生物脱氮技术的发展及应用
《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加快,城市污水处理成为环境保护领域亟待解决的问题。
传统的污水处理方法虽然能够满足基本需求,但面对日益增长的城市人口和日益复杂的污水成分,传统的处理技术已经难以满足当前的环保要求。
因此,新型生物脱氮除磷技术的研究与进步对于改善水质、保护生态环境具有十分重要的意义。
本文旨在梳理近年来城市污水处理中新型生物脱氮除磷技术的研究进展。
二、生物脱氮技术研究(一)发展概况生物脱氮技术主要通过微生物的作用,将污水中的氮素转化为无害的氮气排放到大气中。
近年来,研究者们通过优化反应器设计、改进微生物菌群以及调控环境因素等手段,推动了生物脱氮技术的进步。
(二)技术分类目前,生物脱氮技术主要包括厌氧-好氧(A/O)工艺、同步硝化反硝化(SND)技术、短程硝化反硝化等。
这些技术通过不同的反应过程和微生物活动,实现了高效脱氮的效果。
(三)研究进展随着研究的深入,新型生物脱氮技术如微氧脱氮技术、基于膜生物反应器的脱氮技术等逐渐崭露头角。
这些技术不仅提高了脱氮效率,还降低了能耗和运行成本。
三、生物除磷技术研究(一)发展概况生物除磷技术主要通过微生物的代谢活动,将污水中的磷素去除或转化为易于回收的形态。
近年来,随着对微生物除磷机制的了解加深,除磷技术的效率也得到了显著提高。
(二)技术分类常见的生物除磷技术包括聚磷菌(PAOs)除磷工艺、厌氧-好氧(A/O)结合除磷等。
这些技术通过调控微生物的生长环境和代谢过程,实现了对污水中磷的高效去除。
(三)研究进展新型的生物除磷技术如基于微藻的除磷技术、电化学辅助生物除磷技术等逐渐成为研究热点。
这些技术不仅提高了除磷效率,还为后续的磷资源回收提供了可能。
四、新型生物脱氮除磷技术的优势与挑战(一)优势新型生物脱氮除磷技术相比传统技术,具有更高的处理效率、更低的能耗和运行成本。
同时,这些技术还能够实现对氮、磷等营养元素的回收利用,具有良好的经济和环境效益。
论亚硝酸型生物脱氮技术的原理及应用

论亚硝酸型生物脱氮技术的原理及应用亚硝酸型生物脱氮技术是一种通过微生物转化亚硝酸盐为氮气的过程,从而实现氮污染物去除的方法。
其原理是通过将含有亚硝酸盐(NO2-)的废水或废气引入生物反应器中,利用硝化细菌将亚硝酸盐氧化成亚硝酸(NO3-),然后再由反硝化细菌将亚硝酸还原为氮气(N2),最终实现氮气的释放,达到脱氮的目的。
亚硝酸型生物脱氮技术的应用非常广泛,如城市污水处理、农田排水和工业废水处理等领域。
首先,对于城市污水处理,生物脱氮技术是一种经济、可行的方法,可以同时实现有机物去除和氮气释放,降低了处理成本。
其次,对于农田排水,过量的氮肥会对土壤生态环境造成负面影响,利用生物脱氮技术可以将排放到农田中的废水中的氮气转化为无害的氮气,减少氮源对环境的影响。
此外,工业废水中的氮污染也可以通过这种技术得到有效处理,提高废水的处理效果。
亚硝酸型生物脱氮技术的优点主要有以下几点。
首先,相对于传统的化学方法,生物脱氮技术具有更低的成本,且能够提高处理效果。
其次,该技术可以实现氮气的回收和循环利用,减少了对环境的污染。
再次,生物脱氮技术不需要外部添加氧气,通过利用微生物的呼吸过程进行废水的处理,减少了能源的消耗。
最后,该技术具有较高的适应性,对负荷变化具有较强的稳定性和自适应性。
然而,亚硝酸型生物脱氮技术也存在一些限制和挑战。
首先,该技术对温度和pH值等环境条件较为敏感,需要保持适宜的环境条件才能保证生物反应的正常进行。
其次,当废水中有高浓度的有机物或毒性物质时,这些物质可能会抑制微生物的生长和活性,影响生物脱氮的效果。
此外,亚硝酸型生物脱氮技术的设计和运行也需要专业的技术人员进行监控和操作,以确保处理效果达到要求。
综上所述,亚硝酸型生物脱氮技术是一种有效的氮污染物去除方法,其原理是通过利用微生物转化亚硝酸盐为氮气。
该技术在城市污水处理、农田排水和工业废水处理等领域具有广泛的应用,具有成本低、效果好、无需外部氧气等优点。
污水处理中的生物脱氮技术

通过控制生物反应器的温度、pH值、溶解氧等参数,优化微生物 的生长和代谢环境,提高脱氮效率。
投加营养物质
针对缺乏某些必要营养物质的废水,适当投加必要的营养物质,促 进微生物的生长和代谢,提高脱氮效率。
降低运行成本的研究
优化工艺流程
01
通过改进和优化生物脱氮技术的工艺流程,降低能耗和物耗,
环保可持续
生物脱氮技术是一种环境友好的处理方法,不会产生二次 污染,且微生物资源可循环利用,符合可持续发展的要求 。
降低处理成本
相较于传统的物化处理方法,生物脱氮技术具有较低的运 行成本和较高的处理效率,有助于降低污水处理成本。
对未来研究的建议
深入研究微生物种群
进一步了解参与硝化、反硝化的微生物种群及其代谢机制,有助 于优化生物脱氮工艺,提高脱氮效率。
开发新型生物脱氮技术
针对不同水质、不同处理要求的污水处理场景,开发新型、高效的 生物脱氮技术,以满足不断变化的污水处理需求。
强化实际应用研究
加强生物脱氮技术在污水处理厂的实际应用研究,积累运行数据, 为技术的推广应用提供实践依据。
THANKS
THANK YOU FOR YOUR WATCHING
通过控制反应条件,如溶解氧的浓度和有机物的投加量,可以实现同步硝 化反硝化,提高脱氮效率。
同步硝化反硝化可以简化工艺流程,减少设备和投资成本,因此在污水处 理领域具有广泛的应用前景。
03
生物脱氮技术的主要方法
活性污泥法
总结词
一种常用的生物脱氮技术,通过微生物的作用将污水中的氨氮转化为氮气。
详细描述
活性污泥法利用微生物的硝化作用将污水中的氨氮氧化成硝酸盐或亚硝酸盐, 再通过反硝化作用将硝酸盐或亚硝酸盐还原成氮气,从而达到脱氮的目的。该 方法操作简单,处理效果好,但能耗较高。
《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加速,城市污水处理问题日益突出。
在众多的污水处理技术中,生物脱氮除磷技术因其高效、经济、环保等优点而备受关注。
本文旨在探讨城市污水处理中新型生物脱氮除磷技术的研究进展,分析其技术特点、应用现状及未来发展趋势。
二、生物脱氮除磷技术概述生物脱氮除磷技术是一种利用微生物的新陈代谢活动,通过生物膜法或活性污泥法等工艺,将污水中的氮、磷等营养物质去除的技术。
该技术具有处理效率高、运行成本低、污泥产量少等优点,是当前城市污水处理领域的研究热点。
三、新型生物脱氮技术研究进展(一)A2/O工艺及其改进型技术A2/O(厌氧-缺氧-好氧)工艺是一种典型的生物脱氮技术。
近年来,研究者们针对A2/O工艺的不足,开发了多种改进型技术,如MBBR(移动床生物膜反应器)、SBR(序批式活性污泥法)等。
这些技术通过优化反应器结构、调整运行参数等手段,提高了脱氮效率,降低了能耗。
(二)新型厌氧氨氧化技术厌氧氨氧化技术是一种利用厌氧氨氧化菌将氨氮转化为氮气的生物脱氮技术。
近年来,研究者们通过优化反应条件、提高菌种活性等手段,推动了厌氧氨氧化技术的发展。
该技术具有脱氮效率高、能耗低等优点,是未来生物脱氮技术的重要发展方向。
四、新型生物除磷技术研究进展(一)PAOs(聚磷菌)强化除磷技术PAOs强化除磷技术是一种利用聚磷菌在厌氧-好氧条件下实现高效除磷的技术。
近年来,研究者们通过优化反应条件、提高聚磷菌活性等手段,提高了PAOs强化除磷技术的除磷效率。
该技术具有除磷效果好、污泥产量少等优点。
(二)化学与生物联合除磷技术化学与生物联合除磷技术是一种结合化学沉淀与生物吸附的除磷技术。
该技术通过投加化学药剂与生物反应相结合的方式,实现高效除磷。
近年来,研究者们针对不同水质条件,优化了药剂种类和投加量,提高了除磷效果。
五、新型生物脱氮除磷技术应用及发展趋势(一)应用现状新型生物脱氮除磷技术在城市污水处理中已得到广泛应用。
生物脱氮技术

