压裂方法分类及选择条件

合集下载

煤层气压裂和排采技术

煤层气压裂和排采技术

一.煤层压裂地质特征
基质渗透率普遍低,储层物性变化大
四 个 区 块 的
渗 透 率 分 布
受 所 取 煤 样 所 限 ,
室 内 实 验 结 果 可 能
不 完 全 具 有 代 表 性
汇 报 提 纲
一.煤层压裂地质特征
二.煤层压裂裂缝规律
三.煤层气采出机制
四.煤层压裂技术革命的发展方向
五.煤层压裂技术革命的实现途径
64
二.煤层压裂裂缝规律
裂缝规模:用煤层压裂三维模拟软件计算支撑裂缝(有效裂 缝),并用现场监测的动态缝长进行校核
统计模拟结果表明:水力 裂缝在长轴方向的支撑裂 缝半长在45-81m之间, 平均为59.2 m,占动态 裂缝半长的49.7%;估算 在短轴方向的支撑裂缝半 长为40m左右
为便于后面研究和计算, 设定裂缝规模:长轴、短 轴方向的支撑裂缝半长分 别为60、40m,长轴与 短轴之比为3:2
150
150
K=0.01mD
120
K=0.01mD K=0.1mD
120
K=0.1mD K=1mD K=10mD
流经的距离(米)
K=1mD K=10mD
流经的距离(米)
90
90
60
60
30
30
0 0 5 流动时间(年) 10 15
0 0 5 流动时间(年) 10 15
不同渗透率储层在不同压差下流体流经的距离与流动时间的关系
压降面积与支撑裂缝面积随生产时间的变化
面积 (m2) 支撑裂缝面积 5年 不压裂 0 压裂 7540 10年 不压裂 0 压裂 7540 15年 不压裂 0 压裂 7540
压降面积
8044
31480

第1章-水力压裂

第1章-水力压裂

作用: Ø传递压力; Ø起裂和延伸裂缝; Ø携砂。
前置液
起缝、延伸裂缝、冷却


携砂液
延伸裂缝、悬砂


顶替液
顶替砂浆
对压裂液的要求: Ø与地层配伍; Ø有效悬浮和输送支撑剂; Ø滤失少; Ø摩阻低; Ø低残渣; Ø易返排; Ø热稳定性; Ø抗剪切稳定性。
一、压裂液类型
各种压裂液所占的比例
增能气 体, 25%
第一章 水力压裂
内容提要
Ø水力压裂造缝机理 Ø压裂液 Ø支撑剂 Ø水力压裂延伸模拟 Ø支撑剂输送 Ø水力压裂评价与设计 Ø压裂工艺技术
压裂:
hydraulic
分类: fracturing
水力压裂:利用地面高压泵组,以超过地层吸收能力 的排量将高粘压裂泵入井内而在井底产生高压,当 压力克服井壁附近地应力并达到岩石抗张强度时, 就在地层产生裂缝。继续泵注带有支撑剂的压裂液, 使裂缝继续延伸并在其中充填支撑剂。停泵后,由 于支撑剂对裂缝的支撑作用,在地层中形成足够长 的、有一定导流能力的填砂裂缝,从而实现油气井 增产和水井增注。
' w
0.5m A
修正:
cw
cw'
p f pa
1 2
用途:静态滤失系数 用于筛选评价压裂液
用途:动态滤 失系数为压裂 设计提供参数
2.受压裂液粘度控制的滤失系数
假设条件: Ø侵入符合达西定律; Ø活塞驱动
压裂液的实际滤失速度:
va
dL0.058Kp
dt
f L
积分求L,回代达西定律
12
v0.05K 8 f Lp0.17K ftp
牛顿型:
圆管稠度系数:
Kp

采油工程第5章水力压裂技术

采油工程第5章水力压裂技术

(1) 前置液:它的作用是破裂地层并造成一定几何尺寸的 裂缝以备后面的携砂液进入。在温度较高的地层里,它还可起 一定的降温作用。有时为了提高前置液的工作效率,在前置液 中还加入一定量的细砂以堵塞地层中的微隙,减少液体的滤失 (2) 携砂液:它起到将支撑剂带入裂缝中并将支撑剂填在裂 缝内预定位置上的作用。在压裂液的总量中,这部分比例很大 携砂液和其他压裂液一样,有造缝及冷却地层的作用。携砂液 由于需要携带密度很高的支撑剂,所以必须使用交联的压裂液 (如冻胶等)。 (3) 顶替液:中间顶替液用来将携砂液送到预定位置,并有 预防砂卡的作用;最后顶替液是注完携砂液后将井筒中全部携 砂液顶替到裂缝中,以提高携砂液效率和防止井筒沉砂。
乳化压裂液适用于水敏、低压地层。 其他应用的压裂液还有聚合物乳状液、酸基压裂液和醇基 压裂液等,它们都有各自的适用条件和特点,但在矿场上应用 很少。
5.3 支撑剂
支撑剂的作用在于支撑、分隔开裂缝的两个壁面,使压裂施工结束后 裂缝能够得到有效支撑,从而消除地层中大部分径向流,使井液以线性流 方式进入裂缝。水力压裂的目标是在油气层内形成足够长度的高导流能力 填砂裂缝,所以,水力压裂工程中的各个环节都是围绕这一目标选择支撑 剂类型、粒径和携砂液性能以及施工工序等。 支撑剂的性能好坏直接影响着压裂效果。填砂裂缝的导流能力是评价 压裂效果的重要指标。填砂裂缝的导流能力是在油层条件下,填砂裂缝渗 透率与裂缝宽度的乘积,导流能力也称为导流率。 5.3.1 支撑剂的性能要求 (1)粒径均匀,密度小。支撑剂的分选不好,小粒径的支撑剂会运 移到大粒径砂所形成的孔隙中,堵塞渗流通道,影响填砂裂缝导流能力, 所以对支撑剂的粒径大小和分选程度有一定的要求。 (2)强度大,破碎率小。支撑剂的强度是其性能的重要指标。水力 压裂结束后,裂缝的闭合压力作用于裂缝中的支撑剂上,当支撑剂强度比 缝壁面地层岩石的强度大时,支撑剂有可能嵌人地层里;缝壁面地层岩石

压裂设计

压裂设计

压裂设计系部石油工程系年级专业班08油气开采学生姓名郭福奎学号 081395002011215指导教师燕伟摘要压裂是施工的指导性文件,它根据地质条件和设备能力优选出经济可行的增产方案;对压裂层的正确认识,包括:油层特性、渗透性、岩石抗张强度等。

