2016广州中考数学压轴题解析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点击添加相关标题文字
ADD RELATED TITLE WORDS
C
A
O
B
D
法1:截长补短
解:如图,延长CA到点E,使得 AE=BC,连接ED ∵AB是⊙O的直径 ∴∠ADB=∠ACB=90° ∵CD平分∠ACB ∴ ∠ACD= ∠BCD=45°
∴弧AD=弧BD ∴AD=BD 再证△ADE≌△BDC(SAS) 易证△CDE为等腰直角三角形
E A
C
O
B
D
法2:旋转变换
C
A
O
B E
D
法3:构造弦图
C E A F D O B
法4:全等+勾股
解:作DE⊥CA的延长线于E, 作DF⊥CB于F, 易得四边形CEDF为正方形 ∴CE=CF=DE=DF 再证△ADE≌△BDF(HL) ∴AE=BF ∴AC+BC=AC+CF+BF = AC+CF+AE =CE+CF =2CF
A E
C F O B
D
法5:构造相似
M
C
A
O
B
D
法6:托勒密定理 圆的内接凸四边形两对对边乘积 的和等于两条对角线的乘积。
B A
A
C
O
B
D
翻 译 成 C 人 话 O 就 是 : AB×CD+AD×BC=BD×AC
D
法7:等面积法
C C E O F D D B
A
O
来自百度文库
B A
ADD RELATED TITLE WORDS
C
A
O
B
D
法1:截长补短
解:如图,延长CA到点E,使得 AE=BC,连接ED ∵AB是⊙O的直径 ∴∠ADB=∠ACB=90° ∵CD平分∠ACB ∴ ∠ACD= ∠BCD=45°
∴弧AD=弧BD ∴AD=BD 再证△ADE≌△BDC(SAS) 易证△CDE为等腰直角三角形
E A
C
O
B
D
法2:旋转变换
C
A
O
B E
D
法3:构造弦图
C E A F D O B
法4:全等+勾股
解:作DE⊥CA的延长线于E, 作DF⊥CB于F, 易得四边形CEDF为正方形 ∴CE=CF=DE=DF 再证△ADE≌△BDF(HL) ∴AE=BF ∴AC+BC=AC+CF+BF = AC+CF+AE =CE+CF =2CF
A E
C F O B
D
法5:构造相似
M
C
A
O
B
D
法6:托勒密定理 圆的内接凸四边形两对对边乘积 的和等于两条对角线的乘积。
B A
A
C
O
B
D
翻 译 成 C 人 话 O 就 是 : AB×CD+AD×BC=BD×AC
D
法7:等面积法
C C E O F D D B
A
O
来自百度文库
B A