生物脱氮技术生物脱氮技术是一种有效的方法,用于处理含有高浓度氮污染物的废水和污水。
它通过利用微生物的生物活性,将废水中的氮污染物转化为氮气,从而实现脱氮的目的。
这种技术在环保领域中得到了广泛应用。
本文将详细介绍生物脱氮技术的原理、应用和优势。
一、原理生物脱氮技术基于微生物的代谢活动,通过一系列微生物反应将废水中的氮污染物转化为氮气。
具体来说,生物脱氮技术主要包括硝化和反硝化两个过程。
硝化是指将废水中的氨氮转化为硝态氮的过程。
在硝化过程中,氨氮首先被氧化成亚硝酸盐,然后再被氧化成硝酸盐。
这一过程主要由硝化细菌完成。
硝化细菌通过吸收废水中的氨氮,并在氧气的存在下将其转化为硝酸盐。
反硝化是指将废水中的硝态氮还原为氮气的过程。
在反硝化过程中,硝酸盐首先被还原成亚硝酸盐,然后再被还原成氮气。
这一过程主要由反硝化细菌完成。
反硝化细菌通过吸收废水中的硝酸盐,并在缺氧的环境下将其还原为氮气。
通过硝化和反硝化两个过程,生物脱氮技术可以将废水中的氮污染物转化为氮气,从而实现脱氮的效果。
二、应用生物脱氮技术广泛应用于各种含有高浓度氮污染物的废水和污水处理系统中。
例如,生物脱氮技术可以应用于城市生活污水处理厂和工业废水处理厂。
此外,生物脱氮技术还可以应用于农业废水处理和农田灌溉水质的改善。
在城市生活污水处理厂中,生物脱氮技术可以有效地处理含有高浓度氮污染物的污水。
通过生物脱氮技术,污水中的氮污染物可以被转化为氮气,从而减少了对环境的污染。
此外,生物脱氮技术还可以提高污水处理的效率和降低运营成本。
在工业废水处理厂中,生物脱氮技术可以处理各种含有高浓度氮污染物的废水。
通过生物脱氮技术,废水中的氮污染物可以被转化为氮气,从而降低了对环境的影响。
此外,生物脱氮技术还可以减少废水处理过程中的化学药剂使用量,降低了处理成本。
在农业废水处理和农田灌溉水质改善方面,生物脱氮技术也发挥了重要作用。
通过生物脱氮技术,农业废水中的氮污染物可以被转化为氮气,从而减少了对农田的污染。
生物脱氮技术在城市污水处理中的应用及工艺优化

生物脱氮技术在城市污水处理中的应用及工艺优化生物脱氮技术在城市污水处理中的应用及工艺优化随着城市化进程的加快,城市污水处理成为了一个越来越重要的问题。
其中,氮的去除是污水处理过程中最为关键的一步。
随着环保意识的增强和技术的进步,生物脱氮技术应运而生。
本文将探讨生物脱氮技术在城市污水处理中的应用,并探讨其工艺优化方法。
一、生物脱氮技术的原理与应用生物脱氮技术是一种利用微生物将氨氮硝化成亚硝酸盐,再利用异养微生物将亚硝酸盐还原成氮气的过程。
该技术主要包括硝化和反硝化两个过程。
硝化是将氨氮转化为亚硝酸盐和硝酸盐的过程。
在硝化过程中,氨氮通过硝化细菌作用被氧化成亚硝酸盐,再通过硝化细菌的作用转化为硝酸盐。
而反硝化是将亚硝酸盐和硝酸盐还原为氮气的过程,利用异养微生物完成。
生物脱氮技术在城市污水处理中有着广泛的应用。
它能够有效地去除污水中的氮,降低氮、磷对水体的污染,并减少氧化剂的使用量。
生物脱氮技术在传统的活性污泥工艺中相对简单易行,并且操作维护成本较低。
此外,生物脱氮技术还能够提高污泥浓度,减少沉淀池的占地面积,为污泥的后续处理提供便利。
二、生物脱氮技术的工艺优化为了提高生物脱氮技术的处理效果和稳定性,需要对其工艺进行优化。
以下是几个常见的工艺优化方法:1. 缺氧区设立和控制:缺氧区是生物脱氮工艺不可或缺的一部分。
通过在处理系统中设置缺氧区域,可以提供良好的反硝化条件,加快亚硝酸盐的还原速率。
应合理控制缺氧区域内的DO(溶解氧)浓度和COD(化学需氧量)浓度,以推动反硝化反应的进行。
2. 水力条件优化:合理的水力条件可以提高生物脱氮技术的处理效果。
其中,污水的水力停留时间(HRT)和固液分离的时间(SRT)是关键因素。
适当延长HRT和SRT可以提高污水中氮的去除效果。
3. 供碳源优化:在生物脱氮过程中,供碳源是重要的因素。
供碳源的种类和浓度会直接影响反硝化的效果。
常用的供碳源有乙酸、乙醇等有机物,可以通过添加一定量的有机碳源来促进反硝化过程。
生物脱氮机理、影响因素及应用工艺详解

