物理化学第四版课后答案

合集下载

物理化学第四版-第二章热力学第一定律习题(答案) (1)精选全文

物理化学第四版-第二章热力学第一定律习题(答案) (1)精选全文

2024/8/15
21
例6. 根据下列数据,求乙烯C2H4(g)的标准摩尔生成焓 与标准摩尔燃烧焓:
(1)C2H4(g) + H2(g) == C2H6(g) ,
rHm
,
l
=
-137
kJ·mol1

(2)C2H6(g) + 7/2O2(g) == 2CO2(g) + 3H2O(l) ,
rHm 2 = -1560 kJ·mol1 ;
例5. 已知某些物质的标准摩尔燃烧焓与标准摩尔生成焓的数据列于 下表:
物质
H2(g) C(石墨)
c Hm (298 K) / kJ·mol1 f Hm (298 K) / kJ·mol1
-28584
0
-39351
0
(C3H6环丙烷 , g)
-209168

(C3H6丙烯 , g)

2040
计算由环丙烷(g)异构化制丙烯(g)时在298 K的r Hm 。
A(液体) H2 n = 2mol
T3 = 350K p3 = 101325Pa
H1 = nCp,m( T2-T1 ) = 2 mol 30 J·K1·mol1 ( -50 ) K
=-3.00 kJ
H2 = n VapHm =-2 mol 38 kJ·mol1 =-76 kJ H = H1 + H2 = (-76-3.0 ) kJ =-79 kJ U = H-( pV ) H-(-pVg )
恒容热QV=ΔU 恒压热 Qp=ΔH 绝热功 W= ΔU
这时,恒容热QV ,恒压热 Qp=ΔH ,绝热功 W= ΔU才 能借助于热力学状态函数法进行计算。(最典型的如反 应热效应计算…)

物理化学(天津大学第四版)课后答案 第六章 相平衡

物理化学(天津大学第四版)课后答案 第六章 相平衡

0 1.08 1.79 2.65 2.89 2.91 3.09 3.13 3.17 (1) 画出完整的压力-组成图(包括蒸气分压及总压,液相线及气相线);
(2) 组成为
的系统在平衡压力
下,气-液两相平衡,求
课 后 答 案 网
平衡时气相组成 及液相组成 。
(3) 上述系统 5 mol,在
课 后 答 案 网
(3) 某组成为 (含 CCl4 的摩尔分数)的 H2O-CCl4 气体混合物在 101.325 kPa 下恒压冷却到 80 °C 时,开始凝结出液体水,求此混合气体的组成; (4) 上述气体混合物继续冷却至 70 °C 时,气相组成如何; (5) 上述气体混合物冷却到多少度时,CCl4 也凝结成液体,此时气相组成如
(5) 上述气体混合物继续冷却至 66.53 °C 时,CCl4 也凝结成液 体(共沸),此时 H2O 和 CCl4 的分压分别为 26.818 kPa 和 74.507 kPa,因此
课 后 答 案 网
6.12 A–B二组分液态部分互溶系统的液-固平衡相图如附图,试指出各个相区
(2) 当温度由共沸点刚有上升趋势时,系统处于相平衡时存在哪 些相?其质量各为多少?
解:相图见图(6.7.2)。(1)温度刚要达到共沸点时系 统中尚无气相存在,
课 后 答 案 网
只存在两个共轭液相。系统代表点为

根据杠
杆原理
(2)当温度由共沸点刚有上升趋势时,L2 消失,气相和 L1 共存,因此
何? (2)外压 101.325 kPa 下的共沸点为 66.53 °C。 (3)开始凝结出液体水时,气相中 H2O 的分压为 43.37 °C,因此
(4) 上述气体混合物继续冷却至 70 °C 时,水的饱和蒸气压,即水在气相中 的分压,为 31.16 kPa,CCl4 的分压为 101.325 – 31.36 = 70.165 kPa,没有达 到 CCl4 的饱和蒸气压,CCl4 没有冷凝,故

物理化学第四版孟阿兰答案电子版

物理化学第四版孟阿兰答案电子版

物理化学第四版孟阿兰答案电子版1、下面几个速度中表示瞬时速度的是()*A.子弹出枪口的速度是800m/s(正确答案)B.汽车从甲站行驶到乙站的速度是20m/sC.火车通过广告牌的速度是72km/h(正确答案)D.人散步的速度约为1m/s2、36.城市环保建设——洒水车给街道洒水是环保工人的必修内容,是净化空气的主要举措。

