数学建模_主成分分析法模板
主成分分析案例范文

主成分分析案例范文假设我们有一个包含多个汽车特征的数据集,每个汽车被表示为一个m维向量。
我们想要对数据进行降维,以便更好地理解和可视化数据。
我们可以利用主成分分析,将高维数据转换为低维数据,然后选择其中的几个主成分进行分析。
首先,我们需要对数据进行标准化处理,即使得每个维度的均值为0,方差为1、这是因为PCA是一种基于协方差矩阵的方法,对于不同单位和尺度的变量,会导致主成分的不准确。
接下来,我们计算数据的协方差矩阵。
协方差矩阵描述了数据之间的线性关系,其中每个元素表示两个变量之间的协方差。
对于m维数据,其协方差矩阵为一个大小为mxm的矩阵。
然后,我们计算协方差矩阵的特征向量和特征值。
特征向量描述了协方差矩阵的主要方向,特征值表示了数据在特征向量方向的方差。
特征向量按照对应特征值的大小进行排序,最大的特征值对应的特征向量即为第一主成分,第二大的特征值对应的特征向量即为第二主成分,以此类推。
我们可以选择前k个主成分进行降维,其中k可以根据需求进行选择。
最后,我们将数据投影到所选择的前k个主成分上。
具体做法是将数据与特征向量构成的转换矩阵相乘,得到数据在新的低维空间中的表示。
通过PCA降维,我们可以减少数据的维度,并保留了大部分的方差信息。
这有助于数据可视化和分析。
下面以一个具体的例子说明PCA的应用。
假设我们有一个汽车数据集,其中包含汽车的各种特征,如车速、发动机功率、车重、燃油消耗等。
我们的目标是将这些特征进行降维,并查看是否可以找到一些有趣的模式。
首先,我们对数据进行标准化处理,确保每个特征的均值为0,方差为1然后,我们计算数据的协方差矩阵,找到其特征向量和特征值。
接下来,我们选择前两个特征值最大的特征向量作为第一和第二主成分。
这两个主成分分别表示数据的主要方向。
我们可以将数据投影到这两个主成分上,得到一个二维的表示。
最后,我们可以在二维空间中绘制投影后的数据,并观察数据之间的分布。
如果在二维空间中存在一些有趣的模式,我们可以进一步探索这些模式,并进行更深入的分析。
大学生数学建模-主成分分析方法

要点三
结合深度学习技术
随着深度学习技术的不断发展,为主 成分分析方法提供了新的思路和方法 。未来研究可以关注如何将深度学习 技术与主成分分析方法相结合,构建 更加高效、准确的模型,以应对更加 复杂的问题和挑战。
THANKS FOR WATCHING
感谢您的观看Βιβλιοθήκη 案例背景介绍案例来源
本案例来自某高校数学建模竞赛,旨在通过主成 分分析方法对一组多维数据进行降维处理。
数据特点
原始数据集包含多个特征,且特征之间存在相关 性,数据维度较高。
建模目标
通过主成分分析,提取数据中的主要特征,降低 数据维度,以便进行后续的数据分析和建模。
数据采集与预处理
数据采集
01
从相关数据源获取原始数据集,确保数据的完整性和准确性。
简化数据结构
主成分分析能够将多个相关变量 转化为少数几个综合变量,简化 数据结构,方便后续分析和建模。
应用于多个领域
主成分分析方法在经济学、金融 学、社会学、医学等多个领域都 有广泛应用,为相关领域的研究 提供了有力支持。
主成分分析方法的概述
01 02
线性变换方法
主成分分析通过线性变换将原始数据转换为新的坐标系,使得新坐标系 下的各主成分之间互不相关,且第一主成分解释原始数据变异的能力最 强,后续主成分依次减弱。
大学生数学建模-主成分分析方法
目录
• 引言 • 主成分分析方法的基本原理 • 主成分分析方法在大学生数学建模中
的应用 • 主成分分析方法的优缺点及适用范围
目录
• 案例分析:基于主成分分析的大学生 数学建模实践
• 总结与展望
01 引言
目的和背景
探究数据内在结构
主成分分析是一种常用的多元统 计方法,通过降维技术探究数据 内在结构,揭示变量之间的关系。
主成分分析(数学建模)

• 对于我们的数据,SPSS输出为 对于我们的数据,SPSS输出为
Total Variance Explained Initial Eigenvalues Component Total % of Variance Cumulative % 1 3.735 62.254 62.254 2 1.133 18.887 81.142 3 .457 7.619 88.761 4 .323 5.376 94.137 5 .199 3.320 97.457 6 .153 2.543 100.000 Extraction Method: Principal Component Analysis. Extraction Sums of Squared Loadings Total % of Variance Cumulative % 3.735 62.254 62.254 1.133 18.887 81.142
主 成 分 分 析
汇报什么? 汇报什么?
假定你是一个公司的财务经理,掌握了公司的 所有数据,比如固定资产、流动资金、每一笔 借贷的数额和期限、各种税费、工资支出、原 料消耗、产值、利润、折旧、职工人数、职工 的分工和教育程度等等。 如果让你向上面介绍公司状况,你能够把这些 指标和数字都原封不动地摆出去吗? 当然不能。 你必须要把各个方面作出高度概括,用一两个 指标简单明了地把情况说清楚。
Component Matrix
a
Component 1 2 3 4 MATH -.806 .353 -.040 .468 PHYS -.674 .531 -.454 -.240 CHEM -.675 .513 .499 -.181 LITERAT .893 .306 -.004 -.037 HISTORY .825 .435 .002 .079 ENGLISH .836 .425 .000 .074 Extraction Method: Principal Component Analysis. a. 6 components extracted. 5 .021 -.001 .002 .077 -.342 .276 6 .068 -.006 .003 .320 -.083 , x 3 , x 4 , x 5 , x6 分 别 表 示 原 先 的 六 个 变 量 , 而 用 y 1 , y 2 , y 3 , y 4, y 5 , y 6 表 示 新 的 主 成 分 , 那 么 , 原 先 六 个 变 量 的关系为: x1,x2,x3,x4,x5,x6与第一和第二主成分y1,y2的关系为: X1=-0.806y1 + 0.353y2 353y X2=-0.674y1 + 0.531y2 531y X3=-0.675y1 + 0.513y2 513y X4= 0.893y1 + 0.306y2 306y x5= 0.825y1 + 0.435y2 435y x6= 0.836y1 + 0.425y2 425y • 这些系数称为主成分载荷 ( loading) , 它表示主成分和相应 这些系数称为主成分载荷( ) 的原先变量的相关系数。 的原先变量的相关系数。 • 比如 1 表示式中 1 的系数为 比如x 表示式中y 的系数为-0.806, 这就是说第一主成分和数 , 学变量的相关系数为-0.806。 学变量的相关系数为 。 • 相关系数 绝对值 ) 越大 , 主成分对该变量的代表性也越大 。 相关系数(绝对值 越大,主成分对该变量的代表性也越大。 绝对值) 可以看得出,第一主成分对各个变量解释得都很充分。 可以看得出,第一主成分对各个变量解释得都很充分。而最后 的几个主成分和原先的变量就不那么相关了。 的几个主成分和原先的变量就不那么相关了。
大学生数学建模——主成分分析方法页PPT文档

从以上的分析可以看出,主成分分析的
实质就是确定原来变量xj(j=1,2 ,…, p) 在诸主成分zi(i=1,2,…,m)上的荷载 lij ( i=1,2,…,m; j=1,2 ,…,p)。
从数学上容易知道,从数学上可以证明,
它们分别是的相关矩阵的m个较大的特征值所 对应的特征向量。
二、计算步骤
1540.29 926.35 1501.24 897.36 911.24 103.52 968.33 957.14 824.37 1255.42 1251.03 1246.47 814.21 1124.05 805.67 1313.11
216.39 291.52 225.25 196.37 226.51 217.09 181.38 194.04 188.09 211.55 220.91 242.16 193.46 228.44 175.23 236.29
65.601 1181.54 270.12 18.266 0.162 7.474 12.489
33.205 1436.12 354.26 17.486 11.805 1.892 17.534
16.607 1405.09 586.59 40.683 14.401 0.303 22.932
6 68.337 7 95.416 8 62.901 9 86.624 10 91.394 11 76.912 12 51.274 13 68.831 14 77.301 15 76.948 16 99.265 17 118.505 18 141.473 19 137.761 20 117.612 21 122.781
人) 295.34
x 6:经济 作物占农 作物面积 比例(%)
26.724
x 7:耕地 占土地面 积比率
数学建模-主成分分析聚类分析

随机抽取管理学院10名学生,对其4门课程的考试成绩进行统计,如下表所示,这4门课程分别为多元统计分析1X ,运筹学2X ,经济学3X ,管理学4X . 使用主成分分析方法对学生成绩进行分析.>> x1=[77 63 75 55 31 67 70 66 70 57]; >> x2=[82 78 73 72 55 81 81 81 68 73]; >> x3=[67 80 71 63 60 82 78 73 72 55]; >> x4=[81 81 81 68 73 67 80 71 63 60];>> data=[x1;x2;x3;x4]'; %输入观测值数据矩阵 >> [n,m]=size(data);>> for i=1:m %将数据矩阵中心标准化sddata(:,i)=(data(:,i)-mean(data(:,i)))./std(data(:,i),1); end>> [P,score,egenvalue,t2]=princomp(sddata) %做主成分分析 P =-0.5511 0.3268 -0.3624 0.6769 -0.5588 0.3358 -0.2089 -0.7289 -0.5110 -0.1193 0.8460 0.0944 -0.3505 -0.8753 -0.3307 -0.0398score =-1.3489 -0.2567 -1.2840 -0.0315 -1.2458 -0.9740 0.5341 -0.2698 -0.8704 -0.7467 -0.5863 0.7336 1.1642 0.3096 -0.2225 -0.2707 3.3634 -1.5690 0.3950 -0.0572 -1.1054 0.8480 1.1534 -0.2345 -1.5954 -0.5212 0.0958 -0.1867 -0.6992 0.4872 0.1005 -0.4105 0.4738 0.9799 0.5768 1.03061.8637 1.4430 -0.7628 -0.3031egenvalue = 2.7502 0.9334 0.5275 0.2334 t2 =3.8620 2.4333 3.8297 1.0034 7.0609 3.9724 1.3834 1.1732 6.29124.9906>> for k=1:mgxl(k)=sum(egenvalue(1:k))/sum(egenvalue); end>> gxl %输出累计贡献率 gxl =0.6188 0.8288 0.9475 1.0000>> plot(score(:,1),score(:,2),'r+') %画出第一第二主成分的散点图 >> gname第一主成分43211X X X X Y 0.3505-0.5110-0.5588--0.5511=,所有科目考试成绩的系数均为负,且差异不大,故1Y 可解释为学生的综合学习成绩,该主成分得分越小(散点图中的位置越靠左),综合成绩越好.第二主成分43212X X X X Y 0.8753-0.1193-0.33580.3268+=,数学科目考试成绩的系数均为正,专业科目考试成绩的系数均为负,故2Y 可解释为学生的数学科目与专业科目学习成绩的差异,该主成分得分绝对值越大则差异越大,由散点图可以看出,10号学生的数学科目明显优于其专业科目成绩,而5号学生的数学科目明显差于其专业科目成绩.