航空模型的基本原理与基本知识

合集下载

模型飞机的构造原理与制作工艺

模型飞机的构造原理与制作工艺

模型飞机的构造原理与制作工艺模型飞机是一种可以飞行的小型飞机模型,是模型制作爱好者喜欢制作的一种模型。

模型飞机的构造原理和制作工艺十分重要,这不仅关系到模型飞机的飞行性能,也关系到模型制作的难易程度和成品的质量。

一、构造原理模型飞机的构造原理和真实飞机的构造原理相似,主要包括机翼、机身、尾翼、发动机等部分。

1.机翼机翼是模型飞机的主要承载构件,是模型飞机能否起飞和飞行的关键。

机翼主要由前缘、后缘、主梁和副翼组成。

前缘是机翼的前端,通常呈半圆形或锥形,可以减小阻力;后缘是机翼的后端,通常呈平直或斜面状,可以产生升力;主梁是机翼的中央支架,用于支撑机翼的重量和受力;副翼是机翼表面上的小翼,可以调整机翼的升力和飞行姿态。

2.机身机身是模型飞机的主要支撑结构,通常呈流线型,可以减小阻力。

机身主要由前部、中部和后部组成。

前部通常是放置发动机和电池的位置,中部是机身的主要支撑结构,后部是放置尾翼的位置。

3.尾翼尾翼是模型飞机的控制装置,主要包括垂直尾翼和水平尾翼。

垂直尾翼通常位于机尾顶部,可以控制左右方向;水平尾翼通常位于机尾后方,可以控制上下方向。

4.发动机发动机是模型飞机的动力装置,通常是电动机或燃油发动机。

电动机通常使用电池供电,燃油发动机通常使用汽油或航空燃料供电。

发动机的功率和转速决定了模型飞机的飞行性能。

二、制作工艺制作模型飞机的工艺通常分为设计、制造和装配三个步骤。

1.设计设计是制作模型飞机的第一步,通常需要绘制模型飞机的草图或图纸。

设计时需要考虑模型飞机的大小、重量、气动性能等因素,并根据飞机的用途和个人喜好确定机型、机翼形状、机身长度、尾翼大小等参数。

2.制造制造是制作模型飞机的主要步骤,需要选用合适的材料和工具。

常用的材料有木材、聚酯树脂、碳纤维等,常用的工具有锯子、刨子、钳子、飞机模型切割机等。

制造时需要根据草图或图纸将材料切割成需要的形状和尺寸,然后进行打孔、钻孔、粘合等工艺操作,最终制造出机翼、机身、尾翼等部件。

航模的原理

航模的原理

航模的原理
航模是模拟真实飞行器的飞行原理和机械结构的模型,原理基本上与真实飞行器相同。

下面将介绍航模的原理。

飞行原理:
航模的飞行原理主要是基于三个基本的力学原理:升力、推力和阻力。

升力是航模在飞行时产生的上升力,通过翼面的形状和压力分布来产生。

推力是由发动机产生,将航模向前推动。

阻力是与推力相对抗的力,主要是由空气阻力和重力所产生。

航模的机械结构:
航模的机械结构主要包括机翼、机身、舵面等部分。

机翼是航模产生升力的主要部分,一般采用对称形状的翼面,利用空气流过机翼时产生的气压差来产生升力。

机身是航模的主要结构部分,承受着其他部件的载荷,并提供了航模的稳定性。

舵面是用来改变航模姿态和飞行方向的部件,包括副翼、方向舵、升降舵等。

航模的控制系统:
航模的控制系统主要包括动力系统和操纵系统。

动力系统主要是指发动机,可以是喷气发动机、螺旋桨发动机等各种类型。

操纵系统包括遥控器和舵面等部件,通过遥控器来发送飞行指令,舵面则根据指令的变化来改变航模的姿态和飞行方向。

总结起来,航模的原理主要是通过模拟真实飞行器的飞行原理和机械结构来实现飞行,利用升力、推力和阻力来支持和控制航模的飞行。

机械结构包括机翼、机身和舵面等部件,控制系
统包括动力系统和操纵系统。

通过这些原理和系统的配合,航模能够模拟出真实飞行器的飞行效果。

航模基础知识

航模基础知识

(1)伯努利原理如果两手各拿一张薄纸,使它们之间的距离大约4~6厘米。

然后用嘴向这两张纸中间吹气,你会看到,这两张纸不但没有分开,反而相互靠近了,而且用最吹出的气体速度越大,两张纸就越靠近。

从这个现象可以看出,当两纸中间有空气流过时,压强变小了,纸外压强比纸内大,内外的压强差就把两纸往中间压去。

中间空气流动的速度越快,纸内外的压强差也就越大。

(2)机翼升力原理飞机机翼地翼剖面又叫做翼型,一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。

前端点叫做前缘,后端点叫做后缘,两点之间的连线叫做翼弦。

当气流迎面流过机翼时,由于机翼地插入,被分成上下两股。

通过机翼后,在后缘又重合成一股。

由于机翼上表面拱起,是上方的那股气流的通道变窄。

根据气流的连续性原理和伯努利定理可以得知,机翼上方的压强比机翼下方的压强小,也就是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。

