并联机器人文献综述
攀爬机器人文献综述
攀爬机器人文献综述攀爬机器人文献综述攀爬机器人文献综述对攀登机器人结构点性能计算和实验的研究摘要本文介绍了并联攀爬机器人性能的运动学和动力学研究,从而避免结构框架上的节点。
为了避免结构节点,攀爬并联机器人可以取得某种确定的动作。
一系列的动作组合起来,可以方便沿着结构节点的攀登运动。
必须对并联攀爬机器人的姿态予以研究,因为在其独特的配置下,姿势能够驱动机器人。
此外,需要对执行机构为了避免机构节点而产生的力进行评估。
因此本文的目的要表明,Stewart–Gough 并行平台能够作为攀爬机器人,与其他机器人相反,并行攀爬机器人能后轻易而优雅地避免结构节点。
为了支持第一部分中描述的模拟结果,实验测试平台已经发展到围绕结构节点对并联攀爬机器人地动力性能进行研究。
获得的结果非常有趣,显示了潜在的在工业中使用平行S-G机器人作为攀岩机器人的存在。
关键词:爬壁机器人、动力学、并联机器人、奇点一简介当需要在一些危险或者难以到达的地方执行任务时,具有在不同结构上攀爬和滑行能力的机器人是非常重要的,比如在检查和维修金属桥梁、通信天线以及深入核工业结构内部过程中使用的机器人。
通常,这些类型的金属结构是由聚合在一起的杆构成,是一种联合机械,每一个都可以描述为棱柱元素变截面和尺寸的扩展。
所有这些元素组合产生晶格不同的几何结构,其中结构性因素在不同点的结合称为结构节点。
这类结构的尺寸和形状取决于它应用的设计。
在这一类型设置中不同任务的机器人化已经被广泛地记载在文献中。
在许多情况下,有人提出使用连接机构和多腿机器人来实现位移的随即移动。
另外,许多这些机器人是被设计用来在墙壁或管道攀爬和工作。
一些建议的解决方案在机械上是非常复杂的,需要在运动控制方面有高水平的发展和阐述。
一种用来给双层底部板件焊接的机器人正在研制当中。
该型机器人是由一种有选择顺应性装配机器手臂配置的四足机器组成。
该机器人通过抓住加强筋移动,但由于其几何结构不能移动通过结构节点。
并联机器人综述(英文经典),Parallel kinematics
_______________________________________________________________________________________ Parallel Kinematics 12P a r a l l e l K i n e m a t i c shis document surveys parallel-kinematics literature and identifies its usefulness. Thedocument has been developed while we were developing our SimParallel machine.On of the aims of this document is to propose an effective solution to the limitations of thetwo rotary axes of five-axis machines that are currently used in industry. However, thesurvey of the parallel-kinematics literature will not be limited to this (two DOFs) family ofparallel kinematics mechanisms lest a seed for an idea for our sought mechanism does existin parallel-kinematics mechanisms with other DOFs. The available parallel mechanismsconcepts will be mentioned and then their kinematics usefulness to our purpose will be morecritically stated in the conclusion section.The document consists of the following 11 sub-sections;•Parallel-Kinematics Mechanisms. •Six DOFs Parallel-Kinematics Mechanisms. •Spatial Translational Three-DOFs Parallel-Kinematics Mechanisms. •Spatial Rotational Three-DOFs Parallel-Kinematics Mechanisms. • Other Three-DOFs Parallel-Kinematics Mechanisms.•Asymmetric Parallel-Kinematics Mechanisms. •Two DOFs Parallel-Kinematics Mechanisms. •Four and Five-DOFs Parallel-Kinematics Mechanisms. •Parallel-Kinematics Mechanisms Redundancy. •Parallel-Kinematics Mechanisms in Industrial Machine-Tools. •Summary and Conclusions1. Parallel-Kinematics MechanismsThe conceptual design of PKMs can be dated back to the middle of the last century whenGough established the basic principles of a mechanism with a closed-loop kinematicsstructure and then built a platform for testing tyre wear and tear [Gough, 1956]. A sketch ofthe mechanism is shown in Figure 1. As shown in the figure, that mechanism allowschanging the position and the orientation of a moving platform with respect to the fixedplatform.T______________________________________________________________________________________ Parallel Kinematics 13Later in 1965 Stewart designed another parallel-kinematics platform for use as an aircraftsimulator [Stewart, 1965]. A sketch of that Stewart mechanism is shown in Figure 2. Forsome reason the mechanisms of Figure 1 and that of Figure 2 as well as many variations (e.g.the one shown in Figure 3 ) are frequently called in the literature Stewart platform. They arealso called Hexapod mechanisms.Figure 2 Stewart Platform Figure 1Gough Platform______________________________________________________________________________________Parallel Kinematics 14Of course other mechanisms related, may be less formally, to PKM existed well before andsoon before Gough’s platform. Bonev [2003] surveyed many of these earlier mechanisms.Gough though is the one who gave some formalization to the concept. It might beinteresting to know that Gough’s platform remained operational till year 1998 and it is nowkept at the British National Museum of Science and Industry. See Figure 4 for photos of theoriginal and current shapes of Gough platform.Many have extensively analyzed Gough/Hexapod platform [Hunt, 1983, Fichter 1986,Griffis and Duffy, 1989; Wohlhart, 1994]. One problem with these six-DOFs platforms isthe difficulty of their forward-kinematics solution, because of the nonlinearity and the highlycoupled nature of their governing equations. This difficulty has been overcome byintroducing some assumptions [Zhang and Song, 1994] and a closed-form solutiuon can befound in [Wen and Liang, 1994]. Others introduced some sensors to measure at least one ofFigure 4Old and Revived Gough Platform Figure 3 Gough-Stewart-Hexapod Platformthe variables of the platform and hence reduce the unknowns of the governing equations[Merlet, 1993; Bonev et al, 1999]. The above mechanisms are six DOFs mechanisms becauseeach of them allows the moving platform to move arbitrarily (within the limit of the work-space) in the six DOF space.Having had a look on the mechanisms above one can now introduce a formal definition ofparallel-kinematics mechanisms; A parallel-kinematics mechanism (or parallel manipulator) isa closed-loop mechanism. That is, a moving plate (ie end-effector) is connected to thestationary base by at least two independent kinematic chains, each of which is actuated. Onthe other hand, A serial-kinematics mechanism (or serial manipulator) is an open-loopmechanism in which each link is connected to ONLY two neighbouring links. All themechanisms discussed in the introduction of Chapter 1 are serial-kinematics mechanisms.The advantages of parallel-kinematics mechanisms in general are;•Excellent load/weight ratios, as a number of kinematic chains are sharing the load.•High stiffness, as the kinematics chains (limbs) are sharing loads and in many cases the links can be designed such that they are exposed to tensile and compressive loadsonly [Hunt, 1978]. This high stiffness insures that the deformations of the links willbe minimal and this feature greatly contributes to the high positioning accuracy ofthe manipulator.•Low inertia, because most of the actuators are attached to the base, and thus no heavy mass need to be moved.•The position of the end-effector is not sensitive to the error on the articular sensors.Higher accuracy due to non-cumulative joint error.•Many different designs of parallel manipulators are possible and the scientific literature on this topic is very rich, as will be shown later in this chapter.•The mechanisms are of low cost since most of the components are standard.•Usually, all actuators can be located on the fixed platform.•Work-space is easily accessible.•The possibility of using these mechanisms as a 6-component force-sensor. Indeed it can be shown that the measurement of the traction-compression stress in the linksenables to calculate the forces and torques acting on the mobile platform. This isespecially useful in haptic devices [Tsumaki et al, 1998].On the other hand, the disadvantages of parallel-kinematics mechanisms in general are;•For many configurations there are some analytical difficulties ( eg the forward kinematics solution is not easy or finding all the mechanism singularities can beextremely difficult task).•The need in many cases for the expensive spherical joints.•Limited useful work-space compared to the mechanism size.•Limited dexterity.•Scaling up PKMs can enlarge the translational DOFs and usually is unable to enlarge the rotational DOFs.•Potential mechanical-design difficulty.•Mechanism assembly has to be done with care.•Time-consuming calibration might be necessary. See [Ryu and Abdul-rauf, 2001] to realize that calibration of PKMs is not a trivial issue.______________________________________________________________________________________ Parallel Kinematics 15______________________________________________________________________________________Parallel Kinematics 16Many other different points of view about the benefits of PKMs and their drawbacks can befound in the literature [Brogårdh, 2002].2. Six-DOFs PKMsThe PKMs mentioned in the previous section are six-DOFs PKMs. Some of thesemechanisms have S-P-S kinematics chains. S-P-S chains are preferred as they, as discussed inAppendix A, transmit no torque through the limbs. These PKMs can also be realized usingS-P-U chains or any other chain that has six-DOFs associated with its joints. One can checkthat against Grübler/Kutzbach criterion above, or review Appendix A. In fact acomprehensive attempt to enumerate the joints combinations and permutations that can beutilized when all the limbs are identical has been reported [Tsai, 1998]. It can also be shownthat the DOFs associated with the limbs joints need to be at least six. See Appendix A too.Figure 5 shows one PKM that has been proposed. It uses six P-R-U-U limbs [Wiegand et al,1996]. Similar to the PKMs above this one also has limited tilting ability. The reachabletilting angle changes strongly with the position of the P joints and fluctuates between 20 and45 degrees. In special poses up to 57 degrees can be reached.It is important to notice that changing the number of limbs in symmetrical six-DOFs PKMswill not change the DOFs of the platform. This has been shown using Grübler/Kutzbachcriterion in Appendix A, and also can be observed in Figure 6 to Figure 9. In these examplesthough we need more than one actuator per limb, and if there are less than six actuatorssome of the DOFs will not be controllable.A Symmetrical PKM is one that has identical kinematics chains (also called limbs or legs)each of which utilize identical actuator.Figure 6 shows another six-DOFs PKM [Tsai and Tahmasebi, 1993]. This PKM has three P-P-S-R limbs. However, planar motors can not provide high load-carrying capacity and theyoccupy the whole base leaving no space to the material to be processed. A similar PKM waslater built and studied [Ben-Horin et al, 1996]. Figure 7 shows a PKM with three P-P-R-Slimbs [Kim and Park, 1998; Ryu et al, 1998]. The range of tilting angles of the platform ofthis mechanism is one of the widest that can found in the literature. However, themechanism uses 8 actuators (for the six P joints and two of the R joints) to realize themotion that can be realized with six actuators only, and many translational motions can beFigure 5 Six-DOFs PKM withsix P-S-U limbs______________________________________________________________________________________ Parallel Kinematics 17realized in direct straight lines. A PKM similar to that shown in Figure 7 has been proposedearlier [Alizade and Tagiyev, 1994]. That earlier PKM had three P-R-P-S limbs instead.Figure 6 Six-DOFs PKM with three P-P-S-R chains Figure 7 Six-DOFs PKM with three P-P-R-S chains Figure 8 Six-DOFs PKM using three Scott mechanisms( b ) ( c )______________________________________________________________________________________Parallel Kinematics 18Probably no mechanism is more famous than the single DOF crank-slider of Figure 8.a. It isa P-R-R-R kinematic chain that coverts linear to rotary motion or vice versa. Scott’smechanism of Figure 8.b [Khurmi and Gupta, 1985] is another traditional planar mechanismthat greatly resembles the well known crank-slider mechanism. Three of these Scottmechanisms have been put together, as shown in Figure 8.c, to realize a three-DOFsmechanism and then each of the Scott mechanism was made to displace vertically, resultingin a