以它们为基础,设计裂缝几何参数,确定压裂规模以及压裂液类型等,原则要求压裂井的有效期和稳产气长,达到最大产量和最大效率。

关键词:压裂、压裂液一、压裂设计的原则和方法压裂设计的原则是最大限度的发挥油层潜能和裂缝的作用,是压裂后油气井和注入井达到最佳状态,同时还要求压裂井的有效期和稳定期长。

压裂设计的方法是根据油层特性和设备能力,以获取最大产量和经济效益为目标,在优选裂缝几何参数基础上,设计合适的加砂方案。

二、压裂技术2.1合层压裂2.1.1油管压裂油管压裂就是压裂液自油管泵入油层。

其特点是施工简单,且油管截面小、流速大,其压裂液的携带能力强,又不会增加液流阻力和设备负荷,降低了有效功率。

2.1.2 套管压裂套管压裂液是井内不下入油管,从套管里直接泵入压裂液进行压裂。

其特点是施工简单,可最大限度的降低管道摩阻,从而相应的提高了排量和降低了泵压,但携带能力差,一旦造成砂堵,无法进行循环解堵。

2.1.3 环形空间压裂环形空间压裂是压裂液从套管和油管的环形空间泵入油层。

它与前两种方法相比,具有阻力损失小,适应抽油井不起泵压裂的特点,但流速低,携砂能力低。

2.1.4 油、套管同时进行压裂油、套管同时进行压裂是在井里下入油管,压裂时油管接一台压裂车。

施工时,压裂液从油、套管同时泵入,支撑剂从套管加进。

其特点是利用油管泵入的液体从油管谢出来时改变流向,可以防止支撑剂下沉,若一旦发生砂堵,进行反循环也比较方便。

因此,这种压裂适宜于中深井压裂。

2.2 分层压裂2.2.1 球堵法分层压裂如果同时开采渗透率不同的多层,当压裂液泵入井里后,液体首先进入高渗层,一般低渗层是压裂的目的层,这时就将若干赌球随液体泵入井中,赌球将高渗层的孔眼堵住,等压力憋起即可将低渗层压开。

压裂基础知识

压裂基础知识
压裂液:选择合适的压裂液以满足地层特性和施工要求 支撑剂:选择适当的支撑剂以保持压裂裂缝的导流能力 施工压力:根据地层和裂缝的特性确定合理的施工压力 裂缝长度:根据油藏特征和增产目标设计合理的裂缝长度
压裂材料选择
第四章
支撑剂类型与性能
石英砂:成本低适用于浅层压 裂
陶粒:强度高适用于深层压裂
树脂覆膜砂:耐高温适用于高 温地层压裂
制定安全操作 规程:确保员 工熟悉并遵守 压裂作业的安 全规定和操作
流程。
定期培训:对 员工进行压裂 作业安全培训 提高员工的安 全意识和操作
技能。
设备维护保养: 定期对压裂设 备进行维护保 养确保设备正 常运行防止事
故发生。
安全检查:对 压裂作业场所 进行定期安全 检查及时发现 并消除安全隐
患。
环保要求与合规性
压裂基础知识
,
汇报人:
目录
CONTENTS
01 添加目录标题 02 压裂定义与目的 03 压裂技术原理 04 压裂材料选择 05 压裂效果评价
06 压裂安全与环保
单击添加章节标题
第一章
压裂定义与目的
第二章
压裂定义
压裂是利用地面高压泵组通过井口向油层挤注高压液体使油层产生裂缝或扩大裂缝将油层中原 始油流通道扩大达到增产增注的目的。
添加剂作用与选择
降低压裂液粘度提高携砂能力 稳定支撑剂防止破碎和沉降 降低摩擦阻力减少压裂液的滤失 调节压裂液的稠化剂和交联剂控制压裂液的流变性和稳定性
压裂材料成本分析
支撑剂:选择不同类型和规格的支撑剂其成本也不同
压裂液:根据不同的压裂工艺和地层条件需要选择不同类型的压裂液其成本也相应不 同
添加剂:为了提高压裂液的性能需要添加一些添加剂这些添加剂的成本也需要考虑

压裂方案设计内容

压裂方案设计内容

压裂方案设计内容
压裂方案设计的内容主要包括以下几个方面:
1. 确定压裂施工方案,包括施工顺序、压裂层位选择、压裂工艺选择、裂缝优化设计等。

2. 压裂层位的优选:根据储层发育特征和井位部署条件,优选适合压
裂改造的层段。

3. 压裂工艺选择:根据储层物性、开发需要、施工条件和技术设备现状,优选适合的压裂工艺技术。

4. 优化设计裂缝方向、加砂规模与泵注压力等参数,确保优化设计合
理可行。

5. 确定地面设备和井下工具:根据所选压裂工艺,确定相应的地面设
备和井下工具。

6. 预测压后产能:对产能剖面进行预测,确定开发井的产能。

7. 优化排量、泵注压力和注入排量比等施工参数,以满足携砂、造缝、携砂及封堵滤失的要求。

8. 根据预计的裂缝形态,预测不同层的实际有效厚度,计算压后单层
产能和整个层段的产液能力。

通过以上内容,可以对压裂改造过程进行科学合理的设计,以期达到
最佳的增产效果。

压裂工艺ppt

压裂工艺ppt

05
02
详细描述
某水电站采用压裂工艺成功增加了发电量, 通过优化水轮机叶片形状和运行参数,提高 了水能利用率和发电效率。
04
详细描述
采用压裂工艺可以降低水电站运营成本,通 过降低维修和能源消耗费用,提高了运营效 益。
06
详细描述
压裂工艺可以有效地提高水能利用率,通过 优化水轮机叶片形状和运行参数,增加了水 的动能转化为电能的效率。
压裂工艺ppt
xx年xx月xx日
contents
目录
• 压裂工艺概述 • 压裂工艺流程 • 压裂工艺应用范围 • 压裂工艺优势与挑战 • 压裂工艺发展趋势与展望 • 案例分析
01
压裂工艺概述
压裂工艺定义
压裂工艺是一种将石油或天然气开采到地面的技术,通过向 地下施加高压,使地下岩石破裂并形成裂缝,从而增加地下 石油或天然气的流动性,提高石油或天然气的开采效率。
压裂工艺挑战
高成本和技术要求
压裂工艺需要高昂的成本和技术支 持,包括压裂车、高压管汇、支撑 剂等设备和材料。
环境污染和健康危害
压裂工艺过程中会产生大量的废水 和废气,对环境和人类健康造成危 害。
地质条件限制
压裂工艺受地质条件限制,如地层 厚度、岩石类型和裂缝发育程度等 。
操作风险
压裂工艺操作过程中存在各种风险 ,如井喷、设备故障等,需要严格 的操作规程和安全措施。
天然气储存与运输案例
总结词
增加储气量
详细描述
某天然气储存设施采用压裂工艺成功增加了储气量,通过 优化储层改造方案和注气技术,提高了储气库的储气效率 和注气速度。
总结词
降低运输成本
详细描述
采用压裂工艺可以降低天然气运输成本,通过降低管道建 设和维护费用,提高了管道运输效率。