(3)失速原理在机翼迎角较小的范围内,升力随着迎角的加大而增大。

但是,当迎角加大到某个值时,升力就不再增加了。

这时候的迎角叫做临界迎角。

当超过临界迎角后,迎角再加大,阻力增加,升力反而减小。

这现象就叫做失速。

产生失速的原因是:由于迎角的增加,机翼上表面从前缘到最高点压强减小和从最高点到后缘压强增大的情况更加突出。

当超过临界迎角以后,气流在流过机翼的最高点不多远,就从翼表面上分离;了,在翼面后半部分产生很大的涡流,造成阻力增加,升力减小。

(4)人工扰流方案要推迟失速的发生,就要想办法使气流晚些从机翼上分离。

机翼表面如果是层流边界层,气流比较容易分离;如果是絮流边界层,气流比较难分离。

也就是说,为了推迟失速,在机翼表面要造成絮流边界层。

一般来说,雷诺数增大,机翼表面的层流边界层容易变成絮流边界层。

但是,模型飞机的速度很低,翼弦很小,所以雷诺数不可能增大很大。

要推迟模型飞机失速的发生,就必须要想别的办法。

航模的名词解释

航模的名词解释

航模的名词解释航模,全称为航空模型,是模仿真实飞行器的飞翔原理和飞行特性,通过模型制作和遥控操纵来追求飞行的艺术和技术的一项爱好。

航模以巧妙的设计和精湛的制作工艺,让人们能够亲身体验到飞行的乐趣。

本文将从不同方面对航模进行解释和探究。

一、航模的种类航模的种类繁多,按飞行原理可分为固定翼模型和旋翼模型两大类。

固定翼模型包括飞机模型和滑翔机模型,其飞行原理为依靠机翼产生升力来飞行;旋翼模型则包括直升机模型和多轴飞行器模型,其飞行原理为通过旋转翼来产生升力。

此外,还有近年来越来越流行的无人机模型,作为一种新兴的航模类型,它不仅可以操控遥控飞行,还可以进行拍摄和勘测等任务。

二、航模的材质航模的制作材料多样,常见的有木头、塑料、泡沫和复合材料等。

木头是航模制作中的常见材料,常用于制造固定翼模型的机身和机翼。

塑料则常用于制作模型的舱盖、零部件和外壳等。

而泡沫材料则常用于制作滑翔机模型的机身和机翼,由于其质轻且易于成型,使得滑翔机模型在航模爱好者中备受欢迎。

另外,复合材料如碳纤维和玻璃纤维等也逐渐在航模制作中得到应用,其具有轻质、高强度等优点,可以提高模型的飞行性能和耐久性。

三、航模的控制系统航模的控制系统由遥控器和接收机组成。

遥控器是航模爱好者操控模型的重要工具,通过杆位和按钮等控制元素产生信号,传输给接收机。

接收机接收到信号后,将信号转换为控制舵面、电机和其他航模部件的指令,从而实现对模型的操控。

如何熟练地操作和运用遥控器,是航模爱好者需要不断学习和掌握的技能。

四、航模的飞行技巧对于航模爱好者来说,掌握一些基本飞行技巧是非常重要的。

首先是起飞和降落技巧,合理调整油门、升降舵和方向舵等航模参数,保证模型平稳起飞和安全降落。

其次是姿态控制技巧,通过操纵方向舵和升降舵等来控制模型的姿态变化,使其保持稳定的飞行。

还有飞行动作技巧,如滚转、翻滚、倒飞等高难度的飞行动作,需要航模爱好者有一定的技术和经验才能完成。

通过不断的训练和实践,航模爱好者可以逐渐掌握各种飞行技巧,提升自己的飞行水平和技术能力。

(2024年)航模入门基本知识

(2024年)航模入门基本知识

偏航角调整
通过改变方向舵角度,控制飞机左右 转向。
滚转角调整
通过改变副翼角度,控制飞机左右倾 斜。
2024/3/26
15
性能参数评估方法
01
02
03
04
飞行速度
评估航模在不同飞行阶段的速 度表现。
爬升率与下滑率
评估航模爬升和下滑的能力及 效率。
续航时间
评估航模在一次充电或加油后 的持续飞行时间。
载荷能力
13
空气动力学基础知识
01
02
03
伯努利定理
流体流速越快,压力越低 ;流速越慢,压力越高。
2024/3/26
升力产生原因
机翼上表面空气流速快, 下表面空气流速慢,产生 向上的升力。
阻力与升力关系
在飞行中,阻力与升力并 存,需通过设计优化减小 阻力。
14
飞行姿态调整技巧
俯仰角调整
通过改变升降舵角度,控制飞机抬头 或低头。
评估航模携带设备或完成任务 的能力。
2024/3/26
16
飞行安全注意事项
飞行场地选择
选择空旷、无遮挡物的 场地进行飞行。
2024/3/26
气象条件关注
避免在恶劣天气下飞行 ,如风大、雨雪等。
电池安全管理
遥控器操作规范
确保电池充电、放电过 程安全,避免过充、过
放。
17
熟悉遥控器操作,避免 误操作导致飞行事故。
传感器技术应用
传感器技术在航模中的应用主要体现在飞行姿态的稳定和控制精度的提高上。例如,陀螺仪可以检测 航模的角速度信息,通过反馈控制实现飞行姿态的稳定;GPS则可以提供航模的精确位置信息,实现 定点悬停、自动返航等高级飞行功能。