>> Y1=score(:,1);ZF=(sum(data'))'; %提取第一主成分得分,求每个学生的总分 >>for k=1:norder(k,1)=find(Y1==min(Y1));Y1(order(k,1))=inf; %按第一主成分得分由高到低排序order(k,2)=find(ZF==max(ZF));ZF(order(k,2))=-inf; %按总分由高到低排序 end >> orderorder =7 7 1 1 2 2 6 3 3 6 8 8 9 9 4 4 10 10 5 5两种排序方式下3号学生和6号学生的排序结果相反,原因在于43211X X X X Y 0.3505-0.5110-0.5588--0.5511可见,这四个科目成绩的重要性是依次递减的,3号学生的总分虽略高于6号学生,但他的最高分出现在重要性最低的第4科.>> R=sddata'*sddata./n %求标准化数据的样本相关矩阵R =1.0000 0.7867 0.5322 0.28900.7867 1.0000 0.5749 0.27680.5322 0.5749 1.0000 0.39750.2890 0.2768 0.3975 1.0000建模2011A主成分分析-聚类分析:data1=[7.84 153.80 44.31 20.56 266.00 18.20 35.38 72.35 5.93 146.20 45.05 22.51 86.00 17.20 36.18 94.594.90 439.20 29.07 64.56 109.00 10.60 74.32 218.376.56 223.90 40.08 25.17 950.00 15.40 32.28 117.356.35 525.20 59.35 117.53 800.00 20.20 169.96 726.02 14.08 1092.90 67.96 308.61 1040.00 28.20 434.80 966.738.94 269.80 95.83 44.81 121.00 17.80 62.91 166.739.62 1066.20 285.58 2528.48 13500.00 41.70 381.64 1417.867.41 1123.90 88.17 151.64 16000.00 25.80 172.36 926.848.72 267.10 65.56 29.65 63.00 21.70 36.94 100.415.93 201.40 45.19 24.90 259.00 14.60 35.88 102.659.17 287.00 43.94 45.77 168.00 19.70 62.74 223.165.72 193.70 80.35 26.57 111.00 19.80 57.64 89.084.49 359.50 258.15 123.27 77.00 12.90 106.47 853.985.51 516.40 91.97 89.04 189.00 19.80 121.72 494.80 11.45 1044.50 94.78 136.97 202.00 22.30 472.48 602.046.14 445.40 82.69 167.39 144.00 18.40 111.24 389.807.84 347.90 57.65 97.14 213.00 19.60 70.82 307.247.41 345.70 159.45 71.03 85.00 18.10 89.34 380.928.50 614.00 744.46 130.55 156.00 32.80 228.64 1013.475.51 257.20 54.64 29.01 104.00 13.20 87.68 223.279.84 1213.50 920.84 1364.85 115.00 142.50 181.48 1818.479.39 325.80 172.29 104.89 82.00 31.50 90.90 429.293.30 212.10 50.13 38.62 139.00 10.60 66.98 186.224.09 90.50 35.02 11.82 16.00 10.40 29.09 46.846.14 583.40 95.25 233.70 155.00 21.10 97.47 311.025.31 366.40 42.34 64.65 188.00 17.40 67.11 182.653.69 323.90 35.14 34.66 50.00 13.90 65.48 253.16 21.87 424.50 73.40 59.72 1520.00 27.80 83.70 175.71 18.38 630.00 96.68 114.81 645.00 34.80 130.36 1626.02 10.53 635.30 64.03 101.35 190.00 28.30 162.64 615.103.50 463.40 112.19 72.93 118.00 14.10 60.60 193.376.35 532.00 57.51 83.76 191.00 19.50 73.46 297.14 5.51 778.70 74.66 92.48 330.00 19.70 110.20 351.63 4.49 754.80 99.88 97.92 243.00 24.90 100.79 323.37 3.50 396.30 138.37 58.97 170.00 24.20 91.76 2893.47 5.51 687.80 85.52 72.85 201.00 19.00 103.20 403.27 4.29 526.00 55.31 81.43 93.00 19.90 100.65 369.80 4.29 449.10 67.22 51.64 315.00 15.70 106.97 294.69 6.56 852.70 72.59 158.67 311.00 21.20 124.24 377.14 16.58 459.00 94.79 47.17 1900.00 19.90 71.32 215.10 7.41 337.30 77.27 248.85 90.00 20.10 99.58 210.00 5.93 568.10 75.14 118.16 135.00 23.80 111.54 572.96 4.69 599.00 69.05 122.18 121.00 19.80 102.72 427.044.90 635.50 68.42 227.76 176.00 19.50 96.33 538.985.31 600.70 44.65 45.10 51.00 15.50 65.87 186.334.29 567.60 60.25 48.67 46.00 16.10 63.74 208.065.51 228.50 49.27 30.85 62.00 22.90 45.93 102.04 4.69 568.60 306.02 70.41 900.00 16.80 79.67 196.737.20 214.70 50.33 40.16 156.00 20.80 47.76 403.98 5.31 151.90 47.24 24.44 140.00 17.30 37.49 92.55 4.90 343.30 42.01 58.81 80.00 13.80 79.07 275.82 4.90 293.90 60.29 51.03 53.00 12.60 75.93 278.37 3.89 312.90 33.79 277.82 55.00 14.00 68.24 295.61 3.69 315.90 45.43 34.05 55.00 12.60 62.84 196.33 3.11 416.30 57.88 47.64 167.00 11.90 116.19 242.04 3.89 374.00 45.17 50.19 35.00 15.00 58.11 157.35 3.89 344.30 35.29 47.87 100.00 15.10 133.72 141.022.91 252.90 45.98 71.54 32.14 14.40 42.99 146.223.30 503.40 38.74 30.46 36.43 7.20 53.73 102.864.90 303.80 56.02 65.86 63.21 40.05 90.69 3760.82 4.09 127.00 27.58 23.99 30.00 11.93 57.47 85.61 2.91 265.00 35.66 29.39 24.64 9.23 60.54 122.962.72 278.90 43.43 32.61 64.29 9.90 53.40 135.713.11 751.20 53.11 53.80 27.86 10.46 60.27 155.00 3.30 361.30 47.54 52.28 25.71 9.11 113.46 218.27 3.30 488.00 51.18 34.55 37.50 10.80 54.62 125.926.14 227.00 42.15 67.04 49.29 16.31 34.28 82.963.69 347.40 37.76 19.97 26.79 10.01 54.41 221.224.49 136.00 36.56 23.07 21.43 14.96 34.19 78.98 3.11 327.10 25.98 23.73 25.71 9.79 63.81 138.06 8.06 113.10 52.40 20.81 65.36 19.69 29.56 62.24 3.69 270.50 33.12 57.85 25.71 13.50 62.04 118.16 3.69 160.30 38.29 26.08 25.71 14.29 40.13 82.86 3.50 305.50 39.50 30.86 31.07 14.74 61.89 148.88 2.72 70.90 19.45 9.12 15.007.09 22.73 32.861.77 119.80 15.32 13.34 8.57 6.19 26.31 47.762.53 468.80 37.04 32.03 45.00 12.15 65.25 178.983.69 150.70 59.61 19.00 34.29 24.98 38.47 89.08 6.14 100.30 37.49 20.23 34.29 14.85 29.29 61.94 10.99 109.80 56.07 69.06 58.93 20.70 38.87 63.27 6.35 91.80 36.12 16.91 36.43 12.49 27.01 47.76 30.13 743.90 49.03 26.18 27.86 17.66 72.76 182.04 3.89 416.80 37.04 23.78 22.50 11.48 54.45 105.00 2.91 369.80 36.34 52.48 22.507.99 42.02 84.08 1.96 194.00 18.08 16.17 26.79 6.98 40.27 94.69 6.98 50.10 41.02 14.25 17.14 13.39 26.57 40.92 2.91 198.80 28.21 19.24 13.93 9.56 47.81 94.80 5.93 886.60 42.69 28.12 43.93 21.15 94.64 163.27 5.93 128.90 47.52 16.31 12.86 17.66 33.51 91.73 7.41 114.30 48.34 21.45 35.36 16.54 35.83 63.88 4.29 232.90 29.17 40.02 1714.29 9.79 38.65 95.414.69 132.80 36.11 17.28 20.36 15.53 37.03 82.765.72 1619.80 43.48 15.50 20.36 15.41 30.99 57.556.77 282.50 41.97 52.80 27.86 18.34 49.10 104.90 4.49 180.60 37.23 18.70 27.86 11.93 36.45 63.98 3.11 386.60 35.93 26.38 24.64 12.26 60.00 157.24 2.91 345.00 40.46 152.21 23.57 15.53 58.05 170.71 4.29 95.60 22.49 17.15 85.71 10.13 27.97 67.24 7.63 87.10 45.83 14.83 30.00 14.63 29.25 48.78 5.93 203.00 35.97 16.88 15.00 14.51 45.83 89.49 2.34 353.00 24.53 12.70 11.79 9.00 58.80 89.08 2.91 233.20 24.92 21.62 85.71 8.33 45.20 100.10 5.72 174.30 33.83 29.45 20.36 13.05 42.10 71.43 2.34 87.60 18.46 9.73 13.93 8.89 24.43 43.37 6.56 