) P( B) P( A B) 其中 P( A B) P( B AB) 1 / 3 1 / 4 1 / 12 故 P( A UB) ( 1 1 / 2) 1 / 3 1 / 12 3 / 4
7
例2 有3只盒子,甲 盒中装有2支红钢笔,4支蓝钢笔,乙盒中装有4支
3
第一章 随机事件及其概率
一、主要内容: 1、随机事件的定义、关系及其运算 2、随机事件概率的定义(统计定义、古典概型定义) 3、随机事件概率的计算 注意利用: (1)、概率的加法公式 (2)、概率的性质 (3)、条件概率公式 (4)、乘法概率公式 (5)、全概率公式 (6)、贝叶斯公式 (7)、相互独立事件的概率计算公式
9
6 常见连续型随机变量及其分布密度
(1) 均匀分布 (2) 正态分布 (3) 指数分布 (二) . 二维随机变量及其分布 1. 二维随机变量的定义 2. 二维随机变量的分布函数 3. 二维离散型随机变量及其分布律 4. 二维连续型随机变量的分布密度 5. 边缘分布, 6. 随机变量的独立性
10
7. 随机变量简单函数的分布 1). 一维随机变量函数的分布 2). 二维随机变量函数的分布(仅要求二维离散型) 二. 应记忆的公式 (1) F ( x) P( X x) (2) 计算公式: 离散型 F ( x) P( X xk )
xk x
x
连续型 F ( x) p( x)dx (3) 若X~N( , ) , 则 Y =
X
~ N(0,1)
11
(4)
常见7种随机变量的分布律或分布密度
(5) 正态分布概率的计算公式 若 X~N ( , ) , 则 1) 2) 3) 4)
P( X x) ( x- )
3 3 C ( 0 . 2639 ) (0.7361 ) P(X=3)= 4
) P(X=4)= (0.2639
4
从而
1 E ( X ) 0 (0.7361 ) 4 C4 (0.2639 )(0.7361 )3