航模的基本原理和基本知识

航模的基本原理和基本知识

航模的基本原理和基本知识航模是一种模拟真实飞行的模型飞机,其基本原理和基本知识包含以下几个方面:一、模型飞行原理:1.大气动力学原理:航模飞行时受到气流的作用,包括升力、阻力、重力和推力等力的相互作用。

模型飞机需要通过翼面产生升力来维持飞行高度,并通过推力提供动力。

2.控制原理:航模飞机通过控制表面(如方向舵、升降舵、副翼等)的运动来改变其姿态和方向。

操纵杆和舵机通过电子信号传输,实现对控制表面的精确控制。

3.飞行稳定原理:航模飞行过程中需要保持一定的稳定性。

包括静稳定和动态稳定两个方面。

定翼航模通过设置翼面的远心点位置来实现静态稳定性,而控制面的设计和操纵杆的操作则保证动态稳定。

二、模型飞机的组成部分及功能:1.机身:模型飞机的主要结构,包括机翼、机身和尾翼。

机身主要用于容纳电子设备和动力系统。

2.机翼:模型飞机的升力产生部分,具有翼型、翼展和翼面积等特征,通过改变翼面的攻角来产生升力。

3.尾翼:包括升降舵、方向舵和副翼。

升降舵用于控制模型飞机的上升和下降,方向舵用于控制模型飞机的左右转向,副翼用于控制模型飞机的横滚运动。

5.舵机:用于控制模型飞机的控制表面,将电子信号转换为机械运动。

6.遥控系统:遥控器和接收机组成的遥控系统用于控制模型飞机的姿态和方向。

三、航模飞行的基本知识:1.飞行理论:了解飞行原理、飞行姿态和飞行控制等相关理论知识,包括升力、阻力、重力、推力、迎角、侧滑等概念。

2.翼型知识:了解不同翼型的特征和表现,掌握常见的对称翼型、半对称翼型和弯曲翼型。

3.翼展和翼面积:翼展影响飞机的横向稳定性和机动性能,翼面积影响飞机的升力产生能力。

4.飞行控制知识:包括副翼、升降舵和方向舵的操作原理、机动动作和配平技巧等。

5.飞行安全知识:了解飞行场地的选择、飞行规则以及飞行器的安全性维护等方面的知识。

6.电子设备知识:了解遥控器、接收机、舵机、电机和电池等电子设备的基本原理和使用方法。

总结:航模的基本原理是依靠大气动力学原理和控制原理来模拟真实的飞行。

航模基础知识

航模基础知识
陆性能有很大影响。
航模的材料与工艺
材料
航模的材料主要包括轻木、碳纤维、玻璃钢等轻质、高强度 材料。这些材料可以有效地减轻航模的重量,提高飞行性能 。
工艺
航模的制造工艺主要包括切割、打磨、粘接、热压等。这些 工艺的使用需要根据材料的不同特性进行选择,以保证航模 的质量和可靠性。
航模的动力系统
发动机
尾翼
尾翼是航模用来保持稳 定性的部件,包括水平 尾翼和垂直尾翼。尾翼 的位置、尺寸和形状对 航模的飞行性能有很大
影响。
机身
机身是航模的主体结构 ,用于安装发动机、接 收器、电池等部件。机 身的材料和结构对航模 的整体性能有很大影响

起落架
起落架是航模在地面停 放和起飞着陆时使用的 支撑机构,通常由轻质 材料制成,如铝管或碳 纤维。起落架的设计和 布局对航模的起飞和着
03
CATALOGUE
航模的组装与调试
航模的组装步骤
准备工作
确保工具齐全,阅读说明书, 了解航模的结构和原理。
机体组装
按照说明书指示,组装机身、 机翼、尾翼等部分,确保连接 牢固。
电子设备安装
安装电池、接收机、舵机等电 子设备,确保正确连接。
调试与检查
检查航模各部分工作是否正常 ,进行必要的调试,确保飞行
05
CATALOGUE
航模的进阶知识
航模的性能优化
动力系统优化
根据飞行需求选择合适的发动机和螺旋桨, 调整发动机参数以获得最佳性能。
空气动力学优化
通过改进机体设计、翼型选择和翼面布局, 减少空气阻力,提高飞行效率。
重量与平衡优化
合理分配机体各部分重量,确保航模在空中 保持稳定。
操控性能优化

航模基础知识

航模基础知识

航空模型基础知识教程(一)应大家的要求顶起来求精一、什么叫航空模型在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。