水力压裂工艺技术

水力压裂工艺技术

水力压裂工艺技术汇报人:目录•水力压裂工艺技术概述•水力压裂工艺技术流程•水力压裂工艺技术要点与注意事项•水力压裂工艺技术案例与实践•水力压裂工艺技术前景与展望01水力压裂工艺技术概述定义及工作原理水力压裂工艺技术是一种利用高压水流将岩石层压裂,以释放天然气或石油等资源的开采技术。

工作原理通过在地表钻井,将高压水流注入地下岩层,使岩层产生裂缝。

随后,将砂子或其他支撑剂注入裂缝,防止裂缝闭合,从而提高岩层渗透性,便于油气资源流向井口,实现开采。

技术革新随着技术的不断发展,20世纪中后期,水力压裂工艺技术逐渐成熟,并引入了水平钻井技术,提高了开采效率。

初始阶段水力压裂工艺技术在20世纪初开始应用于石油工业,当时技术尚未成熟,应用范围有限。

现代化阶段进入21世纪,水力压裂工艺技术进一步完善,开始采用更精确的定向钻井技术和高性能支撑剂,降低了环境污染,并提高了资源开采率。

技术发展历程水力压裂工艺技术是石油工业中最重要的开采技术之一,尤其适用于低渗透油藏的开采。

石油工业水力压裂工艺技术也广泛应用于天然气领域,通过压裂岩层提高天然气产能。

天然气工业随着非常规油气资源(如页岩气、致密油等)的开采价值日益凸显,水力压裂工艺技术成为实现这些资源商业化开采的关键技术。

非常规资源开采技术应用领域02水力压裂工艺技术流程在施工前,需要对目标地层进行详细的地质评估,包括地层厚度、岩性、孔隙度、渗透率等参数,以确定最佳的水力压裂方案。

地质评估准备水力压裂所需的设备,包括压裂泵、高压管线、喷嘴、砂子输送系统等,确保设备完好、可靠。

设备准备对井口进行清理,确保井口无杂物、无阻碍,为水力压裂施工提供安全的作业环境。

井口准备施工前准备通过压裂泵将大量清水注入地层,使地层压力升高,为后续的压裂创造条件。

注水当地层压力达到一定程度时,通过喷嘴将携带有砂子的高压水射入地层,使地层产生裂缝。

压裂随着高压水的不断注入,砂子被携带进入裂缝,支撑裂缝保持开启状态,提高地层的渗透性。

压裂工艺基础知识介绍

压裂工艺基础知识介绍

压裂工艺基础知识介绍目录一、压裂工艺概述 (2)1. 压裂的定义与目的 (2)2. 压裂技术的发展历程 (3)3. 压裂工艺的重要性 (5)二、压裂工艺基本原理 (6)1. 压裂液的组成及作用 (7)(1)主要成分 (8)(2)添加剂的功能 (9)2. 压裂液的流动性与黏度控制 (10)3. 岩石的破裂机理 (11)(1)应力与应变的关系 (12)(2)岩石的破裂条件 (13)三、压裂工艺操作流程 (14)1. 井场准备与设备配置 (16)(1)井场选址与布局 (17)(2)设备选择与配置 (18)2. 施工前的准备工作 (19)(1)井筒处理 (21)(2)压裂液的准备 (21)3. 压裂施工流程 (23)(1)压裂液的注入 (24)(2)压力控制 (25)(3)裂缝的扩展与控制 (26)4. 施工后的工作 (28)(1)井场清理 (29)(2)数据分析与评估 (30)四、压裂工艺的关键技术 (31)一、压裂工艺概述压裂技术是一种常用的油气藏开发技术,是指通过将高压介质注入油气藏缝中,以增加缝隙的有效面积,从而提高油气采收率的一种工艺。