six-DOFs mechanism [Zabalza et al l, 2002]. Some of the R joints of the originalmechanism have been replaced by S joints to allow spatial motion of the arms. Theadvantage of the concept is that if one attempts to express the position and the orientationof the platform via its three vertices, then the kinematics relations will be fairly decoupled.The PKMs of Figure 6 and Figure 7 could be considered decoupled. Other six-DOFsdecoupled PKMs have also been proposed [Zlatanov et al. 1992; Wohlhart, 1994].Spherical actuators that can provide three-DOFs actuation are expensive and notcommercially available [Williams and Poling, 2000], but if two of these actuators are used theGough-Stewart platform of Figure 3 can be reduced to the one shown in Figure 9. Pendingthe quality and the mechanical characteristics of these spherical actuators, the solution offersan elegant and promising solution. The work-space, as least the translational part of it, is stilllimited though and load is shared between two rather than six limbs.Six-DOFs PKMs represent the roots of the concept of PKMs and hence they had to belooked at. However, one might say that a six DOFs PKM is PKMs at their extreme, andconsequently one might think that reducing the number of DOFs that act in parallel mightalleviate the disadvantages of parallel-kinematics mechanisms while benefiting from theiradvantages. This is actually true in many cases. In trials to avoid the disadvantages of sixDOFs parallel-kinematics mechanisms while utilizing the other benefits of parallel-kinematics mechanisms, two, three, four and five DOFs PKMs were proposed, as will beshown in the subsequent sections.3. Spatial Translational Three-DOFs PKMsThree-DOFs PKMs for pure rotation or pure translation are of special importance as theyare, in our view, represent a low-level entity or building block of PKMs that helps deepeningthe understanding of these mechanisms. One can subsequently hybridize these two buildingFigure 9 Six-DOFs PKM with two S-P-U Chains______________________________________________________________________________________ Parallel Kinematics 19blocks or sub-systems from them. Spatial translational three-DOFs PKMs are discussed inthis section and spatial rotational three-DOFs PKMs are discussed in the next section.Using Grübler/Kutzbach criterion one can see that using three limbs (legs) each having five-DOFs is one way to realize three-DOFs symmetrical PKMs. See Appendix A for examples.Many of such PKMs have been built and Figure 10 to Figure 13 show examples of thisfamily of translational three-DOFs PKMs. That is, Figure 10 shows a PKM with three limbseach with U-P-U joints [Tsai, 1996]. This mechanism has been studied by others [DiGregorio and Parenti-Castelli, 1998] and been further optimized [Tsai and Joshi, 2000] andits mobility also has been discussed in details [Di Gregorio and Parenti-Castelli, 2002].Obviously the same kind of motion can also be obtained using P-U-U kinematic chains[Tasora et al, 2001], as shown in Figure 11.Figure 10 Translational U-P-U PKM Figure 11 Translational P-U-U PKM______________________________________________________________________________________Parallel Kinematics 20One should notice that the U-P-U mechanism is a special case from the R-R-P-R-Rmechanism, when the axes of each R-R pairs are perpendicular. This R-R-P-R-R has beenstudied and the conditions that need to be satisfied to enable its pure translational motionhas been established [Di Gregorio and Parenti-Castelli,1998]. The P joints can also bereplaced by R joints and the result is shown in Figure 12 [Tsai, 1999]. Alternatively one ofthe R joints could be replaced by P joints resulting in R-P-R-P-R (or R-C-C; C forCylindrical) [Callegari and Marzitti, 2003]. This is shown in Figure 13.In fact all the combinations and permutations the basic R and/or P joints that would resultin PKMs with three five-DOFs limbs have been enumerated [Tsai, 1998; Kong andGosselin, 2001]. Notice that if pure translation is sought using symmetrical PKMs, then Sjoints would not be a favorable choice as one S joint in each limb simply means that rotationcannot be constrained.The Delta mechanism [Clavel, 1988] is one of the earliest and the most famous spatialtranslational three-DOFs parallel-kinematics robots, as it has been marketed and usedindustrially for pick and place applications. A sketch of this mechanism is shown in Figure14. This mechanism can provide pure 3D translational motion to its moving platform usingits three rotary actuators via its three limbs. Each of these limbs actually is a R-R-Pa-RFigure 12 Translational R-U-U PKM Figure 13 Translational R-P-R-P-R (R-C-C) PKM______________________________________________________________________________________ Parallel Kinematics 21 (Revolute-Revolute-Parallelogram-Revolute) kinematic chain. The mechanism can alsoprovide a rotary independent motion about the Z axis as a 4th decoupled DOF.Many variations of that Delta mechanism has been proposed and implemented. One ofthese close variations is the patented Tsai’s manipulator [ Tsai, 1997; Stamper 1997 ], whichalso provides 3D translational motion to its platform. Here, the parallelograms areconstructed using R joints instead of S joints and Stirrups in the previous case. Thatmechanism is shown in Figure 15. Another close variation was also presented [Mitova andVatkitchev, 1991]. The kinematic chains of that variation were R-Pa-R-R instead.A P-R-Pa-R with vertical prismatic joints was also suggested [Zobel et al, 1996]. Variationsextremely similar to that were later implemented using pneumatic drives [Kuhlbusch andNeumann, 2002]. These variations are shown in Figure 16.Figure 14Clavel-Delta translational PKMFigure 15Tsai or Meryland translationalPKM______________________________________________________________________________________When the lines of action of the three prismatic joints are tilted further till all of them are inthe horizontal plane, the star mechanism of Figure 17 is then obtained. This mechanism wasdeveloped by Hervé [Hervé and Sparacino, 1992]. Notice here that the prismatic joints arereplaced by helical ones (ie screw & nut), which should not represent a difference fromkinematics points of view.Figure 16Translational P-R-Pa-R PKMs Figure 17 Herve ’ Star translational PKM Figure 18 The Orthoglide translational PKM ( a ) ( b )( c )______________________________________________________________________________________ Parallel Kinematics 23 The orthoglide mechanism [Wenger and Chablat, 2000 and 2002] is another variation withthe angles between the action lines of the prismatic joints are changed further resulting inbetter motion transformation (from joints to platform) quality. This is shown in Figure 18.Prior to that a similar mechanism has also been designed and built as a coordinate-measuring-machine [Hiraki et al, 1997]. In that mechanism the lines of action of theprismatic joints are changed further to guarantee that the heavy parts if the mechanism areresting on the machine base.Parallelograms represent a common thread among the mechanisms of Figure 14 to Figure 18as a parallelogram would directly constrain the rotational motion about certain axis. SeeAppendix A. Notice also that in all the designs above the two axes of the two revolute jointsof each chain are always parallel, sometimes parallel to the direction of the prismatic joint (ifany) and sometimes perpendicular to it, which agrees with conditions shown later in theliterature [Kong and Gosselin, 2004b].It is important to notice that each limb of each of the PKMs of Figure 14 to Figure 18 hasonly four-DOFs associated with its joints. According to Grübler/Kutzbach criterion thesePKMs are not mobile [Stamper, 1997]. In fact some mechanisms are mobile only undersome geometric conditions. These are called internally over-constrained mechanisms. SeeAppendix A for more about these over-constrained mechanisms. Screw theory can beutilized in conjunction with the Grübler/Kutzbach criterion [Huang and Li, 2002] to showthe mobility of these over-constrained mechanisms.Further, other (that do not utilize parallelograms) spatial translational PKMs with three limbseach of which having four-DOFs have been proposed. Symmetrical PKMs that have three(P-R-R-R) limbs and are aimed at realizing pure spatial translational motion have been built[Kong and Gosselin, 2002a; Kong and Gosselin, 2002b]. Two of these PKMs are shown inFigure 19. For these over-constrained PKMs to realize pure translation the followinggeometrical conditions need to be satisfied;• The axes of the 3 R joints within the same limb are parallel.• The three directions of the R joints of the limbs should not be in the same plane orparallel to the same plane.• Within the same leg the axis of the P joint is not perpendicular to the direction of the R joints axes.Figure 19 Translational Over-Constrained P-R-R-R PKMThe directions of the P joints don’t have to be parallel, but if they are this will help enlarging the work-space. Also, it has been shown that if the three directions of the R joints are perpendicular to each other linear isotropic transformations will be obtained throughout the work-space (and thus no singularities). Compare that to the isotropic conditions reported for the orthoglide mechanism of Figure 18. Isotropic transformation is discussed further in Chapter 4.The geometrical conditions of the mobility of a similar over-constrained PKMs that has three C-P-R (P-R-P-R) limbs, shown in Figure 20, have also been found [Callegari and Tarantini, 2003]. These conditions are;•The axes of the 2 R joints within the same limb are parallel.•The three directions of the R joints of the three limbs should not be in the same plane or parallel to the same plane.It has been shown that singularity of that mechanism can be kept outside the work-space while maintaining a convex work-space. The isotropic points of that mechanism have also been shown.Figure 20Translational Over-ConstrainedP-R-P-R Symmetrical PKMIn fact the geometrical conditions of the different over-constrained PKMs that utilize four-DOFs limbs have been enumerated [Hervé and Sparacino, 1991; Kong and Gosselin, 2004a].Using three limbs each with P-P-P joints is actually another, may be trivial, over-constrained translational PKMs.Another concept that has been extensively utilized at the industrial level is presented now. If three limbs each with six-DOFs (eg U-P-S kinematic chain) associated with its joints are used, then the platform will have six DOFs (as discussed in Appendix A). However, if less than six actuators are used with these three limbs then some DOFs will not be controllable.After choosing which DOFs are to be controlled, one can compensate for the known but uncontrolled motion of the remaining DOFs using other, may be serial, mechanism. One can also use some limbs to mechanically constraint some of the platform DOFs. In fact this is the basic idea behind Neumann’s patented mechanism [Neumann, 1988] of Figure 21.This seems like creating some DOFs that are needed and then constraining or compensating for them. Still, the idea has been utilized. Various aspects of this PKM has been studied extensively [eg Siciliano, 1999] and a further utilization of the concept will be shown in a subsequent section of this chapter. One might say or think that this concept/mechanism is actually is under-utilization of resources because of a prior conviction to utilize a Gough-like platform/limbs.