其技术要求是:最大飞行重量同燃料在内为五千克;最大升力面积一百五十平方分米;最大的翼载荷100克/平方分米;活塞式发动机最大工作容积10亳升。

1、什么叫飞机模型一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。

2、什么叫模型飞机一般称能在空中飞行的模型为模型飞机,叫航空模型。

二、模型飞机的组成模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。

1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。

2、尾翼——包括水平尾翼和垂直尾翼两部分。

水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。

水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。

3、机身——将模型的各部分联结成一个整体的主干部分叫机身。

同时机身内可以装载必要的控制机件,设备和燃料等。

4、起落架——供模型飞机起飞、着陆和停放的装置。

前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。

5、发动机——它是模型飞机产生飞行动力的装置。

模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。

三、航空模型技术常用术语1、翼展——机翼(尾翼)左右翼尖间的直线距离。

(穿过机身部分也计算在内)。

2、机身全长——模型飞机最前端到最末端的直线距离。

3、重心——模型飞机各部分重力的合力作用点称为重心。

4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。

5、翼型——机翼或尾翼的横剖面形状。

6、前缘——翼型的最前端。

7、后缘——翼型的最后端。

8、翼弦——前后缘之间的连线。

9、展弦比——翼展与平均翼弦长度的比值。

航模的基本原理和基本知识

航模的基本原理和基本知识

一、航空模型的基本原理与基本知识1)航空模型空气动力学原理1、力的平衡飞行中的飞机要求手里平衡,才能平稳的飞行。

如果手里不平衡,依牛顿第二定律就会产生加速度轴力不平衡则会在合力的方向产生加速度。

飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞。

升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称x 与y 方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。

图1-1弯矩不平衡则会产生旋转加速度,在飞机来说,X轴弯矩不平衡飞机会滚转,Y轴弯矩不平衡飞机会偏航、Z轴弯矩不平衡飞机会俯仰﹝如图1-2﹞。

图1-22、伯努利定律伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力越小,速度越小,静压力越大,流体一般是指空气或水,在这里当然是指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢,静压力较大,两边互相较力﹝如图1-3﹞,于是机翼就被往上推去,然后飞机就飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。

图1-3图1-4图1-53、翼型的种类1全对称翼:上下弧线均凸且对称。

2半对称翼:上下弧线均凸但不对称。

3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。

航空模型入门知识

航空模型入门知识

航空模型活动
如航空模型展览、飞行表演等,让公 众近距离感受航空模型的魅力,提高 社会认知度。
技术改进与创新
材料应用
随着科技的发展,新型材料 如碳纤维、玻璃纤维等在航 空模型领域得到广泛应用, 提高模型强度和轻量化。
动力系统升级
改进发动机、推进器等动力 系统,提高航空模型的飞行 性能和效率,如使用电动发 动机、油动发动机等。
正确组装与调试
起飞前应检查模型的各个部件 是否正确组装,并进行必要的 调试。
正确握持与投掷
使用正确的握持姿势,顺着风 向将模型平稳投掷出去。
着陆技巧
在模型接近地面时,适当调整 油门和方向,确保模型平稳着
陆。
飞行控制技巧
01
02
03
04
平衡控制
保持模型在空中飞行时的平衡 ,避免翻滚或失速。
油门控制
根据飞行需要,适当调整油门 大小,以控制飞行速度和高度
了解模型发动机所需的燃料以及点 火系统的原理。
螺旋桨与传动系统
熟悉螺旋桨的设计与选择,以及它 们如何与发动机配合工作。
控制系统
遥控器与接收器
01
了解如何使用遥控器控制航空模型,以及接收器的工作原理。
舵机与控制系统
02
了解舵机的工作原理以及如何通过控制系统调整模型的飞行姿态。源自编程与自动控制系统03
了解如何使用编程和自动控制系统实现对模型的更高级控制。
03 航空模型制作流程
设计阶段
确定设计目标
根据飞行要求和预算,确定模型 飞机的类型、尺寸、性能等目标。
绘制设计图
使用绘图软件或手绘方式,绘制 模型飞机的平面图和立体图,标
注尺寸和细节。
评估与优化
根据设计图的评估结果,对设计 进行优化,提高模型飞机的性能

航空模型入门知识PPT课件

航空模型入门知识PPT课件

全球SPOT*ON 50
能完成一系列的标准特技飞行动作。特点是外形流畅,飞行速度很快。
PEAK50
1.2.3 3D特技机
3D机能完成吊机等花式特技动作,与F3A不同的是,花式特技一般是在较低的速度下完成的。从外观上看,3D机一般有较大的舵面,飞机的减轻做到了极致。
蝴蝶40级3D机
eagle-3D 40级3D机
ATM 涡轮喷气发动机
CRRCPRO GF26i 汽油机
三叶五缸汽油机
2.1.2 油箱
不同级别的发动机对应不同级别的油箱,如15级发动机一般与120cc油箱配套。一箱油应该能让发动机工作至少15分钟。 油箱共有三根油管引出来。一根是输油管,一头接重锤,另一头接发动机的化油器;一根是增压管,一头接发动机消音器上的增压嘴;还有一根是加油管。
联合模型-Glider 2003
1.3.1 主要制作材料
常见的遥控飞机的主要制作材料是轻木和桐木。轻木非常轻,但价格昂贵;桐木便宜,但是不易加工,且比重较大。目前越来越多的飞机采用轻木。 高档飞机(以像真机和F3A为多)和大型飞机(如喷气式飞机)多采用玻璃钢。
轻木
1.3.2 粘合剂
白乳胶:木制飞机多用白乳胶。白乳胶干后重量很轻,且强度大,是粘接木材的最理想材料。缺点是干结时间太长且不防水。 树脂胶:一般用3~4份环氧树脂加1份环氧树脂固化剂搅拌均匀即可使用。2~8小时干结。 302(AB胶):树脂胶的一种。A胶和B胶各一份混合即可使用。优点是凝固时间短。 502:瞬间凝固,但是比较脆。
1.1.1 机身
机身是动力系统和遥控设备的搭载平台,亦是将机翼、水平尾翼和垂直尾翼连成一体的部分。 A.机身一般由几个舱组成,以层板制成的隔框分开。 B.机身里装有动力系统和遥控设备。以油动飞机为例,经典的安装顺序,从机头到机尾,依次是发动机、油箱、接收机和接收机电池、舵机。

