SPC统计过程控制基本概念

合集下载

SPC统计过程控制及CPK分析

SPC统计过程控制及CPK分析

SPC统计过程控制及CPK分析随着工业的不断发展,SPC统计过程控制和CPK分析作为质量控制的重要工具被广泛使用。

本文将从以下几个方面进行介绍:•SPC统计过程控制的基本概念及步骤•CPK分析的基本概念和应用方法•SPC统计过程控制和CPK分析在实际生产中的应用SPC统计过程控制的基本概念及步骤SPC统计过程控制是指在生产过程中,通过对产品质量进行监测和控制,确保产品质量的稳定和一致性。

其基本步骤如下:1.定义指标:确定需要监测的关键指标,如尺寸、重量、硬度等。

2.收集数据:在生产过程中按一定规律收集指标数据。

3.统计分析:对数据进行统计分析,得出产品质量的统计特性,如均值、方差、极差等。

4.制定控制策略:根据分析结果制定控制策略,如控制上下限、报警线等。

5.实施控制:在实际生产过程中,根据控制策略对产品质量进行实时监测和控制。

6.持续改进:根据监测结果和反馈信息,不断优化控制策略,实现质量持续改进。

CPK分析的基本概念和应用方法CPK是一种衡量产品质量稳定性的指标,其计算方法为:CPK=(USL-LSL)/(6σ)。

其中,USL和LSL分别为上限和下限,σ为标准差。

CPK的值越接近1,产品质量的稳定性就越好。

CPK分析的应用方法如下:1.定义指标:选择需要监测的关键指标。

2.收集数据:在一段时间内按一定规律收集指标数据。

3.统计分析:对数据进行统计分析,计算出指标的均值、标准差以及CPK值。

4.制定改进措施:根据CPK值的高低以及其他因素,制定针对性的改进措施,并在实际生产中进行落实和监测。

5.持续改进:根据改进措施的效果,不断优化工艺流程和控制方法,实现产品质量的持续改进。

SPC统计过程控制和CPK分析在实际生产中的应用SPC统计过程控制和CPK分析在实际生产中的应用非常广泛。

以汽车制造为例,汽车零部件的质量稳定性是确保整车质量的关键,因此,对关键指标进行SPC统计过程控制和CPK分析就显得尤为重要。

SPC的基本概念与特点

SPC的基本概念与特点

SPC的基本概念与特点什么是SPCSPC,即统计过程控制(Statistical Process Control),是一种通过统计方法对过程进行监控和管理的质量管理工具。

它通过收集和分析过程数据,以便实时地监测过程的稳定性和能力,并及时采取纠正措施,以保证产品或服务的质量符合要求。

SPC基于统计学原理,利用数据分析的手段来判断过程的偏差和稳定性,采取控制图等图形化工具来展示过程变化的规律,并通过数学模型对过程进行预测和改进。

SPC的基本特点1.实时性SPC能够实时地监测过程的稳定性和能力,通过实时收集的数据进行分析,及时发现过程的偏差和异常情况,并及时采取纠正措施。

这使得SPC能够快速响应问题,避免质量问题的扩大和重复出现。

2.统计方法SPC基于统计学原理,利用统计方法对过程数据进行分析和判断。

通过对数据的测量、统计和分析,可以客观地了解过程的状态,并进行准确的判断和决策。

这使得SPC能够避免主观判断和盲目决策的问题,提高质量管理的科学性和准确性。

3.图形化工具SPC采用图形化工具展示过程变化的规律,常用的图形化工具包括控制图、趋势图、直方图等。

这些图形化工具直观地展示了过程的状态和变化趋势,使人们能够快速地理解和分析数据,辅助决策和改进。

图形化工具还能够帮助人们发现隐藏在数据中的规律和关联性,进一步优化和改进过程。

SPC通过数据的分析和建模,能够对过程进行预测和改进。

通过建立数学模型和趋势分析,可以预测过程的发展方向和变化趋势,为及时调整和改进提供依据。

这使得SPC能够提前发现潜在问题和缺陷,及时采取措施进行预防和纠正,确保产品或服务的质量稳定。

5.过程稳定性SPC关注过程的稳定性,即过程的变异是否在可接受的范围内。

通过对数据的统计和分析,可以判断过程的稳定性,并得到稳定性指标,如均值、标准差、过程能力指数等。

这使得SPC能够帮助人们了解过程的状态和品质能力,及时调整和改进过程,提高产品或服务的稳定性和一致性。

统计过程控制SPC基本概念

统计过程控制SPC基本概念

■ 子组数的大小: 子组数的大小应满足两个原则,从过程的角度来看,收集 越多的子组可以确保变差的主要原因有机会出现。一般情 况下,包含100或更多单值读数的25或更多个子组可以很 好地用来检验稳定性,如果过程已稳定,则可以得到过程 位置和分布宽度的有效的估计值。 ◆ 在有些情况下,可以利用现有的数据来加速这个第一 阶段的研究。然而,只有它们是最近的,并且对建立 子组的基础很清楚的情况下才能使用。
Cpk≧1.33计算 每班 1.检验记录表
2.设备点检记录表 每班 3.作业准备验证记
录表 1.首检、自检 每2 2.检验记录表 小时 3.X-R控制图,
Cpk≧1.33计算
反应 计划
1.标识、隔离、 评审、处置 2.100%检验
调整、呈报班组 长
1.标识、隔离、 评审、处置 2.100%检验
4、统计过程控制(SPC)的目的: 为了解制造过程以及改善制造过程,藉由对制造过程能力的分析/评估
日期(修订):
顾客工程批准/日期(如需要):
零件名称/描述:
供方/工厂批准/日期:
顾客质量批准/日期(如需要):
供方/工厂:
供方代码:
其它批准/日期(如需要):
其它批准/日期(如需要):
零件/过 程编号
过程 名称/ 操作 描述
机器、装置、 夹具、工装
编 号
特性 产品 过程
特殊 特性 分类
1 硬度