生物脱氮机理、影响因素及应用工艺详解生物脱氮是指在微生物的联合作用下,污水中的有机氮及氨氮经过氨化作用、硝化反应、反硝化反应,最后转化为氮气的过程。
其具有经济、有效、易操作、无二次污染等特,被公认为具有发展前途的方法,关于这方面的技术研究不断有新的成果报道。
一、机理详解1、氨化反应氨化反应是指含氮有机物在氨化功能菌的代谢下,经分解转化为 NH4+的过程。
含氮有机物在有分子氧和无氧的条件下都能被相应的微生物所分解,释放出氨。
2、硝化反应硝化反应由好氧自养型微生物完成,在有氧状态下,利用无机氮为氮源将NH4+化成NO2-,然后再氧化成NO3-的过程。
硝化过程可以分成两个阶段。
第一阶段是由亚硝化菌将氨氮转化为亚硝酸盐(NO2-),第二阶段由硝化菌将亚硝酸盐转化为硝酸盐(NO3-)。
3、反硝化反应反硝化反应是在缺氧状态下,反硝化菌将亚硝酸盐氮、硝酸盐氮还原成气态氮(N2)的过程。
反硝化菌为异养型微生物,多属于兼性细菌,在缺氧状态时,利用硝酸盐中的氧作为电子受体,以有机物(污水中的BOD成分)作为电子供体,提供能量并被氧化稳定。
二、生物脱氮主要影响因素1、温度生物硝化反应的适宜温度范围为20~30℃,15℃以下硝化反应速率下降,5℃时基本停止。
反硝化适宜的温度范围为20~40℃,15℃以下反硝化反应速率下降。
实际中观察到,生物膜反硝化过程受温度的影响比悬浮污泥法小,此外,流化床反硝化温度的敏感性比生物转盘和悬浮污泥的小得多。
2、溶解氧硝化反应过程是以分子氧作为电子终受体的,因此,只有当分子氧(溶解氧)存在时才能发生硝化反应。
为满足正常的硝化效果,在活性污泥工艺运行过程中,DO值至少要保持在2mg/L以上,一般为2~3mg/L。
当DO值较低时,硝化反应过程将受到限制,甚至停止。
反硝化与硝化在溶解氧的需求方面是一个对立的过程。
传统的反硝化过程需要在严格意义上的缺氧环境下才能发生,这是因为DO与NO3-都能作为电子受体,存在竞争行为。
生物脱氮工艺

生物脱氮工艺随着人类社会的不断发展,环境问题越来越引人关注。
其中,氮污染是一个严重的问题。
氮是生物体内必需的元素,但过量的氮却会对环境造成巨大的负担。
氮污染主要来自于农业、工业和城市污水处理等领域。
针对氮污染问题,科学家们研发了各种方法,其中生物脱氮工艺是一种环保、高效的氮污染治理方法。
一、生物脱氮的基本原理生物脱氮是利用微生物将废水中的氮转化为无害的氮气的过程。
该工艺的基本原理是:将含氮废水通过生物反应器,在一定的条件下,利用氨氧化细菌将氨氮转化为亚硝酸盐,再利用硝化细菌将亚硝酸盐转化为硝酸盐,最后通过反硝化细菌将硝酸盐还原为氮气,从而达到脱氮的目的。
二、生物脱氮工艺的优点1、环保:生物脱氮工艺不需要添加任何化学药剂,不会产生二次污染,对环境没有负面影响。
2、高效:生物脱氮工艺可以达到较高的脱氮效率,对氮污染治理效果显著。
3、经济:生物脱氮工艺不需要大量投入,运行成本低,对于农业、工业和城市污水处理等领域都具有实用性。
三、生物脱氮工艺的应用领域1、城市污水处理:城市污水中含有大量的氮,如果不进行处理,会对周围环境和水体造成严重的污染。
生物脱氮工艺可以有效地降低污水中的氮含量,达到国家排放标准。
2、农业:农业是氮污染的主要来源之一。
生物脱氮工艺可以应用于农业废水的处理,减少氮肥的使用量,达到节约能源和环保的目的。
3、工业:工业废水中含有大量的氮,如果不进行处理,会对周围环境和水体造成严重的污染。
生物脱氮工艺可以应用于工业废水的处理,降低氮污染的程度。
四、生物脱氮工艺的发展趋势目前,生物脱氮工艺已经成为氮污染治理的主要手段之一。
随着科技的不断进步和人们对环境问题的重视,生物脱氮工艺也在不断发展和完善。
未来,生物脱氮工艺将会更加智能化、高效化和精准化,为氮污染治理提供更加优秀的解决方案。
总之,生物脱氮工艺是一种环保、高效、经济的氮污染治理方法,已经在城市污水处理、农业和工业废水处理等领域得到广泛应用。
生物脱氮原理方程

生物脱氮原理方程引言:氮是生物体内不可缺少的元素之一,但过多的氮排放会导致水体富营养化和环境污染。
因此,开发高效的生物脱氮技术具有重要意义。
本文将介绍生物脱氮的原理方程及其应用。
一、生物脱氮原理生物脱氮是利用特定微生物的代谢活动将氨氮转化为氮气,从而实现氮的去除过程。
生物脱氮主要包括硝化和反硝化两个过程。
1. 硝化过程硝化是将氨氮氧化为亚硝酸盐和硝酸盐的过程,主要由两种微生物完成:硝化细菌和亚硝酸细菌。
硝化细菌将氨氮氧化为亚硝酸盐,而亚硝酸细菌则进一步将亚硝酸盐氧化为硝酸盐。
硝化细菌通常分为两类:一类是氨氧化细菌(Ammonia-Oxidizing Bacteria,AOB),另一类是氨氧化古菌(Ammonia-Oxidizing Archaea,AOA)。
氨氧化细菌和氨氧化古菌具有不同的氨氧化活性和环境适应性。
2. 反硝化过程反硝化是将硝酸盐还原为氮气的过程,由反硝化细菌完成。
反硝化细菌可以利用硝酸盐作为电子受体进行呼吸代谢,将硝酸盐还原为亚硝酸盐、一氧化氮、二氧化氮和氮气。
常见的反硝化细菌有假单胞菌属(Pseudomonas)、乳杆菌属(Lactobacillus)和厌氧细菌属(Anaerobacter)等。
二、生物脱氮原理方程生物脱氮的原理方程可以用以下两个方程表示:1. 硝化方程式:NH3 + 1.5O2 → NO2- + H2O + 2H+(硝化细菌)NO2- + 0.5O2 → NO3-(亚硝酸细菌)2. 反硝化方程式:NO3- → 0.5N2 + 1.5O2(反硝化细菌)这两个方程描述了硝化和反硝化过程中氨氮和硝酸盐的转化关系。
通过这些代谢反应,生物体内的氨氮最终转化为氮气,并释放到大气中。
三、生物脱氮技术应用生物脱氮技术广泛应用于污水处理、农田排水、养殖废水处理等领域。
1. 污水处理生物脱氮技术是污水处理中常用的氮去除方法之一。
通过在处理系统中添加硝化细菌和反硝化细菌,可以有效地将废水中的氨氮和硝酸盐转化为氮气,从而减少氮的排放。
污水处理中的生物脱氮技术应用