航模各部件的介绍和原理

航模各部件的介绍和原理

航模各部件的介绍和原理
航模是一种模拟飞机空中飞行的模型玩具,常见的航模包括直升机、飞机、无人机等。

以下是航模各部件的介绍和原理:
1. 机身:航模的主要框架,用于支撑其他部件,保证飞机的结构稳定性。

机身通常由材料如木材、玻璃纤维、碳纤维等制成。

2. 发动机:提供推力,使航模运动。

发动机包括燃气发动机和电机两种类型。

燃气发动机利用喷射燃油产生噪声,但推力强大;电机由电池供电,静音,但推力相对较小。

3. 转子和螺旋桨:直升机和飞机上的主要推进器。

转子通过旋转产生提升飞机的推力,而螺旋桨则通过转动产生向前推进的力。

4. 遥控器:指挥航模动作的控制器。

遥控器上有杆,旋钮和开关等部件,飞手通过操纵遥控器调整航模的方向、高度和速度等。

5. 电池:为电动航模提供能源。

所选电池必须符合性能和重量方面的要求。

6. 控制芯片:控制电机的转速、方向和所需的推力。

通过遥控器操作,将信号传输到控制芯片,控制芯片再将信息传递到电机,调节其输出功率。

7. 陀螺仪:是稳定飞机平衡的设备。

当航模的飞行产生偏差时,陀螺仪会自动调整飞机的姿态,使其保持平衡。

8. 接收器:接收遥控器发出的信号,将信号转换为指令,控制航模的动作。

总之,航模的各部件都起着非常重要的作用,这些部件的工作协同是使航模可以稳定地飞行的关键。

航空模型ppt课件

航空模型ppt课件

重心与平衡
航空模型的飞行稳定性与 重心的位置密切相关,合 理配置重心是关键。
推进方式
模型飞机可采用不同的推 进方式,如螺旋桨、喷气 等,以满足不同的飞行需 求。
航空模型的部件组成
机翼
机身
尾翼
起落架
产生升力,维持飞行平 衡。
航空模型的主体部分, 用于安装其他部件。
保持飞行稳定,防止翻 滚。
用于起飞、降落和地面 滑行。
国际赛事
世界自由飞行航空模型锦标赛、国际喷气模 型锦标赛等。
赛事特点
注重技术交流、创新实践和人才培养,为航 空模型爱好者提供展示和竞技的平台。
航空模型文化与交流
文化传承
航空模型作为科技与艺术的结合体, 承载着传承和发展航空文化的使命。
技术交流
通过国际航空模型赛事和技术论坛, 促进各国航空模型爱好者的技术交流 与合作。
电子设备故障
如接收机、遥控器等出现故障,可能是由于电子元件损坏 或信号干扰导致。需要检查电子设备和信号接收情况,必 要时进行维修或更换部件。
05
航空模型的赛事与文化
国内外航空模型赛事概览
国内赛事
中国航空模型公开赛、中国国际航空模型节 等。
赛事级别
从地区级到世界级,涵盖不同规模和水平的 航空模型赛事。
筋斗特技
筋斗特技是一种常见的特技表演动作,通过控制副翼和升降舵来实现。在完成筋斗特技时,要掌握好 飞行高度和角度,避免因高度过低或角度过大导致失控或撞击地面。同时,要注意保持稳定的飞行速 度和姿态,以确保特技表演的流畅和优美。
04
航空模型的安全操作与维 护
安全飞行注意事项
选择合适的飞行场地
确保飞行场地开阔、无遮挡物 ,远离人群和易燃物品,避免 在强风、雨雪等恶劣天气下飞

航模的基本原理和基本知识

航模的基本原理和基本知识

航模的基本原理和基本知识This model paper was revised by the Standardization Office on December 10, 2020一、航空模型的基本原理与基本知识1)航空模型空气动力学原理1、力的平衡飞行中的飞机要求手里平衡,才能平稳的飞行。

如果手里不平衡,依牛顿第二定律就会产生加速度轴力不平衡则会在合力的方向产生加速度。

飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞。

升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称 x 及 y 方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。

图1-1弯矩不平衡则会产生旋转加速度,在飞机来说,X轴弯矩不平衡飞机会滚转,Y轴弯矩不平衡飞机会偏航、Z轴弯矩不平衡飞机会俯仰﹝如图1-2﹞。

图1-22、伯努利定律伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力越小,速度越小,静压力越大,流体一般是指空气或水,在这里当然是指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢,静压力较大,两边互相较力﹝如图1-3﹞,于是机翼就被往上推去,然后飞机就飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。