洒水过后,路人感觉凉快一些,是因为水蒸发了,属于()[单选题] *A.液化现象放热B.液化现象吸热C.汽化现象放热D.汽化现象吸热(正确答案)3、34.关于物质的密度,下列说法正确的是()[单选题] *A.铜的密度是9×103kg/m3,表示lm3铜的质量为9×103kg(正确答案)B.一罐氧气用掉部分后,罐内氧气的质量变小密度不变C.一块砖切成体积相等的两块后,砖的密度变为原来的一半D.密度不同的两个实心物体,其质量一定不同4、62.小华学习了《宇宙探秘》后,有下列认识,其中错误的是()[单选题] *A.恒星看上去似乎不动,其实时刻在运动B.牛顿创立了万有引力理论C.根据银河系的直径大约为8万光年,可知光年是时间单位(正确答案)D.宇宙是一个有层次的天体结构系统,它是有起源的、膨胀的和演化的5、小刚是一名初中生,他从一楼跑到三楼的过程中,克服自己重力所做的功最接近下面哪个值()[单选题]A.3JB.30JC.300JD.3000J(正确答案)6、5.一辆汽车在10 m/s的速度匀速行驶,遇到紧急情况,突然以大小为2 m/s2的加速度匀减速刹车,则从刹车开始计时,汽车在6 s内的位移是24 m.[判断题] *对错(正确答案)7、曾侯乙编钟是我国古代的一种打击乐器,如图所示。

青铜编钟按钟体大小依次悬挂,可以演奏出美妙的乐曲。

下列关于编钟的说法,正确的是()[单选题]A.编钟正在发声,但不一定在振动B.编钟钟体越小,发出声音的音调越高(正确答案)C.编钟钟体越大,发出声音的响度越大D.编钟可以奏出美妙的音乐,但不会产生噪声8、跳水运动员起跳时,跳板向下弯,人对跳板的作用力与跳板对人的作用力大小相等[判断题] *对(正确答案)错答案解析:它们是一对相互作用力9、电磁波能传递能量信息,声波不能传递能量[判断题] *对错(正确答案)答案解析:电磁波和声波都可以传递信息和能量10、行驶的汽车关闭发动机后还能行驶一段距离是因为汽车受到惯性力作用[判断题] *对错(正确答案)答案解析:汽车具有惯性11、验电器是实验室里常常用验电器来检验物体是否带电。

物理化学第四版上册课后答案天津大学第一章气体PVT关系

物理化学第四版上册课后答案天津大学第一章气体PVT关系

第一章习题解答1.1物质的体膨胀系数αV与等温压缩率κT的定义如下:试导出理想气体的、与压力、温度的关系解:对于理想气体:PV=nRT , V= nRT/P求偏导:1.2 气柜储存有121.6kPa,27℃的氯乙烯(C2H3Cl)气体300m3,若以每小时90kg的流量输往使用车间,试问储存的气体能用多少小时?解:将氯乙烯(M w=62.5g/mol)看成理想气体:PV=nRT , n= PV/RT n=121600300/8.314300.13 (mol)=14618.6molm=14618.662.5/1000(kg)=913.66 kgt=972.138/90(hr)=10.15hr1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体:PV=nRT , PV =mRT/ M w 甲烷在标准状况下的密度为=m/V= PM w/RT=101.32516/8.314273.15(kg/m3)=0.714 kg/m31.4 一抽成真空的球形容器,质量为25.0000g。

充以4℃水之后,总质量为125.0000g。

若改充以25℃,13.33kPa的某碳氢化合物气体,则总质量为25.0163g。

试估算该气体的摩尔质量。

水的密度按1 g.cm-3计算。

解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)8.314300.15/(13330100 10-6)M w =30.51(g/mol)1.5 两个容器均为V的玻璃球之间用细管连接,泡内密封着标准状况下的空气。

若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接细管中的气体体积,试求该容器内空气的压力。

解:因加热前后气体的摩尔数不变:加热前:n=2 P1V/RT1加热后:n=P1V/RT1PV/RT2列方程:2 P1V/RT1=P1V/RT1PV/RT2P=2 T2P1/( T1T2)=2373.15100.325/(373.15 273.15)kPa=115.47kPa1.6 0℃时氯甲烷(CH3Cl)气体的密度ρ随压力的变化如下。

物理化学第四版董元彦主编课后答案

物理化学第四版董元彦主编课后答案

课后习题答案第一章化学热力学基础1-1 气体体积功的计算式W = ? ∫ Pe dV 中,为什么要用环境的压力Pe ?在什么情况下可用体系的压力P体?答:δW = f 外? dl = p外? A ? dl = p外? dV 在体系发生定压变化过程时,气体体积功的计算式W = ? ∫ Pe dV 中,可用体系的压力P体代替Pe 。