30
2 收集数据:
A)、选择子组大小、频率和数据;
■ 子组频率:
其目的是检查经过一段时间后过程中的变化。应当在适当的时间收集足够 的子组,这样子组才能反映潜在的变化。这些变化的潜在原因可能是换班、 或操作人员更换、温升趋势、材料批次等原因造成的。

统计过程控制(SPC)

统计过程控制(SPC)

11
控制图的选择
控制图的选定
计量值 数据性质
计数值
平均值
“n”=10~25 “n”是否较大
n≧1 样本大小 n≧2
Cl的性质
中位数 “n”=2~5
“n”=1
不良数
缺陷数
不良数或
缺陷数
不一定
一定
“n”是否一定
单位大小 是否一定 不一定 一定
X-s 图
X-R 图
X-R
X-Rm “p”

图图
“np” “c”
数据类别: 计数值数据:只以缺陷数和个数表示,不能连续取值的数据 计量值数据:以产品本身的特性来表示,可以连续取值的数据
2
两种变异
普通性(特定性)变异:不易避免的原因(普通 原因)造成的变异,如操作人员的熟练程度的 差异、设备精度与保养好坏的差异、同批原材 料本身的差异
特殊性(偶尔性)变异:可以避免也必须避免 的原因(特殊原因)造成的变异,如不同原材料 之间的差异、设备故障
“u”
图图

12
案例1(控制图的选择)
质量特性 长度 重量 乙醇比重 电灯亮/不亮 每一百平方米的 脏点
样本数 5 10 1
100 100平方米
选用什么图
13
答案1
质量特性 长度 重量 乙醇比重 电灯亮/不亮 每一百平方米的 脏点
样本数 5 10 1
100 100平方米
选用控制图 均值极差控制图
通常用来消除变差的普通原因 几乎总是要求管理措施,以便纠正 大约可纠正85%的过程问题
8
控制图的目的
控制图和一般的统计图不同,因其不仅能 将数值以曲线表示出来,以观其变异之趋 势,且能显示变异系属于机遇性或非机遇 性,以指示某种现象是否正常,而采取适 当之措施。

SPC基本概念

SPC基本概念

SPC的特点 SPC的特点
●与全面质量管理相同,强调全员参与,而 不是只依靠少数质量管理人员 ●强调应用统计方法来保证预防原则的实现 ●SPC不是用来解决个别工序采用什么控制 SPC不是用来解决个别工序采用什么控制 图的问题,SPC强调从整个过程、整个体 图的问题,SPC强调从整个过程、整个体 系出发来解决问题。SPC的重点就在与“ 系出发来解决问题。SPC的重点就在与“P (Process,过程) Process,过程) ●可判断过程的异常,及时告警; ●不能告知此异常是什么因素引起的
判稳原则
●计算公式:
准则 N=25 d=0
N=35 N=100 d≤3 d≤1
P(过程为正常的概率)
25 (0 . 9973 0
判断错误 的概率
= 0 . 9345
)25 (1 − 0 . 9973 )0
1-P 1-P
35 35 35 34 1 (0 .9973 ) + (0 .9973 ) (0 .0027 ) = 0 .9959 0 1
统计学在生产中应用的目的
1. x, s --了解产品总体性能 2. Eliminate outlier due to assignable cause -- 取消人为特殊因素造成的极端值以稳定制程 3. Hit target(µ) -- 规格趋向目标值 4. Reduce variance (s) -- 减小差异 5. Spec Review for feasibility -- 審核規格,看看是否適用
判稳原则
●判稳准则 在点子随机排列的情况下,符合下列各点之一判稳: 在点子随机排列的情况下,符合下列各点之一判稳: -----连续25个点,界外点数d=0 -----连续25个点,界外点数d=0 -----连续35个点,界外点数d≤1 -----连续35个点,界外点数d≤1 -----连续100个点,界外点数d≤2 -----连续100个点,界外点数d≤2 ●分析判稳原则 准则 1 2 3 α 0.0654 0.0041 0.0026 β 0.9346 0.9959 0.9974

统计过程控制(SPC)