图1-3图1-4图1-53、翼型的种类1全对称翼:上下弧线均凸且对称。

航模基础知识要点

航模基础知识要点

航模基础知识1、什么叫航空模型在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的带有或不带有发动机的,不能载人的航空器,就叫航空模型。

2、什么叫飞机模型一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。

3、什么叫模型飞机一般称能在空中飞行的模型为模型飞机,叫航空模型。

4、模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。

5、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧安定。

6、尾翼——包括水平尾翼和垂直尾翼两部分。

水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。

水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。

7、机身——将模型的各部分联结成一个整体的主干部分叫机身。

同时机身内可以装载必要的控制机件,设备和燃料等。

8、起落架——供模型飞机起飞、着陆和停放的装置。

前部一个起落架,后面两个起落架叫前三点式;前部两个起落架,后面一个起落架叫后三点式。

9、发动机——它是模型飞机产生飞行动力的装置。

模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。

10、翼展——机翼(尾翼)左右翼尖间的直线距离。

(穿过机身部分也计算在内)。

11、机身全长——模型飞机最前端到最末端的直线距离。

12、重心——模型飞机各部分重力的合力作用点称为重心。

13、翼型——机翼或尾翼的横剖面形状。

14、前缘——翼型的最前端。

15、后缘——翼型的最后端。

16、翼弦——前后缘之间的连线。

17、展弦比——翼展与翼弦长度的比值。

展衔比大说明机翼狭长。

18、削尖比——指梯形机翼翼尖翼弦长与翼根翼弦长的比值。

19、上反角——机翼前缘与模型飞机横轴之间的夹角。

20、后掠角——机翼前缘与垂直于机身中心线的直线之间的夹角。

21、机翼安装角——机翼翼弦与机身度量用的基准线的夹角。

航模知识点总结

航模知识点总结

航模知识点总结航模(航空模型)是模拟飞行器的模型,通常是按比例缩小的版本。

航模有各种各样的类型,包括飞机、直升机、滑翔机、无人机等。

航模不仅是一种娱乐活动,也是一项技术活动,涉及到模型设计、制造、操控等多个领域。

以下是一些关于航模的基本知识点总结。

一、航模的种类1. 飞机模型:飞机模型是模拟真实飞机的模型,通常由轻质材料制作而成,有些飞机模型还可以进行遥控飞行。

2. 直升机模型:直升机模型是模拟真实直升机的模型,通常由轻质材料制作而成,有些直升机模型还可以进行遥控飞行。

3. 滑翔机模型:滑翔机模型是模拟真实滑翔机的模型,通常由轻质材料制作而成,可以通过自由落体或者助推进行飞行。

4. 无人机模型:无人机模型是模拟真实无人机的模型,通常由轻质材料和无人机电子设备制作而成,可以进行遥控飞行。

二、航模的制造材料1. 轻质材料:航模通常都是由轻质材料制作而成,包括泡沫板、塑料、玻璃钢、碳纤维等。

这些材料既能降低模型的重量,又能保证模型的强度和耐用度。

2. 无人机电子设备:无人机模型通常需要配备各种无人机电子设备,包括飞控系统、遥控器、电调、电机、螺旋桨等。

3. 涂料和胶水:航模制作过程中需要用到各种涂料和胶水,用来修补模型、涂装或者粘合部件。

三、航模的基本原理1. 动力系统:航模的动力系统通常由电动机或者内燃机提供动力,通过螺旋桨将动力转化为推力,推动模型进行飞行。

2. 气动设计:航模的气动设计是模型飞行性能的重要因素,包括机翼形状、机身设计、拉力设计等,直接影响模型的飞行稳定性和灵活性。

3. 遥控系统:部分航模可以进行遥控飞行,需要配备遥控器和对应的接收机,通过遥控器操纵模型的姿态和飞行状态。

四、航模的操控技巧1. 起飞:对于飞机模型和直升机模型,起飞是模型飞行的第一步,需要在合适的场地进行起飞操作,确保安全。

2. 飞行:在模型起飞后,需要熟练掌握操控技巧,包括升降、转弯、滚转、翻滚等飞行动作,保持模型飞行的平稳和稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、航空模型的基本原理与基本知识1)航空模型空气动力学原理1、力的平衡飞行中的飞机要求手里平衡,才能平稳的飞行。

如果手里不平衡,依牛顿第二定律就会产生加速度轴力不平衡则会在合力的方向产生加速度。

飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞。

升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称 x 及 y 方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。

弯矩不平衡则会产生旋转加速度,在飞机来说,X轴弯矩不平衡飞机会滚转,Y轴弯矩不平衡飞机会偏航、Z轴弯矩不平衡飞机会俯仰﹝如图1-2﹞。

2、伯努利定律伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力越小,速度越小,静压力越大,流体一般是指空气或水,在这里当然是指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢,静压力较大,两边互相较力﹝如图1-3﹞,于是机翼就被往上推去,然后飞机就飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。