245.60 36.73 61.30 55.71 14.18 47.24 114.29 4.69 167.90 33.15 18.96 60.00 15.98 33.46 55.71 6.35 111.40 28.82 59.17 206.79 11.70 28.02 61.53 5.10 94.60 77.92 20.34 23.57 28.69 25.92 58.47 4.69 111.60 24.57 12.09 31.07 8.55 27.12 43.883.50 85.50 26.33 24.88 36.43 11.36 26.77 64.084.69 169.50 39.11 22.51 25.71 15.98 39.53 82.96 4.49 138.00 34.52 35.54 50.36 12.60 25.45 52.45 3.30 131.40 35.97 11.29 43.93 11.03 30.06 61.94 2.91 41.00 41.77 12.50 17.14 17.10 19.68 78.374.09 129.70 26.83 10.12 40.71 7.76 28.84 68.165.72 148.00 36.73 14.21 52.50 12.60 27.15 57.86 4.90 108.10 22.729.40 35.36 8.89 32.39 69.39 4.90 132.50 79.52 18.67 42.86 27.68 28.30 92.245.93 88.80 52.41 15.30 10.71 19.91 28.62 63.88 2.91 206.70 17.46 12.02 31.07 5.51 53.79 79.18 2.72 121.80 19.98 7.71 24.648.10 27.30 57.96 2.34 231.10 36.48 12.80 37.50 17.66 29.02 96.532.53 128.60 21.75 9.10 30.00 9.56 22.77 58.063.89 126.80 50.01 12.74 53.57 18.68 29.40 69.90 2.34 79.70 74.36 27.49 9.64 45.45 21.22 87.65 2.34 294.10 42.68 12.27 79.29 15.53 83.44 99.491.96 238.30 19.71 25.22 19.29 6.64 66.24 142.862.72 109.30 18.52 12.55 19.29 9.79 26.06 61.433.11 69.40 22.93 7.56 26.79 7.65 22.09 53.06 3.50 155.70 33.30 12.08 42.86 11.36 28.05 51.53 2.72 109.30 19.83 14.54 19.29 9.45 34.56 47.55 1.77 205.50 173.34 27.81 41.79 74.03 55.71 229.80 3.50 53.20 35.15 7.91 20.36 11.14 24.90 34.39 2.53 40.00 19.08 2.29 15.00 7.88 24.15 54.29 9.17 82.80 63.88 24.85 11.79 31.50 21.68 76.537.41 222.40 31.10 38.50 142.50 8.66 128.60 133.98 5.72 164.80 49.44 27.98 126.43 13.61 37.64 76.12 8.06 194.00 41.79 31.43 213.21 13.61 45.52 127.35 5.72 310.10 56.40 37.11 138.21 16.43 59.63 154.49 8.72 1024.90 77.61 71.24 128.57 19.35 227.40 1389.39 6.77 492.80 37.86 35.61 142.50 13.39 114.13 118.98 6.56 202.30 33.28 37.67 1339.29 11.36 140.62 110.92 6.77 97.20 38.67 18.12 24.64 14.74 28.77 49.90 6.98 208.60 41.00 28.55 67.50 15.19 93.83 84.59 6.14 143.40 41.67 22.57 88.93 12.49 38.14 65.61 6.69 158.10 36.61 16.22 36.00 12.91 31.67 63.57 8.00 332.60 77.06 46.01 240.00 24.47 68.10 259.29 6.69 401.80 84.94 60.11 138.00 19.16 96.76 227.558.23 756.40 42.73 87.52 63.00 19.26 88.74 184.699.35 407.50 55.54 61.83 112.00 24.05 66.82 208.27 8.90 307.30 54.39 57.21 326.00 25.72 131.93 256.94 3.77 242.10 30.93 32.13 28.00 11.56 50.60 144.69 5.41 178.90 29.54 23.73 52.00 9.89 49.84 118.88 7.78 315.50 49.76 28.03 550.00 18.95 45.73 109.29 5.62 134.60 25.33 19.10 45.00 11.66 40.50 87.14 5.41 235.60 36.88 48.80 43.00 14.06 53.61 213.47 4.58 203.80 39.03 24.18 87.00 16.66 53.09 138.88 6.91 568.50 54.59 113.46 264.00 23.22 82.40 399.90 5.00 506.50 59.45 70.71 202.00 26.13 78.01 334.395.62 880.00 78.29 121.12 293.00 25.61 171.14 540.006.91 250.30 39.09 50.46 81.00 20.41 59.17 172.656.26 249.40 54.70 81.74 75.00 25.51 57.92 171.127.56 248.20 42.23 69.39 57.00 16.56 44.54 165.104.79 156.30 41.16 32.40 83.00 14.58 35.50 103.882.77 120.30 49.85 18.38 43.00 25.51 37.93 115.416.26 429.20 54.47 56.60 45.00 19.78 87.50 230.417.34 205.10 43.63 23.51 47.00 19.78 41.33 104.294.17 113.80 37.27 17.06 34.00 14.47 26.74 64.495.00 221.30 30.75 70.32 47.00 16.14 47.20 185.417.56 580.10 39.78 85.46 270.00 17.49 66.69 315.925.62 171.00 31.23 25.73 292.00 15.72 31.09 110.616.05 365.00 35.92 30.91 110.00 17.91 44.75 147.354.79 289.70 42.12 41.10 57.00 17.49 76.80 237.45 23.72 452.10 37.22 43.61 160.00 16.35 73.27 1635.926.47 847.60 53.17 59.00 96.00 19.05 68.82 186.534.17 310.70 40.70 42.64 58.00 14.99 115.59 177.765.00 317.50 42.46 30.96 162.00 17.81 59.94 221.944.17 357.50 38.78 43.89 14901.00 17.70 98.22 349.80 6.26 387.20 38.03 30.06 85.00 21.97 54.98 142.555.00 196.50 50.03 18.56 29.00 25.82 33.90 84.801.61 295.80 15.40 18.35 19.00 4.27 40.42 106.534.58 129.00 31.09 18.93 38.00 15.10 29.76 69.805.41 204.90 40.16 25.86 41.00 16.24 33.28 80.003.57 174.80 31.13 26.21 26.00 11.14 31.77 94.082.00 197.00 78.36 22.98 19.00 24.05 43.73 104.183.37 106.70 16.31 9.04 17.00 7.60 26.89 37.146.47 738.00 47.35 24.07 135.00 19.58 34.09 101.733.37 788.70 28.90 17.62 34.00 15.51 26.04 91.026.91 133.10 40.58 32.64 27.00 22.39 33.97 115.202.38 149.50 27.18 11.19 54.00 14.47 38.35 59.497.56 206.60 55.79 24.44 22.00 28.63 29.73 81.738.67 78.90 58.87 21.65 26.00 23.43 26.52 70.514.79 178.60 32.31 29.01 45.00 14.26 47.98 104.905.41 250.10 34.32 16.25 15.00 18.53 41.29 90.205.83 89.20 54.90 23.28 19.00 21.76 24.95 53.575.62 453.50 37.22 21.92 40.00 16.56 41.51 87.354.38 92.40 38.70 15.03 21.00 13.85 24.22 47.242.77 198.70 18.11 15.33 19.00 9.68 34.15 95.925.41 260.10 43.81 26.46 33.00 13.22 39.49 87.045.62 101.10 49.01 19.96 23.00 20.82 26.00 71.536.69 146.50 43.39 19.89 36.00 17.49 33.24 60.007.56 66.50 49.24 14.67 19.00 17.08 25.48 41.122.77 119.00 27.49 10.62 44.00 10.52 31.94 53.271.61 434.80 21.29 12.84 18.00 8.85 56.14 106.432.97 77.50 16.91 9.95 34.00 7.50 28.15 41.634.58 130.80 35.61 19.59 23.00 16.14 29.87 61.125.20 134.50 29.37 16.33 32.00 13.54 29.83 59.90 3.17 101.80 32.23 10.68 12.00 12.81 33.20 51.12 5.00 232.00 32.43 24.23 37.00 15.10 36.08 101.84 7.56 121.10 62.91 31.03 44.00 27.28 28.36 88.165.20 238.70 47.18 59.66 24.00 19.68 62.57 108.476.05 151.20 92.76 31.43 79.00 32.07 31.57 130.61 2.77 202.60 56.54 18.09 49.00 28.11 26.14 82.14 2.38 351.60 64.86 28.97 65.00 17.28 112.62 105.31 5.20 173.80 58.28 19.99 51.00 22.49 31.61 69.80 8.67 423.30 61.41 117.83 216.00 30.30 178.88 293.16 5.41 645.30 50.27 80.60 113.00 23.32 99.42 358.27 7.12 967.70 36.41 70.71 66.00 16.87 119.35 457.96 4.58 445.70 28.32 132.05 139.00 12.91 87.44 303.06 8.23 420.60 35.81 73.86 561.00 22.49 60.91 241.63 4.58 257.40 42.25 44.84 260.00 19.58 46.90 