高二年级数学第周练测试卷

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019年高二上学期第十六次周考试题数学

一、选择题:(本大题共11小题,每小题5分,共55分.)

1、若()0'2f x =,则()()

000lim

h f x h f x h h

→+--=( ) A. 1 B. 2 C. 4 D. 6

2、右面茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16. 8,则的值分别为( )

A. 2,5

B. 5,5

C. 5,8

D. 8,8 3、用反证法证明命题“若

都是正数,则

三数

中至少有一个不小于”,提出的假设是( ) A. 不全是正数 B. 至少有一个小于

C. 都是负数

D.

都小于2

4、下列说法错误的是( ) A. 命题“若”的逆否命题为“若

B. 若为假命题,则均为假命题

C. 若命题

D. “”是“

”的充分不必要条件

5、设曲线y=

在点(3,2)处的切线与直线ax+y+3=0垂直,则a 等于( )

A. 2

B. -2

C.

D. -

6、“|x ﹣1|<2成立”是“x(x ﹣2)≤0成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件

7、已知正方体的棱长为1,为的中点,则点到平面的距离为( )

A. B. C. D.

8、2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币.如图所示是一枚8克圆形金质纪念币,直径22mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )

A.

27265mm π B. 236310mm π C. 23635mm π D. 236320mm π

9、长方体 1111ABCD A B C D - 中, 12AB AA ==, 1AD =, E 为

1CC 的中点,则异面直线 1BC 与 AE 所成角的余弦值为 ( ) A.

1010 B. 3010 C. 21510 D. 310

10 10、如图,当输出4y =时,输入的x 可以是( )

A. 2018

B. 2017

C. 2016

D. 2014 11在空间直角坐标系Oxyz 中

,

()()()()

2,0,02,2,20,2,01,1,2A B C D ,,,.若123,,S S S

分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( ) A.

B.

C. D.

12、设函数f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f′(x )的图象可能是( )

A. B. C.

D.

二、填空题(共5小题,每小题5分,共25分)

13、从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为______________.

14、设p :函数()3

1f x x mx =--在区间[]1,1-上单调递减; q :方程

22

119x y m m

+=--表示焦点在y 轴上的椭圆.如果p q ∨为真命题, p q ∧为假命题,则实数m 的取值范围是__________.

15、如图所示,椭圆中心在坐标原点,为左焦点,分别为椭圆的右顶点和上顶点,当

时,其离心率为

,此类椭圆

被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率等于___________.

16、设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =

2S

a b c

++,类比这个结论可知:四面体

S —ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S —ABC 的体积为V ,则R 等于 .

三、解答题:(解答应写出文字说明,证明过程或演算

步骤.)

17、某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组后得到如右部分频率分布直方图,观察图中的信息, 回答下列问题:

(1)补全频率分布直方图;并估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);

(2)用分层抽样的方法在分数段为

的学生成绩中抽取一个容量为6的样本,再从这6

个样本中任取2人成绩,求至多有1人成绩在分数段内的概率.

18、2014年3月的“两会”上,李克强总理在政府工作报告中,首次提出“倡导全民阅读”,某学校响应政府倡导,在学生中发起读书热潮.现统计了从2014年下半年以来,学生每半年人均时间 2014年下半年 2015年上半年 2015年下半年 2016年上半年 2016年下半年

时间代号t 1 2

3

4

5 人均读书量y (本)

4

5 6 7

9

根据散点图,可以判断出人均读书量y 与时间代号t 具有线性相关关系.

(1)求y 关于t 的回归方程ˆˆˆy

bt a =+; (2)根据所求的回归方程,预测该校2017年上半年的人均读书量. 附:回归直线的斜率和截距的最小二乘估计公式分别为:

()()()

11

2

2

2

11

ˆ()n

n

i i i

i

i i n

n

i

i

i i t y nty

t t y y b

t n t t t ====---==--∑∑∑∑,ˆˆa y bt =-

19、已知命题p :x R ∀∈,240mx x m ++≤. (1)若p 为真命题,求实数m 的取值范围;

(2)若有命题q :[]2,8x ∃∈,2log 10m x +≥,当p q ∨为真命题且p q ∧为假命题时,求实数

m 的取值范围.

20、如图,四面体ABCD 中,O 是BD 的中点,ABD ∆和BCD ∆均为等边三角形,2AB =,

6AC =.

(1)求证:AO ⊥平面BCD ;

(2)求直线AB 与平面ACD 所成角的正弦值.

21、平面内动点P (x ,y )与两定点A (-2, 0), B (2,0)连线的斜率之积等于,若点P 的轨迹为曲线E ,过点Q 作斜率不为零的直线交曲线E 于点. (I )求曲线E 的方程; (II )求证:; (III )求面积的最大值.

22、已知函数f(x)=e x -x 2+a,x∈R 的图象在x=0处的切线方程为y=bx.(e≈2. 71828) (1)求函数f(x)的解析式;

(2)当x∈R 时,求证:f(x)≥-x 2+x;

(3)若f(x)>kx 对任意的x∈(0,+∞)恒成立,求实数k 的取值范围.

相关文档
最新文档