高数公式大全全

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数公式大全

1.基本积分表:

三角函数的有理式积分:

一些初等函数:两个重要极限:

三角函数公式:

·诱导公式:

⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C

x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

2222222⎰

⎰⎰⎰⎰++-=-+-+--=-+++++=+-=

==-C

a

x a x a x dx x a C

a x x a a x x dx a x C

a x x a a x x dx a x I n

n xdx xdx I n n n

n arcsin 22ln 22)ln(221

cos sin 22

2222222

2222222

22

2

22

2

ππ

·和差角公式:·和差化积公式:

2

sin

2sin 2cos cos 2cos

2cos 2cos cos 2sin

2cos 2sin sin 2cos

2sin

2sin sin β

αβαβαβ

αβαβαβ

αβαβαβ

αβ

αβα-+=--+=+-+=--+=+α

ββαβαβαβ

αβαβ

αβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=

±⋅±=

±=±±=±1

)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ

·倍角公式:

·半角公式:

·正弦定理:

R C

c

B b A a 2sin sin sin ===·余弦定理:

C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=

-=

2

arccos 2

arcsin π

π

高阶导数公式——莱布尼兹(Leibniz )公式:

中值定理与导数应用:

曲率:

定积分的近似计算:

定积分应用相关公式:

空间解析几何和向量代数:

多元函数微分法及应用

微分法在几何上的应用:

)

,,(),,(),,(30

))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(}

,,{,0),,(0),,(0))(())(())(()()()(),,()

()()

(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x y

x y x x z x z z y z y -=

-=-=-+-+-==⎪⎩

⎪⎨

⎧====-'+-'+-''-=

'-='-⎪⎩

⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:

上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ϖ

ϖωψϕωψϕωψϕ方向导数与梯度:

多元函数的极值及其求法:

重积分及其应用:

柱面坐标和球面坐标:

曲线积分:

曲面积分:

高斯公式:

⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω

Ω

∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂ds

A dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n n ϖϖ

ϖϖϖdiv )cos cos cos (...

,0div ,div )cos cos cos ()(

成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:

—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系:

常数项级数:

级数审敛法:

绝对收敛与条件收敛:

幂级数:

函数展开成幂级数:

一些函数展开成幂级数:

欧拉公式:

三角级数:

傅立叶级数:

微分方程的相关概念:

一阶线性微分方程:

相关文档
最新文档