192.65 6.05 248.70 44.36 42.79 150.00 19.89 72.20 170.10 8.23 350.30 59.07 36.58 177.00 24.57 52.56 170.00 4.17 109.90 29.09 13.71 31.00 11.35 25.08 51.63 3.97 306.20 38.30 36.22 115.00 13.54 60.63 145.51 10.74 306.50 53.98 97.05 255.00 27.91 69.40 177.86 3.77 515.60 28.74 77.47 1801.00 15.10 70.18 178.57 10.27 175.90 57.88 37.50 65.00 26.97 45.34 100.415.20 417.80 35.71 47.58 801.00 16.03 94.93 204.086.47 368.20 44.22 65.70 91.00 18.33 76.88 247.04 6.47 393.00 35.82 70.17 135.00 18.53 72.96 254.80 8.90 117.50 32.54 20.51 41.00 14.47 41.45 56.33 3.37 379.10 32.13 37.81 49.00 13.74 70.37 208.37 6.69 320.30 87.90 66.99 78.00 21.90 123.60 230.11 4.17 613.40 50.34 149.26 133.00 16.60 110.20 447.83 8.23 220.50 61.48 41.96 84.00 22.40 58.37 153.274.38 229.30 32.69 60.40 64.00 13.70 62.62 204.815.20 334.30 47.05 40.37 76.00 18.40 61.03 211.47 5.20 284.30 40.47 44.73 349.00 16.00 119.46 184.61 5.41 230.10 41.65 35.71 57.00 16.90 43.91 118.70 5.00 551.10 71.75 71.23 74.00 22.30 111.62 209.50 9.58 201.00 39.11 25.26 125.00 10.70 99.35 90.07 3.17 203.80 26.57 24.29 23.00 11.90 41.69 94.34 3.77 355.20 26.25 32.87 14.00 9.60 59.22 117.87 9.13 133.70 52.99 22.10 26.00 24.80 37.73 95.48 7.34 95.60 47.85 19.51 14.00 20.80 28.52 57.68 5.62 352.60 44.57 58.98 51.00 13.30 69.95 531.454.79 556.20 50.87 143.31 92.00 19.10 180.05 388.695.20 113.70 41.85 20.73 12.00 19.00 31.87 57.273.37 240.50 28.04 22.63 261.00 11.70 35.74 92.467.34 120.30 54.19 21.90 27.00 23.00 29.63 81.013.57 514.10 42.34 47.67 13800.00 17.30 69.96 269.894.38 246.30 29.90 21.84 84.00 14.10 59.00 95.175.41 158.00 46.86 24.02 31.00 19.30 36.27 79.244.38 211.30 27.79 19.01 34.00 12.00 38.38 81.425.62 236.50 35.95 66.52 199.00 13.90 40.98 193.676.05 193.00 40.60 24.88 27.00 14.40 33.53 84.866.26 169.70 44.26 88.12 46.00 17.20 42.71 97.675.20 320.10 35.92 36.86 68.00 16.50 58.46 162.856.91 180.20 54.08 27.01 37.00 18.40 44.13 118.914.58 351.80 55.39 78.07 87.00 16.90 69.55 188.888.67 245.70 47.79 27.55 35.00 18.40 53.42 98.816.47 86.80 41.12 15.46 23.00 15.90 37.53 70.187.12 367.80 92.02 49.80 97.00 16.30 41.26 321.123.77 467.10 49.03 34.44 45.00 15.40 60.83 132.865.41 364.70 40.34 40.93 79.00 18.70 83.32 175.34 10.97 248.50 40.61 61.52 81.00 17.20 76.19 168.059.81 171.80 75.38 163.20 30.00 26.30 45.27 125.168.23 409.90 44.67 66.92 80.00 36.00 96.85 197.635.41 302.50 34.22 27.60 408.00 14.80 68.70 218.242.77 236.20 42.67 16.35 62.00 9.40 41.88 149.527.78 114.50 56.38 26.96 36.00 22.40 31.24 75.916.47 165.20 73.40 42.73 40.00 19.70 84.13 95.695.62 380.40 46.63 28.31 48.00 14.60 83.82 155.983.77 398.40 29.57 18.64 60.00 10.50 113.84 172.533.57 268.60 28.11 23.20 64.00 12.20 54.52 101.004.38 126.50 28.57 20.57 19.00 12.10 25.17 53.106.91 290.30 47.87 28.90 34.00 14.80 44.26 94.967.12 228.40 40.29 25.15 37.00 15.30 40.10 83.194.38 305.50 52.44 22.92 13.00 19.10 45.21 109.333.97 407.60 35.65 22.33 11.00 18.60 60.36 121.628.00 96.60 19.42 11.26 12.00 7.50 27.54 47.383.57 185.50 23.15 13.42 34.00 9.50 29.49 92.363.37 288.70 26.12 15.10 18.00 10.30 30.14 63.833.17 90.40 16.20 8.30 32.00 7.00 44.31 44.672.97 285.40 26.86 15.00 65.00 13.30 38.63 68.207.12 100.00 46.15 19.43 14.00 23.00 22.01 65.705.62 306.90 42.02 25.21 40.00 19.20 36.99 141.505.83 319.50 43.32 25.89 54.00 15.80 40.98 83.403.97 100.10 21.69 11.96 40.00 7.90 42.79 69.243.17 218.60 39.51 15.26 34.00 10.50 50.98 84.242.77 239.80 26.06 15.82 35.00 10.20 41.43 80.903.17 156.80 19.73 8.34 42.00 7.60 39.21 71.012.97 281.10 28.56 11.42 48.00 12.60 37.95 81.013.17 142.50 36.75 9.93 43.00 13.30 32.61 61.641.80 195.50 28.53 7.32 36.00 9.70 37.41 50.923.17 153.90 20.90 8.21 37.00 7.60 31.37 38.213.77 104.20 30.34 12.34 24.00 11.80 39.31 57.164.79 72.10 65.54 11.55 35.00 19.80 26.04 47.583.57 190.80 31.33 10.67 65.00 15.70 51.56 94.026.47 282.90 52.68 20.34 25.00 22.90 32.53 103.507.34 149.00 44.22 20.14 33.00 16.00 35.43 147.758.23 121.30 43.29 31.63 86.00 11.40 33.21 46.8610.74 479.20 96.28 29.23 98.00 25.30 80.36 112.3511.68 870.50 70.84 35.17 302.00 29.10 78.15 435.447.34 279.00 51.25 27.95 44.00 22.50 51.20 117.666.05 162.00 36.22 17.91 35.00 14.20 36.41 61.025.41 907.00 43.08 36.48 10.00 14.50 41.02 121.206.26 132.90 42.59 16.58 27.00 16.20 35.52 63.316.47 197.00 38.18 21.09 64.00 18.60 40.18 168.056.47 100.70 36.19 13.31 42.00 11.50 34.34 56.234.79 119.10 35.76 19.71 44.00 9.90 39.66 67.067.56 63.50 33.65 21.90 60.00 12.50 41.29 60.509.35 156.00 57.36 31.06 59.00 25.80 51.03 95.90]; %8种重金属元素的浓度原始数据>> bjz=[3.61303113.23512.33169]'; %8种重金属元素的背景值的均值>>[n,m]=size(data1);>> for i=1:m %求污染程度数据矩阵data2(:,i)=data1(:,i)./bjz(:,i);end>>data3=zscore(data2); %将污染程度数据矩阵中心化标准化>> R3=data3'*data3./n %求污染程度矩阵的相关系数矩阵R3 =0.9969 0.2539 0.1884 0.1592 0.0642 0.3156 0.2890 0.24610.2539 0.9969 0.3513 0.3955 0.2639 0.3283 0.6583 0.42980.1884 0.3513 0.9969 0.5299 0.1029 0.7135 0.3816 0.42300.1592 0.3955 0.5299 0.9969 0.4154 0.4930 0.5184 0.38610.0642 0.2639 0.1029 0.4154 0.9969 0.1026 0.2972 0.19520.3156 0.3283 0.7135 0.4930 0.1026 0.9969 0.3058 0.43500.2890 0.6583 0.3816 0.5184 0.2972 0.3058 0.9969 0.49210.2461 0.4298 0.4230 0.3861 0.1952 0.4350 0.4921 0.9969 >> [P,score,egenvalue,t2]=princomp(data3) %对标准化污染程度数据做主成分分析P =-0.2256 0.1861 -0.6932 0.6286 -0.0346 0.0990 -0.0130 0.1659 -0.3767 -0.2624 -0.2875 -0.3676 -0.3346 -0.4944 0.4024 0.2305 -0.3895 0.4140 0.3089 -0.0527 -0.1442 -0.1494 -0.5203 0.5146 -0.4009 -0.1162 0.3718 0.1569 -0.2034 0.6210 0.4560 0.1674 -0.2165 -0.6279 0.3028 0.5121 0.2027 -0.3585 -0.1862 -0.0236 -0.3831 0.4798 0.1932 0.1561 -0.0183 -0.3038 0.2180 -0.6490 -0.4049 -0.2930 -0.2415 -0.2828 -0.2074 0.3297 -0.5166 -0.4396 -0.3704 0.0349 -0.1254 -0.2750 0.8604 0.0909 0.1005 0.1079score =0.5456 0.4760 -0.2385 0.9238 0.0347 0.0562 -0.0448 -0.00680.7236 0.3890 0.1517 0.4457 0.0965 0.0977 -0.0533 -0.04400.1029 -0.6786 -0.3148 -0.6068 -0.1762 0.0955 0.2073 0.26030.5289 -0.0888 0.0282 0.7029 0.1653 -0.1864 0.0361 0.1829-2.2377 -0.8590 -0.8366 -1.0018 0.5103 0.4119 -0.4269 -0.6101 -7.0283 -2.3626 -4.0263 -1.6355 -1.1503 1.6389 -1.4879 -2.1198 -0.3681 0.5809 -0.5586 0.6635 -0.1787 0.0705 -0.4055 0.3925 -15.5620 -6.6945 5.7248 3.5181 -1.3891 6.1650 2.6337 1.0367 -6.0371 -6.9258 1.2082 2.9402 1.8860 -4.2464 -1.0592 -0.2348 -0.0015 0.7581 -0.4581 0.8739 -0.1659 -0.2192 0.1137 0.09280.6954 0.1341 0.0674 0.3664 0.0591 0.0268 -0.0202 0.1885-0.2674 0.3478 -0.8345 0.7230 0.0449 0.1003 0.0674 -0.06300.1822 0.5162 0.2579 0.2336 -0.1541 -0.0185 -0.3874 -0.1035-2.1906 0.7026 0.6746 -1.3487 0.8725 0.3109 -1.5612 1.6705 -1.5324 -0.2124 -0.3571 -0.9523 0.0396 -0.0076 -0.2709 -0.0697 -6.0460 -2.4069 -3.9522 -2.5619 -2.0637 1.4629 -2.7735 -2.3424 -1.3424 -0.2013 -0.2190 -0.5147 -0.1666 0.4430 -0.0608 0.0551 -0.6321 0.1785 -0.4933 0.2850 0.0627 0.1584 0.1581 0.0416 -1.2540 0.6515 -0.1718 -0.1308 -0.0092 0.0480 -0.8613 0.6978 -7.5796 3.7551 1.3460 -1.7726 -0.6913 -0.9056 -5.5039 3.41100.0944 -0.2025 -0.2070 -0.2764 0.0309 0.3363 -0.4892 -0.0266 -17.4212 8.9703 5.9221 -0.0944 -1.4722 -1.2894 0.8421 0.1725 -2.1046 1.4921 -0.2319 0.4977 0.0202 -0.1274 -0.6136 0.04220.6397 -0.3411 0.4288 -0.5322 0.1214 0.3348 -0.3583 0.12191.4171 0.0243 0.4828 0.1015 0.1464 0.3042 -0.1825 0.2053 -1.7146 -0.1366 -0.0385 -0.4983 -0.6268 0.1689 0.4550 0.2763 -0.0550 -0.1538 -0.0622 -0.2113 -0.1635 -0.0413 0.1809 -0.0872 0.3403 -0.3241 0.1514 -0.6483 0.1454 0.0456 0.0582 -0.0361 -2.2528 0.8758 -3.4344 3.6015 -0.4367 -0.2157 -0.1284 0.2580 -4.7160 1.0707 -3.4565 0.9714 2.5440 0.0534 0.4370 0.1119 -2.7709 -0.0334 -1.8314 -0.2652 -0.0324 0.0437 -0.0380 -0.7412 -0.3140 -0.0641 0.5062 -0.8364 -0.3898 -0.3550 -0.1278 0.7118 -0.7990 -0.1320 -0.4332 -0.3535 -0.2162 -0.3231 0.4275 0.1141 -1.6491 -0.6296 -0.6280 -1.1407 -0.6168 -0.6762 0.3947 0.1354 -1.7686 -0.1825 -0.0992 -1.1970 -0.6814 -0.8994 0.3968 -0.0186 -3.9091 0.7415 -0.2673 -2.9500 6.3803 0.2921 0.2126 0.7461 -1.4647 -0.3831 -0.5316 -1.0731 -0.3343 -0.5569 0.1834 0.2274 -0.9190 -0.3578 -0.1369 -1.0095 -0.1176 -0.1736 0.1963 -0.2639 -0.6199 -0.5094 -0.0971 -0.8925 -0.1719 -0.0425 -0.3181 -0.0942 -2.1994 -0.7106 -0.8728 -1.0604 -0.8158 -0.4901 0.6209 0.1088 -1.6930 0.1943 -2.2379 2.4508 -0.2430 -0.4713 -0.3154 0.7789 -1.1941 0.0654 -0.0643 0.2298 -0.5284 0.8791 0.1192 -0.0071 -1.7783 -0.0857 -0.4393 -0.8688 0.1825 -0.1170 0.2485 -0.2336 -1.3269 -0.3879 -0.1961 -1.0676 -0.1696 -0.1690 0.3273 -0.0182 -1.7262 -0.4834 -0.0588 -1.0235 -0.0390 0.1464 0.7781 0.2450 -0.3146 -0.4307 -0.4538 -0.6836 -0.4914 -0.5546 0.5160 0.2878 -0.3077 -0.3195 -0.0877 -0.8476 -0.4049 -0.5604 0.3973 0.3028 0.2697 0.5142 0.2370 0.2496 -0.0752 -0.1768 0.1170 -0.3981 -2.0172 0.7524 1.0532 -0.7316 -0.9341 -1.0987 -1.6186 1.9530 -0.1381 0.5167 -0.2506 0.3730 0.6859 0.0785 0.1171 -0.0865 0.7240 0.3319 0.3071 0.3205 0.0841 0.0607 -0.0694 -0.0735 -0.0150 -0.3424 -0.1356 -0.4977 0.0635 0.2120 -0.0350 0.0194 0.0576 -0.2000 -0.0237 -0.4499 0.1273 0.2745 -0.2710 0.2023 -0.3202 -0.4893 0.6425 -0.4004 -0.0446 1.0314 0.7140 0.1861 0.4307 -0.3085 0.2150 -0.6014 0.0067 0.0449 -0.0530 0.1206 -0.2662 -0.7819 0.0386 -1.1966 -0.2686 0.1909 -0.4906 -0.1128 0.2713 -0.2298 0.2108 -0.5493 -0.1878 -0.1247 0.1894 0.0785 -0.2246 -0.7164 -0.1448 -0.8876 -0.4672 0.4291 -0.5872 -0.7035 0.6481 -0.0998 0.7073 -0.4511 0.0103 0.1054 0.1706 0.0970 0.5783 -0.7979 -0.0027 -0.9507 -0.4412 -0.2953 0.2737 0.6414 -4.9523 1.3451 -0.8451 -2.9211 8.8247 0.5078 1.3004 -0.6180 1.0347 -0.1646 0.3122 -0.1042 0.0719 0.4338 -0.2773 -0.1365 0.8726 -0.4966 0.3722 -0.6675 -0.0569 0.2092 -0.1495 0.1663 0.8251 -0.4207 0.4898 -0.6795 -0.0298 0.0953 -0.0850 0.2530-0.1942 -0.9026 -0.1482 -1.4141 -0.7682 -0.8284 0.6967 0.7609 0.0322 -0.8372 -0.0282 -1.1085 -0.2348 0.4498 -0.5239 -0.0294 0.3535 -0.5388 0.1385 -0.8978 -0.4007 -0.3706 0.2416 0.4858 0.5465 0.2398 0.0786 0.3970 -0.1003 0.1225 0.2374 0.14640.5999 -0.4428 0.0847 -0.6828 0.0925 -0.0251 0.0617 0.33341.0220 0.1884 0.4185 0.1384 0.1096 0.1586 -0.0265 -0.0356 0.7568 -0.6009 0.1811 -0.7472 -0.1007 0.0866 -0.0003 0.1035 0.5791 0.7669 -0.1772 1.0316 0.0466 0.0941 -0.0653 -0.0231 0.5777 -0.2940 0.3178 -0.4222 -0.1304 0.2144 0.0321 -0.0681 0.9969 0.0506 0.5431 -0.1119 0.0623 0.1465 -0.0594 -0.04600.4834 -0.2277 0.2977 -0.5526 -0.0828 -0.0171 0.0098 -0.09351.8398 -0.2509 0.7183 -0.1471 0.2235 0.3812 -0.1144 0.26030.2548 0.4254 -0.5970 0.7625 -0.1701 -0.0364 0.0853 0.10581.8317 -0.4542 0.8235 -0.4658 0.1887 0.3240 -0.0319 0.2644 0.3311 -0.6401 0.2281 -1.0978 -0.2421 -0.2917 0.2434 0.15270.5054 0.7159 0.8483 0.0558 0.0455 -0.2427 -0.0024 -0.58781.0213 0.3558 0.1137 0.5801 0.1244 0.2419 -0.0707 0.06690.1123 0.9352 -0.7452 1.6501 -0.0884 0.4054 -0.0489 0.06351.1602 0.2701 0.0336 0.6235 0.1197 0.3106 -0.1185 0.2258 -2.5152 1.0417 -6.3439 4.2111 -1.0196 -0.1554 0.5575 1.6064 0.5339 -0.4580 0.0262 -0.6347 -0.3144 -0.2299 0.1989 0.28090.8768 -0.5859 0.3732 -0.7010 -0.2629 -0.0286 0.2501 0.53371.4739 -0.5605 0.6379 -0.6457 0.1290 0.2485 -0.0275 0.2146 1.1412 0.4411 -0.0234 0.8324 0.1481 0.3742 -0.2152 0.1941 1.1723 -0.3646 0.4770 -0.4669 0.0490 0.2327 -0.1095 0.1148 -1.2112 -0.6208 -1.0304 -1.0941 -1.0874 -1.2110 0.8126 -0.0459 0.7708 0.4939 0.1799 0.4678 0.1187 0.0905 -0.0748 -0.0563 0.7194 0.5240 -0.1438 0.8025 0.0400 0.2259 -0.1583 0.0648 0.7944 -0.9189 0.5332 0.3728 0.2052 -0.1612 -0.0980 0.2948 0.9803 0.2176 0.3573 0.1695 0.1169 0.1536 -0.0615 -0.0981 -1.5418 -1.3814 -1.7142 -2.0008 -2.1581 -3.1459 2.5861 1.58680.2234 0.2447 -0.2142 0.3473 -0.1840 0.0135 0.1959 -0.03351.0684 -0.0200 0.2915 0.0147 0.0063 0.1445 -0.0589 0.1836 0.5102 -0.4695 0.2141 -0.8049 -0.1532 -0.1505 0.1388 0.11860.1351 -0.3252 0.6881 -0.6096 -0.2194 0.2954 0.4798 0.03551.4382 -0.0785 0.3928 0.1568 0.2213 0.3376 -0.0624 0.1678 0.9228 0.5060 -0.1865 0.9060 0.0832 0.2852 -0.1856 0.2015 0.7335 0.1135 -0.0839 0.2394 -0.0191 0.1308 -0.0519 0.03200.9324 -0.6877 0.3173 -0.9078 -0.2174 -0.0534 0.0507 0.14601.1803 -0.4970 0.4240 -0.5047 0.0370 0.1793 -0.0235 0.23220.8836 0.0599 0.0175 0.2708 -0.0123 0.2535 -0.0508 0.11051.7497 -0.2216 0.8038 -0.2423 0.2205 0.2957 -0.0487 0.1209 0.4705 0.0381 -0.1928 0.3225 -0.0839 0.2425 0.1211 0.1778 0.9697 0.1825 0.3466 0.1776 0.0190 0.0359 0.0621 -0.08941.0486 0.0656 0.0792 0.6619 0.1062 0.4412 0.0459 0.28020.3823 1.2290 0.8225 0.5786 0.0397 -0.3092 -0.0381 -0.57351.4829 -0.1092 0.2502 0.1891 0.1353 0.3403 -0.0917 0.3202 1.4459 -0.0130 0.6431 0.0268 0.2163 0.3198 -0.0399 0.08020.8508 0.1939 0.3332 0.1067 0.0396 0.0881 -0.0200 -0.08441.1861 0.0885 0.4469 0.1916 0.0722 0.2072 0.0544 0.1862 1.3512 -0.0505 0.6217 -0.1298 0.1299 0.1695 -0.1094 0.1650 1.3321 0.4301 1.0120 0.0658 0.3255 0.1041 -0.0609 -0.2046 1.4784 -0.2019 0.3393 -0.0076 0.1701 0.3084 -0.1081 0.3645 1.0978 0.1706 0.1035 0.3954 0.0722 0.1516 -0.0253 0.2451 1.4059 -0.1147 0.1648 0.1935 0.1880 0.3788 -0.1325 0.25140.3092 1.1165 0.7832 0.4217 0.0644 -0.3575 -0.0249 -0.48011.1689 0.0514 0.4286 0.0063 0.1077 0.0795 0.0210 0.11380.7967 0.7055 0.3276 0.6135 0.1147 0.0563 -0.0939 -0.17531.3591 -0.6709 0.3044 -0.5580 0.0136 0.3660 -0.1928 0.2431 1.6505 -0.2852 0.6425 -0.2593 0.1926 0.2667 -0.0500 0.21670.9654 0.1082 0.8399 -0.4113 0.0687 -0.2751 0.2406 -0.19281.6196 -0.2004 0.7395 -0.2598 0.1962 0.1714 0.0319 0.1721 0.9338 0.4434 0.7083 0.1116 0.1093 -0.0636 -0.0446 -0.1938 -0.0224 1.8951 1.8098 0.3005 0.1527 -0.8642 0.4199 -1.80240.4598 -0.3654 0.4884 -0.8496 -0.2460 -0.0137 -0.3065 -0.42171.1199 -0.7696 0.4580 -0.9040 0.0627 0.3781 -0.1954 0.0908 1.6095 -0.1915 0.6996 -0.2041 0.2183 0.2580 0.0036 0.0999 1.7576 -0.1751 0.6513 -0.0680 0.2704 0.3653 -0.1255 0.2795 1.3236 -0.0558 0.5546 -0.1005 0.0772 0.1055 -0.0197 0.1749 1.5568 -0.2528 0.6675 -0.2453 0.1433 0.3254 -0.0999 0.0547 -2.28193.4783 2.5596 0.0509 -0.0632 -1.9845 0.2218 -3.1007 1.5508 0.0924 0.6973 0.0827 0.1982 0.2972 -0.2033 0.1161 1.8592 -0.1918 0.7847 -0.1554 0.3280 0.4086 -0.1762 0.1513 0.0733 1.5738 -0.0808 1.5086 0.0907 -0.2093 0.1524 -0.6012 0.0548 -0.6737 -0.9257 -0.0157 -0.2853 0.9373 -0.9108 -0.2132 0.8116 0.1771 0.1455 0.3367 0.0141 0.1669 -0.1403 0.2165 0.4910 0.1651 -0.4949 0.7257 0.0634 0.2553 -0.1077 0.2680 0.1334 0.0532 -0.0667 -0.0370 -0.1238 -0.0554 -0.0499 0.0735 -4.3058 -1.2052 -2.7072 -2.4707 1.1227 -0.0943 -0.1468 -0.1098 -0.4295 -0.6749 -0.9341 -0.4303 -0.6773 0.0528 -0.2342 -0.1111-0.1933 -1.0926 -0.4721 0.2073 -0.2135 0.6730 -1.1701 -0.5717 1.0010 0.4069 -0.0233 0.7211 0.0926 0.2576 -0.0931 0.1129 0.1729 -0.0758 -0.4896 0.2159 -0.2704 0.4691 -0.5391 -0.3240 0.9282 0.1422 0.0027 0.4359 0.0325 0.2666 -0.1663 0.2209 0.9517 0.2118 -0.1487 0.5521 0.0370 0.1945 -0.0411 0.2519 -0.7175 0.5932 -0.4110 0.4186 -0.0085 -0.2246 -0.0397 -0.1848 -0.7932 0.0804 -0.3808 -0.2108 -0.3324 -0.0177 -0.3394 -0.0270 -1.2166 -0.4314 -1.2681 -0.3538 -0.9096 -0.6028 0.7595 0.1899。
主成分分析数学建模 ppt课件

指标 身长 袖长 胸围 腰围 肩宽 肩厚 X1 X2 X3 X4 X5 X6
Y1=a11*X1+a12X2+a13X3+a14X4+a15X5+a16X6 Y2=a21*X1+a22X2+a23X3+a24X4+a25X5+a26X6 Y3=a31*X1+a32X2+a33X3+a34X4+a35X5+a36X6
主成分分析数学建模设有n个样品每个样品观测p个指标将原始数据写成矩阵形式?????????????npnnppxxxxxxxxx???????212222111211x1将原始数据标准化2建立变量的相关系数阵ppijr??rjjiiijijsssr?11jajnaiaiijxxxxns?????3求r的特征根及相应的单位特征向量特征值大的贡献大
一般取累计贡献率达85—95%的特征值 所对应的第一、第二,…,第m(m≤p)个主成分。
5 、根据特征值,确定各成分权重,进行综合指标,排序。
Y
1
8
Y182
Y2
i i
i1
i1
88 Y8 i
i1
这里我们需要进一步强调的是,从相关阵求得的主成分与协差阵求得
的主成分一般情况是不相同的。实际表明,这种差异有时很大。我们认
F1 u11X1 u21X2 up1Xp F2 u12X1 u22X2 up2Xp
Fp u1pX1 u2pX2 uppXp
主成分分析数学建模
7
满足
1. 主成分的方差依次递减,重要性依次递减,即 V ( F 1 ) a V ( r F 2 ) a V r ( F p ) ar
2. 主成分之间互不相关,即无重叠的信息。即 C ( F i , F j ) o 0 , i j , v i , j 1 , 2 , , p
数学建模 -的范例

针对问题三,本文首先对主要风险因子进行了灰色预测,计算出未来几年水资源总量、降水量、平均气温、生活用水量、工业用水量。
然后采用问题二中的BP神经网络预测每年的缺水量。
最后通过整合往年的数据,运用问题二中的熵值取权的模糊评价模型预测出未来几年内水资源短缺的风险等级。
由于考虑到降水量和地下储水相关系数高,我们依据历年的降水量估测出平水年,偏枯年,枯水年三种不同年份的水资源总量,并应用问题二的风险评价模型进行评估,得到三种不同年份水资源短缺风险等级依次为高,较高,较低。
最后我们分析了南水北调工程对北京市未来两年水资源短缺的风险等级影响,风险等级依次变为低,偏低,无。
针对问题四,我们从北京市水资源现状及分析、北京市严重缺水的原因探究、北京市水资源开发利用对策三个层面向相关行政主管部门提交建议报告,以求帮助其合理规避水资源短缺风险。
关键字:水资源短缺风险、灰色关联度分析、主成分分析,模糊综合评价、BP 神经网络、熵值取权一、问题重述1.1 问题背景水是生命之源,万物之本,是人类生存和发展不可或缺的物质,是地球上最普遍、最常见同时也是最珍贵的自然资源。
水是人类一切生产活动的基础,有水的地方欣欣向荣,水资源枯竭的地方则文明消失。
长期以来,我们注重经济社会发展,却忽略了水资源的承载能力,注重水资源开发利用,却没有同等重视节约和保护。
随着经济社会发展,1.2 问题重述水资源短缺危险泛指在特定的时空环境下,由于来水和用水的不确定性,室区域水资源系统发生供水短缺的可能性以及有此产生的损失。
近年来我国水资源短缺问题日趋严重,以北京市为例,北京是世界上水资源严重缺乏的大都市之一,属严重缺水地区。
虽然政府采取了一些列措施,如南水北调工程建设, 建立污水处理厂,产业结构调整等。
但是,气候变化和经济社会不断发展,水资源短缺风险始终存在。
如何对水资源风险的主要因子进行识别,对风险造成的危害等级进行划分,对不同风险因子采取相应的有效措施规避风险或减少其造成的危害,这对社会经济的稳定、可持续发展战略的实施具有重要的意义。
主成分分析(数学建模)---市公开课一等奖省赛课获奖PPT课件

21
2 2
2
p
p1
p2
2 p
第25页
因为Σx为非负定对称阵,则有利用线 性代数知识可得,必存在正交阵U,使得
1
0
UΣXU
0
p
其中1, 2,…, p为Σx特征根,不妨假设1 2 … p 。而U恰好是由特征根相对应特征(列)向量所 组成正交阵。
第26页
u11 u12 u1p
U
第6页
主成份分析试图在力保数据信息丢失最少 标准下,对这种多变量截面数据表进行最正 确综合简化,也就是说,对高维变量空间进 行降维处理。
很显然,识辨系统在一个低维空间要比 在一个高维空间轻易得多。
第7页
在力争数据信息丢失最少标准下,研究指 标体系少数几个线性组合,而且这几个线性 组合所组成综合指标将尽可能多地保留原来 指标变异方面信息,这种分析叫主成份分析, 这些综合指标就称为主成份,主成份相互独 立。
类推 F2 u12 X1 u22 X 2 u p2 X p
Fp u1p X1 u2 p X 2 u pp X p
思索题:第k(k≤p)个特征根约为0,说明什么?