3、翼型的种类1全对称翼:上下弧线均凸且对称。

2半对称翼:上下弧线均凸但不对称。

3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。

4S型翼:中弧线是一个平躺的S型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。

5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所有的鸟类除蜂鸟外都是这种翼型。

基本航模的翼型选测规律:1薄的翼型阻力小,但不适合高攻角飞行,适合高速机。

2厚的翼型阻力大,但不易失速。

3练习机用克拉克Y翼或半对称翼,因浮力大。

4特技机用全对称翼,因正飞或倒飞差异不大。

5斜坡滑翔机用薄一点翼型以增大滑空比。

63D特技机用前缘特别大的翼型以便高攻角飞行。

4、飞行中的阻力一架飞行中飞机阻力可分成四大类:1磨擦阻力:空气分子与飞机磨擦产生的阻力,这是最容易理解的阻力但不很重要,只占总阻力的一小部分,当然为减少磨擦阻力还是尽量把飞机磨光。

2形状阻力:物体前后压力差引起的阻力,平常汽车广告所说的风阻系数就是指形状阻力系数﹝如图3-3﹞,飞机做得越流线形,形状阻力就越小,尖锥状的物体形状阻力不见得最小,反而是有一点钝头的物体阻力小,读者如果有机会看到油轮船头水底下那部分,你会看到一个大头,高级滑翔机大部分也有一个大头,除了提供载人的空间外也是为了减少形状阻力。

3诱导阻力:机翼的翼端部因上下压力差,空气会从压力大往压力小的方向移动,部份空气不会规规矩矩往后移动,而从旁边往上翻,因而在两端产生涡流﹝如图3-4﹞,因而产生阻力,这现象在飞行表演时,飞机翼端如有喷烟时可看得非常清楚,你可以注意涡流旋转的方向﹝如图3-5﹞,﹝图3-6﹞是NASA的照片,可看见壮观的涡流,因为这种涡流延伸至水平尾翼时,从水平尾翼的观点气流是从上往下吹,因此会减小水平尾翼的攻角,也就是说水平尾翼的攻角实际会比较小,﹝图3-6﹞只不过是一架小飞机,如像类似747这种大家伙起飞降落后,小飞机要隔一阵子才能起降,否则飞入这种涡流,后果不堪设想,这种阻力是因为涡流产生,所以也称涡流阻力。

圖3-54寄生阻力:所有控制面的缝隙﹝如主翼后缘与副翼间﹞、主翼及尾翼与机身接合处、机身开孔处、机轮及轮架、拉杆等除本身的原有的阻力以外,另外衍生出来的阻力﹝如图3-7,3-8﹞。

一架飞机的总阻力就是以上四种阻力的总合,但飞机的阻力互相影响的,以上的分类只是让讨论方便而已,另外诱导阻力不只出现在翼端,其它舵面都会产生,只是翼端比较严重,磨擦阻力、形状阻力、寄生阻力与速度的平方成正比,速度越快阻力越大,诱导阻力则与速度的平方成反比﹝如图3-9﹞,所以要减少阻力的话,无动力飞机重点在减少诱导阻力,高速飞机重点在减少形状阻力与寄生阻力。

5、机翼负载翼面负载就是主翼每单位面积所分担的重量,这是评估一架飞机性能很重要的指针,模型飞机采用的单位是每平方公寸多少公克﹝g/dm2﹞,实机的的单位则是每平方公尺多少牛顿﹝N/m2﹞,翼面负载越大意思就是相同翼面积要负担更大的重量,如果买飞机套件的话大部分翼面负载都标示在设计图上,计算翼面负载很简单,把飞机﹝全配重量不加油﹞秤重以公克计,再把翼面积计算出来以平方公寸计﹝一般为简化计算,与机身结合部分仍算在内﹞两个相除就得出翼面负载,例如一架30级练习机重1700公克,主翼面积30平方公寸,则翼面负载为56.7 g/dm2。

练习机一般在50~70左右,特技机约在60~90,热气流滑翔机30~50,像真机110以内还可忍受,牵引滑详机约12~15左右,6、展弦比从雷诺数的观点机翼越宽、速度越快越好,但我们不要忘了阻力,短而宽的机翼诱导阻力会消耗你大部分的马力。

飞机要有适合的展弦比,展弦比A就是翼展L 除以平均翼弦b(A=L/b),L与b单位都是cm,如果不是矩形翼的话我们把右边上下乘以L,得A=L2 / S,S是主翼面积,单位是cm²,这样不用求平均翼弦,一般适合的展弦比在5~7左右,超过8以上要特别注意机翼的结构,药加强记忆强度,否则,一阵风就断了。

滑翔机实机的展弦比有些高达30以上。

如前所述磨擦阻力、形状阻力与速度的平方成正比,速度越快阻力越大,诱导阻力则与速度的平方成反比,所以高速飞机比较不考虑诱导阻力,所以展弦比低,滑翔机速度慢,采高展弦比以降低诱导阻力,最典型的例子就是U2﹝如图3-15﹞跟F104﹝如图3-16﹞,U2为高空侦察机,为长时间翱翔,典型出一次任务约10~12小时,U2展弦比为10.5,F104为高速拦截机,速度达2倍音速以上,展弦比4.5,自然界也是如此,信天翁为长时间遨翔,翅膀展弦比高,隼为掠食性动物,为求高速、灵活,所以展弦比低。