压裂就是利用外力的强大冲击,使岩石裂缝变大或者新形成裂缝,从而扩大油气藏的产能。

评价及设计:对油气藏进行详细的测井、物理模型模拟等,确定压裂的适宜性及最佳工艺参数,例如压裂液种类、压裂泵送量、压裂压力等。

压裂泵送:通过压裂泵等设备,将压裂液以高压泵入油气藏中,使岩石裂开。

压裂液选择:压裂液种类多样,常见的有水基粉体系、水基酸体系、油基体系等,其选择要考虑油气藏特征和压裂目标。

控压处理:压裂完成后,需要通过控压处理,稳定油气藏,防止裂缝过早闭合。

压裂技术在油气田开发中得到广泛应用,特别是对低渗透或岩性和天然裂缝发育不良的油气藏,其效果显著,能够有效提高油气产能。

1. 压裂的定义与目的压裂技术是油气井增产及煤层气、页岩气等非常规油气资源高效开发的一种关键工艺。

在地下油气井实施过程之中,由于岩石的密实性和高渗透层间的限制,油气井的生产能力受到自然渗透率的束缚,进而导致产能低下。

压裂选井层条件方法

压裂选井层条件方法

重复压裂技术—选井层的原则
重复压裂的选井选层应该符合以下几种情况 和条件:
1)所选井层有充足的剩余可采储量,它是重 复压裂后提高油井产量的物质基础,没有剩 余可采储量的井,就没有重复压裂的必要。
2)所选井层有充分的地层能量,它是重复压 裂后油井生产时间长短的关键。如果没有充 分的地层能量,即使进行重复压裂,油井的 产量也不会提高。
选井(层)的一般原则
压裂选井(层)应考虑的条件
油层条件:油层应具有工业开采价值;油相渗
透率在(0.1~20)×10-3µm2,对解堵压裂可大于 20×10-3µm2;油层与气层、水层间的隔层厚度应 大于10m;压裂找油的探井可不受以上条件的限制。
井身条件:油层套管抗内压值高于地层破裂压
力1MPa以上且无损坏;2)油层上下各30m内固井 质量为良好级。
重复压裂技术—影响因素分析
地质因素
目前地层压力 剩余可采储量 有效渗透率 相渗曲线类别 地下原油粘度 配套注水
工程因素
重复压裂技术—选井层的原则
重复压裂与第一次压裂有一个重要的区别, 就是重复压裂必须对前次压裂所形成的裂缝 有充分的认识。因此,重复压裂之前,必须 考虑:所选择重复压裂井目前的状况;前次 压裂所形成裂缝的状况;前次压裂的工艺技 术水平等。通过这些认识,确定所选择的井 是否具备重复压裂的条件,前次压裂失效的 原因,原来压裂工艺的不足,提出重复压裂 的潜在能力,采用新的技术路线和途径。
选井(层)的一般原则
酸处理的选井(层)原则
优先选择在钻井过程中油气显示好、而试油效果差 的井层 优先选择邻井高产而本井低产的井层 对于多产层位的井,应进行选择性(分层)处理 靠近油气、油水边界的井,或存在气水夹层的井, 不宜酸压 对套管破裂变形,管外串槽等井况不适宜酸处理的 井,应先进行修复待井况改善后再处理

第6章 水力压裂技术(20130325)

第6章 水力压裂技术(20130325)
基本步骤:
①预测不同裂缝长度和导流能力下的产量,并 绘制产量与缝长和无因次导流能力关系曲线
②根据产量要求,优选裂缝参数 ③选择支撑剂类型 ④确定尾随支撑剂体积和尾随比 ⑤根据地层条件选择压裂液
返回
水力压裂施工现场
水力压裂施工现场
水力压裂施工现场
水力压裂施工现场
地面砂比:
支撑剂体积与压裂液体积之比。
在忽略裂缝内流动阻力的情况下,可以认为裂缝内的 FRCD从缝端到井底是线性增加的,因而要求砂浓度呈线性 增加。
全悬浮型支撑剂分布特点:
适合于低渗透率地层,不需要很高的填砂裂缝导流能 力就能有很好的增产效果;支撑面积很大,能最大限度地 将压开的面积全部支撑起来。
FRCD=Wf˙Kf=(KW)f
裂缝参数:Lf,FRCD,是最关键的因素; 最大缝宽: Wmax, Wf
4 Wmax
动态缝宽:施工过程中的裂缝宽度;~10mm 支撑缝宽:裂缝闭合后的宽度 W支;3~5mm。
一、支撑剂的要求 1.粒径均匀;
2.强度大,破碎率小; 3.圆度和球度高;
4.密度小; 5.杂质少。
(一)全悬浮型支撑剂分布 高粘压裂液:
压裂液粘度足以把支撑剂完全悬浮起来,在整个施 工过程中没有支撑剂的沉降,停泵后支撑剂充满整个裂 缝内,因而携砂液到达的位置就是支撑裂缝的位置。
裂缝闭合后的砂浓度(铺砂浓度):
是指单位体积裂缝内所含支撑剂的质量。 裂缝内的砂浓度(裂缝内砂比):
指单位裂缝面积上所铺的支撑剂的质量。
3.水力压裂增产增注原理
(1)降低井底附近地层渗流阻力。
(2)改变了流动形态,由径向流→双线性流(地
层线性流向裂缝,裂缝内流体线性流入井筒)。
4.水力压裂过程

压裂工艺技术

压裂工艺技术

3.利用压裂液粘度和密度控制裂缝高度 压裂液粘度越大,裂缝越高,保持在50-100mPa·较合适。 s 要控制裂缝向上延伸,应采用密度较高的压裂液;要控制裂 缝向下延伸,则应采用密度较低的压裂液。 (二)人工隔 层控制裂缝 高度技术 1.用漂浮 式转向剂控 制裂缝向上 延伸技术 (1)工作原 理
(2) 对漂浮式转向剂性能要求
(4)技术要求
1)水力锚的啮合力必须大于施工时作用于封隔器上的上顶力, 以免顶弯油管; 2)施工时作用于封隔器上下的压差必须小于封隔器允许的最 大压差;
3)压裂层的射孔段与上面一层射孔段之间的距离,中深井应
不小于3m,深井应不小于5m。
2.双封隔器分层压裂
(1)管柱结构图
(2)用途 在射开多层的油气井中, 对其中任意一层进行压裂。 (3)特点
(5)孔眼持球力
考虑孔眼和堵球几何尺寸的影响,需对上式进行修正。即
当FH’>Fu时,堵球才能坐封在孔眼处不脱落!
4.选择堵球直径与堵球数量的经验公式 (1)选择堵球直径经验公式
(2)选择堵球数量的经验公式
5.不同密度差、不同流量与封堵效率关系
(三)限流法分层压裂
1.限流法分层压裂工艺原理
3.表面活性剂
在气、液混合后,使气体成气泡状均匀分散在液体中形成泡沫。
4.滑套封隔器分层压裂 有两种管柱类型,而且开关滑套方式也有两种。 国内最常用的是只有喷砂器带滑套的管柱和采用投球憋压 方法打开滑套。 (1)管柱结构图 (2)用途 1)可以不动管柱、不压井、不放喷一次施工分压多层; 2)对多层进行远层压裂和投产。 (3)特点 1)对油气层伤害小,有利于保护油气层; 2)由于受管柱内径限制,一般最多只能用三级滑套,一次分 压四层; 3)如果一次压多层,必须起钻换管柱,才能对下部层位进行 排液投产。

压裂教材

压裂教材

五、压裂施工工艺
1、常规分层压裂工艺 (1)原理 当压完第一层后,通过投球器和井口球阀 分别投入不同直径的钢球,逐次将滑套憋到喷 砂器内堵死水眼,然后依次再进行压裂。当最 后一层替挤完后,立即活动管柱,并投入堵塞 器,从而实现不压井、不放喷起出油管。
五、压裂施工工艺
五、压裂施工工艺
(2)管柱结构
是从“七五”期间从BJ程序开始的。
91年研究编制了“DQJX”压裂设计程序; 92年为适应老区油水井压裂的需要, 研制开发了水平缝压裂设 计程序;
93年又引进了西南石油学院的“HDFG”设计程序;
近年来,引进了FracproPT、StimPlan软件。
四、优化压裂设计
监测软件主要有:FRACPT、西方压裂 设计程序、Noscow公司的Smarts程序。
二、油层水力压裂概念
外围深井压裂管柱:
工具参数:
Y344-114
名称 长度(mm)
封隔器 1161
导压 喷砂器
喷咀 300
660 112 25
最大外径(φmm) 最小通径(φmm)
114 54
95 25
使用条件:
工作 压力 MPa 工作 温度 ℃ 90 喷砂器 过砂量 m3 最高 砂比 % 适用 套管 内径 mm 124
缝。继续将带有支撑剂的压裂液注入裂缝,使裂缝向前延
伸,并在裂缝中填充支撑剂。在停泵后即可在地层中形成 足够长度、一定宽度及高度的填砂裂缝。由于这个裂缝扩 大了油气流动通道,改善了地层渗透性,可起到增产增注 作用。这一施工过程就叫油层水力压裂。
二、油层水力压裂概念 2、水力压裂分类
水力压裂
笼统压裂 机械分层压裂 桥塞压裂 封隔器压裂 分层压裂
二、油层水力压裂概念