城市污水处理
总结词
城市污水处理是生物脱氮技术应用的重 要领域之一,通过生物脱氮技术可以有 效处理城市污水中含有的氮污染物,提 高水质并降低水体富营养化的风险。
VS
详细描述
城市污水中含有一定量的氮污染物,如生 活污水、雨水等。生物脱氮技术通过硝化 和反硝化作用,可以有效去除这些污染物 ,降低水体富营养化的风险,提高水质并 保障城市居民的用水安全。
02
CATALOGUE
生物脱氮技术应用场景
生活污水处理
总结词
生活污水处理是生物脱氮技术的重要应用领域,通过生物脱氮技术可以有效去 除生活污水中含有的氮污染物,达到净化水质的目的。
详细描述
生活污水中含有大量的氮污染物,如氨氮、硝态氮等,这些污染物对人体健康 和生态环境造成危害。生物脱氮技术通过微生物的硝化和反硝化作用,将氮污 染物转化为无害的氮气排出,从而达到净化水质的效果。
03
CATALOGUE
生物脱氮技术应用案例
某生活污水处理厂生物脱氮技术应用
总结词
成功应用、高效去除
详细描述
某生活污水处理厂采用生物脱氮技术,通过合理设计缺氧、好氧反应器,成功实现了对总氮的高效去 除。经过处理后的出水总氮浓度低于排放标准,满足了环保要求。
某工业废水处理厂生物脱氮技术应用
总结词
针对性强、效果显著
04
CATALOGUE
生物脱氮技术的发展趋势和挑战
生物脱氮技术的发展趋势
高效低耗
随着环保要求的提高,生物脱氮 技术正朝着高效、低能耗的方向 发展,以提高脱氮效率并降低运
行成本。
智能化控制
利用现代信息技术和人工智能技术 ,实现生物脱氮过程的智能化控制 ,提高处理效果和稳定性。
《2024年污水生物脱氮除磷工艺的现状与发展》范文

《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着城市化进程的加速和工业的迅猛发展,大量生活污水和工业废水被排放到水环境中,造成了严重的环境问题。
为了有效减少污水对环境的危害,人们研发了多种污水处理技术。
其中,污水生物脱氮除磷工艺因具有较好的处理效果和较低的运行成本,得到了广泛的应用。
本文将就污水生物脱氮除磷工艺的现状及其发展进行详细探讨。
二、污水生物脱氮除磷工艺的现状1. 工艺概述污水生物脱氮除磷工艺是一种基于微生物作用,利用活性污泥法等生物处理技术,将污水中的氮、磷等营养元素去除的工艺。
该工艺主要利用微生物的代谢作用,将污水中的氮、磷转化为无害物质,从而达到净化水质的目的。
2. 国内外应用现状目前,国内外广泛应用的污水生物脱氮除磷工艺主要包括A/O法、A2/O法、氧化沟法等。
这些工艺在我国污水处理领域得到了广泛应用,特别是在城市污水处理厂和工业废水处理中。
此外,一些新型的生物脱氮除磷技术,如MBR(膜生物反应器)技术、超声波强化生物脱氮除磷技术等也在逐步推广应用。
三、工艺运行机制与原理污水生物脱氮除磷工艺主要依靠活性污泥中的微生物完成。
在反应过程中,微生物通过吸附、吸收、代谢等作用,将污水中的氮、磷等营养元素转化为无害物质。
具体来说,脱氮过程主要通过氨化、硝化和反硝化等步骤实现;除磷过程则主要通过聚磷菌的过量摄磷和释磷实现。
四、工艺发展及挑战1. 技术发展随着科技的不断进步,污水生物脱氮除磷工艺也在不断发展和完善。
新型的生物反应器、高效的微生物菌剂、智能化的控制系统等技术手段的应用,使得污水处理效率得到了显著提高。
同时,一些新型的污水处理理念和技术,如低碳、低能耗、资源化等也得到了广泛关注。
2. 面临的挑战尽管污水生物脱氮除磷工艺取得了显著的成果,但仍面临一些挑战。
如:如何进一步提高处理效率、降低运行成本;如何解决污泥处理与处置问题;如何应对复杂多变的水质等。
此外,一些新兴污染物(如微塑料、新型有机污染物等)也对传统污水处理技术提出了新的挑战。
生物脱氮新技术研究进展

生物脱氮新技术研究进展随着环境保护意识的不断提高,生物脱氮技术作为一种环保节能的新型污水处理技术,越来越受到人们的。
本文将介绍生物脱氮新技术的研究背景和意义、研究进展、优缺点和发展前景,以期为相关领域的研究提供参考。
生物脱氮是指利用微生物或植物等生物手段,通过硝化和反硝化作用将废水中的氨氮和硝酸盐等含氮化合物转化为无害的氮气,从而达到废水治理和资源化的目的。
生物脱氮技术主要包括活性污泥法、生物膜法、反硝化菌法等。
这些技术均利用微生物菌群进行硝化和反硝化作用,将废水中的氨氮转化为氮气。
近年来,随着生物技术的不断发展,生物脱氮新技术也层出不穷。
下面介绍几种生物脱氮新技术的研究进展。
短程硝化反硝化技术是指在同一个反应器内,通过控制反应条件,使硝化作用和反硝化作用相继进行。
该技术可以大幅度减少反应器体积,提高反应效率,同时还可以降低能耗。
研究结果表明,短程硝化反硝化技术对氨氮和总氮的去除率均高于传统的活性污泥法。
厌氧氨氧化技术是指利用厌氧微生物将氨氮和亚硝酸盐转化为氮气的过程。
该技术的反应条件温和,无需曝气供氧,具有较高的氮去除率和能源利用率。
研究结果表明,厌氧氨氧化技术对高浓度氨氮废水的处理效果较好,但在低浓度氨氮废水处理中可能受到抑制。
悬浮生长植物脱氮技术是指利用水生植物如荷花、水葫芦等吸收废水中的氨氮,并通过植物体内的转化作用将其转化为氮气。
该技术具有投资少、操作简单、无需外加能源等优点,在低浓度氨氮废水中具有较好的处理效果。
研究结果表明,悬浮生长植物脱氮技术可以降低废水中的氨氮浓度,同时还可以改善水体生态环境。
生物脱氮新技术在氨氮和总氮的去除率、反应效率、能源利用率等方面均优于传统活性污泥法等生物脱氮技术。
但是,这些新技术尚存在一些缺点,如短程硝化反硝化技术需要控制精确的反应条件,厌氧氨氧化技术对废水的预处理要求较高,悬浮生长植物脱氮技术仅适用于低浓度氨氮废水的处理。
因此,在实际应用中,需要根据具体情况选择适合的生物脱氮技术。
污水处理中的生物脱氮技术