滑翔机没有动力,采取高展弦比以降低阻力是唯一的方法,展弦比高的机翼一般翼弦都比较窄,雷诺数小,所以要仔细选择翼型,避免过早失速,另外高展弦比代表滚转的转动惯量大,所以也不要指望做出滚转的特技了。

7、翼面翼平面即是主翼平面投影的形状,当我们已假定飞机重量、翼面负载后,主翼面积即可算出,展弦比亦已大致决定,这时就要确定主翼平面形状,考虑的因素有1失速的特性、2应力分布、3制作难易度、4美观,模型飞机的速度离音速还差一大截,不须考虑空气压缩性,也没有前后座视野的问题,所以后掠翼不需考虑,当然为美观或像真机除外,常见的平面形状及特性如下:1矩形翼:﹝如图4-1﹞从左至右翼弦都一样宽,练习机常用的形状,因为制作简单,失速的特性是从中间开始失速,失速后容易补救。

2和缓的锥形翼:﹝如图4-2﹞从翼根往翼端渐缩,制作难易度中等,合理的翼面应力分布,缓和的翼端失速,特技机最常见的意形式。

3尖锐的锥形翼:﹝如图4-3﹞同样从翼往翼端渐缩,但翼端极窄,恶劣的的翼端失速。

4椭圆翼:﹝如图4-4﹞制作难度高,最有效率的翼面应力分布,翼端至翼根同时失速,这也是天上最优美的翼面形式。

机翼先失速的位置跟局部升力系数与平均升力系数的比值有关,比值大的地方先失速,另因升力分布于所有翼面,机翼的剪应力及弯矩应力会从翼端往翼根处累积,所以飞机结构失败在空中折翼都在靠机身处,矩形翼结构应力分不就很不经济,靠翼端处结构过强,增加无谓的重量,锥形翼、椭圆翼就比较经济,此外从图面也可看出矩形翼的诱导阻力比较大,即使翼端的面积大效率也不好。

尖锐的锥形翼翼端极窄,雷诺数小,且因为翼弦短,同样精度下制作时攻角误差大,翼端很容易失速,翼端失速后就从先失速的一端先往下掉,而且不见得救得回来,所以做Ju87像真机那类飞机要特别注意。

主翼平面形状不需要一成不变的为锥形翼或椭圆翼,可以依需求、制作难易度及美观采取各种组合。

2)遥控系统随着我们身边的电子产品的不断更新我们身边的电子讯号干扰日趋严重对航模业来影响越来越严重之前的遥控器和遥控模型之间是采用100MHz以下的频度来通讯的现在的电子讯号对低频段的干扰是很严重的而且100MHz的通讯距离有限。

数字无线通讯技术的不断发展越来越多的航模厂商的把目光投向ISM频段尤其是全球免费频段2.4G的数字无线传输模块上。

而传统的模拟低频无线航模远控系统日益受到信号干扰严重、通讯间隔有限、同场信道少等缺点的制约。

飞机模型的无线电遥控,是指利用无线电波传送操作者对模型动作的指令模型根据指令做出各种飞行姿态。

用无线电技术对模型进行飞行控制的史,可以追溯到第二次世界大战以前。

不过,由于当时民间。

用无线电制航模面临十分复杂的法律手续,而且当时的遥控设备既笨重又极不可,因此,遥控航模未能推广开来到了本世纪 60年代初期,随着电子技术发展,各种应用于航模控制的无线电设备也开始普及,时至今日,无线遥控设备已广泛地用于各种航空、航海和陆上模型。

以四通道比例遥控设备系统为例,它由发射机、接收机、舵机、电源等部分组成。

图l所示的,是4通道比例遥控设备发射机的外型和各部分名称。

在发射机的面板上,有两根分别控制l、2通道和3、4通道动作指令的操纵秆,以及与操纵杆动作相对应的4个微调装置。

在发射机底部,设置有4个舵机换向开关,分别用于变换舵机摇臂的偏转方向。

图2所示的,是接收机和舵机以及接收机电源装置,其中接收机用来接收从发射机传来的指令信号,经处理后,指挥舵机作出与发射机指令相对应的动作。

电池组给接收机和舵机提供工作能源,它由4节普通5号干电池串联而成。

如果是电动航模则将其中一个舵机换为电子调速器(俗称电调)。

电子调速器连接电源和电机,而且接收机也直接由电子调速器连接的电源供电。

所谓比例控制,简单说来,就是当我们把发射机上的操纵杆由中立位置向某一方向偏移一角度时,与该动作相对应的舵机摇臂也同时偏移相应的角度,舵机摇臂偏转角度与发射机操纵杆偏移角度成比例.图3显示了发射机执行舵机与飞机模型舵面的动作关系。

当发射机操纵杆(或对应的微调杆)往左、右偏转或回复中立时,执行舵机的摇臂也随之相应地往左、右偏转或回复中立,带动模型的舵面往左,右偏转或回复中立,操纵杆(或微调杆)、舵机摇臂、模型舵面偏转的角度大小成比例。

相关文档
最新文档