____________________________________________________________________________________________________________________________________________________________________________ Parallel Kinematics 254. Spatial Rotational Three-DOFs PKMsExactly as in the case of spatial translational three-DOFs PKMs spatial rotational three-DOFs PKMs can be realized using three limbs each with five-DOFs associated with itsjoints. The difference now is how the joints of the PKM would be assembled. A PKM withthree U-P-U limbs, just like the one discuused in conjunction with Figure 10, has beenproposed [Karouia, and Hervé, 2000]. Another PKM with three R-R-S (or R-S-R) limbs, asshown in Figure 22, has also been proposed [Karouia, and Hervé, 2002a]. PKM with threeR-U-U have also been presented as well [Hervé and Karouia, 2002b]. Figure 23 also showshow to use three P-R-P-R-R (or C-P-U) limbs to realize a spherical/rotation three-DOFsPKMs [Callegari et al 2004]. PKMs with three U-R-C and with three R-R-S legs have beenproposed as well [Di Gregorio, 2001; Di Gregorio, 2002]. A PKM that utilizesparallelograms (similar to the delta PKM above) within its three R-Pa-S limbs was yetanother propsoed spehrical PKM [Vischer and Clavel, 2000]. In fact the possible sphericalPKMs that are based on five-DOFs limbs are enumerated [Kong and Gosselin 2004b; Kong and Gosselin 2004c; Karouia, and Hervé, 2002b; Karouia, and Hervé, 2003].Figure 21 Neumann ’s constrained U-P-S PKM Synthesis of three-DOFs translational PKMs based on either Lie/Displacement group theory [Hervé and Sparacino, 1991; Hervè, 1999] or on screw theory [Tsai, 1999; Kong and Gosselin, 2004a] have been discussed. Figure 22 Orientation R-S-E PKM______________________________________________________________________________________Again, as in the translational case, over-constrained PKMs can be used to realizeorientational PKMs. If only R joints are used then three R-R-R legs can be used [Gosselinand Angeles, 1989]. The geometric condition that will mobilize this over-constrained PKM isthat all the axes of the used R joints are to be concurrent at the rotation center of themechanism. See Figure 24. Figure 25 shows one of these R-R-R limbs separately. Notice thatin this case the space freedom ( λ ) is three as no element of the mechanism is translating,which should simplify the application of Grübler/Kutzbach criterion. Notice also that onlytwo R-R-R legs can theoretically be used to realize a three-DOFs rotational PKM. SeeAppendix A. This is not usually favorable though as one actuator will not be placed on thePKM base. For isotropic transformation the axes of the R joints of each limb should beperpendicular to each other [Wiitala and Stanisi ć, 2000].Figure 24 Orientation R-R-R over-constrained PKM Figure 25 Orientation R-R-R limb Figure 23 Orientation C-P-U PKMWhen P joints are used then four-DOFs legs can be used to realize over-constrainedrotational PKMs [Kong and Gosselin, 2004c]. The combinations and permutations ofpossible over-constrained spherical PKMs as well as their necessary geometrical conditionsare enumerated [Kong and Gosselin, 2004b; Kong and Gosselin, 2004c].As happened in the translational case using Neumann’s PKM of Figure 21, three six-DOFslegs can be used to realize a six-DOFs PKM and then mechanically constrain thetranslational DOFs. The limbs used can have kinematic structure of P-U-S or R-U-S or theirvariations, as per Figure 26. In these cases an arm extending from the base is used topivot/constrain the platform. The P-U-S or R-U-S chains can theoretically be replaced by S-P-S chain, which also has six DOFs associated with its joints [Mohammadi et al, 1993], asshown in Figure 27.( a ) ( b)( c)Figure 26Orientation U-P-S or R-U-S PKMFigure 27Orientation S-P-S PKM______________________________________________________________________________________ Parallel Kinematics 27Type synthesis of three-DOFs rotational PKMs based on either Lie/Displacement group theory [Karouia and Hervé, 2003] or on screw theory [Kong and Gosselin, 2004b] have been discussed.5.Other Three-DOFs PKMsSo far spatial three DOFs mechanisms have been discussed. Three DOFs mechanisms can provide planar motion too. That is, they can provide the platform with two translational motions and one rotational motion about the plane normal. If, one relies on P and/or R joints as well as Grübler/Kutzbach criterion, then one can find that there are 7 possible symmetrical mechanisms. These are (RRR, RRP, RPR, PRR, RPP PRP, and PPR). S and U joints here not useful here. Each of the three identical kinematic chains in this case needs to have 3 DOFs [Tsai, 1998]. Figure 28 [Hunt, 1983] and Figure 29 [Tsai, 1998] represent two of these possible seven mechanisms that have actually been implemented.Figure 28Planar R-R-R PKMFigure 29Planar P-R-P PKMFigure 30Planar PKM with three PRR limbsor redundancyThe mechanism of Figure 30 is another planar symmetrical 3 DOF PKM that has been proposed [Marquet et al, 2001]. Three P-R-R limbs are used. In the figure one can actually see a 4th chain. This is actually a redundant one to treat singularity, which will be discussed in Section 7. With this fourth P-R-R limb P-U-S limbs have also been proposed.Planar PKMs cannot provide two spatial rotational DOFs and hence they can not directly serve the purpose of this work, and hence they are surveyed thoroughly. Other PKMs can ______________________________________________________________________________________。
六自由度并联机器人简介
引言概述:六自由度并联是一种先进的系统,具有广泛的应用前景。
它由六个自由度的运动链组成,能够在空间中实现多轴度的同时运动。
本文将从六自由度并联的背景历史、机构设计、控制方法、应用领域和未来发展等方面进行详细阐述。
正文内容:1.背景历史介绍六自由度并联的发展背景及其重要意义;回顾早期几种并联的发展,如Gosselin并联机构、Stewart平台等;引出六自由度并联作为一种更加先进的系统的出现。
2.机构设计介绍六自由度并联的基本机构和组成部分,包括传动装置、连杆结构等;引述并解析几种常见的六自由度并联的设计方案,如最常见的3UPU并联、6UPS并联等;比较不同设计方案的特点和适用场景,探讨其优缺点。
3.控制方法介绍六自由度并联的控制方法,包括力控制、位置控制、姿态控制等;探究六自由度并联的运动学和动力学建模,以及逆运动学解算方法;讨论控制系统中的传感器选取和控制算法优化,以提高的运动精度和控制性能。
4.应用领域探讨六自由度并联在工业领域中的应用,如装配、焊接、涂覆等;介绍在医疗领域中的应用,如手术系统、康复辅助等;分析六自由度并联在航天、航空、军事等领域的应用前景。
5.未来发展展望六自由度并联的未来发展趋势,如形变机构、软体等;分析当前六自由度并联的挑战与机遇,如控制系统的复杂性、成本的降低等;提出六自由度并联在智能制造、自主交互等领域的潜在应用。
总结:本文详细介绍了六自由度并联的背景历史、机构设计、控制方法、应用领域和未来发展等方面。
六自由度并联作为一种先进的系统,在工业、医疗、航空等领域具有广泛的应用前景。
随着技术的不断进步,六自由度并联将变得更加智能、高效,推动着技术的发展和应用的普及。
柔索牵引并联机器人的简介及发展概况
柔索牵引并联机器人的简介及发展概况近年来,随着科技的不断进步和人工智能的快速发展,机器人技术也取得了长足的进步。
其中,柔索牵引并联机器人作为一种新兴的机器人技术,备受关注。
本文将介绍柔索牵引并联机器人的基本原理、应用领域以及未来的发展前景。
一、基本原理柔索牵引并联机器人是一种基于柔性索引的机器人系统,其基本原理是通过多个柔性索引将机器人的末端执行器与机器人的基座相连接。
这些柔性索引可以是钢丝绳、纤维材料或者弹性材料制成,具有一定的拉伸和弯曲性能。
通过控制这些柔性索引的长度和角度,可以实现机器人的运动和姿态调整。
柔索牵引并联机器人的优势在于其高度的柔性和适应性。
由于柔性索引的存在,机器人可以在复杂环境中进行灵便的运动和操作。
此外,柔索牵引并联机器人还具有较高的精度和稳定性,可以完成一些精细的操作任务。
二、应用领域柔索牵引并联机器人在各个领域都有广泛的应用。
首先,它在工业创造领域中发挥着重要的作用。
柔索牵引并联机器人可以用于装配线上的零部件组装、焊接和涂覆等工作,提高生产效率和产品质量。
此外,柔索牵引并联机器人还可以应用于危(wei)险环境下的作业,如核电站的辐射清理和化工厂的危(wei)险品处理等。
其次,柔索牵引并联机器人在医疗领域也有广泛的应用前景。
由于其柔性和精度,柔索牵引并联机器人可以用于微创手术和精确的医疗操作。
例如,在神经外科手术中,医生可以通过柔索牵引并联机器人进行精确的脑部操作,减少手术风险和创伤。
此外,柔索牵引并联机器人还可以应用于空间探索和海洋勘探等领域。
由于其适应性和灵便性,柔索牵引并联机器人可以在太空中进行维修和建设任务,或者在海底进行深海勘探和资源开辟。
三、未来发展前景随着人工智能和机器学习等技术的不断发展,柔索牵引并联机器人的未来发展前景非常广阔。
首先,随着机器人技术的进一步成熟,柔索牵引并联机器人的性能将进一步提高,可以实现更加精确和复杂的操作任务。
其次,柔索牵引并联机器人还可以与其他技术相结合,实现更多的应用场景。
并联机器人原文知识分享
并联机器人原文Virtual Prototyping of a Parallel Robot actuated by Servo-Pneumatic Drives using ADAMS/ControlsWalter Kuhlbusch, Dr. Rüdiger Neumann, Festo AG & Co., Germany SummaryAdvanced pneumatic drives for servo-pneumatic positioning allow for new generations of handlings and robots. Especially parallel robots actuated by servo-pneumatic drives allow the realization of very fast pick and place tasks in 3-D space. The design of those machines requires a virtual prototyping method called the mechatronic design [ 1]. The most suitable software tools are ADAMS for mechanics and Matlab/Simulink for drives and controllers. To analyze the overall behavior the co-simulation using ADAMS/Controls is applied. The combination of these powerful simulation tools guarantees a fast and effective design of new machines.1. IntroductionFesto is a supplier for pneumatic components and controls in industrial automation.The utilization of pneumatic drives is wide spread in industry when working in open loop control. It’s l imited however, when it comes to multipoint movement or path control. The development has been driven to servo-pneumatic drives that include closed loop control. Festo servo-pneumatic axes are quite accurate, thus they can be employed as drives for sophisticated tasks in robotics. The special advantage of these drives is the low initial cost in comparison to electrical and hydraulic drive systems. Servo-pneumatic driven parallel robots are new systems with high potentials in applications. The dynamical performance meets the increasing requirements to reduce the cycle times.One goal is the creation and optimization of pneumatic driven multi-axes robots. This allows us to support our customers, and of course to create new standard handlings and robots (Fig. 1).The complexity of parallel robots requires the use of virtual prototyping methods.Fig. 1. Prototypes of servo-pneumatic driven multi-axes machinesPreferred applications are fast multipoint positioning tasks in 3-D space. Free programmable stops allow a flexible employment of the machine. The point to point (ptp) accuracy is about 0.5 mm. The continuous path control guarantees collision free movement along a trajectory.1.1. Why parallel robots?The main benefits using parallel instead of serial kinematics is shown in Fig. 2.Fig. 2. Benefits of robots with parallel kinematicsHigh dynamical performance is achieved due to the low moved masses. While in serial robots the first axis has to move all the following axes, the axes of a parallel robot can share the mass of the workpiece. Furthermore serial axes are stressed by torques and bending moments which reduces the stiffness. Due to the closed kinematics the movements of parallel robots are vibration free for which the accuracy is improved. Finally the modular concept allows a cost-effective production of the mechanical parts. On the other hand there is the higher expense related to the control.1.2. Why Pneumatic Drives?The advantages of servo-pneumatic drives are:direct drives→high accelerating powercompact (especially rodless cylinders with integrated guidance)robust and reliablecost-effectiveDirect drives imply a high acceleration power due to the low equivalent mass in relation to the drive force. With pneumatic drives the relationship is particularly favorable. Festo has already built up some system solutions, predominantly parallel robots (see Fig. 1), to demonstrate the technical potential of servo-pneumatics. Which performance can be reached is shown in Fig. 3. This prototype is equipped with an advanced model based controller that makes use of the computed torque method [ 3].Fig. 3. Performance of the Tripod2. Design MethodThe system design, where several engineering disciplines are involved in, requires a holistic approach. This method is the so-called mechatronic design. The components of a mechatronic system are the mechanical supporting structure, the servo drives as well as the control. All these components are mapped into the computer and optimized