298K 时,5mol 的理想气体,在(1)定温可逆膨胀为原体积的 2 倍;( 2 ) 定压下加热到373K;(3)定容下加热到373K。

已知Cv,m = 28.28J·mol-1·K-1。

计算三过程的Q、W、△U、△H 和△S。

解(1)△U = △H = 0 1-2 Q = ?W = nRT ln V2 = 5 × 8 .314 × 298 ln 2 = 8 .587 kJ V1 ?S = nR ln (2)V2 = 5 × 8.314 ln 2 = 28.82 J ? K ?1 V1 ?H = Q P = nC P ,m (373 ? 298) = 13.72kJ ?U = nCV ,m (373 ? 298) = 10.61kJ W = △U – QP = -3.12 kJ ?S = nC P ,m ln (3 )T2 373 = 5 × (28.28 + 8.314) ln = 41.07 J ? K ?1 T1 298 ?U = QV = nCV ,m (373 ? 298) = 10.61kJ ?H = nC P ,m (373 ? 298) = 13.72kJ W=0 1 ?S = nCV ,m ln T2 373 = 5 × 28.28 ln = 31.74 J ? K ?1 T1 298 1-3 容器内有理想气体,n=2mol , P=10Pζ,T=300K。

(1) 在空气中膨胀了1dm3,求做功多少?(2) 膨胀到容器内压力为lPζ,做了多少功?(3)膨胀时外压总比气体的压力小dP , 问容器内气体压力降到lPζ时,气体做多少功?解:(1)此变化过程为恒外压的膨胀过程,且Pe = 105 Pa W = ? Pe ?V = ?105 × 1 × 10?3 = ?100 J (2)此变化过程为恒外压的膨胀过程,且Pe = 105 Pa W = ? Pe ?V = ? Pζ (V2? V1 ) = ? Pζ ( =? nRT nRT 9 ? ) = ? nRT ζ ζ P 10 P 10 (3 )9 × 2 × 8.314 × 300 = ?4489.6 J 10 nRT Pe = P ? dP ≈ P = V W = ? ∫ Pe dV = ? nRT ∫ V1 V2 V2 V1 V P 1 dV = nRT ln 1 = nRT ln 2 V V2 P 1 = 2 × 8.314 × 300 × ln 1Pζ = ?11.486kJ 10 Pζ 1-4 1mol 理想气体在300K 下,3 定温可逆地膨胀至10dm3,1dm 求此过程的Q 、W、△U 及△H。

《物理化学》课后习题答案(天津大学第四版)..86页文档

《物理化学》课后习题答案(天津大学第四版)..86页文档

39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正得很慢,但是我从不后退。——亚伯拉罕·林肯
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
《物理化学》课后习题答案(天津大学第 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。 四版)..

物理化学第四版课后答案

物理化学第四版课后答案

第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。

解:根据理想气体方程1.5两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。

若将其中的一个球加热到100 C,另一个球则维持0 C,忽略连接细管中气体体积,试求该容器内空气的压力。

解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。

标准状态:因此,1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。

(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。

(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。

(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。

重复三次。

求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。

解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。

设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。

重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。

1.13 今有0 C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals 方程计算其摩尔体积。

实验值为。

解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 C,使部分水蒸气凝结为水。

物理化学 天津大学第四版 课后答案 第九章 统计热力学初步

物理化学 天津大学第四版 课后答案 第九章 统计热力学初步

0
0
2
4
6
8
10
12
c QuantumNumber J
差 ∆ε = 0.426 ×10−23 J ,试求 300
. K

I2
分子的 Θv
、 qv

q
0 v

f
0 v

hν ∆ε
w ∆ε
解:分子的振动特征温度为
=
hν , Θv
=
k
=
k
= 308.5 K
a 分子的振动配分函数为
d 1
1
q = e − e = e − e v
. nj+1 w nj
= exp(− ∆ε
kT
)
=
⎧5.409 ⎨
×
10 −7
for
⎩0.3553 for I 2
HCl
课 后 答 案 网
a 12.试证明离域子系统的平衡分布与定域子系统同样符合波尔兹曼分布,即
d ni =
N q
gi
exp {-
ei
kT }
h 略。
k 14.2 mol N2 置于一容器中,T = 400 K, p = 50 kPa ,试求容器中 N2 分子的平动 . 配分函数。
能级上粒子的分布数 n 与基态能级的分布数 n0 之比。
解:根据 Boltzma nn 分布
n n0
=
g g0
exp{− (ε
− ε0)
kT} =
g g0
exp{− 11× 0.1kT
kT}
g = 0.3329
g0
( ) 基态的统计权重 g0 = 1,能级
nx2