水力压裂工艺技术

水力压裂工艺技术

调整方案制定
根据评估结果,制定调整 方案,包括重新注入支撑 剂、增加裂缝长度或改变 压裂液类型等。
04
水力压裂技术的关键技术及创新 发展
支撑剂的选择与性能评价
支撑剂的材质与性能
针对不同地层条件,选择合适的支撑剂材质,如陶粒、石英砂等 ,并评估其性能,如硬度、粒径分布等。
支撑剂的表面改性
通过物理或化学方法对支撑剂表面进行改性,提高其润湿性、渗透 性和抗破碎能力。
报, 2016, 37(3): 1-10.
[2] 李四. 水力压裂设计优化 及效果评价[J]. 岩石力学与工 程学报, 2018, 37(6): 1-15.
[3] 王五. 水力压裂技术在*油 田的应用研究[J]. 地球物理学
报, 2020, 63(7): 1-12.
THANK S感谢观看
井筒准备
清洗并准备井筒,包括通井、洗井等 操作,确保井筒内无杂质,为压裂作 业做好准备。
压裂液的配制与注入
01
02
03
压裂液选择
根据地质条件和目标需求 ,选择合适的压裂液,如 瓜胶、羟丙基瓜胶、石英 砂等。
压裂液配制
按照一定的比例和顺序将 压裂液的各成分混合在一 起,确保压裂液的各项性 能指标达到要求。
03
水力压裂技术的工艺流程
压裂前的准备
目标确定
明确压裂的目的和目标,如提高石油 或天然气的产量,改善井筒周围的应 力场等。
地质评估
收集并评估与目标区域相关的地质数 据,如岩石类型、地层厚度、地层破 裂压力等。
设备检查
确保压裂设备(如压裂车、混砂车等 )处于良好的工作状态,并准备好所 需的物资和器材。
02
水力压裂技术的基本原理

第五章:水力压裂技术

第五章:水力压裂技术
Δ P 破 ——破裂压力与压前地层压力之差,MPa。
B——原油体积系数,m3(地下)/m3(地面)。
o——地面原油的密度。
地面排量按 Q排 Q吸 来确定。
3)地面泵压的计算
目的是为了在满足裂缝需要的压力和排量的基础上,充分发挥设备的能 力,减少使用设备的台数。压裂时地面泵压可由下列公式估算:
P 泵 压 P 井 口 P 破 P 摩 阻 P 局 损 P 液 柱
式中 Pe ——厚壁筒外边界压力,Pa;(井眼内压在外边界产生的压力) re ——厚壁筒外边界半径,m; ra ——厚壁筒内半径,m; Pi ——内压,Pa r ——距井轴半径,cm。
当re =∞、Pe=0、r= ra 时,井壁上的周向应力为:
σθ=-Pi
即:由于井筒内压而导致的井壁周向应力与内压大小相等, 但符号相反。(利用无穷大定理推导)
裂缝的导流能力:裂缝宽度与填砂裂缝渗透率的乘积。
无因次裂缝导流能力表达式:
K f W
要想使低渗层和高渗层有同 样的高导流能力,从公式中变 换两个参数W 和 Xf。
C fD
K f W KXf
PKN模型
KGD二维裂缝延伸模型
KGD模型
五.水力压裂增产增注原理
1.压裂前流体从底层流向井底的流动形态
(1)流体流动过程复杂 (2)污染带和井底周围应力集中,近井地带渗透率低,井筒 附近渗流阻力大
(一)形成垂直裂缝的条件: 1.当存在液体渗滤时
如果岩石的破裂是纯张力破裂,当井壁上存在的周向应力达到井壁 岩石的水平方向的抗拉强度σth时,岩石将在垂直于水平应力的方向上产 生脆性破裂,即在与周向应力相垂直的方向上产生垂直裂缝。
此时有: = -σth,代入(5—8)式,并换为有效应力( x x ps,

高能气体压裂

高能气体压裂
的高温、高压气体压出多条径向裂缝以取得增产 效果的方法。 高能气体压裂工艺分为井内增压、造缝和裂 缝延伸三个阶段。在井眼增压期间,井内发生弱 性变形同时地层内的自然裂缝受到高压。推进剂 产生的气体的简单作用就象在一个密闭腔内一样。 此时压力随时间线性增加。
高能气体压裂的增产原理
一般来说,炸药爆轰的增产效果远小于火 药燃烧。爆炸产生的尖压力脉冲的增产效 果远小于平缓的压力脉冲,也就是说炸药 爆轰的增产效果远小于火药燃烧。炸药的 燃烧速度以km/s计,点火后会形成爆轰波; 火药的燃烧速度以mm/s计,最大也不超过 10m/s。炸药的燃烧速度与环境条件无关, 而火药的燃烧速度受环境温度和压力的影 响。火箭燃料(推进剂)近似于火药。
特别适用于处理地层能量高、含油饱和度高、 井底附近被伤害的油气层。也适用于物性差的低 产层,甚至停产层。
高能气体压裂的适用范围
3. 水井 利用高能气体压裂,一方面可解除近井地带的污
染堵塞,另一方面,产生的径向多裂缝体系改善了 注水驱替前沿,调节由层间差异造成的不合理注水 剖面,从而增强油藏整体开发及注水效果。 4.天然裂缝较发育油气层改造
高能气体压裂使用的设备
如果用油管送弹,则 用撞击点火器代替电 缆头,用投棒点火代 替电缆点火。
另一类型的无壳火药压力发 生器如图2—3,没有密封外
壳,靠药柱外表面轴向槽用 钢丝绳连接,药柱下面有托 盘托住,有的药柱有中心孔, 有的无中心孔,二者都用密 封的电阻丝加热点火,有中 心孔的底部还装有点火器。 药柱开始是端面燃烧,随后 变成全面燃烧。这类火药压 力发生器一次用药量比装有 中心孔的无壳压力发生器高 20~40%。
高能气体压裂的适用范围
3.由于高能气体压裂只能降低 渗流阻力,所以只适用于地层 压力高、含油饱和度高的油层。

