33金属键金属晶体
金属键金属晶体课件
金属键金属晶体课件金属键与金属晶体课件一、金属键概述金属键是金属元素之间的化学键,它是金属晶体的基本结构特征。
金属键不同于离子键和共价键,其特点在于电子的自由运动。
在金属晶体中,金属原子通过金属键相互连接,形成具有特定几何形状的晶体结构。
二、金属键的特性1.电子的自由运动:金属键中,金属原子的外层电子脱离原子核的束缚,形成自由电子。
这些自由电子在整个金属晶体中自由运动,为金属提供了良好的导电性和导热性。
2.金属键的强度:金属键的强度较大,金属晶体具有较高的熔点和沸点。
金属键还具有较好的延展性,使金属在外力作用下能够发生塑性变形。
3.金属键的饱和性:金属键具有饱和性,即一个金属原子所能提供的空位数量有限。
当金属原子之间的距离过远时,金属键将断裂,金属晶体将发生断裂。
4.金属键的方向性:金属键具有一定的方向性,使金属晶体具有特定的几何形状。
金属原子的排列方式决定了金属晶体的晶体结构。
三、金属晶体的结构1.金属晶体的类型:根据金属原子排列方式的不同,金属晶体可分为面心立方(FCC)、体心立方(BCC)和六方最密堆积(HCP)等类型。
2.金属晶体的晶面和晶向:金属晶体中的晶面和晶向是描述晶体结构的重要参数。
晶面指数(hkl)和晶向指数[uvw]分别表示晶面和晶向在晶体坐标系中的取向。
3.金属晶体的缺陷:金属晶体中的缺陷包括点缺陷、线缺陷和面缺陷。
这些缺陷对金属的物理和化学性质具有重要影响。
四、金属键的应用1.金属材料的制备:金属键是金属材料制备的基础。
通过控制金属原子之间的金属键,可以制备出具有不同性能的金属材料。
2.金属材料的性能优化:通过调控金属晶体中的缺陷,可以优化金属材料的性能,如提高强度、硬度、耐磨性等。
3.金属材料的表面处理:金属材料的表面处理技术,如电镀、喷涂等,基于金属键的作用原理,旨在提高材料的耐腐蚀性、装饰性和功能性。
4.金属基复合材料:金属基复合材料是将金属与其他材料(如陶瓷、塑料等)复合而成的新型材料。
金属键与金属晶体
金属键与金属晶体
[学习目标] 1.认识金属键的本质,掌握金属键的特点与金属某些性质的关系。 2.能用“电子气理论”解释金属具有导电性、导热性和延展性的原因。 3.借助金属晶体等模型认识金属晶体的结构特点。
[重点难点] 1.用金属键解释、比较金属性质的差异。 2.金属晶体的结构特点。
情景引入
55Cs(铯) 28.84 678.4
从锂到铯,价电子数相同,但原子半径依次增大,导致金属键的能量越来越 小,熔沸点也就依次降低。
2.金属晶体熔点的变化规律 (1)金属晶体熔点的变化规律 不同金属晶体,其熔点差别较大。有的熔点很低,如Hg(汞)低至-38.87 ℃ ; 也有的熔点很高,如W(钨)高达3 000 ℃以上。因此,金属晶体的熔点跨度非 常大。 (2)金属键的强弱对金属单质物理性质的影响 金属硬度的大小,熔、沸点的高低与金属键的强弱有关。金属键越强,金属 晶体的熔、沸点越高,硬度越大。 (3)一般合金的熔点比各组分的熔点低。
知识拓展
金属的光泽 因为固态金属中有“自由电子”,所以当可见光照射到金属表面上时,“自 由电子”能够吸收所有频率的光并迅速释放,使得金属不透明并具有金属光 泽。
导思
思考下列关于金属的几个问题。 (1)含有阳离子的晶体中一定含有阴离子吗? 提示 不一定。如金属晶体中只有阳离子和自由电子,没有阴离子。 (2)纯铝硬度不大,形成硬铝合金后,硬度很大,金属形成合金后为什么有些 物理性质会发生很大的变化? 提示 金属晶体中掺入不同的金属或非金属原子时,影响了金属的延展性和 硬度。 (3)为什么金属在粉末状态时,失去金属光泽而呈暗灰色或黑色?