with respect to the mutual interaction. This procedure can be used to analyze and improve existing systems as well as to create new systems. The two main steps of the mechatronic design are first building models in each discipline, and secondly the analysis and synthesis of the whole system. These steps are done in a cycle for the optimization.The modeling can be carried out in two ways: Either you apply one tool to build up models in all disciplines, but with restrictions. The other way is to use powerful tools in each discipline and to analyze the whole system via co-simulation. In this case you have to consider some specials of the solving method like communication step size or direct feedthrough behavior.2.1. Why Co-Simulation?Co-simulation is used because of the powerful tools, each specialized in its own discipline. ADAMS is an excellent tool for the mechanical part and Matlab/Simulink is the suitable tool for controller development and simulation of pneumatics.The behavior of the mechanical part is modeled at best usingADAMS/View. The advantages of ADAMS are:fast physically modeling of rigid and elastic bodiesextensive features for parameterizationanimation of simulation resultssolving inverse kinematics by “general point motion”visualization of eigenmodes (ADAMS/LINEAR)export of linear models (A,B,C,D)A big advantage is the automatic calculation of the direct and inverse kinematics. The direct kinematics of parallel structures often cannot be solved analytically. Furthermore different kinematics can be compared to each other very easily when you define a trajectory of the end-effector via “general point motion”.Applying these two software tools guarantees a high flexibility regarding the design of new systems. It is very important to analyze the closed loop behavior at an early stage. This makes a big difference between the mechatronic design and the conventional design. Furthermore the visualization of the mechanical system makes the discussion within a team very easy.2.2. RestrictionsA disadvantage is that the model of the mechanics is purely numerically available. However some symbolic code of the mechanical system is needed for the control hardware when the system becomes realized. In general we have to derive the equations of the inverse kinematics, which are used in the feed forward control. For specific robot types a controller with decoupling structure is necessary in order to fulfill the requirements. Then the symbolic code of the dynamics is needed. For this we have to pull up further tools to complete the task.2.3. What has to be analyzed?For the design of new robots it is important to know about the effect on the system stability and accuracy. The main properties that influence stability and accuracy are opposed in Table 1 for different kinematical structures.Table 1: Properties of different kinematical configurationsWith respect to the control the cartesian type is the best one. But the main disadvantage of a serial robot compared with a parallel one is the lower dynamics and the lower stiffness (see Fig. 2).Depending on the requirements with regard to dynamics and accuracy different control approaches must be applied. As mentioned above we prefer to employ a standard controller SPC200 for a single axis. Due to the coupling of the axes the stability of the closed loop system must be checked.3. Model of the TripodThe model of the Tripod consists of three parts: the mechanics, the pneumatic drives, and the controller.3.1. Mechanics (ADAMS)We apply the so-called delta-kinematics which causes a purely translational movement of the tool center point (tcp). An additional rotary drive allows the orientation of the gripper in the horizontal plane. Together with the rotary drive the machine has four degrees of freedom.Fig. 4. Degrees of freedom and structure of the TripodThe tripod is modeled using rigid body parts what is often sufficient for the present type of parallel structure. The upper and lower plates are fixed to ground. The profile tubes are connected to these plates via fixed joints. Eachslider has one translational degree of freedom. Both ends of a rod are connected to the neighbored parts by universal joints. Including the rotary drive, the model verification results in four Gruebler counts and there are no redundant constraints. The model is parameterized in such a way that different kinematical configurations can be generated very easily by means of design variables. The most important parameters are the radiuses of the plates (see Fig. 4) and the distances to each other. For instance the following configurations can be achieved just by variation of these parameters or design variables.Fig. 5. Variation of kinematics by “design variables”3.2. Servo-Pneumatic Drives (Simulink)The models of the servo-pneumatic drives are developed by means of Matlab/Simulink. Depending on the requirements several controller models were developed. It is common to all that they are highly non-linear. Mainly the compressibility of air makes a more complex control system necessary. All controller models including the standard controller SPC200 are available asC-coded s-functions. This allows to use the same code in the simulation as well as on the target hardware.A survey of the control scheme is shown in Fig. 6. For this contribution it is important to know about the interface for the co-simulation. The calculated forces of the servo pneumatics are the inputs to the mechanics. The slider positions are the outputs of the mechanics. Detailed information on the controllers can be found in [ 2] and [ 3].Fig. 6. Control structure4. Analyzing the behavior of the whole systemWhen the modeling is done we can go on with the second step of the mechatronic design. In the following it is assumed that the SPC200 controller always controls the machine. The task is the analysis and synthesis of different parallel kinematics relative to stability, dynamics, and accuracy for a given workspace.Some studies, e.g. concerning the workspace, can be made exclusive using ADAMS. Others such as feedback analysis are carried out by means of co-simulation.The workspace can be determined by varying all drive positions in all combinations. After simulation the end-effector positions are traced using the feature “create tracespline”.Fig. 7. Drive motions for the workspace calculationThe data can be visualized in ADAMS or any other graphics tool. As an example the workspace of the Tripod configuration of Fig. 7 is represented in Fig. 8Fig. 8. Workspace of the Tripod (configuration as in Fig. 7) Measuring the velocity of the end-effector at the same time delivers the gear ratios of all drives over the workspace.To examine the behavior of the closed loop system ADAMS/Controls is used to couple ADAMS and Simulink. Before the model can be exported some inputs and outputs of the plant must be defined by state variables. The inputs of the Tripod are the drive forces. Though the controller makes only use of the drive position some additional signals are defined as outputs: The drive velocities are needed for solving the differential equations of the pressures in the pneumatics model. Furthermore we need the velocity of the tool center point to calculate the non-linear gear ratios. Finally the drive accelerations serve for the calculation of the equivalent moved masses. The whole system is shown in Fig. 9.Fig. 9. Model of the whole systemThe model of the mechanics is embedded in Simulink. ADAMS/Controls makes the interface available by means of s-function.The equivalent moved masses depend on the positions of drives. The non-linearity of the robot grows with the strength of this dependency. As shown in Table 1 with the parallel kinematics there is a medium strong coupling of the dynamics. This coupling is neglected, if we use the standard SPC200 controller. Nevertheless there is an influence on the stability of theclosed loop system. To initialize and parameterize this controller we need the following information from the mechanics model:equivalent moved mass of each drive (depends on slider positions)gravity forces in initial positionCoulomb and viscous frictionThe controller is designed for a single axis with a constant mass. Due to the position dependency of the equivalent moved masses of the robot we have to choose an average value for each drive. Unfortunately with ADAMS there is no easy way to calculate the equivalent moved masses along atrajectory. We tried to apply different methods such as dividing a drive force by its acceleration during a slow motion, but this method yielded not insatisfying results. The best method found is the linearization of the system.However this requires ADAMS/Linear. When we define the drive accelerations as plant outputs in ADAMS/Controls the direct feed through matrix D of the exported linear system delivers the mass matrix in the defined operating point as1)()(-⋅=q q D f MCorresponding to the three degrees of freedom of the rigid body system the size of the mass matrix M(q) is three by three. It depends on the vector of the generalized coordinates of the drives. The non-diagonal elements cause the coupling between the axes. The factor f depends on the units chosen for the inputs and outputs. Whenthe forces are given in [N] and the accelerations are given in [mm/s 2] f is 0.001.With a slider mass of 2 kg and an end-effector mass of 2 kg the massmatrix for the three positions shown in Fig. 10 are:The gravity forces can be calculated very easily by static simulation.Likewise it is easy to model the friction in ADAMS. Nevertheless theparameters can differ very strong from one application to another one.With the parameterized controller the stability should be checked inseveral operating points by means of eigenvalues and the dynamics of the closed loop system can be analyzed by means of frequency responses.Of course with a robust controller you can start with a simulation in time domain. This gives information about the accuracy and system limits. For this we need the references for the drives. For a reference trajectory of the tool center point ADAMS applying the “general point motion” can generate the drive positions.Fig. 10. Solving inverse kinematics by feature "general point motion"In the following the simulation results are presented for a tripod configuration shown in Fig. 10. The workspace of this machine is illustrated in Fig. 8.Fig. 11. Left: Trajectory of the tool center point. Right: Drive references and measures5. ConclusionThe coupling of the software tools ADAMS and Simulink via co-simulation is a powerful method of virtual prototyping. This method enables an efficient design and optimization of servo-pneumatic driven robots. Especially robots with parallel kinematics can be analyzed very fast using ADAMS. Due to the potential of the linear analysis the use of ADAMS/Linear is meaningful. Particularly with controlled systems the linear analysis is required.Literature[ 1] Kuhlbusch, W., Moritz, W., Lückel, J., Toepper, St., and Scharfeld, F.: T RI P LANAR - A New Process-Machine Type Developed by Means of Mechatronic Design. Proceedings of the 3rd International Heinz Nixdorf Symposium on Mechatronics and Advanced Motion Control, Paderborn, Germany, 1999.[ 2] Neumann, R., Göttert, M. Ohmer, M.: Servopneumatik – eine alternative Antriebstechnik für Roboter, Robotik 2002, 19-20. Juni in Ludwigsburg, Germany, 2002, VDI-Bericht Nr. 1679 p. 537-544.[ 3] Neumann, R., Leyser, J., Post, P.: Simulationsgestützte Entwicklung eines servopneumatisch angetriebenen Parallelroboters. TagungsbandSIM2000 – Simulation im Maschinenbau, Dresden, Germany, 2000, p. 519-536.。