污水处理中的生物脱氮技术污水处理是保护水资源和环境的重要举措之一。
而生物脱氮技术作为一种高效节能的污水处理方法,已经得到了广泛的应用和研究。
本文将重点介绍污水处理中的生物脱氮技术原理、应用案例以及未来发展趋势。
一、生物脱氮技术原理生物脱氮技术是指利用微生物将废水中的氮化合物转化为气态氮的过程。
常见的脱氮技术包括硝化-反硝化和厌氧反硝化。
其中,硝化过程是将氨氮先转化为亚硝酸盐氮,再通过细菌作用转化为硝酸盐氮。
而反硝化过程则是将硝酸盐氮还原为氮气。
厌氧反硝化技术是针对无氧环境下,通过厌氧细菌将硝酸盐氮还原为氮气。
二、生物脱氮技术的应用案例1. 活性污泥法活性污泥法是一种常见的生物脱氮技术,通过在好氧条件下,利用生物膜中的硝化细菌和反硝化细菌,将废水中的氨氮转化为氮气。
这种技术适用于中小型污水处理厂和城市污水处理厂。
2. 等温厌氧反硝化技术等温厌氧反硝化技术是近年来快速发展的生物脱氮技术之一。
该技术通过通过将反硝化与厌氧条件相结合,在相对温和的条件下提高了反硝化的效率。
这种技术适用于低温环境下的污水处理。
3. 全自动生物脱氮系统全自动生物脱氮系统是一种集成化的生物脱氮技术。
该系统通过自动控制设备,实现了对污水处理过程中关键参数的监测和调控。
这种技术具有稳定性高、运行成本低、操作简便等优点,被广泛应用于大型污水处理厂。
三、生物脱氮技术的发展趋势1. 高效节能随着能源问题的日益凸显,未来的生物脱氮技术将更加注重能源的高效利用。
例如,利用厌氧颗粒污泥技术可以在反硝化过程中产生较低的剩余物,提高能源利用效率。
2. 微生物多样性研究生物脱氮技术中的微生物扮演着重要的角色。
因此,未来的研究将更加关注微生物多样性的研究,进一步优化脱氮效果。
3. 优化污水处理工艺将生物脱氮技术与其他污水处理工艺相结合,可以进一步提高脱氮效果。
例如,与生物脱磷技术相结合,可以实现对污水中氮磷的同步去除,提高污水处理的效率。
总之,生物脱氮技术作为一种高效节能的污水处理方法,持续得到广泛研究和应用。
污水处理中的生物脱氮技术解析

污水处理中的生物脱氮技术解析生物脱氮技术是污水处理中一种常用的脱氮方法,通过利用特定微生物的作用,将废水中的氨氮转化为较为稳定的氮气释放到大气中,从而达到净化废水的目的。
本文将详细解析生物脱氮技术的原理、应用和优势。
生物脱氮技术的原理主要基于硝化和反硝化过程。
硝化是指将废水中的氨氮先转化为亚硝酸盐,再进一步转化为硝酸盐的过程。
这一过程由氨氧化菌(Nitrosomonas)和亚硝酸氧化菌(Nitrobacter)共同完成。
反硝化是指将硝酸盐还原为氮气的过程,主要由反硝化菌(例如亚硝酸盐还原菌 Denitrifying bacteria)完成。
在生物脱氮技术中,首先废水进入生物处理系统,经过初级沉淀池去除悬浮物后,进入生物反应器。
在生物反应器中设置了适宜生长微生物的环境,比如填料、生物膜等。
废水中的氨氮被氨氧化菌氧化为亚硝酸盐,然后亚硝酸氧化菌进一步将亚硝酸盐氧化为硝酸盐。
在充分的氧气供应下,硝酸盐不会发生进一步的转化,而是被排放到环境中。
然而,在缺氧环境下,反硝化菌会将硝酸盐还原为氮气,从而实现脱氮的效果。
生物脱氮技术在实际应用中具有多个优势。
首先,与传统的化学脱氮方法相比,生物脱氮技术不需要添加化学试剂,不会产生二次污染,符合环保要求。
其次,生物脱氮技术更为经济和可持续,微生物在反应器中生长繁殖,无需频繁投入新鲜的生物介质。
再次,生物脱氮技术适用于处理不同规模和类型的污水,适应性强,能够适应不同负荷和水质条件。
最后,生物脱氮技术的操作相对简单,维护成本低,运行稳定可靠。
然而,生物脱氮技术也存在一些挑战和局限性。
首先,生物脱氮过程对温度、pH值、溶解氧等环境条件有一定要求,不同的微生物对环境条件的适应性不同,需要进行精确控制。
其次,反硝化过程中产生的氮气有一定的溶解度,如果不能完全释放到大气中,会对水体造成氮气过度饱和问题,可能导致水体富营养化。
此外,生物脱氮过程中可能会产生一些副产物,如亚硝酸盐、气味等,需要进行合理处理。
《2024年城市污水生物脱氮技术变革_厌氧氨氧化的研究与实践新进展》范文

《城市污水生物脱氮技术变革_厌氧氨氧化的研究与实践新进展》篇一城市污水生物脱氮技术变革_厌氧氨氧化的研究与实践新进展城市污水生物脱氮技术变革:厌氧氨氧化的研究与实践新进展一、引言随着城市化进程的加速,城市污水问题日益突出,其中氮污染成为水环境治理的重要难题。
城市污水生物脱氮技术作为解决这一难题的关键手段,近年来得到了广泛关注。
其中,厌氧氨氧化技术以其独特的优势,在污水处理领域展现出巨大的应用潜力。
本文将就城市污水生物脱氮技术中的厌氧氨氧化技术进行研究与实践的新进展进行探讨。
二、城市污水生物脱氮技术概述城市污水生物脱氮技术主要利用微生物的作用,通过硝化与反硝化等过程,将污水中的氮元素从水中去除。
该技术具有处理效率高、运行成本低等优点,是当前污水处理领域的主要技术手段。
三、厌氧氨氧化技术原理及特点厌氧氨氧化技术是一种在厌氧条件下,利用厌氧氨氧化菌将氨氮直接氧化为氮气的生物脱氮技术。
该技术具有以下特点:一是无需外加有机碳源,以氨氮为电子供体,降低了处理成本;二是反应过程中不产生硝酸盐或亚硝酸盐等中间产物,减少了二次污染的风险;三是适应性强,可在高氨氮浓度、低溶解氧等条件下运行。
四、厌氧氨氧化技术研究进展近年来,随着对厌氧氨氧化技术的深入研究,该技术在反应器设计、菌种培养、工艺优化等方面取得了重要突破。
研究学者们通过改进反应器结构,提高了厌氧氨氧化反应的传质效率和处理能力;同时,通过筛选和培养高效的厌氧氨氧化菌种,进一步提高了反应的速率和效率。
此外,针对不同来源和特性的污水,研究学者们还探索出了多种组合工艺,如厌氧氨氧化与膜生物反应器结合、与活性污泥法联合等,提高了污水的处理效果。
五、厌氧氨氧化技术应用实践新进展目前,厌氧氨氧化技术已在国内外多个污水处理项目中得到应用。
实践表明,该技术在处理高氨氮浓度、低碳源的污水方面具有显著优势。
例如,某城市污水处理厂采用厌氧氨氧化技术后,出水氮含量显著降低,达到了国家排放标准;同时,该技术的运行成本相比传统生物脱氮技术降低了约XX%。
《2024年城市污水生物脱氮除磷技术的研究进展》范文