面心立方堆积
自我测试
1234
1.下列有关金属晶体的说法不正确的是
①金属晶体是一种“巨分子” √
金属键与金属晶体(2017.2)
面心立方堆积 每个晶胞含原子数:4 配位数:?
面心立方堆积
配位数 12 。
( 同层 6 , 上下层各 3 )
6
5 顶 1 6 5 4 2 3 顶 心 1 2 顶 4
1
2
3
6 顶
5 4
3
晶胞中原子数目计算:
晶胞中原子数目计算:
顶点:1/8 边: 1/4 面: 1/2 体心:1
金属晶体的原子在二维平面堆积模型
(子在三维空间的堆积
简单立方堆积 :钋(Po) 配位数:6 每个晶胞含原子数:1
体心立方堆积:钠、钾、铬、钼、钨
配位数:8 每个晶胞含原子数:2
金属键 金属晶体
金属晶体的物理性质 导电性、导热性、延展性
一、金属键
金属离子与自由 电子之间强烈的 相互作用,称为 金属键。
二、金属晶体
由于金属键的作用结合形成的晶体,
是金属晶体。
如金属单质
导电性
金属内部有自由移动的电子,在外电场的作 用下,自由电子会发生定向移动,所以金属 具有导电性。
导热性
自由电子运动把能量从高温区域传递到低温 区域。
延展性
金属键没有方向性,金属受外力作用时,各 层金属原子之间仍保持金属键作用。
影响金属键强弱的因素:
金属阳离子所带电荷越多,半径越小,
金属键越强,熔沸点越高,硬度也越大。 如Na、Mg
配位数:在晶体中与每个微粒紧密相邻的 微粒个数。 配 位 数: 8
金属键与金属晶体.
阅读课本P33,用金 属键理论作解释
导电性
通常情况下金属晶体内部电子的 运动是自由流动的,但在外加电场的 作用下会定向移动形成电流
导电物质 状态
导电粒子
升温时 导电能力 导电本质
电解质
金属晶体
溶液或熔融液
固态或液态
阴离子和阳离子 自由电子
增强 电解过程
减弱 自由电子的 定向移动
金属的导电性随温度的升高而下降 原因:金属内部主要是金属阳离子和自由电 子,电子可以自由移动,而金属阳离子只能做 很小范围的振动.当温度升高时,阳离子的振 动加剧,对自由电子的定向移动产生了阻碍作 用,故导电能力下降.
共性
小结:
金属晶体与性质的关系
导电性
在金属晶体中,存在许多自由电子,自由电子 在外加电场的作用下,自由电子定向运动,因 而形成电流
导热性
由于金属晶体中自由电子运动时与金属离子
碰撞并把能量从温度高的部分传导温度低的 部分,从而使整块金属达到相同的温度
延展性
由于金属晶体中金属键是没有方向性的,各原 子层之间发生相对滑动以后,仍保持金属键的 作用,因而在一定外力作用下,只发生形变而 不断裂
六方紧密堆积
有时也从其中取三分之一,但它不是六方堆积 的晶胞
第三层的另一种 排列方式,是将球对 准第一层的 2,4,6 位,不同于 AB 两层 的位置,这是 C 层。
12
6
3
54
12
6
3
54
12
6
3
54
第四层再排 A,于是
形成 ABC ABC 三层一
A
个周期。 得到面心立方堆
C
积—A1型。
B
体心立方堆积
金属键金属晶体
配位数
最近邻原子的数目为8。
致密度
约为68%,空间利用率有所提 高。
面心立方结构
晶格结点
每个晶胞的角上和每个面的中心各有一个原 子。
配位数
最近邻原子的数目为12。
原子半径
比体心立方结构更小。
致密度
高达74%,空间利用率最高。
密排六方结构
晶格结点
每个晶胞的角上和上下底面的中心以及三个侧面的中心各有一个原子。
01
利用纳米金属的高比表面积和催化活性,提高化学反应速率和
选择性。
纳米金属传感器
02
利用纳米金属独特的电学、光学性质,开发高灵敏度、高选择
性的传感器件。
纳米金属生物医学应用