关于并联机器人控制策略研究
关于并联机器人控制策略研究总结概括了并联机器人控制策略方面所取得的成果,并据此阐述了其未来发展趋势。
二、模糊控制在并联机器人控制中的应用模糊控制作为一种计算机数字控制技术是以模糊集合论、模糊语言变量和模糊逻辑推理为基础。
以观测过程中的状态变量来计算作用变量的值为控制方法。
其结构一般是由输入变量和输出变量、模糊化、模糊推理和决策算法、模糊判决等构成。
其与被控对象组成的模糊控制系统如图1所示。
自从1965年美国加利福尼亚大学的控制论专家L A Zadeh教授提出模糊数学以来,在学术领域中引起广泛关注,并于20世纪80年代初将模糊控制首次运用于实际机器人,充分展现了模糊控制在机器人控制方面的应用潜力。
随着众多学者对模糊控制的深入研究,使其理论和方法日渐完善,在其他领域中都得到了成功应用。
与传统控制理论相比,模糊控制具有以下优点:(1)模糊控制能有效地利用操作人员的控制经验和专家知识;(2)模糊控制不必对被控对象建立精确的数学模型;(3)系统语言规则相对独立,利用控制规律间的模糊连接,容易得到折中选择,使控制效果更显著。
由于机器人在模糊控制情况下,只需要系统的输入与输出,从而简化了控制过程。
三、鲁棒控制在并联机器人控制中的应用鲁棒控制在控制串联机器人的应用中已经相对成熟,但在并联机器人控制中的研究深度和广度还需要进一步提升。
鲁棒控制是在系统存在一定程度的参数不确定性和未建模动态时,为了让闭环系统保持稳定,而为其设计一种控制器。
目前,在机器人控制中主要采用的鲁棒控制方法有:基于反馈线性化的鲁棒控制、变结构控制、H∞控制和鲁棒自适应控制。
鲁棒控制方法已成为并联机器人控制策略的研究热点。
1.基于反馈线性化的鲁棒控制这种方法是将机器人的非线性项通过反馈线性化理论完全补偿,得到一个全局线性化和解耦的闭环方程,并利用成熟的线性控制理论,使系统满足一定的鲁棒性能要求,因此在并联机器人控制中得到一定应用。
此方法对于了解系统线性性能特征(如:超调量、阻尼比等)的情况较为有效。
并联机器人综述论文
并联机器人综述论文院系:聊城大学东昌学院机电工程系专业:机械设计制造及其自动化班级:10本二姓名:姜丽梅学号:20100020749并联机器人综述论文摘要并联机器人是一类全新的机器人,它具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点,在21世纪将有广阔的发展前景。
本文根据掌握的大量并联机器人文献,对非对称3平动3UPU并联机器人在运动学、动力学、机构性能分析等方面的主要研究成果、进展进行了阐述,同时阐述了非对称3平动3UPU并联机器人在国内外的发展状况以及并联机器人构型设计原则关键词平动 3自由度并联机器人一、课题国内外现状及研究的主要成果少自由度并联机器人由于其驱动元件少、造价低、结构紧凑而有较高的实用价值,更具有较好的应用前景,因此少自由度的并联机器人的设计理论的研究和应用领域的拓展成为并联机器人的研究热点之一。
研究少自由度并联机构最早的学者应属澳大利亚著名机构学教授 Hunt ,在1983年,他就列举了平面并联机构、空间三自由度3-rps并联机构,但对四,五自由度并联机构未作详细阐述。
在Hunt之后,不断有学者提出新的少自由度并联机构机型。
在少自由度并联机构机型的研究中,三维平移并联机构得到广泛的重视。
clavel提出了一种可实现纯平运动三自由度Delta 并联机器人,在Delta机构的支链中采用平行四边形机构约束动平台的3个转动自由度。
Tsai提出的Delta机构完全采用回转副,并通过转轴的偏移扩大了Delta机构的工作空间。
在 Tricept并联机床上采用的构型是由 Neumann发明的一种具有3个可控位置自由度的并联机构,该机构的突出特点是带有导向装置,采用3个内副驱动支链并由导向装置约束动平台。
Tsai 通过自由度分析提取支链的运动学特征,系统研究了并联机构的综合问题,特别研究了一类实现三自由度平动的并联机构。
Rasim Alizade于2004年提出基于平台类型和联接平台的形式和类型进行分类的一种并联机构的结构综合和分类的新方法和公式,并综合出具有单平台和多平台的纯并联和串并联复联机构.我国燕山大学的黄真教授及其团队除了研制出解耦微型6维力传感器和微动机械,设计出一种新的高精度的机构方案外,还率先对少自由度并联机器人的基础理静刚度和精度.上海交大的高峰教授2002年运用复合副的概念来组合已知自由度数和自由度类型的支链,通过支链输出杆特殊的Plucker坐标来综合2-自由度的机器人。
机器人文献综述
机器人文献综述摘要:机器人是一种由主体结构、控制器、指挥系统和监测传感器组成的,能够模拟人的某些行为、能够自行控制、能够重复编程、能在二维空间内完成一定工作的机电一体化的生产设备。
机器人技术是综合了计算机、控制论、机构学、信息传感技术、人工智能、仿生学等多学科而形成的高新技术。
是当代研究十分活跃、应用日益广泛的领域。
也是一个国家工业自动化水平的重要标志。
关键词:机器人历史机器人分类移动机器人技术一、引言[1]机器人是当代自动化技术和人工智能技术发展的典型体现,也代表着制造技术发展的新水平,是一种由主体结构、控制器、指挥系统和监测传感器组成的,能够模拟人的某些行为、能够自行控制、能够重复编程、能在二维空间内完成一定工作的机电一体化的生产设备。
机器人尤其是工业机器人的广泛应用,极大提高了生产力。
目前世界上使用的机器人已有百万之多,并且次数目仍在快速增长。
其应用领域也从传统的制造业、军事应用逐步扩展到服务业、空间探索等。
二、机器人历史的发展[2]2015年,国内版工业4.0规划——《中国制造2025》行动纲领出台,其中提到,我国要大力推动优势和战略产业快速发展机器人,包括医疗健康、家庭服务、教育娱乐等服务机器人应用需求。
那么机器人发展阶段又如何呢?20世纪20年代前后,捷克和美国的一些科幻作家创作了一批关于未来机器人与人类共处中可能发生的故事之类的文学作品,使得机器人在人们的思想中成为一种无所不能的“超人”。
1954年,美国的戴沃尔制造了世界第一台机器人实验装置,发表了《适用于重复作业的通用性工业机器人》一文,并获得美国专利。
1960年,美国Unim ation公司根据戴沃尔德技术专利研制出第一台机器人样机,并定型生产U n imat e(意为“万能自动”)机器人。
并联机器人原文
Virtual Prototyping of a Parallel Robot actuated by Servo-Pneumatic Drives using ADAMS/ControlsWalter Kuhlbusch, Dr. Rüdiger Neumann, Festo AG & Co., GermanySummaryAdvanced pneumatic drives for servo-pneumatic positioning allow for new generations of handlings and robots. Especially parallel robots actuated byservo-pneumatic drives allow the realization of very fast pick and place tasks in 3-D space. The design of those machines requires a virtual prototyping method called the mechatronic design [ 1]. The most suitable software tools are ADAMS for mechanics and Matlab/Simulink for drives and controllers. To analyze the overall behavior the co-simulation using ADAMS/Controls is applied. The combination of these powerful simulation tools guarantees a fast and effective design of new machines.1. IntroductionFesto is a supplier for pneumatic components and controls in industrial utilization of pneumatic drives is wide spread in industry when working in open loop control. It’s limited however, when it com es to multipoint movement or path control. The development has been driven to servo-pneumatic drives that include closed loop control. Festo servo-pneumatic axes are quite accurate, thus they can be employed as drives for sophisticated tasks in robotics. The special advantage of these drives is the low initial cost in comparison to electrical and hydraulic drive systems. Servo-pneumatic driven parallel robots are new systems with high potentials in applications. The dynamical performance meets the increasing requirements to reduce the cycle times.One goal is the creation and optimization of pneumatic driven multi-axes robots. This allows us to support our customers, and of course to create new standard handlings and robots (Fig. 1).The complexity of parallel robots requires the use of virtual prototyping methods.Fig. 1. Prototypes of servo-pneumatic driven multi-axes machines Preferred applications are fast multipoint positioning tasks in 3-D space. Free programmable stops allow a flexible employment of the machine. The point to point (ptp) accuracy is about 0.5 mm. The continuous path control guarantees collisionfree movement along a trajectory.. Why parallel robotsThe main benefits using parallel instead of serial kinematics is shown in Fig. 2.Fig. 2. Benefits of robots with parallel kinematicsHigh dynamical performance is achieved due to the low moved masses. While in serial robots the first axis has to move all the following axes, the axes of a parallel robot can share the mass of the workpiece. Furthermore serial axes are stressed by torques and bending moments which reduces the stiffness. Due to the closed kinematics the movements of parallel robots are vibration free for which the accuracy is improved. Finally the modular concept allows a cost-effective production of the mechanical parts. On the other hand there is the higher expense related to the control.. Why Pneumatic DrivesThe advantages of servo-pneumatic drives are:direct drives→high accelerating powercompact (especially rodless cylinders with integrated guidance)robust and reliablecost-effectiveDirect drives imply a high acceleration power due to the low equivalent mass in relation to the drive force. With pneumatic drives the relationship is particularly favorable. Festo has already built up some system solutions, predominantly parallel robots (see Fig. 1), to demonstrate the technical potential of servo-pneumatics. Which performance can be reached is shown in Fig. 3. This prototype is equipped with an advanced model based controller that makes use of the computed torque method [ 3].Fig. 3. Performance of the Tripod2. Design MethodThe system design, where several engineering disciplines are involved in, requires a holistic approach. This method is the so-called mechatronic design. The components of a mechatronic system are the mechanical supporting structure, the servo drives as well as the control. All these components are mapped into the computer and optimized with respect to the mutual interaction. This procedure can be used to analyze and improve existing systems as well as to create new systems. The two main steps of the mechatronic design are first building models in each discipline, and secondly the analysis and synthesis of the whole system. These steps are done in a cycle for the optimization.The modeling can be carried out in two ways: Either you apply one tool to build up models in all disciplines, but with restrictions. The other way is to use powerful tools in each discipline and to analyze the whole system via co-simulation. In this case you have to consider some specials of the solving method like communication step size or direct feedthrough behavior.. Why Co-SimulationCo-simulation is used because of the powerful tools, each specialized in its own discipline. ADAMS is an excellent tool for the mechanical part and Matlab/Simulink is the suitable tool for controller development and simulation of pneumatics.The behavior of the mechanical part is modeled at best using ADAMS/View. The advantages of ADAMS are:fast physically modeling of rigid and elastic bodiesextensive features for parameterizationanimation of simulation resultssolving inverse kinematics by “general point motion”visualization of eigenmodes (ADAMS/LINEAR)export of linear models (A,B,C,D)A big advantage is the automatic calculation of the direct and inverse kinematics. The direct kinematics of parallel structures often cannot be solved analytically. Furthermore different kinematics can be compared to each other very easily when you define a trajectory of the end-effector via “general point motion”.Applying these two software tools guarantees a high flexibility regarding the design of new systems. It is very important to analyze the closed loop behavior at an early stage. This makes a big difference between the mechatronic design and the conventional design. Furthermore the visualization of the mechanical system makes the discussion within a team very easy.. RestrictionsA disadvantage is that the model of the mechanics is purely numerically available. However some symbolic code of the mechanical system is needed for the control hardware when the system becomes realized. In general we have to derive the equations of the inverse kinematics, which are used in the feed forward control. For specific robot types a controller with decoupling structure is necessary in order to fulfill the requirements. Then the symbolic code of the dynamics is needed. For this we have to pull up further tools to complete the task.. What has to be analyzedFor the design of new robots it is important to know about the effect on the system stability and accuracy. The main properties that influence stability and accuracy are opposed in Table 1 for different kinematical structures.Table 1: Properties of different kinematical configurationsWith respect to the control the cartesian type is the best one. But the main disadvantage of a serial robot compared with a parallel one is the lower dynamics and the lower stiffness (see Fig. 2).Depending on the requirements with regard to dynamics and accuracy different control approaches must be applied. As mentioned above we prefer to employ astandard controller SPC200 for a single axis. Due to the coupling of the axes the stability of the closed loop system must be checked.3. Model of the TripodThe model of the Tripod consists of three parts: the mechanics, the pneumatic drives, and the controller.. Mechanics (ADAMS)We apply the so-called delta-kinematics which causes a purely translational movement of the tool center point (tcp). An additional rotary drive allows the orientation of the gripper in the horizontal plane. Together with the rotary drive the machine has four degrees of freedom.Fig. 4. Degrees of freedom and structure of the TripodThe tripod is modeled using rigid body parts what is often sufficient for the present type of parallel structure. The upper and lower plates are fixed to ground. The profile tubes are connected to these plates via fixed joints. Each slider has one translational degree of freedom. Both ends of a rod are connected to the neighboredparts by universal joints. Including the rotary drive, the model verification