统计过程控制(SPC)
统计过程控制(SPCA )P
CD
AP
CD
AP
AP
CD
CD
统计过程控制(SPC)
SPC的基本概念 控制图原理 常规(休哈特)控制图 控制图的判断准则 常用控制图的计算 通用控制图 过程能力与过程能力指数
统计过程控制(SPC)
SPC的基本概念
• SPC的涵义 SPC是英文Statistical Process Control(统计过程控制)
C B A
准则:连续9点落在中心线同一側。
LCL
准则:连续6点递增或递减。
准则:连续14点中相邻点上下交替。
准则:连续3点中有2点落在中心线同一側的B区之外。
准则:连续5点中有4点落在中心线同一側的C区之外。
准则:连续15点在C区的中心线上下。
准则:连续8点在中心线两側,但无一在C区中。
统计过程控制(SPC)
统计过程控制(SPC)
• 控制图的作用 控制图的作用是:及时告警。体现SPC与SPD的贯彻
预防原则。 控制图是SPC与SPD的重要工具,用以直接控制与诊断 过程,故为质量管理七个工具的核心。
质量管理七个工具:因果图(Cause-effect diagram), 排列图(Pareto diagram),直方图(Histogram),散 步图(Scatter diagram),控制图(Control chart),分 层法(Stratification),检查表(Check list)。 贯彻预防原则的“20字方针”:
u控制图的控制线为:
UCL = u + 3 u / n CL = u
LCL = u - 3 u / n
式 否中则:控u制=线 呈ci /凹凸ni 状,。ci为样本的不合格数。样本容量n最好恒定,

统计过程控制(SPC)

统计过程控制(SPC)

(三) x R 控制图的操作步骤
1. 确定控制对象(统计量) 2. 收集k组预备数据(一般K=25;每组数
据个数n ≥ 2;遵循合理子组原则) 3. 计算每一个样本的均值 X i 与极差 Ri 。 4. 计算 X与R 5. 计算R图控制限并作图 6. 用各样本点绘在图中,判断状态。
分析过程若失控或异常,找出原因, 进行纠正,防止再发生。
7. 计算 X 图控制限并作图,判断状态。 8. 计算过程能力指数验证是否符合要求 9. 延长控制限,作控制用控制图,进行日
常管理
四、 X S 图(掌握) 五、X-Rs图(了解)
六、Me-R图(了解)
七、P控制图
(一)P控制图的控制状态
P 常数
n
n
ˆp p di / ni
i1 i1
(二)P控制图的统计基础为二项分布,其
内容 (1)利用控制图分析过程的稳定性,对
过程存在的异常原因进行预警;
(2)计算过程能力指数分析稳定的过程 能力满足技术要求的程度,对过程质量进行 评价。
三、统计过程控制的特点 是一种预防性的方法 贯彻预防原则是现代质量管理的核心 强调全员参与
SPC的涵义
为了贯彻预防原则,应用统计技术对 过程各阶段评估和监控,建立并保持过程 处于可接受的并且稳定的水平从而保证产 品与服务符合规定的要求的一种质量管理 技术。
过程能力指数 过程性能指数
CP
TU TL 6ˆ ST
PP
TU TL 6ˆ LT
其中 ˆ St —— 短期波动的标准差估计,在稳态
下计算
ˆ St
R d2

S C4
ˆ Lt —— 长期波动的标准差估计,在实
际情况下计算 ˆ Lt S

统计过程控制知识大全

统计过程控制知识大全

统计过程控制知识大全1、统计过程控制的基本知识1.1统计过程控制的基本概念统计过程控制(Stastistical Process Control简称SPC)是为了贯彻预防原则,应用统计方法对过程中的各个阶段进行评估和监控,建立并保持过程处于可接受的并且稳定的水平,从而保证产品与服务符合规定要求的一种技术。

SPC中的主要工具是控制图。

因此,要想推行SPC必须对控制图有一定深入的了解,否则就不可能通过SPC取得真正的实效。

对于来自现场的助理质量工程师而言,主要要求他们当好质量工程师的助手:(1)在现场能够较熟练地建立控制图;(2)在生产过程中对于控制图能够初步加以使用和判断;(3)能够针对出现的问题提出初步的解决措施。

大量实践证明,为了达到上述目的,单纯了解控制图理论公式的推导是行不通的,主要是需要掌握控制图的基本思路与基本概念,懂得各项操作的作用及其物理意义,并伴随以必要的练习与实践方能奏效。

1.2统计过程控制的作用(1)要想搞好质量管理首先应该明确下列两点:①贯彻预防原则是现代质量管理的核心与精髓。

②质量管理学科有一个十分重要的特点,即对于质量管理所提出的原则、方针、目标都要科学措施与科学方法来保证他们的实现。

这体现了质量管理学科的科学性。

第2 页(共12 页)为了保证预防原则的实现,20世纪20年代美国贝尔电话实验室成立了两个研究质量的课题组,一为过程控制组,学术领导人为休哈特;另一为产品控制组,学术领导人为道奇。