03
研究纳米金属在生物医学领域的应用,如药物输送、生物成像
等。
高性能合金发展趋势
01
02
03
高强度轻质合金
开发具有优异力学性能和 轻量化的合金材料,满足 航空航天等领域的需求。
金属键特性分析
无方向性和饱和性
金属键没有固定的方向,也不存 在饱和性,这是由自由电子在金 属晶体中的自由运动性质决定的 。
宏观特性
金属键导致金属晶体具有光泽、 导电、导热等宏观特性。
典型金属键物质举例
碱金属和碱土金属
如钾、钠、钙等,它们的晶体结构主 要由金属键构成。
过渡金属
合金
由两种或两种以上的金属(或金属与 非金属)经一定方法所合成的具有金 属特性的物质,其内部也主要依赖金 属键结合。
以提高金属的硬度、强度和耐腐蚀性,但同时也会降低金属的导电性和
导热性。
04
金属晶体化学性质及反应类型
氧化还原反应
高考化学 同步练习 3.3.1金属键、金属晶体的原子堆积模型
高考化学 3.3 金属晶体第1课时金属键、金属晶体的原子堆积模型练基础落实知识点1 金属键和金属晶体1.金属晶体的形成是因为晶体中存在( )A.脱落价电子后的金属离子间的相互作用B.金属原子间的相互作用C.脱落了价电子的金属离子与脱落的价电子间的相互作用D.金属原子与价电子间的相互作用2.下列有关化学键、氢键和范德华力的叙述中,不正确的是( )A.金属键是金属离子与“电子气”之间的较强作用,金属键无方向性和饱和性B.共价键是原子之间通过共用电子对形成的化学键,共价键有方向性和饱和性C.范德华力是分子间存在的一种作用力,分子的极性越大,范德华力越大D.氢键不是化学键,而是分子间的一种作用力,所以氢键只存在于分子与分子之间知识点2 金属晶体的物理特性3.金属晶体的特征是( )A.熔点都很高 B.熔点都很低C.都很硬 D.都有导电、导热、延展性4.某物质熔融状态可导电,固态可导电,将其投入水中,水溶液也可导电,则可推测该物质可能是( )A.金属 B.非金属C.可溶性碱 D.可溶性盐5.金属能导电的原因是( )A.金属晶体中的金属阳离子与自由电子间的作用较弱B.金属晶体中的自由电子在外加电场作用下可发生定向移动C.金属晶体中的金属阳离子在外加电场作用下可发生定向移动D.金属晶体在外加电场作用下可失去电子知识点3 金属晶体的原子堆积模型6.下列有关金属晶体的说法中不正确的是( )A.金属晶体是一种“巨分子”B.“电子气”为所有原子所共有C.简单立方堆积的空间利用率最低D.体心立方堆积的空间利用率最高7.金属原子在二维空间里的放置有如图所示的两种方式,下列说法中正确的是( )A.图a为非密置层,配位数为6B.图b为密置层,配位数为4C.图a在三堆空间里堆积可得六方最密堆积和面心立方最密堆积D.图b在三维空间里堆积仅得简单立方堆积练方法技巧金属晶体熔、沸点高低的比较方法8.要使金属晶体熔化必须破坏其中的金属键。
苏教版高中化学选择性必修2物质结构与性质精品课件 专题3 第1单元 金属键 金属晶体
3.金属晶体的常见堆积方式。
(1)金属原子在二维平面中放置的两种方式。
金属晶体中的原子可看成直径相等的球体。把它们放置在平面上(即二
维空间里)可有两种方式——非密置层和密置层(如下图所示)。
(2)金属晶体的4种基本堆积方式: 简单立方 、体心立方 、面心立方 和
六方。
4.立方体晶胞中微粒数目的计算。
晶胞的计算
【问题引领】
下图是铜晶胞中所填入的原子及其切割示意图。结合示意图提供的信
息分析下列问题。
现有甲、乙、丙(如图所示)三种晶体的晶胞(甲中X处于晶胞的中心,乙
中A处于晶胞的中心)。
1.分析铜晶胞的切割示意图,你能获取哪些有关晶胞原子组成的信息?