results in four Gruebler counts and there are no redundant constraints. The model is parameterized in such a way that different kinematical configurations can be generated very easily by means of design variables. The most important parameters are the radiuses of the plates (see Fig. 4) and the distances to each other. For instance the following configurations can be achieved just by variation of these parameters or design variables.Fig. 5. Variation of kinematics by “design variables”. Servo-Pneumatic Drives (Simulink)The models of the servo-pneumatic drives are developed by means ofMatlab/Simulink. Depending on the requirements several controller models were developed. It is common to all that they are highly non-linear. Mainly the compressibility of air makes a more complex control system necessary. All controller models including the standard controller SPC200 are available as C-coded s-functions. This allows to use the same code in the simulation as well as on the target hardware.A survey of the control scheme is shown in Fig. 6. For this contribution it is important to know about the interface for the co-simulation. The calculated forces of the servo pneumatics are the inputs to the mechanics. The slider positions are the outputs of the mechanics. Detailed information on the controllers can be found in [ 2] and [ 3].Fig. 6. Control structure4. Analyzing the behavior of the whole systemWhen the modeling is done we can go on with the second step of the mechatronic design. In the following it is assumed that the SPC200 controller always controls the machine. The task is the analysis and synthesis of different parallel kinematics relative to stability, dynamics, and accuracy for a given workspace.Some studies, . concerning the workspace, can be made exclusive using ADAMS. Others such as feedback analysis are carried out by means of co-simulation.The workspace can be determined by varying all drive positions in all combinations. After simulation the end-effector positions are traced using the feature “create tracespline”.Fig. 7. Drive motions for the workspace calculationThe data can be visualized in ADAMS or any other graphics tool. As an example the workspace of the Tripod configuration of Fig. 7 is represented in Fig. 8Fig. 8. Workspace of the Tripod (configuration as in Fig. 7)Measuring the velocity of the end-effector at the same time delivers the gear ratios of all drives over the workspace.To examine the behavior of the closed loop system ADAMS/Controls is used to couple ADAMS and Simulink. Before the model can be exported some inputs and outputs of the plant must be defined by state variables. The inputs of the Tripod are the drive forces. Though the controller makes only use of the drive position some additional signals are defined as outputs: The drive velocities are needed for solving the differential equations of the pressures in the pneumatics model. Furthermore we need the velocity of the tool center point to calculate the non-linear gear ratios. Finally the drive accelerations serve for the calculation of the equivalent moved masses. The whole system is shown in Fig. 9.Fig. 9. Model of the whole systemThe model of the mechanics is embedded in Simulink. ADAMS/Controls makes the interface available by means of s-function.The equivalent moved masses depend on the positions of drives. Thenon-linearity of the robot grows with the strength of this dependency. As shown in Table 1 with the parallel kinematics there is a medium strong coupling of the dynamics. This coupling is neglected, if we use the standard SPC200 controller. Nevertheless there is an influence on the stability of the closed loop system. To initialize and parameterize this controller we need the following information from the mechanics model:equivalent moved mass of each drive (depends on slider positions)gravity forces in initial positionCoulomb and viscous frictionThe controller is designed for a single axis with a constant mass. Due to the position dependency of the equivalent moved masses of the robot we have tochoose an average value for each drive. Unfortunately with ADAMS there is no easy way to calculate the equivalent moved masses along a trajectory. We tried to apply different methods such as dividing a drive force by its acceleration during a slow motion, but this method yielded not in satisfying results. The best method found is the linearization of the system. However this requires ADAMS/Linear. When we define the drive accelerations as plant outputs in ADAMS/Controls the direct feed through matrix D of the exported linear system delivers the mass matrix in the defined operating point as1)()(-⋅=q q D f MCorresponding to the three degrees of freedom of the rigid body system the size of the mass matrix M(q) is three by three. It depends on the vector of thegeneralized coordinates of the drives. The non-diagonal elements cause the coupling between the axes. The factor f depends on the units chosen for the inputs and outputs. Whenthe forces are given in [N] and the accelerations are given in [mm/s2] f is .With a slider mass of 2 kg and an end-effector mass of 2 kg the mass matrix for the three positions shown in Fig. 10 are:The gravity forces can be calculated very easily by static simulation. Likewise it is easy to model the friction in ADAMS. Nevertheless the parameters can differ very strong from one application to another one.With the parameterized controller the stability should be checked in several operating points by means of eigenvalues and the dynamics of the closed loop system can be analyzed by means of frequency responses.Of course with a robust controller you can start with a simulation in time domain. This gives information about the accuracy and system limits. For this we need the references for the drives. For a reference trajectory of the tool center point ADAMS applying the “general point motion” can generate the drive positions.Fig. 10. Solving inverse kinematics by feature "general point motion"In the following the simulation results are presented for a tripod configuration shown in Fig. 10. The workspace of this machine is illustrated in Fig. 8.Fig. 11. Left: Trajectory of the tool center point. Right: Drive references and measures5. ConclusionThe coupling of the software tools ADAMS and Simulink via co-simulation is a powerful method of virtual prototyping. This method enables an efficient design and optimization of servo-pneumatic driven robots. Especially robots with parallel kinematics can be analyzed very fast using ADAMS. Due to the potential of the linear analysis the use of ADAMS/Linear is meaningful. Particularly with controlled systems the linear analysis is required.Literature[ 1] Kuhlbusch, W., Moritz, W., Lückel, J., Toepper, St., and Scharfeld, F.: T RI P LANAR - A New Process-Machine Type Developed by Means of Mechatronic Design. Proceedings of the 3rd International Heinz Nixdorf Symposium on Mechatronics and Advanced Motion Control, Paderborn, Germany, 1999.[ 2] Neumann, R., Göttert, M. Ohmer, M.: Servopneumatik – eine alternative Antriebstechnik für Roboter, Robotik 2002, 19-20. Juni in Ludwigsburg, Germany, 2002, VDI-Bericht Nr. 1679 p. 537-544.[ 3] Neumann, R., Leyser, J., Post, P.: Simulationsgestützte Entwicklung eines servopneumatisch angetriebenen Parallelroboters. Tagungsband SIM2000 –Simulation im Maschinenbau, Dresden, Germany, 2000, p. 519-536.。
数控技术文献综述
国内并联机床的发展并联机床作为一种新型的加工设备,已成为当前机床技术的一个重要研究方向,受到了国际机床行业的高度重视。
并联机床克服了传统串联机床移动部件质量大、系统刚度低、刀具只能沿固定导轨进给、作业自由度偏低、设备加工灵活性和机动性不够等固有缺陷。
并联机床可完成从毛坯至成品的多道加工工序,实现并联机床加工的复合化。
并联机床是近年来发展起来的一种新型结构机床。
因没用实体坐标轴,固又称为虚拟轴机床。
并联机床是空间机构学研究成果在数控机床领域中的创造性应用,它集机构学理论﹑机器人技术和数字控制技术于一体,是多学科交叉的新兴产物。
它的发展可以分为3个阶段:模拟器阶段、并联机器人阶段和并联机床阶段。
并联机床的优点并联机床是新一代的数控机床。
它完全打破了传统机床结构的概念,采用了多杆并行驱动方式。
从机床整体来说,传统的串联机构机床是属于位置求解简单而机构复杂的机床而相对于并联机构机床,则机构简单而位置求解复杂。
在并联机构的位置分析中,位置反解比较简单,位置正解却非常复杂,与串联机构截然相反。
与串联机构机床相比,并联机床主要有以下优点。
(1)刚度重量比大。
因采用并联闭环静定或非静定杆系结构,且在准静态情况下,传动构件理论上为仅受拉压载荷的二力杆,故传动机构的单位重量具有很高的承载能力。
(2)动态性能好。
运动部件惯性的大幅度降低有效地改善了伺服控制器的动态品质,允许动平台获得很高的进给速度和加速度,因而特别适合各种高速数控作业。
(3)机床结构简单,集成化、模块化程度高。
这使得并联机床结构设计和加工等多方面得以简化。
(4)变换坐标系方便。
由于没有实体坐标系,机床坐标系与工件坐标系的转换全部靠软件完成,非常方便。
(5)技术附加值高。
并联机床结构看起来很简单,但设计、控制却很复杂,具有“硬件”简单、“软件”复杂的特点,是一种技术附加值很高的机电一体化产品。
(6)使用寿命长。
并联机床由于没有传统机床导轨,避免了导轨磨损、锈蚀、划伤等现象。
Delta并联机器人系统总体设计-论文
本科毕业设计(论文)Delta并联机器人系统总体设计摘要近些年,delta机器人越来越得到大多数人的关注,并逐渐开始在工业上得到成熟的应用。
与串联机器人相比,并联机器人有很大优势。
其中之一就是可以把电机固定在基座上,这样就可以减轻机器机构上的重量。
当需要直接驱动时,把电机固定在基座上是一个必要的田间。
因此,并联机器人非常适合直接驱动的情况。
并联机器人的另一个优点就是他的刚度很高,这些特征可以得到更多的精准度和更快的操作。
Delta机器人是其中非常重要的一种。
在本书中,介绍了并联机器人的产生特点及应用。
计算了机器人的自由度,位置正反解,并分析了它的空间奇异形位。
还通过分析比较几种控制器和方案,选择其中最适合的方案。
并设计了delta机器人的控制电路,并详细介绍它的控制器功能。
关键词:并联机构位置反解步进电机结构设计AbstractIn recent years ,increased interest in parallel robots has been observed..Parallel robots possess a number of advantages when compored to serial arms, The most importantone is certainly the possibility to keep the motors fixed into the base ,thus allowing a large reduction of the robot structure’s active mobile mass.keeping the motors on the robot base is a requairment when direct-drive is used ,thus ,parallel robots are well suited to direct-drive actuation.Another advantage of parallel robots is their high rigiditg.these features allow more precise and much faster mani pulations. The delta parallel robot is very famous among them.In this paper,the historyapplication character of the parallel robots are introduced .And I compted the degree of free of the parallel robot,analysis the singular position. The position solution and position inverse solution too. At last, there are several methords of controlling. And I choice one of then which is better suited to this robot. This method will be introduced latter.Key word:parallel delta, position inverse solution , singular position目录摘要.................................................................................... 错误!未定义书签。
并联机器人简介介绍
医疗领域
并联机器人在医疗领域可用于 辅助手术、康复训练以及精确 的医疗设备定位等。
科研与教育
并联机器人还可用于科研机构 的实验研究以及教育领域的教
学和培训。
并联机器人的发展历程
初期探索
20世纪70年代,并联机器人概念开始萌芽,研究人员开 始探索其运动学和动力学特性。
技术突破
80年代至90年代,随着计算机技术和控制理论的发展, 并联机器人的设计、分析和控制技术取得了重要突破。
特点
高刚度、高精度、高负载能力、结构紧凑、动态响应快等。由于并联机器人的 这些特点,它们在许多领域都得到了广泛应用。
并联机器人的应用领域
制造业
并联机器人在制造业中用于高 精度装配、焊接、切割、打磨 等作业,提高生产效率和产品
质量。
航空航天
由于并联机器人具有高刚度和 高精度特点,它们在航空航天 领域被用于飞机和卫星的精密 装配与检测。
控制系统
并联机器人的工作原理基于先进 的控制系统,通过计算机或控制 器对各个关节进行精确的协调和
控制。
运动学逆解
在工作过程中,控制系统根据目 标位置和姿态,通过运动学逆解 算法计算出各个关节的需要到达
的位置。
动力学控制
控制系统根据机器人的动力学模 型,通过控制算法实现机器人平 稳、快速的运动,并确保机器人
并联机器人在汽车制造、重型机械等需要承受较大负载的行业中,能够发挥很好 的应用效果。
紧凑的结构设计
空间占用
并联机器人采用紧凑的结构设计,使得其在空间占用上相对 较小,有利于节省生产现场的空间资源。
灵活布局
紧凑的结构设计使得并联机器人能够灵活地适应各种生产布 局,提高生产线的整体效率和灵活性。
一种直线电机驱动的六棱锥式并联机器人
性能分析
02
通过实验验证了该机器人的运动性能和负载能力,证明了其具
有优良的动态性能和稳定性。
控制策略
03
提出了一种基于直线电机的控制策略,实现了机器人的精确运
动和稳定控制。
研究不足与展望
现有机器人的行程和负载能力 有限,未来可以进一步优化结 构设计以提高机器人的整体性 能。
目前只进行了实验室测试,未 来可以进一步开展实际应用场 景的测试,以验证机器人的实 际应用效果。
03
[3] 王某某, 张某某. 一种直线 电机驱动的六棱锥式并联机器 人及其控制方法. 中国专利, 申 请号: CN202010012345.X
THANKS
感谢观看
率的直线电机。
电机安装方式
考虑电机与机器人本体之间的连 接方式,如直接安装、通过关节
连接等。
驱动系统控制策略
电流控制策略
通过控制电机的电流来控制电机的输出力、速度 和位置。
速度控制策略
通过控制电机的速度来控制机器人的运动轨迹和 速度。
位置控制策略
通过控制电机的位置来控制机器人的运动位置和 姿态。
控制系统硬件和软件设计
随着技术的不断发展,直线电机驱动的并联机器人将会在更多领域得到应用,并且 其性能也将得到进一步提升。
研究内容和方法
本研究旨在设计一种直线电机驱动的六棱锥式并联机器人,对其结构、运动学和动力学进行 分析,并研究其控制策略和运动规划方法。
通过建立机器人的数学模型,分析其运动特性和负载能力,并通过实验验证机器人的性能。
可以进一步研究该机器人的运 动学和动力学模型,以实现更 精确的控制和优化。
07
参考文献
参考文献
01
[1] 张某某, 王某某. 基于直线 电机的六棱锥式并联机器人设 计与分析. 机械工程学报, 2020, 56(12): 1-10.
