办公室电话系统模拟(数学建模)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排队论在电话问题中的应用
摘要
本文建立一个模拟办公室电话系统模型,解决由三个电话机占线而可能打不进电话的问题。根据该办公室的电话系统状况得知其服从排队论模型规律,则应用排队论知识建立模型。
用)(t Pn 表示在时刻t ,服务系统的状态为n (系统占线条数为n )的概率。通过输入过程(顾客打进电话),排队规则,和服务机构的具体情况建立关于)(t Pn 的微分差分方程求解。令0)('=t P n 把微分方程变成差分方程,而不再含微分了, 把)(t Pn 转化为与t 无关的稳态解。关于标准的M/M/s 排队模型各种特征的规定于标准的M/M/1模型的规定相同。另外规定各服务器工作是相互独立(不搞协作)且平均服务率相同
.==...==s 21μμμμ于是整个服务机构的平均服务率为μs 。令ρ=λ/su
只有当时λ/su<1时才不会排成无限的队列,成这个系统为服务强度,各顾客服务时间服从相同的负指数分布
'
通过模型我们可以得到:无占线、一条占线、两条占线、三条占线的概率分别
是%,%,%,%。
·
关键词:泊松分布,指数分布,概率,期望,Little 公式
…
一、问题重述
一个办公室有三条电话线可打进,也就是说在任意时刻最多能接待三个顾客,顾客打电话是随机的,其时间服从上午9点至下午5点的均匀分布,每次电话持续时间是均值为6分钟的随机变量。
经理关心由于三个电话机占线而可能打不进电话的顾客数。他们当中部分人稍后可能重拨电话,而其他人则可能放弃通话,一天中接通的电话平均数是70。
请你建立一个模型模拟办公室电话系统,帮助经理在休息时思考这个问题,用你的模型做下述估计:
(1)}
(2)无电话占线、有一条、两条占线和三条都占线的时间百分比;
(3)未打进电话的顾客所占百分比。
二、问题的分析
这是一个多服务台混合制模型M/M/s/K,顾客的相继到达时间服从参数为的负指数分布(即顾客的到达过程为Poisson流),服务台的个数为s,每个服务台的服务时间相互独立,且服从参数为的负指数分布,系统的空间为K。求平稳分布,考虑系统处的任一状态n。假设记录了一段时间内系统进入状态n和离开状态n的次数,则因为“进入”和“离开”是交替发生的,所以这两个数要么相等要么相差1。但就这两件事件平均发生率来说,可以认为是相等的。
三、基本假设
①顾客的相继到达时间服从参数为λ的负指数分布;
②服务时间服从参数μ的负指数分布;
③顾客选择打进哪一条线是随机的而且是等可能的;
④,
⑤某条线接通时,其他顾客不能接通,则称为占线
四、符号定义及变量说明
①:顾客的相继到达时间服从参数为λ的负指数分布,服务时间服从参数μ的负指
数分布;
②:)
Pn表示在时刻t服务系统的状态为n(系统中顾客数为n)的概率,(t
③:平稳状态队长N 即系统中的顾客数其期望值S L ,平稳状态排队长P N ,指系统
中排队等待服务的顾客数其期望值为q L ,
④:逗留时间T 指平稳状态顾客在系统中的停留时间,记它的期望值为S W ,等待
时间p T 指平稳状态顾客在系统中排队等待的时间,期望值记作q W , ⑤:n λ表示当系统处于n 时新来顾客的平均到达率,
)
⑥:n μ表示当系统处于n 时,整个系统的平均服务率, ⑦:s 是系统中并行服务的台数, ⑧:μλρ/=s 为系统的服务强度。
五、建立的模型
根据上面的假设以及变量定义得:
…
模型形式为求平稳分布,考虑系统处的任一状态n 。假设记录了一段时间内系统进
入状态n 和离开状态n 的次数,则因为“进入”和“离开”是交替发生的,所以这两个数要么相等要么相差1。但就这两件事件平均发生率来说,可以认为是相等的。即当系统运行相当时间而达到平衡状态后,对任一状态n 来说,单位时间内进入该状态的平均次数和单位时间内离开该状态的平均次数应该相等,这就是系统在统计平衡下的“流入=流出”原理。根据这一原理,可得到任一状态下的平衡方程如下: 0 0011p p λ=μ 1 1112200p )(p p μ+λ=μ+λ 2 2223311p )(p p μ+λ=μ+λ n-1 1n 1n 1n n n 2n 2n p )(p p -----μ+λ=μ+λ n n n n 1n 1n 1n 1n p )(p p μ+λ=μ+λ++--
'
由上述平衡方程,可求得 0: 01
1p p μλ=
1: 01201121001121212p p )p p (1
p p μμλλ=μλ=λ-μμ+μλ=
2: 01
23012232112232323p p )p p (1
p p μμμλλλ=μλ=λ-μμ+μλ=
n : 01
101111111)(1
p p p p p p n n n n n n n n n n n n n n n n μμμλλλμλλμμμλ +-+--+++==-+=
记
*
1
10
21μμμλλλ ---=
n n n n n C n=1,2,…
则平稳状态的分布为:
0p C p n n = n=1,2,…
由概率分布的要求
10
=∑∞
=n n
p
有1101=⎥⎦
⎤
⎢⎣⎡+∑∞
=p C n n 于是
∑∞
=+10
11n N
C p
。
上式只有当分母级数收敛时才有意义,即当〈∞∑∞
=1n n C 时,才能由上述公式得到平稳状态的概率分布。
Little 公式为:,λ
L
W =
μ
λ
1
-
==
W L W q
q ,顾客拨打这三部电话是等可能性的。