油田井下压裂施工工艺

油田井下压裂施工工艺

油田井下压裂施工工艺油田井下压裂施工工艺是一种用于增加原油或天然气产量的技术,它通过在油井中注入高压流体以破裂地层岩石,从而增加油气的产出能力。

该技术已经在油田开发中得到了广泛应用,成为了提高油气产量和延长油井寿命的重要手段。

下面我们将详细介绍油田井下压裂施工工艺的流程、方法和作用。

一、工艺流程1. 前期准备在进行井下压裂前,需要进行充分的准备工作。

首先要对油井进行地质勘探,确定地层岩石的性质和构造。

然后根据地质条件和井下压裂的需要,选择合适的压裂液、压裂弹药和压裂设备。

要做好安全生产准备工作,确保施工过程中不发生意外。

2. 井下注水在进行井下压裂前,通常会先进行井下注水操作。

注水的目的是为了增加井下地层的压力,从而减小压裂操作中对地层岩石的破坏,提高压裂效果。

3. 压裂液的准备在进行井下压裂前,需要准备好压裂液。

压裂液是由水、添加剂和悬浮固体颗粒(如砂子)混合而成的一种高压流体。

它的主要作用是在井下地层中形成裂缝,增加地层的渗透性,从而提高油气的产出能力。

4. 压裂施工在准备工作完成后,就可以进行井下压裂施工了。

压裂施工通常由三个关键步骤组成:首先是充注压裂液,然后是引爆压裂弹药,最后是注入压裂液以打开地层裂缝。

在整个施工过程中,需要严格控制压力和流量,确保压裂操作的有效进行。

5. 后续处理在井下压裂施工完成后,需要对压裂井进行后续处理。

这包括清理井下产生的残渣和回收压裂液,以及监测地层压力和油藏产量的变化。

需要对井下设备和管道进行检修和维护,保证井下压裂施工的长期效果。

二、方法与技术1. 压裂液压裂液是井下压裂施工的核心。

它的成分和性质直接影响着压裂效果。

常见的压裂液成分包括水、添加剂(如聚合物、表面活性剂等)和悬浮固体颗粒(如砂子)。

在选择压裂液时,需要考虑地层岩石的性质、油藏的储量和渗透性,以及井下设备的承压能力。

2. 压裂弹药压裂弹药是用于在井下地层中形成裂缝的关键工具。

它通常由装有爆破药和引爆装置的管道、套管和射孔弹头组成。

水力压裂技术

水力压裂技术

压裂工艺技术 压裂工艺技术是影响压裂增产效果的
一个重要因素。对于不同特点的油气层,

必须采取与之相适应的工艺技术,才能
保证压裂设计的顺利执行和取得较好的增 产效果。
压裂方式选择 压裂方式选择是压裂工艺中的一个很重要的
内容。压裂方式的选择主要是根据地质条
件、井身状况、工艺技术水平而定。
目前常用的压裂方式有:合层压裂、分层压 裂、一次分压多层和深层压裂。
结合离子,从而改变其理化性质,或破坏其离子交换能力,或破坏双
电层离子云之间的斥力,从而达到防止粘土水合膨胀或分散迁移的效 果。
压裂液的主要添加剂
7、降阻剂。在进行深井压裂作业时,需用降阻剂降低压 裂液在注入管柱中的沿程摩擦阻力,以提高泵效。 8、降滤失剂。通过在压裂液中添加降滤失剂可以增强压
裂液造壁性能,降低液体滤失量,提高液体效率。
压裂液的性能
5、配伍性。压裂液要与地层条件下的各种岩石矿物及流体有 较好的配伍性,不应在进入地层后产生不利于油气渗流的物 理-化学反应。 6、低残渣。要尽量降低压裂液中水不溶物的数量(残渣), 以免降低岩石及填砂裂缝的渗透率。 7、易返排。施工结束后大部分注入液体应能返排出井外,以 减少压裂液的损害。 8、货源广。价格便宜,便于配制。
低压管汇 储液罐
砂罐
混砂车
供液管汇
压裂泵车 监控车 高压管汇
压裂井口
压裂施工现场示意图
压裂增产增注机理
1、降低井底附近渗流阻力 2、改变井底附近渗流形态,使原来的径 向流动改变为油层流向裂缝近似性的单 向流和裂缝到井筒的单向流动,消除了 径向节流损失,大大降低了能量的消耗。
压裂液的定义和作用
压裂液是水力压裂改造油气层过程中的

压裂设计步骤概要

压裂设计步骤概要

压裂设计步骤概要压裂设计是指在油气开发过程中,通过注入高压液体来创造裂缝,以增加裂缝面积和渗透率,从而提高油气的开采效率。

压裂设计步骤包括以下几个方面:1.资料收集与分析:首先需要收集并分析有关地质条件、储层特征、油藏压力、温度等相关资料。

这些资料对压裂设计非常重要,能够帮助工程师了解油气藏的情况,并根据需要制定合适的压裂方案。

2.设计目标确定:根据开采目标和油气田特点,确定压裂设计的主要技术指标,包括裂缝面积、渗透率、注入液体的流量、压力和黏度等。

这些指标会直接影响到裂缝的扩展程度和成效。

3.液体选择:根据地质条件和开采目标,选择合适的压裂液体。

常用的压裂液体有水基液体、油基液体和气体等。

液体的选择需要综合考虑液体的黏度、密度、替代性和环保性等因素。

4.压裂参数计算:根据油气藏的特征和液体性质,计算压裂液体的流量和压力等参数。

同时,还需要考虑液体的推送方式,如常规泵、鼠尾泵和螺杆泵等,以确保压裂液体可以顺利注入油气层中。

5.压裂技术选型:根据地质条件、液体性质和注入方式等因素,选择合适的压裂技术。

常用的压裂技术有水平井压裂、多级压裂和缝间压裂等。

技术的选型需要依据实际情况,并综合考虑其操作难度和成本等因素。

6.裂缝模拟:通过数值模拟或实验室试验等手段,模拟并预测压裂过程中裂缝的扩展和成形情况。

这可以帮助工程师了解压裂方案的有效性,并对裂缝的产生和扩展进行仿真和优化。

7.场地准备与设备调试:根据压裂方案,准备好施工现场,并进行设备的调试和检查。

这包括检查压裂设备的工作状态和保证设备的可靠性,确保其能够按照设计要求完成压裂作业。

8.压裂作业实施:根据压裂设计方案,准备好压裂液体,并按照规定的流量和压力进行注入。

在注入过程中,需要密切关注裂缝的扩展情况和液体的流动状态,并随时调整操作参数以达到设计要求。

9.压裂效果评估:在压裂作业结束后,需要对压裂效果进行评估和监测。

通过裂缝效果监测、产量测试和物资回收等手段,判断压裂的成功与否,并分析压裂过程中可能存在的问题和改进空间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压裂方法分类及选择条件一、压裂设计的原则和方法压裂设计的原则是最大限度的发挥油层潜能和裂缝的作用,是压裂后油气井和注入井达到最佳状态,同时还要求压裂井的有效期和稳定期长。