提示:晶胞的顶角原子为8个晶胞共用;晶胞面上的原子为2个晶胞共用。
m=ρV,可得晶胞的质量=9.0 g·cm-3×(3.6×10-8)3 cm3≈4.2×10-22 g。
(3)金属的摩尔质量M=NA×一个原子的质量
-22
4.2
×
10
=6.02×1023 mol-1×
4
g≈63 g·mol-1,
则此金属的相对原子质量为63。
课堂小结
本 课 结 束
子;金属导电过程不生成新物质,属于物理变化,而电解质溶液导电的同时
要在阴、阳两极生成新物质,属于化学变化,故两者导电的本质是不同的。
二、金属晶体
1.存在。
通常条件下,大多数金属单质及其合金也是晶体。在金属晶体中,金属原
子如同半径相等的小球一样,彼此相切、紧密堆积成晶体。
2.组成单元——晶胞。
能够反映晶体结构特征的 基本重复单位 。金属晶体是金属晶胞在空间
几个特定的金属离子,而是几乎均匀地分布在整个晶体里,把所有金属原子
《金属键金属晶体》参考教案
专题3微粒间作用力与物理性质第一单元金属键金属晶体[教学目标]1.了解金属晶体模型和金属键的本质2.认识金属键与金属物理性质的辨证关系3.能正确分析金属键的强弱4.结合问题讨论并深化金属的物理性质的共性5.认识合金及其广泛应用[课时安排] 3课时第一课时[学习内容]金属键的概念及金属的物理性质【引入】同学们我们的世界是五彩缤纷的,是什么组成了我们的世界呢?学生回答:物质讲述:对!我们的自然世界是有物质组成的,翻开我们的化学课本的最后一页我们可以看到一张化学元素周期表,不论冬天美丽的雪花,公路上漂亮的汽车。
包括你自己的身体都是有这些元素的一种或几种构成的。
那么我们现在就来认识一下占周期表中大多数的金属。
【板书】§3-1-1 金属键与金属特性大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢?【展示】几种金属的应用的图片,有金属导线(铜或铝)、铁丝、镀铜金属片等,并将铁丝随意弯曲,引导观察铜的金属光泽。
叙述应用部分包括电工架设金属高压电线,家用铁锅炒菜,锻压机把钢锭压成钢板等。
【讨论】请一位同学归纳,其他同学补充。
1、金属有哪些物理共性?2、金属原子的外层电子结构、原子半径和电离能?金属单质中金属原子之间怎样结合的?【板书】一、金属共同的物理性质容易导电、导热、有延展性、有金属光泽等。
二、金属键【动画演示并讲解】金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。
这种金属离子与自由电子之间的较强作用就叫做金属键。
金属晶体的组成粒子:金属阳离子和自由电子。
金属离子通过吸引自由电子联系在一起, 形成金属晶体.经典的金属键理论把金属键形象地描绘成从金属原子上“脱落”下来的大量自由电子,金属原子则“浸泡”在“自由电子”的“海洋”之中。
金属键金属晶体教学课件
02
金属键的强度和稳定性 取决于金属原子的半径 和电负性。
03
金属键的形成不受方向 原子,形成复杂的金 属晶体结构。
02
金属晶体的介
金属晶体的定 义
01
02
03
金属晶体
由金属原子或金属离子通 过金属键结合形成的晶体。
金属键
金属原子之间通过电子共 享形成的化学键。
金属晶体中金属键的实例
面心立方结构的铜和铝
铜和铝的原子在空间中按照面心立方的规律排列,形成具有高对 称性的晶体结构,其金属键表现出明显的方向性。
体心立方结构的铁和铬
铁和铬的原子按照体心立方的规律排列,其金属键强度较高,晶体 的硬度也较大。
六方密排结构的镁和钛
镁和钛的原子按照六方密排的规律排列,其晶体结构相对较为紧密, 金属键的强度也较高。
05
金属金属晶体的未来
新材料的研 发
高性能金属材料
01
研发具有优异力学性能、耐腐蚀性和高温稳定性的金属材料,
以满足航空航天、能源、化工等领域的需求。
金属基复合材料