并联机器人文献综述
并联机器人文献综述1、引言人类千百年来对器械自动化的追求,促使了机器人的产生和发展。
自从1961 年美国推出第一台工业机器人以来,机器人得到了迅速的发展。
广泛应用于工业各部门以及服务、医疗、卫生、娱乐等许多方面,对人类的生活产生了深远的影响。
现代所说的机器人多指工业机器人,大都是由基座、腰部(肩部)、大臂、小臂、腕部和手部构成,大臂小臂以串联形式连接,因而也称为串联机器人,目前关于机器人的研究大部分集中于这一领域。
就在串联机器人蓬勃发展的时候,又出现了一类全新的机器人——并联机器人。
它作为串联式机器人强有力的补充,扩大了整个机器人的应用范围,引起机器人学理论界和工程界的广泛关注,成为机器人研究的主要研究热点之一。
并联机器人作为一种全新的机器人,它具有刚度大、承载能力强、误差小、精度高、动力性能好等一系列优点,并联六自由度机器人在许多行业有着非常好的应用前景,其特殊结构给机器人带来许多其它机器人不具备的优点。
并联机器人是一种闭环机构,导致了其运动学和工作空间分析较为困难,同时也让机器人的精确控制变得特别困难。
机器人运动时每个液压缸上分配的负载是变化的,因此每个液压伺服回路的受力、频率等系统参数也是变化的,常用的控制算法很难实现系统的精确控制。
因此,对并联机器人的理论控制的研究对并联机器人的控制精度和应用推广有着重要的意义。
2、国内研究现状最近几十年,国内外学者对并联机器人的特点、机构学、运动学方面进行了广泛、深入的研究,并且对这方面取得的成果进行了详细的概括和总结。
但是,并联机器人作为一个结构复杂、多变量、多自由度、多参数耦合的非线性系统,其控制策略、控制方法的研究极其复杂。
最初设计控制系统时,大多把并联机器人的各个分支当作完全独立的系统来进行控制,控制策略为传统的PID控制,控制效果很不理想。
随着控制理论的发展,新的控制方法不断涌现,如智能控制"鲁棒控制"自适应控制等,并联机器人的控制也得到了迅速发展。
并联机器人
School of Mechanical Engineering
航天器对接口
School of Mechanical Engineering
05
承载运动
移动重载装置模型
School of Mechanical Engineering
06
海上钻井平台
海上钻井平台模型
School of Mechanical Engineering
四自由度并联机构
Pierrot和Company,1999年提出四自由度 H4并联机构 在1999年,Rolland年提出两种用于物料搬运的 四自由度并联机构:Kanuk和Manta 在2000年,黄真和赵铁石综合处第一种对称的四 自由度4-URU并联机构,可实现三个移动自由 度和一个绕Z轴的转动自由
School of Mechanical Engineering
六自由度并联机构
在1999年,Park与Lee年提出一种机构复杂的双层五自 由度并联机构 ustad提出一种基于两个并联机构的五自由度混合型结构 在2001年,Jin综合出具有三个移动自由度和两个转动自 由度的非对称五自由度并联机构
School of Mechanical Engineering
在原有DELTA机器人的分支运动 链中加装了一个和动平台垂直的 转动副,从而在DEITA机器人原 有的三个移动自由度外,又获得 了一个转动自由度。
H4四自由度并联机构
Kanuk四自由度并联机构
School of Mechanical Engineering
School of Mechanical Engineering
Delta三自由度并联机构
视频播放
School of Mechanical Engineering
并联机器人-文献综述
并联机器人综述引言并联机器人是一类全新的机器人,它具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点,在21世纪将有广阔的发展前景。
本文根据掌握的大量并联机器人文献,对其分类和应用做了简要分析和概括,并对其在运动学、动力学、机构性能分析等方面的主要研究成果、进展以及尚未解决的问题进行了阐述。
第一章并联机构的发展概况1.1并联机构的特点并联机构是一种闭环机构,其动平台或称末端执行器通过至少2个独立的运动链与机架相联接,必备的要素如下:①末端执行器必须具有运动自由度;②这种末端执行器通过几个相互关联的运动链或分支与机架相联接;③每个分支或运动链由惟一的移动副或转动副驱动。
与传统的串联机构相比,并联机构的零部件数目较串联构造平台大幅减少,主要由滚珠丝杠、伸缩杆件、滑块构件、虎克铰、球铰、伺服电机等通用组件组成。
这些通用组件可由专门厂家生产,因而其制造和库存备件成本比相同功能的传统机构低得多,容易组装和模块化。
除了在结构上的优点,并联机构在实际应用中更是有串联机构不可比拟的优势。
其主要优点如下:(1)刚度质量比大。
因采用并联闭环杆系,杆系理论上只承受拉、压载荷,是典型的二力杆,并且多杆受力,使得传动机构具有很高的承载强度。
(2)动态性能优越。
运动部件质量轻,惯性低,可有效改善伺服控制器的动态性能,使动平台获得很高的进给速度与加速度,适于高速数控作业。
(3)运动精度高。
这是与传统串联机构相比而言的,传统串联机构的加工误差是各个关节的误差积累,而并联机构各个关节的误差可以相互抵消、相互弥补,因此,并联机构是未来机床的发展方向。
(4)多功能灵活性强。
可构成形式多样的布局和自由度组合,在动平台上安装刀具进行多坐标铣、磨、钻、特种曲面加工等,也可安装夹具进行复杂的空间装配,适应性强,是柔性化的理想机构。
(5)使用寿命长。
由于受力结构合理,运动部件磨损小,且没有导轨,不存在铁屑或冷却液进入导轨内部而导致其划伤、磨损或锈蚀现象。
微操作并联机器人技术及应用进展综述
微操作并联机器人技术及应用进展综述贠远徐青松李杨民(澳门大学澳门)摘要:微/纳米微操作并联机器人技术是随着微/纳米技术和并联机器人的发展而产生的新的研究方向,其涉及精密机械、机器人、计算机、自动控制、精密测量等多学科领域。
微操作并联机器人具有结构紧凑、运动链短、刚度高和承载能力大等优点。
本文通过对世界范围内的微操作并联机器人的现有研究、工业产品以及实际应用等方面的发展态势进行较为详细的回顾,总结其中存在的问题,提出改进意见,以期对该领域未来的创新设计以及发展研究产生一定的推动作用。
关键词:微操作并联机器人柔性铰链0前言并联机构由于其本身结构的特点,多用在需要高刚度、高精度和高速度且无需很大工作空间的场合中。
随着并联机构技术的深入,并联机构已被广泛的应用于航空航海、加工制造装配、轻工业和医疗器械等领域。
并联机构还被广泛的应用于特种加工、测量作业、焊接、铆接、土方挖掘、煤矿开采、娱乐设施、食品包装、天文望远镜、机器人手臂、误差补偿器以及力传感器等诸多方面。
由于近年来微电子等学科的蓬勃发展,设备微型化、微芯片高度集成化、操作精密化使微/纳米技术成为国内外着重研究的核心方向,精密制造装配等操作精细程度已经远远超出了人类的操作极限,将机器人技术引入微/纳米制造及作业领域己经成为日益迫切的要求。
微操作的研究开始于20世纪30年代,当时为进行细胞研究,出现了一些气动、液压、机械式的微操作器,90年代开始受到国内外科研机构的重视,并于90年代末针对微操作系统的机构、控制和驱动等方面展开了广泛的研究。
微操作技术的研究领域覆盖从医疗技术到环境工程等人类生活的各个方面,是具有极大应用前景且能够对国民经济产生巨大影响的一项关键技术。
微/纳米微操作并联机器人技术是随着微/纳米技术和并联机器人的发展而产生的新的研究方向,涉及精密机械、机器人、计算机、自动控制、精密测量等多学科领域。
微操作并联机器人具有结构紧凑、运动链短、刚度高和承载能力大等优点。
并联机器人综述
并联综述并联综述1.简介1.1 背景并联是指由多个机械臂以并联的方式连接在一起,通过共享载荷、合作操作的一种系统。
其具有高刚性、高精度、高承载能力等特点,被广泛应用于工业自动化领域。
1.2 目的本文旨在介绍并联的基本概念、结构组成、工作原理以及应用领域,以便读者能够全面了解并联的特点和优势。
2.结构组成2.1 机械臂并联的核心部件是机械臂,通常由多个关节组成。
每个关节都装有驱动器和传感器,用于控制机械臂的运动和感知周围环境。
2.2 连杆和连杆驱动系统机械臂之间通过连杆连接,连杆驱动系统用于控制连杆的运动,从而实现机械臂的协同运动。
2.3 控制系统控制系统是并联的大脑,通过控制算法和传感器反馈信号,实现对机械臂的精确控制。
3.工作原理3.1 平台运动并联的机械臂通过连杆和关节传递力和运动,实现平台的运动。
平台的运动可以是平移或旋转,取决于机械臂的结构。
3.2 协作操作通过控制系统的协调控制,多个机械臂能够实现协作操作。
例如,可以通过分担负荷的方式,提高的承载能力;或者通过协同动作,完成复杂的任务。
4.应用领域4.1 制造业并联在制造业中被广泛应用于装配、焊接、喷涂等工序,能够提高生产效率和产品质量。
4.2 医疗领域并联在医疗领域中被用于手术操作,具有高精度、稳定性好的优点,减轻了医生的劳动强度。
4.3 物流领域并联在物流领域中能够完成货物的搬运、分拣等工作,提高了物流效率。
4.4 其他领域并联还可以应用于航空航天、冶金、矿山等领域,发挥更多的作用。
5.附件本文档涉及的附件详见附件部分。
6.法律名词及注释6.1 并联:由多个机械臂以并联的方式连接在一起,通过共享载荷、合作操作的一种系统。
6.2 关节:机械臂上的可转动连接部件,用于实现机械臂的运动。