说明第k到第p个特征根所对应特征向量组成线 性组合等于常数,因为其方差为零。
第35页
写为矩阵形式:
F UX
u11 u12 u1p
Co(v Fi,Fj) 0,i j,i,j 1, 2, ,p 主成份方差依次递减,主要性依次递减,即
Va(r F1) Var(F2 ) Var(Fp )
第13页
为了方便,我们在二维空间中讨论主成份几何意义。 设有n个样品,每个样品有两个观察变量xl和x2,在由变量 xl和x2 所确定二维平面中,n个样本点所散布情况如椭圆 状。由图能够看出这n个样本点不论是沿着xl 轴方向或x2 轴方向都含有较大离散性,其离散程度能够分别用观察变 量xl 方差和x2 方差定量地表示。显然,假如只考虑xl和x2 中任何一个,那么包含在原始数据中经济信息将会有较大 损失。
主成分分析的数学模型

一、主成分分析的数学模型假设原来的变量指标为X1,X2…,X k经过标准化后得到标准指标变量X1,X2,…,X K;X j=X j−X js j,j=1,2…,k其中X j是第j个指标变量的均值,s j是第j个指标变量的标准差。
他们的综合指标(新变量指标)为z1,z2,…,z m(m<=k),则进行线性变换:z1=l11X1+l12X2+⋯+l1k X K z2=l21X1+l22X2+⋯+l2k X K z m=l k1X1+l k2X2+⋯+l k k X K将k个标准变量X1,X2,…,X K转换成了k个新变量z1,z2,…,z m,但是线性变换应满足以下三个条件:●z i和z j独立,i≠j,i,j=1,2,…,k;●vaX(z1)≥vaX(z2)≥…≥vaX(z k) ;●l i12+l i22+⋯+l ik2=1,i=1,2,…,k;z1,z2,…,z m是X1,X2,…,X K的k个主成分,其中z1为第一主成分,z2为第二主成分,z k为第k主成分,称l i j为第i主成分在第j个标准指标量X j上的得分系数,将每一个样本的标准化观察值代入计算公式中,计算得每一个样本的k个主成分值,即为主成分得分。
二、主成分分析的方法步骤主成分分析的过程就是确定原来的变量X j(j=1,2,…,k)在个主成分z j(j=1,2,…,k)上的载荷l i j(i,j=1,2,…,k)。
从主成分分析的数学模型可以看出,主成分分析的任务是估计主成分,确定主成分的个数,解释主成分的实际意义和计算主成分得分。
假设有k个指标X1,X2…,X k,每个指标有n个观测值,它们的标准化变量是X1,X2,…,X K,记录如下表所示计算步骤如下:(1)对原始指标数据进行标准化变换:X ij=X ij−X js j,j=1,2,…,k将原始数据标准化,然后利用标准化的数据计算主成分,X为标准化后的数据矩阵,则:X=X11X12⋯X k1 X21X22⋮⋯X2k⋮X n1X n2⋯X nk(2)计算相关系数矩阵:R=Cov(X)=r11r12⋯rk1r21r22⋮⋯r2k⋮r k1r k2⋯rkk=1r12⋯r k1r211⋮⋯r2k⋮r k1r k2⋯1其中, r i j =(X ki −X)(k ij −X )n k =1 (X ki −X i)2n k =1 (X kj −X j )2n k =1(3) 计算相关矩阵的特征值和特征值所对应的特征向量:Cov (X )L=LV ar (Z 1)0V ar (Z 1)⋱0V ar (Z k )其中,L=l 11r 12⋯ l k 1l 21r 22⋮⋯l 2k ⋮l k 1r k 2⋯l kk由于R 为半正定矩阵,故可由R 的特征方程R −λI =0求得k 个非负特征值λi (i=1,2,…,k )将这些值按从大到小排序为 λ1≥λ2≥…≥λk ≥0 再由 R −λ1I l i =0l i ′l i =1i=1,2,…,k解得每一个特征值对应的特征向量l i =(l i 1,l i 2,…,l ik )′,从而求得各主成分:Z i =l i ′X=l i 1X 1+l i 2X 2+⋯+l i k X K ,i=1,2,…,k (4) 计算主成分贡献率及累计贡献率 各个主成分互不相关,即z i 和z j 的相关系数:r z i ,z j =i i Cov Z i ,Z i .Cov (Z j ,Z j )=0(i ≠j)于是各相关系数的矩阵为单位矩阵。
数学建模主成分分析市公开课金奖市赛课一等奖课件

••
x2
F1
• • •
••• •
••• • •• ••••• •• •
•
••
x 1
•
平移、旋转坐标轴
第8页
❖由图能够看出这n个样本点无论是沿着xl 轴方向或 x2轴方向都含有较大离散性,其离散程度能够分别 用观测变量xl 方差和x2 方差定量地表示。显然, 假如只考虑xl和x2 中任何一个,那么包括在原始数 据中经济信息将会有较大损失。
解得 ( a11, a12 )= (0.88,0.47)
2 所相应单位特性向量 (S 2) 0,其中
(323.4 103.1a21
132)a21 103.1a22 (187.5 132)a22
0
0
a221
a2 22
1
解得: (a21, a22 ) (0.47,0.88)
21 22
第25页
❖假如我们将xl 轴和x2轴先平移,再同时按逆时针方 向旋转角度,得到新坐标轴Fl和F2。Fl和F2是两 个新变量。
Fl轴方向上离散程度最大,即Fl方差最大。阐明变量Fl代表了原始数 据绝大部分信息,即使不考虑变量F2也无损大局。
第9页
❖ 依据旋转变换公式:
f1 f2
x1 cos x2 sin x1 sin x2 cos
5. 主成份含义 F1表示学生身材大小。 F2反应学生体形特性
第30页
三个主成份方差奉献率分别为:
1 3 i
98.15 98.15 23.60 1.56
98.15 79.6% 123.31
i 1
2 23.60 19.1%
3
i
123.31
i 1
3 3 i
1.56 1.3% 123.31
主成分分析法实例

1、主成分法:用主成分法寻找公共因子的方法如下:假定从相关阵出发求解主成分,设有p 个变量,则可找出p 个主成分。
将所得的p 个主成分按由大到小的顺序排列,记为1Y ,2Y ,…,P Y , 则主成分与原始变量之间存在如下关系:11111221221122221122....................p p p p pp p pp p Y X X X Y X X X Y X X Xγγγγγγγγγ=+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ 式中,ij γ为随机向量X 的相关矩阵的特征值所对应的特征向量的分量,因为特征向量之间彼此正交,从X 到Y 得转换关系是可逆的,很容易得出由Y 到X 得转换关系为:11112121212122221122....................p p p p pp p pp p X Y Y Y X Y Y Y X Y Y Yγγγγγγγγγ=+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ 对上面每一等式只保留钱m 个主成分而把后面的部分用i ε代替,则上式变为:1111212112121222221122....................m m m m p p p mp m p X Y Y Y X Y Y Y X Y Y Y γγγεγγγεγγγε=++++⎧⎪=++++⎪⎨⎪⎪=++++⎩上式在形式上已经与因子模型相一致,且i Y (i=1,2,…,m )之间相互独立,且i Y 与i ε之间相互独立,为了把i Y 转化成合适的公因子,现在要做的工作只是把主成分i Y 变为方差为1的变量。
为完成此变换,必须将i Y 除以其标准差,由主成分分析的知识知其标准差即为特征根的平方根/i i F Y =,12m ,则式子变为:1111122112211222221122....................m m m m p p p pm m p X a F a F a F X a F a F a F X a F a F a F εεε=++++⎧⎪=++++⎪⎨⎪⎪=++++⎩这与因子模型完全一致,这样,就得到了载荷A 矩阵和 初始公因子(未旋转)。
主成分分析案例

Y2得分
-2.06481 2.32993 -1.47145 0.66326 -0.87181 1.25757 -1.40987 -0.36439 0.04577 -2.04139 -0.42078 0.33126 0.07660 0.86909 0.45974 -0.83575
主成分分析在 市场研究中的应用
1——5 组表示男性,6——10 组表示女性 1——5, 6——10 年龄从小到大排序
假若你是该食品加工业决策部 门的高级顾问,为了对食品生 产作出合理决策,请你对以上 的调查资料进行分析,为决策 者提供建议。
特征向量
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
特征根 i
方差贡献率
女性喜欢
一般喜欢
孩子 咖喱饭
炸肉饼、火腿面包
成人 鸡蛋烩饭、炸猪排 酸汤、大头鱼
一般不喜欢 特别不喜欢
孩子 干咖喱、浓汤 成人 煮牛肉、生蛋
菜粥、清汤
饼干、带馅面包 酱面条、烧鱼
服装的定型分类问题
为了较好地满足市场的需要,服装生产厂 要了解所生产的一种服装究竟设计几种型号合 适?这些型号的服装应按怎样的比例分配生产 计划才能达到较好的经济效益?