其后,休哈特提出了过程控制理论以及控制过程的具体工具——控制图。

道奇与罗米格则提出了抽样检验理论和抽样检验表。

这两个研究组的研究成果影响深远,在他们之后,虽然有数以千记的论文出现,但至今仍未能脱其左右。

休哈特与道奇是统计质量控制(SQC)奠基人。

1931年休哈特出版了他的代表作《加工产品质量的经济控制》这标志着统计过程控制时代的开始。

(2)“21世纪是质量的世纪”。

美国著名质量管理专家朱兰早在1994年的美国质量管理年会上即提出此论断,若干年来得到越来越多的人的认同。

统计过程控制SPC培训资料

统计过程控制SPC培训资料
❖ 控制图是区分过程中的正常波动和异常波动, 并判断过程是否处于控制状态的一种工具。
❖ 控制图是了解过程变差并帮助达到统计控制 状态的有效工具。
正常波动
❖ 是由随机因素/偶然因素(ISO/TA16949称之 为普通因素)造成的,这些普通因素在生产 中大量存在,多产品质量经常发生影响,但 它所造成的质量波动往往比较小,在生产过 程中是允许存在的。如:机器设备的轻微振 动等。
控制图名称
均值—极差控制 图
X S
X~ R
均值—标准差控 制图
中位值—极差图
备注
最常用,判断工序是否正常的效 果好,计算量大,适用于产品批 量大、且稳定、正常的工序;
S的计算比R复杂,但其精度高 适用与检验时间远比加工时间段 的场合 计算简便,但效果差 使用与产品批量较大、且稳定、 正常的工序;
X Rs 单值--极差图
SPC的特点
与全面质量管理相同,强调全员参与,而不是只依靠 少数质量管理人员
●强调应用统计方法来保证预防原则的实现 ●SPC不是用来解决个别工序采用什么控制图的问题,
SPC强调从整个过程、整个体系出发来解决问题。 SPC的重点就在与“P(Process,过程) ●可判断过程的异常,及时告警; ●不能告知此异常是什么因素引起的
正常波动
❖ 当一个过程只有普通原因起作用,而不存在 特殊原因的作用时,过程中就只在一定范围 内正常波动,这个过程就处在统计控制状态, 即:受控状态。
异常波动
❖ 异常波动是由系统因素/异常因素 ( ISO/TA16949称之为特殊因素)造成的。 这些特殊因素在生产过程中并不大量存在, 对产品质量也不经常发生影响,一旦存在, 它对产品质量的应就比较显著。如:机器带 病运转,操作者违章操作等。

统计过程控制

统计过程控制

失去控制(有异因)
稳态图示
规格下限
技术稳态
规格上限
(偶因的变异减少)
年我国著名质量管理专家、北京科技大学张公绪教授提出选控图及两
种质量诊断理论,突破了休哈特的SPC理论,使SPC上升到SPD。 SPD不仅能预警, 而且能诊断, 为及时纠正提供了有利保障.
统计本身不能提高制程能力,消除 异常因素! 它是我们的工具。
第二节
控制图原理
一、控制图的结构
控制图(Control Chart)是对过程质量特性值进行测定、记录、
评估,从而监察过程是否处于控制状态的一种用统计方法设计的图。
样 本 统 计 量 数 值 描点序列 上控制限(UCL) 中心线(CL)
下控制限(LCL)
控制图示例
时间或样本号
控制图组成包括中心线、上下控制限以及按时间顺序抽取的样本 统计量数值的描点序列。
二、控制图的重要性
控制图是贯彻预防原则的SPC的重要工具,可用以直接对产品生 产过程的控制与诊断,是质量管理(老)七个工具的重要组成部分。
LCL为下控制限。
控制图虽然由正态分布转化而来,由于二项分布、泊松分布当样本量较 大时近似正态分布,因此,控制图对典型分布均适用。
(二)控制图原理的第一种解释 (1)若过程正常,即分布不变,则出现点子超过上或下控制限情
况的概率只有1‰左右。( 0.27%÷2 = 1.35‰ )
(2)若过程异常,发生这种情况的可能性很大,其概率可能为 1‰的几十乃至几百倍。 例如:当正态分布的均值偏移1.5σ 的情况 不合格品率 p=1-Φ(1.5 ) + Φ(-4.5 ) =2- Φ(1.5 ) - Φ(4.5 ) =0.06681 根据小概率事件原理:即小概率事件在一次试验中几乎不可能发 生,因此,若发生即可判断异常。

SPC培训教材基础篇

SPC培训教材基础篇

04 SPC工具和技术
控制图
总结词
控制图是SPC的核心工具,用于监控生产过程中的关键特性,通过图形化展示过程数据,帮助管理者识别异常波 动。
详细描述
控制图是一种统计工具,用于监控生产过程中的关键特性。它通过将实际数据绘制在图上,并与控制界限进行比 较,来检测异常波动。控制图通常包括中心线(CL)、上控制限(UCL)和下控制限(LCL)。当数据点超出控 制限或连续7个点在均值的一侧时,通常认为过程存在异常。
总结词
通过实施SPC,确保生产安全和环保达标,提高企业形象 和社会责任感。
详细描述
该化工生产企业采用SPC对生产过程进行监控和分析,及 时发现并解决潜在的安全隐患和环保问题,确保生产安全 和环保达标。同时,通过实施SPC,提高了企业的形象和 社会责任感。
案例四:某医疗器械制造企业的SPC应用
总结词
在质量管理体系中广泛应用,如 ISO 9001质量管理体系。
02 SPC基本原理
数据的收集与整理
数据的收集
确保数据的准确性和完整性,选 择适当的测量工具和设备,定期 校准和维护测量设备,确保数据 来源可靠。
数据的整理
对收集到的数据进行整理和分类 ,利用图表和统计方法对数据进 行初步分析,以便更好地理解和 呈现数据。
数据的分析与解释
数据分析
运用统计学方法对数据进行分析,识 别数据的分布、趋势和异常值,为后 续的数据解释提供依据。
数据的解释
根据数据分析的结果,对数据进行合 理的解释和推断,挖掘数据背后的原 因和规律,为改进和控制过程提供支 持。
过程的控制与改进
过程控制
运用SPC技术对过程进行监控和控制,及时发现异常和波动 ,采取相应的措施进行调整和控制,确保过程的稳定性和可 靠性。