压裂设计的方法是根据油层特性和设备能力,以获取最大产量和经济效益为目标,在优选裂缝几何参数基础上,设计合适的加砂方案。

二、压裂技术2.1合层压裂2.1.1油管压裂油管压裂就是压裂液自油管泵入油层。

其特点是施工简单,且油管截面小、流速大,其压裂液的携带能力强,又不会增加液流阻力和设备负荷,降低了有效功率。

2.1.2 套管压裂套管压裂液是井内不下入油管,从套管里直接泵入压裂液进行压裂。

其特点是施工简单,可最大限度的降低管道摩阻,从而相应的提高了排量和降低了泵压,但携带能力差,一旦造成砂堵,无法进行循环解堵。

2.1.3 环形空间压裂环形空间压裂是压裂液从套管和油管的环形空间泵入油层。

它与前两种方法相比,具有阻力损失小,适应抽油井不起泵压裂的特点,但流速低,携砂能力低。

2.1.4 油、套管同时进行压裂油、套管同时进行压裂是在井里下入油管,压裂时油管接一台压裂车。

施工时,压裂液从油、套管同时泵入,支撑剂从套管加进。

其特点是利用油管泵入的液体从油管谢出来时改变流向,可以防止支撑剂下沉,若一旦发生砂堵,进行反循环也比较方便。

因此,这种压裂适宜于中深井压裂。

2.2 分层压裂2.2.1 球堵法分层压裂如果同时开采渗透率不同的多层,当压裂液泵入井里后,液体首先进入高渗层,一般低渗层是压裂的目的层,这时就将若干赌球随液体泵入井中,赌球将高渗层的孔眼堵住,等压力憋起即可将低渗层压开。

这种方法可在一口井中多次使用,一次施工可压开多层。

对于射孔井,可用尼龙球,随压裂液进入井内并坐在高渗透层部位的炮眼上,以堵塞炮眼,即可将井内压力憋起,从而压开低渗透层的裂缝,此法可在一次压裂中多次重复使用,施工结束后,井底压力降低,堵球在压差的作用下,可以反排出来。

2.2.2 选择性压裂在同一开发层系中,由于地质上的非均质性,也存再高渗和低渗层段的差别。

在几米厚的油层中也存在高低渗透层的交互层,这种情况下就可使用这种方法,使压裂液导至低渗透层以便压开尚有生产潜力或未动的低渗透层。

如大庆油田的几个内部油田曾广泛使用固体暂堵剂进行选择性压裂,获得好的效果,具体做法是在向井内挤入压裂液的同时混入暂堵剂因为液体首先被吸入高渗层,暂堵剂随即将高渗层部位起缝。

油溶性与水溶性的暂堵剂可分别用于油水井的选择性压裂上。

使用选择性压裂的井最好具有一定的厚度,如4m以上,水平裂缝,这样易于控制裂缝产生的部位。

如果地油水下层清楚,有可能堵住含水高渗层,压开含油低渗层。

选择性压裂也可用于重复压裂上,利用小蜡球井层中裂缝堵住,在其它油层层部位压开新裂缝,以达到增产目的,如果不选用选择性压裂的方法,很可能使原裂缝延伸。

采用这种方法也会见到一定的增产效果,但也有可能会造成大量出水而效果不好的情况。

2.2.3 限流法分层压裂在分层压裂中,桥塞与封隔器在分层上有效,但作业成本高,球堵法也可能因为井况原因无法使用,如套管外窜漏或因赌球破裂或损伤,使液体旁流失去封堵作用。

限流法分层压裂适用于多层而各层之间的破裂压力有一定差别的井,该方法通过控制各层的射孔孔眼数及孔眼直径的方法,限制各层的吸水能力以及达到压开的目的。

2.2.4 封隔器卡分法分层压裂这是使用较方便的分层方法。

使用于压裂层渗透层差异不大,上下夹层具有一定的厚度,且射口层段套管完好无损的分层压裂井。

常用水力扩张式封隔器或双水力扩张式封隔器分层选压。

2.2.5 填砂发分层压裂这是一种自上而下的压裂方式,即自上而下的压一层、填一层砂,压完后冲砂投产。

2.3一次分压多层2.3.1投球法压裂它是利用水力扩张式封隔器将各个压裂层段封隔开,相邻两压裂层之间的封隔器可共用,目前这种方法一趟管柱可压四层。

除最下一级喷砂器外,其余喷砂器都装相应规格的滑管。

施工时,由上而下压裂。

先压完最下面的一层后,从油管里投入钢球并加液压憋掉下数第二层喷砂器里的滑套,打开该喷砂器,同时关闭最下层喷砂器,压下数第二层。

以此类推,自上而下压开各个层。

投球法压裂工艺比较简单,但是压每一层时各级封隔器同时工作,在高压下封隔器容易产生疲劳,而且有层间窜通或压不易发现等缺点。

2.3.2 上提封隔器法压裂这种方法仅用两级封隔器,中间夹一个喷砂器,两封隔器之间卡距应根据各选压层间距离预先配好。

施工时用两封隔器卡住压裂层段,先压最下层,压完后上提到第二层,依次压完各层。

此法岁可观察压窜显示,但压层段大小,夹层厚度不均时,选配封隔器卡距较困难,且施工速度慢。

所以,此法仅适用于选压层段均匀、层较少的井。

2.3.3滑套压裂目前较好的一次分压多层的方法是滑套封隔器压裂法。

该法使用带滑套的封隔器、带滑套的喷嘴以及特殊接箍,施工一次可以分压四个层段,它的优点是封隔器在高压下并不同时工作,只有被压层位上下两个封隔器工作,延长了封隔器的使用寿命,并且对层间串通和封隔器的不密封性易发现,及时避免砂卡事故的发生。