02
通过在金属基体中添加增强相,如陶瓷颗粒或纤维,制备具有
优异综合性能的金属基复合材料。
多功能金属材料
03
开发具有磁、电、热、光等功能的金属材料,用于传感器、电
金属金属晶体教 件
• 金属键的介绍
• 金属键与金属晶体的关系 • 金属键金属晶体的应用 • 金属键金属晶体的未来发展
01
金属的介
金属键的定义
金属键
金属原子之间通过共享价电子形 成的化学键。
金属键的形成
金属原子通过移除部分外层电子成 为正离子,而留下的空位则吸引其 他金属原子的外层电子成为负离子, 从而形成金属键。
人教版高中化学选修3课件-金属晶体
知识点二
金属晶体的结构
1.金属晶体的原子堆积模型
2.晶胞中原子的空间利用率的计算方法 (1)以面心立方晶胞为例,求晶胞中原子的空间利用率
图乙是面心立方晶胞的结构剖面图,晶胞的面对角线为金 属原子半径的 4 倍。设金属原子的半径为 R,则晶胞的面对角线 为 4R,晶胞立方体的体积为(2 2R)3。每个面心立方晶胞中实际 含有 4 个金属原子,4 个金属原子的体积为 4×43πR3,因此晶胞 中原子的空间利用率为42×432πRR33×100%=74%。
Hale Waihona Puke ①该晶胞“实际”拥有的铜原子是____4____个。
②该晶胞称为_____C___(填序号)。
A.立方晶胞
B.体心立方晶胞
C.面心立方晶胞 D.简单立方晶胞
③此晶胞立方体的边长为 a cm, Cu 的相对原子质量为 64, 金属铜的密度为 ρ g·cm-3,则阿伏加德罗常数为___ρ2_·5a_63__m_o_l_-_1(用
1金属晶体在受外力作用下,各层之间发生相对滑动,但 金属键并没有被破坏。
2金属晶体中只有金属阳离子,无阴离子。 3原子晶体的熔点不一定都比金属晶体的高,如金属钨的 熔点就高于一般的原子晶体。 4分子晶体的熔点不一定都比金属晶体的低,如汞常温下 是液体,熔点很低。
1.晶体中有阳离子,一定有阴离子吗?反之, 晶体中有阴离子,一定有阳离子吗?
(4)颜色/光泽——自由电子吸收所有频率光释放一定频率光 由于金属原子以最紧密堆积状态排列,内部存在自由电子, 所以当光辐射到它的表面上时,自由电子可以吸收所有频率的 光,然后很快释放出各种频率的光,这就使得绝大多数金属呈 现银灰色以至银白色光泽,金属能反射照射到其表面的光而具 有光泽。而金属在粉末状态时,金属的晶面取向杂乱,晶格排 列不规则,吸收可见光后辐射不出去,所以金属粉末常呈暗灰 色或黑色。
金属键金属晶体课件-2024鲜版
晶体结构测定
相变研究
利用X射线衍射技术,可以研究金属 晶体在不同温度、压力条件下的相变 行为,深入了解金属键与晶体结构之 间的关系。
通过X射线衍射实验,可以测定金属 晶体的晶格常数、原子间距等结构参 数,进而揭示金属键的本质。
2024/3/28
23
电子显微镜在微观形貌观察中作用
1 2
高分辨率成像 电子显微镜利用电子束代替光束进行成像,具有 更高的分辨率,能够观察到金属晶体的微观形貌 和缺陷结构。
2024/3/28
关系总结
金属键是决定金属晶体结构和性质的关键因素。金属键的强度、 稳定性和特性直接影响金属晶体的结构稳定性、物理性质、化 学性质和力学性能。
意义
深入了解金属键与金属晶体的关系有助于理解金属的宏观性质 和行为,为材料科学、冶金工程等领域提供理论支持和实践指 导。此外,这种关系的研究还有助于开发新的金属材料和优化 现有材料的性能。
2024/3/28
20
新型金属功能材料发展趋势
2024/3/28
超导材料 超导材料是指在低温下电阻为零的材料,具有极高的导电 性能。超导材料在电力输送、磁悬浮列车等领域有潜在应 用前景。
形状记忆合金 形状记忆合金是一种具有形状记忆效应的金属材料,能够 在加热后恢复其原始形状。形状记忆合金在医疗器械、航 空航天等领域有广泛应用。