6.3 传感器:用于感知机械臂周围环境的装置,能够提供位置、力量、力矩等信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并联机器人文献综述1、引言人类千百年来对器械自动化的追求,促使了机器人的产生和发展。
自从 1961 年美国推出第一台工业机器人以来,机器人得到了迅速的发展。
广泛应用于工业各部门以及服务、医疗、卫生、娱乐等许多方面,对人类的生活产生了深远的影响。
现代所说的机器人多指工业机器人,大都是由基座、腰部(肩部)、大臂、小臂、腕部和手部构成,大臂小臂以串联形式连接,因而也称为串联机器人,目前关于机器人的研究大部分集中于这一领域。
就在串联机器人蓬勃发展的时候,又出现了一类全新的机器人——并联机器人。
它作为串联式机器人强有力的补充,扩大了整个机器人的应用范围,引起机器人学理论界和工程界的广泛关注,成为机器人研究的主要研究热点之一。
并联机器人作为一种全新的机器人,它具有刚度大、承载能力强、误差小、精度高、动力性能好等一系列优点,并联六自由度机器人在许多行业有着非常好的应用前景,其特殊结构给机器人带来许多其它机器人不具备的优点。
并联机器人是一种闭环机构,导致了其运动学和工作空间分析较为困难,同时也让机器人的精确控制变得特别困难。
机器人运动时每个液压缸上分配的负载是变化的,因此每个液压伺服回路的受力、频率等系统参数也是变化的,常用的控制算法很难实现系统的精确控制。
因此,对并联机器人的理论控制的研究对并联机器人的控制精度和应用推广有着重要的意义。
2、国内研究现状最近几十年,国内外学者对并联机器人的特点、机构学、运动学方面进行了广泛、深入的研究,并且对这方面取得的成果进行了详细的概括和总结。
但是,并联机器人作为一个结构复杂、多变量、多自由度、多参数耦合的非线性系统,其控制策略、控制方法的研究极其复杂。
最初设计控制系统时,大多把并联机器人的各个分支当作完全独立的系统来进行控制,控制策略为传统的PID控制,控制效果很不理想。
随着控制理论的发展,新的控制方法不断涌现,如智能控制"鲁棒控制"自适应控制等,并联机器人的控制也得到了迅速发展。
并联机器人作为一种结构复杂、多变量、多自由度、多参数耦合的非线性系统,与串联机器人相比,具有刚度大、精度高、动力性能好以及结构紧凑等特点,它广泛应用于工业、医疗、航空航天等方面。
由于并联机器人控制方法的研究极其复杂,早期对其控制方法的研究较少,而且一般都采用常规控制方法,把机器人的各个分支当做完全独立的系统,控制效果很不理想。
随着控制理论的发展,新的控制方法不断涌现,如智能控制、鲁棒控制、自适应控制等,并联机器人的控制也得到了迅速发展。
3、机器人控制理论分类并联机器人在约束环境中工作时,为了避免产生较大的接触力和力矩,损坏工件和自身,通常需要进行力、力矩控制。
为了提高并联机器人对环境的适应能力,拓宽并联机器人应用领域,必须对并联机器人进行力控制方法的研究。
在选择具体的控制方法时,可以参考串联机器人力控制中已成功实现的控制策略,从而提高并联机器人智能化程度,使之在不确定环境中完成要求的控制任务。
3、1并联机器人的鲁棒控制并联机器人的鲁棒控制包括变结构控制、鲁棒自适应控制、反馈线性化的鲁棒控制控制等。
3.1.1并联机器人的变结构控制变结构控制由于具有不需要被控对象的精确数学模型,对外界干扰和参数变化不敏感,而且对系统内部耦合不需要做专门的解耦等特点,比较适合并联机器人控制。
3.1.2并联机器人的鲁棒自适应控制将自适应控制与鲁棒控制两者结合形成鲁棒自适应控制,这样就可以利用自适应控制来抑制参数的不确定性,同时利用鲁棒控制来抑制非参数不确定性。
3.1.3并联机器人基于反馈线性化的鲁棒控制基于反馈线性化的鲁棒控制的主要优点是可以利用到成熟的线性控制理论,当了解系统线性性能特征(如超调量阻尼比等)的时候,该方法是比较有效的。
在不完全了解机器人动力学的情况下,难免导致补偿不彻底、解耦不完全。
当然这种控制方法在并联机器人的控制中也得到了一定的应用。
3.1.4自适应控制方法的应用自适应控制包括线性系统自适应控制和非线性系统自适应控制,其中线性系统自适应控制方法在并联机器人控制中已经得到了应用。
并联机器人是一种存在参数不确定性和外界干扰的系统,而自适应控制方法仅可以解决系统模型参数不确定性问题,不能保证系统在未知干扰下的稳定性和暂态响应,因此自适应控制必须同其它控制方法相结合才能使并联机器人系统获得满意的性能。
3.2并联机器人的智能控制智能控制是自动控制发展的高级阶段,主要用于解决用传统方法难以解决的复杂的非线性和不确定的系统控制问题,智能控制包括单一控制方式和复合控制方式。
3.2.1单一控制方式随着人工智能和智能控制理论的发展,将新的智能控制成果引入机器人的控制,来研究和开发智能机器人已是大势所趋。
目前用于并联机器人的单一智能控制方法有:神经网络控制、模糊控制、专家控制、遗传算法控制、分级递阶控制、免疫控制等,在并联机器人控制中应用较多的神经网络控制和模糊控制。
3.2.2并联机器人的神经网络控制神经网络控制由于具有能学习与适应不确定系统的动态特性,能充分逼近任意复杂的非线性系统以及不需要精确数学模型等特点,在机器人的控制中得到了广泛应用。
针对联机器人控制系统的非线性耦合等特性,也可以设计神经网络控制器,此控制器利用复合正交神经网络来消除并联机器人控制系统非线性耦合的影响,取得了较好的效果。
3.2.3并联机器人的模糊控制模糊控制是近年来发展起来的一种闭环负反馈非线性控制技术,其优点是对具有高度非线性、干扰因素大、时延大、没有明确数学模型对象的调节效果明显优于其他控制器,当工作条件在大范围内变动时,具有动态响应快、超调小和鲁棒性强等特点。
3.3复合控制方式复合控制方式包括智能复合控制和高级混合智能控制。
3.3.1并联机器人的智能复合控制常规PID等控制一般很难取得满意的效果,于是人们将智能控制与传统控制结合起来,形成智能复合控制,如神经网络PID控制、模糊PID控制、模糊滑模控制等。
将模糊控制和控制相结合,根据各自的特点设计了模糊推理自校正PID 控制器用于并联微动机器人的控制,该方法使系统阶跃响应的快速性、稳定性和动态跟踪,性能均优于传统控制器。
3.3.2并联机器人的高级混合智能控制将几种智能控制方法融合在一起即构成高级混合智能控制,如模糊神经网络控制、遗传神经网络控制、模糊遗传算法控制等。
针对柔性机器人的高度非线性和复杂性,设计了一种模糊神经网络控制器,该控制方案使系统性能得到了极大改善。
4并联机器人的机构学理论4.1运动学问题关于并联机器人的运动学问题可分成两个子问题:正向运动学问题和逆向运动学问题。
当给定并联机器人上平台的位姿参数,求解各输入关节的位置参数是并联机器人运动学位置反解问题;当给定并联机器人各输入关节的位置参数求解上平台的位姿参数是并联机器人的运动学正解问题。
对于并联机器人来说,其逆运动学问题非常简单而正向运动学问题却相当复杂,因此正向运动学问题一直是并联机器人运动学研究的难点之一。
从目前的研究成果来看,关于正向运动学的解法主要分为两大类:数值法和解析法。
由于并联机构结构复杂,位置正解的难度较大,其中一种比较有效的方法是采用数值方法求解一组非线性方程,从而求得与输入对应的动平台的位置和姿态。
数值法的优点是它可以应用于任何结构的并联机构,计算方法简单,但此方法计算速度较慢,不能保证获得全部解,并且最终的结果与初值的选取有关。
4.2奇异位形奇异位形是并联机器人机构学研究的又一项重要内容,同串联机器人一样,并联机器人也存在奇异位形,当机构处于奇异位形时其 Jacobian矩阵为奇异阵,行列式值为零,此时机构速度反解不存在,存在某些不可控的自由度。
另外当机构处于奇异位形附近时,关节驱动力将趋于无穷大从而造成并联机器人的损坏,因此在设计和应用并联机器人时应避开奇异位形。
4.3工作空间分析工作空间分析是设计并联机器人操作器的首要环节,机器人的工作空间是机器人操作器的工作区域,它是衡量机器人性能的重要指标,研究并联机构的工作空间是非常重要的。
根据操作器工作时的位姿特点,工作空间又可分为可达工作空间和灵活工作空间。
可达工作空间是指操作器上某一参考点可以达到的所有点的集合,这种工作空间不考虑操作器的姿势。
灵活工作空间是指操作器上某一参考点可以从任何方向到达的点的集合。
并联机器人工作空间的解析求解是非常复杂的问题,它在很大程度上依赖于机构位置解的研究结果。
至今仍没有完善的方法。
5、结语并联机器人作为一种全新的机器人,它具有刚度大、承载能力强、误差小、精度高、动力性能好等一系列优点,其运用涉及到诸多方面,但并联机器人尤其是多自由度并联机器人的理论和其相应的的控制技术还不成熟,所以对此作出研究是必要而且大有意义的。
参考文献【1】赵延治张洁赵铁石弹性铰平面并联三自由度机器人连续刚度映射研究燕山大学学报2008年04期【2】魏轩吴军3-RRR平面并联机构刚度分析机械设计与制造2009年09期【3】邵珠峰唐晓强王立平黄鹏平面柔性3-RRR并联机构自标定方法机械工程学报2009年03期【4】李树军3-RRR平面并联机构的刚度特性分析东北大学学报(自然科学版)2007年01期【5】刘大炜王立平基于工作空间的4RRRR冗余并联机构支链优化清华大学学报(自然科学版)2010年08期【6】钟相强高洪基于螺旋理论的3-RRR并联机构设计与仿真安徽工程大学学报2011年03期【7】刘步才陈劲杰刘子召刘振华3-RRR并联机器人的精度分析与仿真工业控制计算机2011年12期。