SPC统计基础知识

SPC统计基础知识

SPC统计基础知识简介SPC(Statistical Process Control,统计过程控制)是一种用于监控和管理过程稳定性和可靠性的统计技术。

通过收集样本数据并进行分析,SPC能够及时发现过程中的变异和异常情况,从而帮助组织实现质量改进、成本控制和客户满意度的提高。

本文将介绍SPC的基本概念和常用统计方法,帮助读者理解和运用SPC统计基础知识。

1. SPC的基本概念SPC是一种通过分析过程数据来监控过程稳定性的方法。

它基于以下三个基本统计概念:1.1 均值过程中的均值是指一组样本数据的平均值。

在SPC中,通过计算样本的均值来了解过程的中心位置。

如果样本均值始终在预设的目标值附近波动,说明过程稳定。

1.2 变异过程中的变异是指一组样本数据的离散程度。

在SPC中,通过计算样本数据的变异度来了解过程的稳定性。

如果样本数据的变异度较低且在预设的范围内,说明过程稳定。

1.3 控制界限控制界限是为了判断过程是否处于可接受的控制范围内而设定的。

上下控制界限定义了过程稳定的上下限,超出这一范围的样本数据将被认为是异常值或异常事件。

2. 常用的SPC统计方法2.1 过程能力指数(Cp)过程能力指数是一种衡量过程稳定性和可靠性的指标。

它通过比较过程的变异度和指定的公差范围来评估过程性能。

Cp值越高,说明过程的稳定性和可靠性越好。

2.2 控制图控制图是SPC中最常用的统计工具之一。

它通过绘制样本数据的均值、上下控制界限和中心线来反映过程的变化趋势。

通过控制图,可以及时发现和纠正过程中的变异和异常情况。

2.3 散点图散点图是用来显示两个变量之间关系的图表。

在SPC中,散点图可以用来发现变量之间的相关性和趋势。

通过分析散点图,可以帮助确定工艺参数的合理范围和优化生产过程。

2.4 直方图直方图是用来显示数据分布情况的图表。

在SPC中,直方图可以帮助了解过程数据的分布特征和变异程度。

通过分析直方图,可以判断过程是否正常、是否满足规定要求。

统计过程控制(SPC)

统计过程控制(SPC)
图2
解:
于是,过程能力指数为:
过程能力不够充分,从图2发现分布中心μ=0.1968与规范中心M=(TU+TL)/2=0.1720有偏离,应进行调整。调整后,Cp值会有所提高。
单侧规范情况的过程能力指数
01
只有上限要求,而对下限没有要求: 只适用于的范围:
02
只有下限要求,而对上限没有要求: 只适用于的范围:
4
3
6
5
判稳准则的分析 判稳准则的思路
打一个点未出界有两种可能性:
► 过程本来稳定 ► 漏报 (这里由于α小,所以β大),故打一个点子未出界不能立即判稳。
在点子随机排列的情况下,符合下列各点之一判稳:
01
► 连续25个点,界外点数d=0;
02
► 连续35个点,界外点数d<0;
03
► 连续100个点,界外点数d<2。
0.1821
0.1828
0.0086
18
0.1812
0.1585
0.1699
0.168
0.1694
0.0227
19
0.1700
0.1567
0.1694
0.1702
0.1666
0.0135
20
0.1698
0.1664
0.17
0.16
0.1666
0.01
图1
μ’
μ
图2-7 正态曲线随着标准差变化
σ=2.5
σ=1.0
σ=0.4
y
x
不论μ与σ取值为何,产品质量特性值落在[μ-3σ,μ+3σ]范围内的概率为99.73%。 图2-8 正态分布曲线下的面积