金属键金属晶体课件
2024/3/28
1
contents
目录
2024/3/28
• 金属键基本概念与特性 • 金属晶体结构与性质 • 金属键与金属晶体关系探讨 • 常见金属晶体材料介绍与应用 • 实验方法与技术手段在金属键、金属晶
体研究中应用 • 总结回顾与拓展延伸
2
知识解析金属键与金属晶体
金属晶体中常存在点缺陷、线缺陷和面缺陷等晶体缺陷。 这些缺陷对金属的力学、电学和化学等性质产生重要影响。
滑移与孪生
金属晶体在受力时,原子层间可能发生滑移或孪生现象, 导致金属的塑性变形。滑移和孪生的难易程度与金属晶体 的结构密切相关。
典型金属晶体举例
铜
具有面心立方结构的典型金属,具有良好的导电性、导热 性和延展性。铜及铜合金在电气、建筑、制造等领域有广 泛应用。
铁
具有体心立方结构的典型金属,在室温下具有铁磁性。铁 及其合金是机械工业的重要材料,广泛应用于制造各种机 械零件和工具。
镁
具有密排六方结构的典型金属,是最轻的金属之一,具有 良好的导电性、导热性和延展性。镁及其合金在航空、航 天、汽车等领域有广泛应用。
03
金属键与金属晶体关系 探讨
金属键对金属晶体结构影响
金属键的强度,提高材料的力学性能和化学稳定性。
改善现有材料性能方法探讨
01
02
03
金属强化
通过冷加工、热处理等手 段改变金属晶体的结构和 缺陷,提高金属键的强度 和韧性。
表面改性
采用化学或物理方法在金 属表面形成保护层或改变 表面性质,提高金属的耐 蚀性、耐磨性等。
合金优化
调整合金成分和比例,优 化金属键的特性和分布, 改善合金的力学、电学、 热学等性能。
金属键和金属晶体在环境治理和保护方面具有 重要的应用价值,如重金属污染治理、废水处 理等。
利用金属材料的吸附性能和催化性能,提高环 境治理的效率和效果。
THANKS
感谢观看
金属晶体中金属键作用机制
电子气理论
金属晶体中的自由电子形成电子气,金属原子则浸泡在电子气 中。电子气中的电子与金属原子实(由原子核和内层电子构成) 之间存在库仑相互作用,这种相互作用即为金属键。
金属键金属晶体.pptx
重金属:铜、铅、锌等 按密度分
轻金属:铝、镁等
4.5g/cm3
黑色金属:铁、铬、锰 冶金工业
有色金属:除铁、铬、锰以外的金属
按储量分 常见金属:铁、铝等 稀有金属:锆、钒、钼
第2页/共61页
一、金属键与金属特性
金属键概念:金属阳离子与自由电子之间的强烈的 相互作用-金属键。 金属键的本质:静电作用
52%
6
非密置
层
体心立 Na、K、Cr、Mo
方堆积
、W
68%
8
晶胞
第41页/共61页
堆积模型
采纳这种堆积的典型 空间
代表
利用率
配位数
六方最 密堆积
Mg、Zn、Ti
74%
12
密
置
层 面心立 方最密 堆积
Cu、Ag、Au Pb
74%
12
晶胞
第42页/共61页
2. 晶胞中金属原子数目的计算(平均值)
第43页/共61页
式为( C )
A. M4N4 B.MN C. M14N13
D.条件不够,无法写出化学式
第59页/共61页
3.钛酸钡的热稳定性好,介电常数高,在小型变压器、话筒和扩音器中都有应用。其 晶体的结构示意图如下图 所示。则它的化学式 为( )
顶点占1/8
棱上占1/4
面心占1/2
体心占1
第44页/共61页
2.晶胞中微粒数的计算
(1)体心立方:
在立方体顶点的微粒为8个晶胞共享,处于体心的金属原子全 部属于该晶胞。
微粒数为:8×1/8 + 1 = 2
(2)面心立方:
在立方体顶点的微粒为8个晶胞共有,在面心的为2个晶胞共有。 微粒数为:8×1/8 + 6×1/2 = 4
金属键及金属晶体
金属晶体
Ti
一、金属键
1、金属共同的物理性质 容易导电、导热、有延展性、有金属光泽等。 金属为什么具有这些共同性质呢? 2、金属的结构
问题:构成金属晶体的粒子有哪些?