《城市污水生物脱氮除磷技术的研究进展》篇一一、引言随着城市化进程的加速,城市污水问题日益突出,特别是含氮、含磷污水的排放对水环境的污染越来越受到关注。
传统的物理、化学处理技术虽可实现一定的污水处理效果,但成本高、处理过程复杂,且可能产生二次污染。
因此,发展绿色、高效的生物脱氮除磷技术成为当前研究的热点。
本文将就城市污水生物脱氮除磷技术的研究进展进行详细阐述。
二、城市污水生物脱氮技术研究1. 传统生物脱氮技术传统生物脱氮技术主要依靠硝化与反硝化过程,通过在反应器中培养特定菌群,利用这些菌群的代谢活动完成氮的去除。
然而,传统技术往往存在处理效率低、能耗大等问题。
2. 新型生物脱氮技术(1)短程硝化反硝化技术:该技术通过控制反应条件,使硝化过程停留在亚硝酸盐阶段,减少了反应步骤,提高了脱氮效率。
(2)同步硝化反硝化技术:该技术通过优化反应器设计,使硝化与反硝化过程在同一反应器中同时进行,提高了空间利用率和脱氮效率。
三、城市污水生物除磷技术研究1. 传统生物除磷技术传统生物除磷技术主要依靠聚磷菌的过量摄磷行为实现除磷。
然而,该技术受水质、水温等因素影响较大,除磷效果不稳定。
2. 新型生物除磷技术(1)强化生物除磷技术:通过向反应器中投加特定物质或调节pH值等手段,强化聚磷菌的摄磷能力,提高除磷效率。
(2)组合生物除磷技术:将生物除磷技术与物理、化学方法相结合,形成组合式处理工艺,提高除磷效果和稳定性。
四、城市污水生物脱氮除磷技术的发展趋势1. 集成化技术:将多种生物处理技术进行集成,形成集成化处理系统,提高处理效率和稳定性。
2. 智能化控制:利用现代信息技术和自动化控制技术,实现污水处理过程的智能化控制,提高处理效果和降低能耗。
3. 绿色环保材料的应用:开发绿色、环保的生物载体和填料,提高生物反应器的性能和稳定性。
4. 强化技术研究:针对不同地区、不同类型污水的特点,开展强化技术研究,提高脱氮除磷效果和适应性。
短程硝化反硝化生物脱氮技术

短程硝化反硝化生物脱氮技术短程硝化反硝化生物脱氮技术短程硝化反硝化生物脱氮技术是一种新型的污水处理技术,可以高效地去除污水中的氮污染物,具有技术简单、运行稳定等特点。
本文将从介绍短程硝化反硝化生物脱氮技术的原理和流程、应用和优势、发展前景等方面进行展开。
一、短程硝化反硝化生物脱氮技术的原理和流程短程硝化反硝化生物脱氮技术是基于微生物菌群的协同作用而实现的一种脱氮过程。
它通过合适的操作条件和控制策略,促进污水处理系统内的硝化和反硝化反应,使污水中的氨氮转化为亚硝态氮和硝态氮,再进一步转化为氮气释放到大气中。
短程硝化反硝化生物脱氮技术的流程通常分为硝化阶段和反硝化阶段。
在硝化阶段,将进入系统的氨氮通过硝化细菌作用转化为亚硝态氮或硝态氮。
然后,在反硝化阶段,利用特定的微生物将亚硝态氮或硝态氮还原为氮气,并最终释放到大气中。
二、短程硝化反硝化生物脱氮技术的应用和优势短程硝化反硝化生物脱氮技术在污水处理领域得到了广泛的应用。
它适用于处理含有高浓度氨氮的污水,如农业养殖废水、城市污水和工业废水等。
与传统的生物脱氮技术相比,短程硝化反硝化生物脱氮技术具有以下优势:1. 技术简单易行:采用短程硝化反硝化生物脱氮技术,无须引入额外的化学药剂和设备,仅需调节系统的氧化还原电位、温度和pH值等操作条件即可实现高效的脱氮效果。
2. 能耗低:短程硝化反硝化生物脱氮技术采用生物方法进行氮污染物的处理,相较于传统的物理和化学方法,具有更低的能耗和运行成本。
3. 运行稳定:短程硝化反硝化生物脱氮技术中的微生物菌群具有较强的适应能力和生物活性,能够在不同的环境条件下保持较高的活性和稳定性,使得污水处理系统能够长期稳定运行。
4. 减少对环境的负荷:短程硝化反硝化生物脱氮技术将氮污染物转化为氮气释放到大气中,减少了对水体和土壤的氮负荷,对环境的影响较小。
三、短程硝化反硝化生物脱氮技术的发展前景短程硝化反硝化生物脱氮技术作为一种新型的污水处理技术,具有较为广阔的发展前景。
《2024年污水生物脱氮除磷工艺的现状与发展》范文

《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着工业化和城市化的快速发展,污水处理问题日益突出。
其中,氮、磷等营养物质的排放对水环境造成了严重污染。
污水生物脱氮除磷工艺作为一种高效、经济的污水处理技术,得到了广泛的应用和关注。
本文将介绍污水生物脱氮除磷工艺的现状,并探讨其未来的发展趋势。
二、污水生物脱氮除磷工艺的现状1. 工艺原理污水生物脱氮除磷工艺主要利用微生物的作用,通过一系列的生化反应,将污水中的氮、磷等营养物质转化为无害物质,从而达到净化水质的目的。
该工艺主要包括硝化、反硝化、厌氧释磷和好氧吸磷等过程。
2. 常见工艺目前,常见的污水生物脱氮除磷工艺包括A/O(厌氧/好氧)工艺、A2/O(厌氧-缺氧-好氧)工艺、MBBR(移动床生物反应器)工艺等。
这些工艺在不同领域得到了广泛应用,取得了显著的成效。
3. 现状分析(1)优点:污水生物脱氮除磷工艺具有处理效率高、运行成本低、污泥产量少等优点,能够有效地去除污水中的氮、磷等营养物质。
(2)挑战:然而,该工艺在应用过程中也面临一些挑战,如硝化菌和反硝化菌的生长条件差异大、运行管理复杂等。
此外,某些工业废水中的特殊成分可能对微生物产生抑制作用,影响处理效果。
三、污水生物脱氮除磷工艺的发展趋势1. 技术创新随着科技的不断进步,新的污水处理技术不断涌现。
未来,污水生物脱氮除磷工艺将更加注重技术创新,通过优化工艺参数、改进设备结构、提高微生物活性等方式,提高处理效率,降低运行成本。
2. 组合工艺为了进一步提高处理效果,未来将更加注重将不同的污水处理工艺进行组合。
例如,将物理、化学和生物处理方法相结合,形成组合工艺,以适应不同类型污水的处理需求。
3. 智能化管理随着信息技术的发展,污水处理行业的智能化管理将成为未来发展的重要方向。
通过引入物联网、大数据、人工智能等技术手段,实现对污水处理过程的实时监控、远程控制和智能调度,提高运行管理的效率和准确性。
4. 资源化利用为了实现污水的资源化利用,未来将更加注重对污水处理过程中产生的污泥进行资源化利用。
污水生物法脱氮除磷技术及应用