4、取每一组的中心 ( y1*k , y2*k ) (k=1,2,…,g) 作为该组的 代表点。
相应原16个指标的尺寸:
x1' r11 y1*k r12 y2*k x2' r21 y1*k r22 y2*k
x1' 6 r16,1 y1*k r16,2 y2*k
5、各种型号的比例按 该组样品数/128 确定。
Y2
0.513225 0.203116 -0.182858 0.193618 0.217290 0.113642 -0.164527 -0.114637 -0.509240 -0.025832 0.083471 0.132592 0.105402 0.199407 -0.181330 -0.261367 -0.295756
数学建模主成分分析方法

主成分分析方法地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题是经常会遇到的。
变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。
因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法是可以实现的,这里介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。
一、主成分分析的基本原理主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。
假定有n 个地理样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的地理数据矩阵:111212122212p p n n npx x x x x x X x x x ⎧⎪⎪=⎨⎪⎪⎩ (1)如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。
为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。
那么,这些综合指标(即新变量)应如何选取呢?显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。
如果记原来的变量指标为x 1,x 2,…,x p ,它们的综合指标——新变量指标为z 1,z 2,…,zm (m≤p)。
则 11111221221122221122,,.........................................,p p p p m m m mp p z l x l x l x z l x l x l x z l x l x l x =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ (2)在(2)式中,系数l ij 由下列原则来决定:(1)z i 与z j (i≠j ;i ,j=1,2,…,m)相互无关;(2)z 1是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 是与z 1,z 2,……z m -1都不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者。
主成分分析法范文

主成分分析法范文PCA的计算过程可以分为以下几个步骤:1.数据标准化:对原始数据进行标准化处理,将各个特征的尺度调整为相同的范围,防止一些特征的取值范围过大造成不必要的干扰。
2.计算协方差矩阵:对标准化后的数据计算其协方差矩阵。
协方差矩阵描述了数据之间的相关性,一般而言,协方差越大表示两个特征之间的相关性越强。
3.计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征值和特征向量。
4.选择主成分:按照特征值的大小,选择前几个特征值对应的特征向量作为主成分。
特征值越大表示该主成分保留了更多的数据方差。
5.数据投影:将原始数据投影到选择的主成分上,得到降维后的数据。
PCA的主要思想是通过找到一组新的坐标系,使得数据在新坐标系中的方差尽可能大。
由于协方差矩阵是对称矩阵,故存在若干正交的特征向量,这些特征向量称为主成分。
在选择主成分时,通常会根据特征值的大小进行排序,选取前几个特征值对应的特征向量。
降维是PCA的一个重要应用。
当数据维度较高时,往往存在冗余信息,而且高维数据的处理与可视化较为困难。
通过PCA可以将高维数据映射到低维空间中,保留主要特征的同时减少数据的维度,从而方便后续的分析和处理。
另外,PCA还可以用于特征选择。
在一些机器学习任务中,特征的数量往往远大于样本的数量,这样容易导致过拟合问题。
通过PCA可以将特征空间从原始的高维空间转换到低维空间,同时保留了原始数据的主要特征,将维度降低到一个较合适的范围。
此外,PCA还可以用于数据压缩。
通过PCA将高维数据映射到低维空间,可以实现对数据的压缩,减少存储空间和计算开销。
综上所述,主成分分析是一种常用的数据分析方法,可以通过降维、特征选择和数据压缩等手段来提取数据的主要特征,帮助解决高维数据分析中的问题。
在实际应用中,我们需要根据具体的问题和需求,合理选择PCA的使用方式和参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据主成分分析的方法,分析……的数据。
步骤如下:Step 1:为了消除不同变量的量纲的影响,首先需要对变量进行标准化,设检测数据样本共有n 个,指标共有p 个,分别设1X ,2X ,p X ,令ij X (i=1,2,…,n;j=1,2,…,p)为第i 个样本第j 个指标的值。
作变换)Var(X )E(X X Y j j j j -=(j=1,2,…,p)得到标准化数据矩阵jjij ij s x x y -=,其中∑==i 1i ij j x n 1x ,∑=-=n 1i 2j ij 2j )x x (n 1sStep 2:在标准化数据矩阵p n ij )y (Y ⨯=的基础上计算p 个原始指标相关系数矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==⨯pp 2p 1p p 22221p 11211pp ij r r r r r r r r r )r (R 其中,∑∑∑===----=n1k n1k 2j k j 2i k in1k j k j i k iij )x x ()x x()x x )(x x(r (i,j=1,2,…,p)Step 3:求相关系数矩阵R 的特征值并排序0p 21≥λ≥≥λ≥λ ,再求出R 的特征值相应的正则化特征向量)e ,,e ,e (e ip i21i i =,则第i 个主成分表示为各指标k X 的组合∑=⋅=p1i k ik i X e Z 。
Step 4:计算累积贡献率确定主成分的数目。
主成分i Z 的贡献率为)p ,,2,1i (w p1k kii =λλ=∑=累计贡献率为)p ,,2,1i (p1k ki1k k=λλ∑∑==一般取累计贡献率达85%~95%的特征值m 21,,,λλλ 所对应的第1、第2,…,第m (m ≤p )个主成分。
Step 5:计算主成分载荷,确定综合得分。
当主成分之间不相关时,主成分载荷是主成分和各指标的相关系数,相关系数越大,说明主成分对该指标变量的代表性就越好,计算公式为)p ,,2,1j ,i (e )x ,z (p l ij i j i ij =λ==Step 6:各主成分的得分,确定综合评分函数。
得到各主成分的载荷以后,可以计算各主成分的得分⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p m p 22m 11m m pp 22221212p p 12121111x l x l x l z x l x l x l z x l x l x l z ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==⨯nm 2n 1n m 22221m 11211mn ij z z z z z z z z z )z (Z ,其中ij z 表示第i 个样本第j 个主成分得分,则第i 个样本的综合得分∑=⋅=m1k ik k i z w f (i=1,2,…,n);附件中共有 28 个月的数据,这里仅随机选择 2005 年 4 月的数据来说明利 分析进行水质综合评价的过程(同理可进行其他月份的数据分析)。
调用 MATLAB 统计工具箱 princomp 函数,格式为:[pc,score,latent,tsquare]=princomp(ingredients)其中 ingredients 指标准化后的样本指标矩阵,pc 是指各主成分关于指标的线性组合的系数矩阵,score 为各主成分得分,latent 是方差矩阵的特征值,tsquare 为Hotelling 2T 统计量。
各种指标的相关系数矩阵:(填充数据)各个主成分的贡献率:表1 主成分的贡献率表由表可看出,前三个主成分的累积贡献率已达到(填充数据),取控制参数α=0.06(因为28个月中前三个成分贡献率最低为94%),因此取前三个主成分对(填充文字)进行综合评价。
根据R 的特征值的相应的正则化单位特征向量,前m个主成分关于指标的线性组合为:(填充表达式)(分析)根据线性表达式中的系数及符号,可对各主成分的实际意义作如下解释:第1主成分为除(变量)之外的三项指标的综合;第2主成分与(变量)成正相关,与(变量)成负相关;第3主成分为除(变量)之外的三项指标的综合。
以各个主成分的方差贡献率为权重可得到(文字)的最终综合评价。
表2 XX综合评价表上表给出了XX的综合评价,综合得分越高说明(文字),排名越高x=[0.0581 0.0356 0.0435 0.0680 0.0557 0.1112 0.1194 0.1184 0.1083 0.13920.0423 0.0346 0.0354 0.0770 0.0089 0.0642 0.0483 0.0499 0.0534 0.05440.0407 0.0139 0.0688 0.0234 0.0080 0.0047 0.0151 0.0314 0.0252 0.01830.0139 0.0391 0.0056 0.0093 0.0053 0.0290 0.0087 0.0174 0.0234 0.01580.0097 0.0263 0.0086 0.0028 0.0064 0.0064 0.0045 0.0062 0.0111 0.00750.0315 0.0375 0.0305 0.0198 0.0213 0.0376 0.0243 0.0398 0.0357 0.02780.0253 0.0295 0.0443 0.0286 0.0295 0.0468 0.0304 0.0334 0.0248 0.02330.0321 0.0242 0.0437 0.0203 0.0132 0.0233 0.0153 0.0212 0.0270 0.02130.0431 0.0276 0.0628 0.0142 0.0184 0.0184 0.0206 0.0285 0.0455 0.03160.0610 0.0440 0.0488 0.1853 0.0176 0.1086 0.1848 0.1148 0.0888 0.13520.0250 0.0318 0.0233 0.0444 0.0391 0.0273 0.0284 0.0251 0.0300 0.03270.0286 0.0212 0.0334 0.0408 0.0490 0.0285 0.0192 0.0328 0.0255 0.02850.0250 0.0152 0.0337 0.0361 0.0609 0.0251 0.0215 0.0232 0.0164 0.01990.0200 0.0190 0.0148 0.0085 0.0134 0.0037 0.0100 0.0072 0.0125 0.00890.0271 0.0163 0.0508 0.0223 0.0243 0.0175 0.0200 0.0222 0.0183 0.01640.0060 0.0290 0.0079 0.0195 0.0102 0.0063 0.0179 0.0093 0.0124 0.01590.0197 0.0237 0.0162 0.0078 0.0101 0.0078 0.0072 0.0117 0.0164 0.01160.0259 0.0243 0.0350 0.0214 0.0162 0.0287 0.0197 0.0182 0.0220 0.01820.0327 0.0220 0.0562 0.0391 0.0367 0.0416 0.0282 0.0220 0.0273 0.02320.0286 0.0204 0.0160 0.0180 0.0286 0.0165 0.0166 0.0227 0.0223 0.01680.0344 0.0349 0.0286 0.0255 0.0268 0.0377 0.0259 0.0254 0.0393 0.03170.0271 0.0185 0.0270 0.0105 0.0239 0.0140 0.0139 0.0153 0.0183 0.01440.0318 0.0370 0.0377 0.0793 0.0603 0.0582 0.0754 0.0901 0.0482 0.07350.0056 0.0472 0.0071 0.0692 0.0240 0.0104 0.0791 0.0421 0.0240 0.04560.0133 0.0242 0.0170 0.0039 0.0141 0.0080 0.0064 0.0097 0.0119 0.00900.0025 0.0497 0.0011 0.0024 0.0146 0.0057 0.0049 0.0072 0.0050 0.00480.1428 0.0123 0.0983 0.0292 0.1437 0.0613 0.0385 0.0402 0.0590 0.03870.0466 0.0199 0.0456 0.0200 0.1100 0.0479 0.0240 0.0331 0.0350 0.02900.0149 0.0271 0.0085 0.0076 0.0430 0.0101 0.0085 0.0079 0.0146 0.01010.0220 0.0230 0.0187 0.0123 0.0154 0.0294 0.0224 0.0182 0.0232 0.02030.0313 0.0244 0.0174 0.0125 0.0283 0.0238 0.0175 0.0259 0.0300 0.02130.0134 0.0324 0.0061 0.0100 0.0050 0.0116 0.0073 0.0117 0.0173 0.01330.0062 0.0311 0.0016 0.0024 0.0048 0.0036 0.0021 0.0038 0.0072 0.00530.0044 0.0340 0.0040 0.0022 0.0058 0.0029 0.0032 0.0036 0.0063 0.00430.0074 0.0491 0.0019 0.0063 0.0073 0.0221 0.0109 0.0105 0.0146 0.0125];%原始数据,行为变量,列为样本%x=x';%可有可无;Newdata=zscore(x);%数据进行标准化[PC,SCORE,latent,tsquare]=princomp(Newdata);%stdr=std(x);%求各变量的标准差%[n,m]=size(x);。