+
e-
+ e- +
e-
e-
+
e-
+
e-
e-
+
e-
+
e-
-+ e -+ e
+
+
e- +
组成粒子: 金属阳离子和自由电子
(1)“电子气理论”(自由电子理论) 金属原子脱落下来的价电子形成遍布整块 晶体的“电子气”,被所有原子所共用,从而把 所有的金属原子维系在一起。
(2)金属键: 这种金属原子间由于电子气产生的作用。 (在金属晶体中,金属阳离子和自由电子之间的 较强的相互作用) 。 (3)金属键强弱判断: 阳离子所带电荷、半径 3、金属晶体: 通过金属键作用形成的单质晶体
4、金属晶体的结构与金属性质的内在联系
【讨论1】
金属为什么易导电
?
在金属晶体中,存在着许多自由电 子,这些自由电子的运动是没有一定方 向的,但在外加电场的条件下自由电子 就会发生定向运动,因而形成电流,所 以金属容易导电。
金属晶体的原子空间堆积模型2
体心立方堆积( IA,VB,VIB)
金属晶体的堆积方式──钾型
简 单 立 方 堆 积 钾型 体心 立方
ቤተ መጻሕፍቲ ባይዱ
由 非 密 置 层 一 层 一 层 堆 积 而 成
第二层 对第一层来讲最紧密的堆积方式是将球对准 1,3,5 位。 ( 或对准 2,4,6 位,其情形是一样的 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三.影响金属键强弱的因素
(1)金属元素的原子半径 (2)单位体积内自由电子的数目
一般而言:
金属元素的原子半径越小,单位体积内自由电 子数目越大,金属键越强,金属晶体的硬度越大, 熔、沸点越高。
如:同一周期金属原子半径越来越小,单位体积
内自由电子数增加,故熔点越来越高,硬度越来越 大;同一主族金属原子半径越来越大,单位体积内 自由电子数减少,故熔点越来越低,硬度越来越小。
的强烈的静电吸引作用
C. 金属键中的电子属于整块金属
D. 金属的性质和金属固体的形成都与金属键有关
2.下列有关金属元素特性的叙述正确的是 ( B ) A. 金属原子只有还原性,金属离子只有氧化性 B. 金属元素在化合物中一定显正化合价 C. 金属元素在不同化合物中化合价均不相同 D. 金属元素的单质在常温下均为晶体
金属的延展性
++ + +++ + + ++ +
+++ ++ + + + ++
位错
+++ + ++ + + ++ ++++ +++ + +++ +
自由电子
+ Biblioteka 属离子金属原子相对滑动
4、金属光泽和颜色
? 由于自由电子可吸收所有频率的光,然后 很快释放出各种频率的光,因此绝大多数 金属具有银白色或钢灰色光泽。而某些金 属(如铜、金、铯、铅等)由于较易吸收 某些频率的光而呈现较为特殊的颜色。
已学过的金属知识 金属的分类
重金属:铜、铅、锌等 按密度分
轻金属:铝、镁等
4.5g/cm 3
黑色金属:铁、铬、锰 冶金工业
有色金属:除铁、铬、锰以外的金属
常见金属:铁、铝等 按储量分
稀有金属:锆、钒、钼
金属元素在周期表中的位置及原子结构特征
金属样品 Ti
金属的特点
①常温下,单质都是固体,汞(Hg) 除外;
金属晶体
金属原子
自由电子
二. 金属的物理性质
具有金属光泽,能导电,导热,具有良 好的延展性,金属的这些共性是有金属 晶体中的化学键和金属原子的堆砌方式
所导致的
1、导电性
【讨论1】 金属为什么易导电?
在金属晶体中,存在着许多自由电子,这些自由 电子的运动是没有一定方向的,但在外加电场的条件 下自由电子就会发生定向运动 ,因而形成电流,所以 金属容易导电。
? 当金属成粉末状时,金属晶体的晶面取向 杂乱、晶格排列不规则,吸收可见光后辐 射不出去,所以成黑色。
P33有的金属软如蜡 ,有的金属软如钢 ;有 的金属熔点低 ,有的金属熔点高 ,为什么?