SPC统计过程控制基本概念

SPC统计过程控制基本概念

SPC统计过程控制根本概念引言SPC〔统计过程控制〕是一种用于监控和控制过程稳定性的方法。

它使用统计工具来分析过程数据,以便及时识别和纠正任何异常或变异。

本文将介绍SPC统计过程控制的根本概念,包括其定义、原理和常用的控制图。

定义SPC是一种基于统计方法的过程管理技术,用于监测和控制生产过程以保持在既定的质量范围内。

它的目标是确保过程在特定参数范围内保持稳定,并及时识别和纠正任何异常。

SPC主要通过收集数据并应用统计方法来实现过程控制。

原理SPC基于以下两个根本原理: 1. 过程稳定性:稳定的过程是指其输出变量在一定的统计范围内波动,并且其变异性为可控制的。

通过检测过程数据的变异性,可以判断过程是否稳定。

2. 标准限制:每个过程都有一组标准限制,表示其输出变量的可接受范围。

通过比拟过程数据与标准限制,可以判断过程是否符合要求。

控制图控制图是SPC中常用的工具,用于检测和监控过程的稳定性。

常见的控制图包括: - 均值控制图:用于监测过程的平均值是否稳定。

常见的均值控制图有X-bar控制图和均值移动范围控制图。

- 范围控制图:用于监测过程的变异性是否稳定。

常见的范围控制图有R控制图和S 控制图。

- 非参数控制图:用于监测不符合正态分布假设的过程。

常见的非参数控制图有中位数控制图和秩和控制图。

控制图的根本原理是将过程数据与控制界限进行比拟,以识别任何异常或变异。

如果过程数据落在控制界限之外,说明过程不稳定并需要采取纠正措施。

SPC方法SPC方法是实施SPC的步骤和技术。

以下是SPC方法中的关键步骤:1. 收集数据:收集过程相关的数据,通常是通过抽样收集。

2. 统计分析:对收集到的数据进行统计分析,包括计算统计指标和绘制控制图。

3. 解读控制图:通过分析控制图,识别任何异常或变异,判断过程是否稳定。

4. 纠正措施:如果控制图显示过程不稳定,应采取纠正措施,如调整操作参数或改良工艺流程。

SPC方法还可以与其他质量管理工具和方法相结合,例如六西格玛和PDCA循环,以进一步提高过程稳定性和质量性能。

SPC(统计过程控制):基本概念及在质量管理中的作用介绍

SPC(统计过程控制):基本概念及在质量管理中的作用介绍

SPC(统计过程控制):基本概念及在质量管理中的作用介绍一、SPC概述SPC(Statistical Process Control, 统计过程控制)是用于控制生产过程稳定性、提高产品质量的一种管理工具。

它是一种基于统计原理的质量控制技术,通过对质量数据进行分析并处理,帮助生产部门发现异常情况,及时进行纠正和改进。

SPC的主要作用是通过对生产的各项指标进行监控,及时发现异常情况并予以解决,达到减少产品次品率、提高生产效率的目的。

1.1 SPC的定义和发展历程统计过程控制(SPC)是由美国生产者联盟(APQC)制定的标准,是指在生产、服务等等过程中,使用一系列统计方法,对生产过程各项指标进行定量分析、监控,以便及时发现问题并采取纠正和预防措施,以提高质量、提高效率和降低成本。

自20世纪75年以来,SPC 已广为应用于各种制造和服务行业,被广泛认可和推广。

1.2 SPC的基本原理和方法SPC的基本原理是通过收集和分析生产过程中的数据,判断过程是否处于正常状态,如果出现异常情况则采取行动控制,达到稳定生产并控制品质的目的。

其基本方法有控制图、质量测量、过程分析、数据收集和统计方法等。

二、SPC在质量管理中的作用2.1 SPC在质量管理体系中的地位与作用SPC在现代企业的质量管理中处于非常重要的地位,其作用几乎贯穿了整个质量管理体系。

首先,质量管理的核心目标是实现全过程质量控制,SPC可以有效的实现这一目标。

其次,SPC可以帮助企业实现质量的持续改进,提高产品的稳定性和一致性,为企业提供坚实的基础。

再次,SPC可以为企业的产品质量提供科学的依据,使企业在市场竞争中更具有说服力。

2.2 SPC在改进质量管理性能方面的作用SPC对于改进质量管理性能具有很好的作用。

通过对生产过程的监控,SPC可以发现不稳定的因素和不良的趋势,为及时采取行动提供依据。

此外,通过对数据的分析,进一步提高了质量管理的效益,不断完善生产过程,并持续不断地提高产品质量。

SPC-统计过程控制

SPC-统计过程控制

SPC-统计过程控制
SPC基本概念 SPC实施步骤 SPC工具和技术 SPC应用案例 SPC未来发展与挑战
contents
目 录
01
SPC基本概念
统计过程控制(SPC)是一种应用统计学的方法,通过对生产过程中的各个阶段进行数据收集、分析和控制,以实现过程稳定、减少变异和优化性能的管理手段。
SPC的核心在于利用统计技术对生产过程中的关键特性进行监控和预测,及时发现异常并采取相应措施,确保生产过程的稳定和产品质量的可靠。
判断标准
过程能力指数还可以作为改进生产过程的依据,帮助企业优化生产工艺和流程。
改进依据
过程能力指数
综合评估
过程性能指数是对生产过程整体性能的综合评估,考虑了生产过程中的所有影响因素。
比较分析
通过比较不同时间段或不同生产条件下的过程性能指数,可以对生产过程进行全面的比较和分析。
持续改进
过程性能指数可以作为持续改进生产过程的依据,帮助企业不断提升生产效率和产品质量。
选择适宜的控制图
确定控制界限
根据历史数据和行业标准,制定适合的控制界限,确保过程处于受控状态。
验证控制界限
在实际生产过程中验证控制界限的适用性和有效性,根据实际情况进行调整。
制定控制界限
数据的收集与处理
建立数据收集系统
确保数据收集的准确性和及时性,建立有效的数据记录和存储系统。
数据处理与分析
对收集到的数据进行处理、分析和解释,识别异常波动和趋势,为后续的决策提供依据。
SPC在持续改进中的作用
THANKS FOR
WATCHING
感谢您的观看
02
SPC实施步骤
选择对产品或服务的质量、性能等有关键影响的参数作为控制对象,确保这些参数在控制范围内。

SPC基本概念介绍

SPC基本概念介绍

SPC基本概念介绍SPC(Statistical Process Control),统计过程控制,是一种用于监控和控制生产过程的统计方法,通过对过程进行统计分析和数学推理,以实现过程稳定和质量改进的目标。