3.同时生物脱氮除磷典型工艺
混合液回流 Ri 出水 进水 厌氧池 好氧池 沉淀池
缺氧池
回流污泥 R 剩余污泥
图2-23 典型的 好氧池 二沉池 出水
剩余污泥 污泥回流 (a)流程1
混合液回流 进水 前置缺氧池 出水 厌氧池 缺氧池 好氧池 二沉池
⑥有毒物质 硝化与反硝化过程都受有毒物质的影响,硝化菌 更易受到影响。对硝化菌有抑制作用的有毒物质有 Zn、Cu、Hg、Cr、Ni、Pb、CN-、HCN等。
3)生物脱氮的典型工艺
混合液回流
进水
缺氧池
好氧池
二沉池
出水
污泥回流
空气
剩余污泥
图2-20 A/O生物脱氮工艺流程
2.污水生物除磷
1)生物除磷基本原理
③ pH值 硝化菌对pH值变化十分敏感,pH值在7.0~7.8时, 亚硝酸菌的活性最好;而硝酸菌在pH值为7.7~8.1时 活性最好。反硝化最适宜的pH值在7.0~7.5。 ④碳氮比 对于硝化过程,碳氮比影响活性污泥中硝化细菌所 占的比例,过高的碳氮比将降低污泥中硝化细菌的比 例。
⑤泥龄 硝化过程的泥龄一般为硝化菌最小世代时间的2 倍以上。当冬季温度低于10℃,应适当提高泥龄。
剩余污泥 污泥回流
(b)流程2
同时生物脱氮除磷A2/O的变形工艺
4、Bardenpho同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要功 能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。
5、UCT工艺
—含NO3-N的污泥直接回流到厌氧池,会引起反硝化作用, 反硝化菌将争夺除磷菌的有机物而影响除磷效果,因此 提出UCT(Univercity of Cape Town)工艺。
污水处理工艺脱氮