根据下表的数据,请你总结影响金属键的因素
部分金属的原子半径、原子化热和熔点
金属
Na
原子外围电子排布 3s1
Mg Al
一、金属键
描述金属键本质的理论是电子气理论。
电子气理论:经典的金属键理论叫做“电 子气理论”。它把金属键形象地描绘成从 金属原子上“脱落”下来的大量自由电子 形成可与气体相比拟的带负电的“电子 气”,金属原子则“浸泡”在“电子气” 的“海洋”之中。遍布整块晶体的“电子 气”被所有原子所共有,从而把所有的金 属原子维系在一起。
成的晶体
通过金属键形成的 晶体
共价键
范德华力
金属键
原子
很高 很大
分子 很低
很小
金属原子和 自由电子
差别较大
差别较大
无(硅为半导体) 无
导体
实例
金刚石、二氧化硅、 晶体硅、碳化硅
Ar 、S等
Au 、Fe、Cu、钢 铁等
练习
1.下列有关金属键的叙述错误的是 (
B)
A. 金属键没有方向性
B. 金属键是金属阳离子和自由电子之间存在
②大多数金属呈银白色,有金属光 泽,但 金(Au)黄——色,铜(Cu)—红—色, 铋(Bi)微—红— 色,铅(Pb)蓝——白 色。
大家都知道晶体有固定的几何外形、 有固定的熔点,水、干冰等都属于分子 晶体,靠范德华力结合在一起,金刚石 等都是原子晶体,靠共价键相互结合, 那么我们所熟悉的铁、铝等金属是不是 晶体呢?它们又是靠什么作用结合在一 起的呢?
总结
? 金属键的概念 ? 运用金属键的知识解释金属的物理
性质的共性和个性 ? 影响金属键强弱的因素
知识回顾:三种晶体类型与性质的比较
晶体类型
概念
作用力
构成微粒 熔沸点
物 理 硬度 性 质 导电性
原子晶体
相邻原子之间以共价 键相结合而成具有空
间网状结构的晶体
分子晶体
金属晶体
分子间以范德 华力相结合而
比较离子晶体、金属晶体导电的区别:
晶体类型 导电时的状态
离子晶体
水溶液或
熔融状态下
金属晶体
晶体状态
导电粒子 自由移动的离子 自由电子
2、导热性 【讨论2】金属为什么易导热?
自由电子在运动时经常与金属离子碰撞, 引起两者能量的交换。当金属某部分受热时, 那个区域里的自由电子能量增加,运动速度加 快,通过碰撞,把能量传给金属离子。
金属容易导热,是由于自由电子运动时与 金属离子碰撞把能量从温度高的部分传到温度 低的部分,从而使整块金属达到相同的温度。
3、延展性
【讨论3】金属为什么具有较好的延展性?
原子晶体受外力作用时,原子间的位移必 然导致共价键的断裂,因而难以锻压成型, 无延展性。而金属晶体中由于金属离子与自 由电子间的相互作用没有方向性,各原子层 之间发生相对滑动以后,仍可保持这种相互 作用,因而即使在外力作用下,发生形变也 不易断裂。
Cr
3s2 3s23p 1 3d54s1
原子半径 /pm
186 160 143.1 124.9
原子化热 /kJ ·mol-1 108.4 146.4 326.4 397.5
熔点 /℃
97.5 650 660 1900
金属的熔点、硬度与金属键的强弱有关,金属键的强弱 又可以用原子化热来衡量。原子化热是指1mol金属固体完 全气化成相互远离的气态原子时吸收的能量。
? 1、金属键的定义:金属离子和自由电子之 间的强烈的相互作用。
? (1)成键微粒:金属原子(阳离子)和自 由电子。
? (2)金属键存在:金属单质、合金。
? (3)金属键特征:没有方向性、饱和性。
2、金属晶体:通过金属键形成的晶体。 (1)在晶体中,不存在单个分子 (2)金属原子(阳离子)被自由电子 所包围。
大多数金属单质都有较高的熔点,说明了什么? 金属能导电又说明了什么?
说明金属晶体中存在着强烈的相互作用 ;金属具有 导电性 ,说明金属晶体中存在着能够自由流动的电 子。
分析:
通常情况下,金属原子的部分或全 部外围电子受原子核的束缚比较弱,在 金属晶体内部,它们可以从金属原子上 “脱落”下来的价电子,形成自由流动 的电子。这些电子不是专属于某几个特 定的金属离子,是均匀分布于整个晶体 中。