2.3.4深层压裂深井压裂时管路长、水力损失大,而且压裂液具有悬浮性能好,而且对支撑剂在强度、密度、形状及耐酸碱性等方面都比中深井有更高的要求。

一般用陶粒来作为深井压裂的支撑剂。

2.4 压裂液类型稠化水压裂液,水基冻胶压裂液,水包油压裂液,水基泡沫压裂液,稠化水包油压裂液2.4.1 稠化水压裂液稠化水压裂液是以水为溶剂或分散介质将稠化剂溶于水中配成。

常用的稠化剂主要是水溶性聚合物,如合成高分子(HPAM),改性天然高分子,生物高分子(黄包胶),配制稠化水压裂液时可以利用协同效应。

这种压裂液比活性压裂液粘度有所提高,携砂能力强,降滤失性好,主要用于低温、浅井和低沙比的小型压裂。

2.4.2 水基冻胶压裂液水基冻胶压裂液用交联剂将溶于水的稠化剂高分子进行不完全交联,使具有线性结构的高分子水溶液变成线型和网状体型结构混存的高分子水冻胶,其主要添加剂有稠化剂和交联剂。

稠化剂:稠化剂是水基冻胶压裂液的主体,用以提高水溶液的粘度,降低液体滤失,悬浮和携带支撑剂,常用的稠化剂有植物胶,纤维素及合成聚合物等。

交联剂:交联剂能与聚合物线型大分子链形成新的化学键,使其联结成网状体型结构的化学剂,聚合物水溶液因交联作用形成冻胶。

交联剂的选用由聚合物可交联的官能团和聚合物水溶液的PH值决定。

2.4.3液活性水压裂液活性水压裂是在水溶液中加入表面活性剂的低粘压裂液。

这种压裂液配制简单、成本低廉、粘度低滤失量大,但携砂能力弱,适用于浅井低沙量、低沙比的小型解堵压裂和煤层气井压裂。

2.5压裂的任务压裂液是为造缝与携砂使用的液体,是水力压裂的关键组成部分。

压裂液是一个总称,根据其在压裂过程中的任务不同可分为前置液、携砂液和顶替液。

前置液的作用是破裂地层并造成一定几何尺寸的裂缝以备后面的携砂液进入,在温度较高的地层里,它还起到一定的降温作用。

有时为了提高前置液的工作效率,在一部分前置液中加细砂(粒径0.105~0.147 mm,即140~100目;砂与液体的体积比,即砂比10%左右),以堵塞地层中的微隙,减少液体的滤失。

携砂液的作用是将支撑剂带入裂缝中并将砂子放到预定位置上去。

在压裂液的总量中,这部分占的比重较大。

携砂液和其它压裂液一样,都有造缝及冷却地层的作用。

顶替液的作用是打完携砂液后,用于将井筒中全部携砂液替入裂缝中。

中间顶替液用来将携砂液送到预定位置,并有预防砂卡的作用。

2.6 压裂液的优选选择压裂液应考虑的五个技术因素是粘度、液体摩阻损失、滤失、返排及其与储层岩石和流体的配伍性,另需考虑的两个因素是费用和来源。

不同的压裂液保持导流能力的百分数是不同的。

生物聚合物与泡沫压裂液对导流能力保持的效果最好,分别为95%和80%~90%,其次为聚合物乳化液(65%~85%),而水基交联的羟丙基胍胶保持的效果最差(10%~15%)。

在设计中,应根据具体情况选择使用满足压裂施工工艺要求的压裂液,尽可能减少地层损害,特别是对支撑裂缝的损害。

对支持剂选择的最基本要求是要能得到高导流能力。

国内常用的支撑剂有石英砂和陶粒,可按压裂设计要求选择。

2.7 压裂参数确定2.7.1裂缝几何参数及产量预测裂缝几何参数是影响压裂增产幅度的主要因素。

油气井产能的预测是进行压裂优化设计的基础。

2.7.2 油层破裂压力的计算油层破裂压力是指油层被压开时的瞬间被压裂层位所受的压力。

它取决于油层深度、岩石强度、渗透率、油层原始发育情况及压裂所使用的液体性质等。

它目前使用的经验公式: P破=B·HP破—油层的破裂压力, MpaB —压裂油层中部深度, mH —油层破裂压力梯度,Mpa/m2.7.3 压裂时排量的确定要是压裂是形成的裂缝处于张开状态,就必须使压裂时的注入排量大于底层吸入量,要得到是底层张开裂缝的足够压差,首先应在设备许可的条件下,最大限度的提高排量;其次还可以采取降低压裂液的滤失性,缩小压裂井段的方法。

2.7.4 地面泵压的计算确定地面泵压的目的是为了在满足裂缝需要的压力和排量的基础上,充分发挥设备的能力,减少设备的台数。

地面泵压的估算公式:P泵压=P井口=P破+P摩阻+P局损-P液柱P泵压—地面泵压,MPa;P井口—井口压力,MPa;P摩阻—压裂液在管柱内流动时的摩阻压力降,MPa;P局损—井下工具对流体局部阻力损失,MPa;P液柱—井筒里液柱压力,MPa。

2.7.5 压裂车台数的确定由压裂时的泵压与排量计算出所需要的总功率,然后用总功率除以压裂车的发动机功率,即可得到压裂车的台数。

其计算公式:Pp=P泵压= P泵压·Q∕η1η2η3 = 1∕η·P泵压·QN=Pp∕P'pη——总效率,小数;η1————发动机工作功率;0η2—————泵的上水效率,取60%~80%;Q————压裂时泵的排量,m3∕s;η3————发动机工作时受海拔高度影响后的效率,%;N——所需压裂车的台数。

P'p——每台压裂车的发动机功率,W;Pp——压裂时所需的总功率W;2.7.6支撑剂用量的确定支撑剂用量与压裂效果有直接关系,它主要取决于所形成裂缝的长度与宽度,还与油层情况、压裂次数、油井生产历史有关。

由于目前对裂缝还无法实际测量,所以支撑剂用量只能从油层结构和物性、压裂次数、历史施工经验来估计。

一般在压裂疏松油层时,其支撑剂用量越大;可以适当逐次增加支撑剂的用量,一边达到延伸裂缝或增加新裂缝的目的。

合理的支撑剂用量应根据现场试验来确定,大约每米油层加入1.5~3m32.7.7含砂比的计算含砂比是指单位体积压裂液内所含支撑剂的数量。

含砂比的大小关系到砂粒在裂缝的分布方式,直接影响裂缝的导流能力。

含砂比的确定,主要是根据支撑剂的直径、携砂液的性能、裂缝的滤失性及液体的流速而定。

相关文档
最新文档