SPC主要依赖统计学的原理和方法,能够提供数据和信息用于监控和控制生产过程的各个方面。

SPC的基本思想是通过对生产过程中的数据进行分析和控制,以实现预定的质量目标。

SPC通过收集和分析过程数据,以确定过程的变异性和性能水平,并根据这些信息做出相关的调整和改进。

SPC主要依靠统计概率理论和统计推断原理,通过收集样本数据来推断总体的特征和性能。

SPC主要有以下几个基本概念:1.基本统计量:常用的基本统计量有平均值、标准差、极差等。

这些统计量用于描述过程数据的集中趋势和离散程度,是SPC分析的基础。

2.过程稳定性:指过程在一段时间内的数据集合是否具有一定的稳定性。

稳定的过程数据有助于进行SPC的分析和控制。

通过控制图等方法可以判断过程的稳定性。

3.控制图:控制图是SPC的核心工具之一,用于监控和识别过程数据中的特殊因素和变异。

常用的控制图有均值图、极差图、标准差图等,通过这些图形可以检测和分析过程的异常情况。

4.规格限:规格限是指产品或过程在可接受范围内所能容许的上限和下限。

规格限用于界定产品或过程的合格区域,通过与规格限的比较可以确定产品或过程的合格性。

5.随机变异与特殊因素:生产过程中的数据变异可以分为随机变异和特殊因素引起的变异。

随机变异是由于生产过程本身的不可避免的不确定性引起的,而特殊因素是由于外界因素或人为因素引起的变异。

6.过程能力:过程能力表示了生产过程在规定条件下,能够满足规格限范围内产品的比例。

通过对过程能力的评估,可以确定过程的稳定性和可控性,进而确定是否需要改进和优化。

SPC的应用可以追溯到20世纪初,起初主要应用于制造业,用于监控生产过程中的质量变异。

随着时代的发展,SPC的应用范围逐渐扩大到各个领域,如服务业、医疗保健、金融等。

统计过程控制

统计过程控制

SPC(Statistical Process Control)统计过程控制一、统计过程控制的基本概念⒈ 统计的概念统计( Statistical ,简称 S ):有目的地收集数据、整理数据、并使用相应的方法制图,列表与分析数据 的过程。

⒉ 过程 (Process ,简称 P ) :在 ISO9000:2000 版中,过程的定义是一组将输入转化为输出的相互关联和相互作用的活动。

⒊ 控制( Control ,简称 C ): 所谓控制就是通过对图表与数据的分析研究,对过程的异常采取相应的措施进行监控的一种持续改进 的活动。

⒋ 统计过程控制( SPC )的涵义:统计过程控制( Statistical Process Control ,简称 SPC )是为了贯彻预防原则,应用统计技术对过程中的 各个阶段进行评估与监察,建立并保持过程处于可接受的并稳定的水平,从而保证产品和服务符合 规定的要求的一种技术。

统计技术涉及数理统计的许多分支,但 SPC 中的主要工具是控制图。

因此,要想推行 SPC 必须 对控制图有一定深入的了解,否则就不可能通过 SPC 取得真正的实效。

⒌ SPC 的特点:① 强调全员参与,而不是只依靠少数质量管理人员; ② 强调应用统计方法来保证预防原则的实现;③ SPC 不是用来解决个别工序采用什么控制图的问题, SPC 强调从整个过程、整个体系出发来解决 问题。

SPC 的重点就在于 P (Process ,过程)。

⒍ SPC 的常用工具:① Cpk :工程能力指数 ② QC 旧七大手法 ③ 管制图、控制图的形成原理 将通常的正态分布图转个方向, 使自变量增加的方向垂直向上, 将μ、μ+3σ和μ-3σ 分别标为 CL 、 UCL 、和 LCL ,这样就得到了一张控制图。