污水处理工艺脱氮污水处理工艺脱氮是指在污水处理过程中,采用一定的技术手段将污水中的氮气化合物去除的过程。
脱氮工艺的实施可以有效减少氮气化合物对水体环境的污染,保护水资源,改善生态环境。
下面将从脱氮工艺的原理、常见脱氮工艺、脱氮工艺的应用、脱氮工艺的优势和发展趋势等方面进行详细介绍。
一、脱氮工艺的原理1.1 生物脱氮原理:利用厌氧细菌将氨氮还原为氮气的过程。
1.2 化学脱氮原理:利用化学试剂将氨氮转化为氮气的过程。
1.3 物理脱氮原理:通过物理方法将氮气从污水中分离出来。
二、常见脱氮工艺2.1 生物脱氮工艺:包括厌氧氨氧化、厌氧硝化反硝化等过程。
2.2 化学脱氮工艺:包括硝化反硝化、氨气氧化等过程。
2.3 物理脱氮工艺:包括气浮法、膜分离等方法。
三、脱氮工艺的应用3.1 城市污水处理厂:常用于城市污水处理厂中,用于去除污水中的氮气化合物。
3.2 工业废水处理:用于工业废水处理中,减少氮气化合物对环境的影响。
3.3 农业废水处理:用于农业废水处理中,改善水质,保护农田生态环境。
四、脱氮工艺的优势4.1 减少氮气化合物对水体的污染,保护水资源。
4.2 降低氮气化合物对水生生物的危害,改善水生生态环境。
4.3 提高污水处理效率,减少处理成本,节约资源。
五、脱氮工艺的发展趋势5.1 绿色环保:未来脱氮工艺将更加注重绿色环保,减少对环境的影响。
5.2 高效节能:未来脱氮工艺将更加注重高效节能,提高处理效率,降低能耗。
5.3 智能化技术:未来脱氮工艺将更加智能化,采用先进技术提升处理水平。
总之,污水处理工艺脱氮在实际应用中具有重要意义,通过不断改进和创新,可以更好地保护水资源,改善环境质量,促进可持续发展。
希翼未来脱氮工艺能够得到更广泛的应用和推广,为人类创造更夸姣的生活环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物脱氮技术的发展及应用
摘要介绍了脱氮技术的基本原理及脱氮的传统工艺,简述脱氮技术的发展过程及几种脱氮技术的优缺点,重点介绍生物脱氮新技术,展望了脱氮技术未来的发展。
关键词脱氮技术;生物脱氮;硝化与反硝化;脱氮技术发展
1引言
废水生物脱氮技术是90年代中期美国和南非等国的水处理专家们在对化学、催化和生物处理方法研究的基础上,提出的一种经济有效的处理技术。
废水生物脱氮利用自然界氮素循环的原理,在水处理构筑物中营造出适宜于不同微生物种群生长的环境,通过人工措施,提高生物硝化反硝化速率,达到废水中氮素去除的目的。
本文将重点介绍传统生物脱氮技术和目前新型的生物脱氮技术。
2生物脱氮的基本原理
废水生物脱氮一般由3种作用组成:氨化作用、硝化作用和反硝化作用。
2.1氨化作用
在未经处理的原废水中,含氮化合物主要以有机氮如蛋白质、尿素、胺类化合物、硝基化合物以及氨基酸等形式存在,此外还含有部分氨态氮如NH3和NH4--N。
在细菌的作用下,有机氮化合物分解、转化为氨态氮。
在活性污泥和生物膜系统内,氨化作用能较完全的发生。
2.2硝化作用
废水中的氨氮在硝化细菌的作用下,进一步氧化为硝态氮。
此过程包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化成亚硝酸盐的反应;由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。
亚硝酸菌和硝酸菌都是化能自养菌,它们利用CO2、CO32-和HCO3-等作为碳源,通过NH3、NH4+或NO2的氧化获得能量。
硝化反应过程需要在好氧条件下进行,以氧作为电子受体。
2.3反硝化作用
反硝化作用是在反硝化细菌参与的条件下,将硝化过程产生的硝酸盐或亚硝酸盐还原成N2过程。
反硝化菌是一类化能异养兼性缺氧型微生物,其反应需在严格厌氧条件下进行[1]。
3生物脱氮的影响因素
3.1溶解氧
溶解氧的浓度对反硝化过程有很大的影响。
当缺氧区中的溶解氧含量过高时,氧将会与硝酸盐竞争电子供体,并能抑制硝酸盐还原酶的合成及其活性。
一般而言,对活性污泥系统,反硝化过程中混合液的溶解氧浓度应控制在0.5mg/L 以下;硝化反应的微生物均是严格好氧菌,硝化过程需要有足够的溶解氧。
大量实验证明,当DO含量低于0.5mg/L时,将会严重抑制硝化作用。
在曝气池中,DO浓度应不低于1mg/L。
回流液的溶解氧含量直接影响缺氧反应器中的溶解氧浓度。
因此,协调好曝气池末端和缺氧反应器中的溶解氧浓度,是生物脱氮工艺控制过程极为重要的因素之一。
3.2泥领
为保证反应器中数量足够且性能稳定的硝化和反硝化细菌,必须使微生物在反应器中的停留时间大于硝化和反硝化细菌的最小世代周期。
但是较长的泥领可增加硝化能力,但不利于反硝化。
因此若系统为保证硝化而采用较长的泥领,则可能会降低有机物降解速率和反硝化速率,实际运行中往往通过增加废水停留时间来保证系统中COD和TN的去除率。
3.3酸碱度
pH是影响废水生物脱氮工艺运行的一个重要因子。
一般亚硝酸菌生长的最适pH值为7-8.5,而硝化菌为6-7.5,反硝化菌为6.5-8.5。
因此,应根据原废水中的碱度情况适当调整废水的pH,并应保持废水中一定的剩余碱度。
3.4温度
微生物硝化反应最适温度为30-35℃。
一般低于15℃时硝化速率降低,而当温度低于5℃时,硝化反应几乎停止。
12-14℃活性污泥中硝化菌活性受到抑制,出现HNO2积累。
3.5有机物及C/N比
在废水生物除氮过程中,有机碳源作为异养好氧细菌和反硝化过程的电子受体,起着非常重要的作用。
它是细菌代谢必需的物质和能量来源。
缺乏碳源,会导致反硝化过程受阻,同时也会抑制异养好氧细菌增殖[2]。
但是,硝化阶段系统中有机物含量也不宜过高,由于亚硝酸盐和硝化菌均为自养菌,增殖速度慢,当废水中有机物含量高时,将使异养细菌迅速增殖,从而使硝化菌不能成为优势种属。
废水处理中,一般采用C/N比来衡量反硝化的碳源需求,太高或太低都会
影响反硝化速率。
3.6回流比
对A/O、A2/O和UCT等前置反硝化工艺,污泥回流和混合液回流是使该工艺获得脱氮效果的先决条件,回流比的大小直接影响脱氮效果的好坏。
3.7有毒有害物质
废水生物脱氮过程中,有毒有害物质的控制是必须引起重视的问题。
如,高的BOD进水浓度会引起异养细菌的快速增殖,从而与硝化菌形成对氧的竞争而抑制硝化菌生长;此外,某些有机物对硝化菌具有直接的毒害或抑制作用。
3.8同化作用
废水生物脱氮系统中,氮的去除有两条途径:同化脱氮和异化脱氮。
通常认为,异化脱氮是废水中氮的主要去除途径。
但对于进水BOD/TN很高的废水,有时同化脱氮可能占相当大比例。
4传统生物脱氮技术
传统生物脱氮技术就是人为创造出硝化菌、反硝化菌的生长环境,使硝化菌和反硝化菌成为反应池中的优势菌种。
硝化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下,硝化反硝化这两个过程不能同时发生。
常见的工艺有三级生物脱氮工艺、二级生物脱氮工艺和合建式缺氧一好氧活性污泥法脱氮系统等。
传统生物脱氮工艺存在的问题:(1)工艺流程长,占地面积大,基建投资高。
(2)系统为维持较高的生物浓度及获得良好的脱氮效果,必须同时进行污泥和硝化液回流,增加了动力消耗和运行费用。
(3)系统抗冲击能力较弱。
(4)硝化过程中产生的酸度需要投加碱中和,不仅增加了处理费用,而且还有可能造成二次污染。
因此,人们需要积极探讨开发高效低耗的新型生物脱氮新工艺。
5新型生物脱氮技术
随着科学的发展,近年来发现了硝化反应不仅由自养菌完成,某些异养菌也可以进行硝化作用,在好氧条件下某些细菌也可进行反硝化作用;许多反硝化菌同时也是异养硝化菌,直接进行反硝化反应;氨的氧化也可以在厌氧条件下进行。
这些新发现突破了传统生物脱氮理论的认识,为研发生物脱氮新工艺奠定了基础。
5.1短程硝化反硝化
传统的生物脱氮工艺经过一系列反应,是全程硝化反硝化。
中间浪费了一个
将亚硝氮转化硝氮,硝氮又转化为亚硝氮的过程。
目前比较有代表性的工艺为SHARON(亚硝化反应)工艺,SHARON工艺是由荷兰DeIft技术大学于1997年开发的。
该工艺采用的是CSTR反应器,适合于处理高浓度含氮废水,其成功之处在于巧妙地利用了在较高温度下(30℃-4O℃),硝化菌的生长速率明显低于亚硝酸菌的生长速率。
因此通过控制温度和HRT可以自然淘汰掉硝酸菌,使反应器中的亚硝酸菌占绝对优势,使氨氧化控制在亚硝酸盐阶段。
与全程硝化反硝化相比,短程硝化反硝化具有如下的优点:
(1)硝化阶段可减少25%左右的需氧量,降低了能耗;
(2)反硝化阶段可减少40%左右的有机碳源,降低了运行费用;
(3)反应时问缩短,反应器容积可减小30%~40%左右;
(4)具有较高的反硝化速率;
(5)污泥产量降低;
(6)减少了投碱量等。
5.2同时硝化反硝化
同时硝化反硝化,即硝化与反硝化反应在同一个反应器中同时完成。
它是由好氧系统中微生物絮体或生物膜内部缺氧产生的。
目前同步硝化反硝化机理被人们所接受的主要是缺氧微环境理论和生物学理论[3]。
研究表明厌氧氨氧化菌广泛存于自然界中,用普通好氧活性污泥、好氧硝化活性污泥、好氧硝化颗粒污泥、反硝化污泥、SBR泥、河流底泥、UASB颗粒污泥、城市污水处理厂污泥、垃圾填埋场处理渗滤液的污泥等,而且都成功启动了ANAMMOX反应器,启动时间也由两百天缩短到两个月。
目前要解决的问题是实际废水中氨氮含量高,但是亚硝氮含量非常低,而且要求的反应温度过高(32℃),这些都限制了厌氧氨氧化反应器的实际运用。
6展望
氮污染日益严重,研发高效低耗的生物脱氮技术势在必行。
目前城市污水厂脱氮效果不好,而新型的生物脱氮技术大多仍在小试和中式阶段,离实际运用还有一定的距离。
相信在广大科技工作者的共同努力下,这些新型生物脱氮工艺不久就会造福人类。
参考文献
[1]吕锡武;同时硝化和反硝化的理论和实践[J];环境化学;2002年06期。
[2]仝武刚,王继徽;高浓度氨氮废水治理技术[J];污染防治技术;2002年02期
[3]谢珊,李小明,曾光明,杨麒,刘精今;同步硝化反硝化实现途径的探讨[J];环境科学与技术;2004年02期。