三、控制图在贯彻预防原则中的作用按下述情形分别讨论 :情形 1:应用控制图对生产过程进行监控,如出现图中的点子上升趋势,显然过程有问题,故异因刚 一露头,即可发现,于是可及时采取措施加以消除,这当然是预防。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
LCL A
判异准则
4.连续3点中有2点落在中心线同一侧的B区以外
UCL A
B
CL
C C
B
LCL A
判异准则
5.连续5点中有4点落在中心线同一侧的CC
B
LCL A
判异准则
6.连续15点在C区中心线上下
UCL A
B
CL
C C
B
LCL A
判异准则
7.连续8点在中心线两侧,但无一区在C区中
1%
5%
10%
判稳原则
●判稳准则 在点子随机排列的情况下,符合下列各点之一判稳:
-----连续25个点,界外点数d=0 -----连续35个点,界外点数d≤1 -----连续100个点,界外点数d≤2 ●分析判稳原则
准则
α
β
1
0.0654
0.9346
2
0.0041
0.9959
3
0.0026
0.9974
SPC的基本概念
SPC(Statistical Process Control):为了贯彻预
防原则,应用统计技术对过程中的各个阶段进 行评估和监察,从而保证产品与服务满足要求 的均匀性。
SPC的特点
●与全面质量管理相同,强调全员参与,而 不是只依靠少数质量管理人员
●强调应用统计方法来保证预防原则的实现 ●SPC不是用来解决个别工序采用什么控制
●控制用控制图 等过程调整到稳态后,延长控制图的控制线 作为控制用控制图。应用过程参数判断
控制图设计思想
●先确定 α ,再看β
----按照3σ方式确定UCL、CL、LCL,
α0 =0.27% ----通常采用α =1%,5%,10%三级,为了增 加使用者的信心,取α =0.27%。 Α越大, β 越小
n k
0.9973n
k
0.0027k
●举例
判稳原则
判异准则
两类:
●点出界判异
●界内点排列不随机判异
判异准则:
1、连续9点落在中心线同一侧
UCL A
B
CL
C C
B
LCL A
判异准则
2.连续6点递增或递减
UCL A
B
CL
C C
B
LCL A
判异准则
3.连续14中相邻点上下交替
UCL A
B
CL
C C
不合格品控制图
p
np
不合格品数控制 图
备注
p、np图可由不合格 数npT
泊松
分布 (计点 值)
u
单位不合格数控 用cT代替u、c图
制图
c
不合格数控制图
X s
X X R
常用控制图
• 均值-极差图
--- 图用于观察正态分布均值的变化;R图用 于观察正态分布的分散情况或变异度的情况
• 均值-标准差图 ---同均值-极差图,用标准差代替极差,R图计 算方便;但当n>10时,s图比R图效率高;最 终替代R图;
统计控制状态
●概念:只有偶因而无异因产生的变异的状态 ●优点:
----对产品的质量有完全把握 ----生产也是最经济的 ----在控制状态下,过程的变异最小
常用的控制图
分布 控制图代号 控制图名称
备注
正态
分布
(计 X R
量值)
均值—极差控制 图
X S
X~ R
均值—标准差控 制图
中位值—极差图
X R
判稳、判异,可以通过应用不合格数npT图替代。 ●计点控制图:当样本大小n变化时,由于u图、c图的
控制界限都呈凹凸状,不但作图不方便,更无法判 稳、判异,可以应用通用不合格数cT图替代。 ●有用的控制图: X s 、X R 、npT图、cT控制图
X R 控制图的两个阶段
分析用控制图 ●判断过程是否稳定不稳定,调至稳定 ●过程的过程能力指数是否满足要求,过 程能力指数满足要求称之为技术稳态
Β=
规范界限与控制界限的区别
规范界限:区分合格品与不合格品 控制界限:区分偶波与异波
3σ方式确定控制界限
●UCL=μ+3 σ ●CL=μ ●LCL=μ-3 σ ●虚发警报α=0.27%
漏发警报β=
分析用控制图与控制用控制图
●分析用控制图 应用控制图时,首先将非稳态的过程调整到 稳态,用分析控制图判断是否达到稳态。确 定过程参数 特点: 1、分析过程是否为统计控制状态 2、过程能力指数是否满足要求?
件质量指标的场合; ----例如:不合格品率、交货延迟率、缺勤率、邮电的差
错率等;
常用控制图评价
●计量控制图:由于计算机的应用普及,X s 控制图
的计算机毫无困难,而且无论样本是否大于10,X s 图计算的结果都是精确的,故均值标准差图完全可 以代替均值极差图。
●计件控制图:当样本大小n变化时,由于p图、np图 的控制界限都呈凹凸状,不但作图不方便,更无法
X Rs 单值--极差图
常用的控制图
组数 数据1 数据2 数据3 数据4 均值 极差 标准差 第一组 48 48 52 52 50 4 2.3 第二组 48 50 50 52 50 4 1.6 第三组 45 46 54 55 50 10 5.2
常用控制图
分布 控制图代号 控制图名称
二项
分布 (计件 值)
UCL A
B
CL
C C
B
LCL A
常用控制图
●X控制图:多用于下列场合: ---对每件产品都必须检验,如采用自动化检查和测量的 场合;
---取样费时、昂贵的场合; ---如化工等气体与液体流程式过程,产品均匀,多抽样
无意义; ---特点:灵敏度差 ● p控制图:用于控制对象为不合格品率或合格品率的计
图的问题,SPC强调从整个过程、整个体 系出发来解决问题。SPC的重点就在与“P (Process,过程) ●可判断过程的异常,及时告警; ●不能告知此异常是什么因素引起的
SPC的特点
●最终发展为SPD(Statistical Process Diagnosis,统计过程诊断)
------SPD既有告警功能,又有诊断功能
●中位极差图 X~ R 图, X~ 表示中位值。现在由于 计算机应用普及,故已淘汰,被均值-标准差图替代。
两种错误
一.第一种错误:虚发警报(false alarm)
UCL
α
β
LCL 二.第二种错误:漏发警报(alarm missing)
控制图的第二类错误
三、减少两种错误所造成的损失: ●UCL、LCL距离间隔大,α减小 β增大 ●UCL、LCL距离间隔小,α增大 β减小 ●UCL、LCL距离间隔3σ,α=0.27%
判稳原则
●计算公式:
准则
P(过程为正常的概率)
N=25 d=0
25 0
0.997325
1
0.99730
0.9345
判断错误 的概率
1-P
N=35 d≤1
1-P
35 0
0.997335
135
0.997334
0.0027
1
0.9959
N=100 d≤3
N=n d ≤k
n 0
0.9973n
......
相关文档
最新文档