天津大学《物理化学》第四版上、下册部分习题解答

天津大学《物理化学》第四版上、下册部分习题解答

面向21世纪课程教材 天津大学物理化学教研室编 高等教育出版社《物理化学》(上、下册)第四版习题解答上册P94(热力学第一定律):15.恒容绝热,ΔU=Q V =0ΔU=ΔU Ar +ΔU Cu =(nC V ,m ΔT)Ar +(nC p,m ΔT)Cu =4(20.786-R)(T -273.15)+2×24.435(T -423.15)=0 T=347.38KΔH=ΔH Ar +ΔH Cu =(nC p,m ΔT)Ar +(nC p,m ΔT)Cu =4×20.786(347.38-273.15)+2×24.435(347.38-423.15)=2469J 19.恒压绝热,ΔH=Q p =0ΔH=ΔH A +ΔH B =(nC p,m ΔT)A +(nC p,m ΔT)B =2×2.5R(T -273.15)+5×3.5R(T -373.15)=0 T=350.93KW=ΔU=ΔU A +ΔU B =(nC V ,m ΔT)A +(nC V ,m ΔT)B =2×1.5R(350.93-273.15)+5×2.5R(350.93-373.15)= -369.2J 35.(1) Δr H øm =Δf H øm,酯+2Δf H øm,水-2Δf H øm,醇-Δf H øm,氧= -379.07+2(-285.83)-2(-238.66)-0= -473.41kJ .mol -1 (2) Δr H øm =2Δc H øm,醇+Δc H øm,氧-Δc H øm,酯-2Δc H øm,水=2(-726.51)+0-(-979.5)-0= -473.52 kJ .mol -137.由 HCOOCH 3+2O 2==2CO 2+2H 2OΔc H øm,酯=Δr H øm =2Δf H øm,二氧化碳+2Δf H øm,水-Δf H øm,酯 Δf H øm,酯=2Δf H øm,二氧化碳+2Δf H øm,水-Δc H øm,酯=2(-393.509)+2(-285.83)-(-979.5)= -379.178 kJ .mol -1由 HCOOH+CH 3OH==HCOOCH 3+H 2O Δr H øm =Δf H øm,酯+Δf H øm,水-Δf H øm,酸-Δf H øm,醇= -379.178+(-285.83)-(-424.72)-(-238.66)= -1.628 kJ .mol -1P155(热力学第二定律):1. (1) η=1-T 2/T 1=1-300/600=0.5(2) η= -W/Q 1Q 1= -W/η=100/0.5=200kJ 循环 ΔU=0,-W=Q=Q 1+Q 2 -Q 2=Q 1+W=200-100=100kJ10.理想气体恒温 ΔU=0,ΔS 系统=nR ln (p 1/p 2)=1×8.3145ln (100/50)=5.763J .K -1(1) Q= -W=nRT ln (p 1/p 2) =1×8.3145×300ln (100/50)=1729J 可逆 ΔS 总=0(2) Q= -W=p ex ΔV=22111247J 2nRT nRT p nRT p p -==⎛⎫⎪⎝⎭-11247 4.157J K 300Q Q S T T--∆====-⋅环境环境环境ΔS 总=ΔS 系统+ΔS 环境=5.763-4.157=1.606J .K -1 (3) Q= -W=0 ΔS 环境=0ΔS 总=ΔS 系统+ΔS 环境=5.763J .K -1 19.恒压绝热,ΔH=Q p =0ΔH=ΔH 冷+ΔH 热=(C p ΔT)冷+(C p ΔT)热 =100×4.184(T -300.15)+200×4.184(T -345.15)=0 T=330.15KΔS=ΔS 冷+ΔS 热=C p,冷ln (T/T 1)+C p,热ln (T/T 1) =100×4.184ln (330.15/300.15)+200×4.184 ln (330.15/345.15)=2.678J .K -1 23.恒压 Q=ΔH=n Δvap H m =(1000/32.042)×35.32=1102.3kJW= -p ex ΔV= -p(V g -V l )= -pV g = -nRT= -(1000/32.042)×8.3145×337.80= -87655J ΔU=Q+W=1102.3-87.655=1014.6kJ可逆相变 ΔS=ΔH/T=1102.3/337.80=3.2632kJ .K -136. H 2O(l) 101.325kPa ,393.15K H 2O(g)ΔH 1=C p ΔT=1×4.224(-20)= -84.48kJ ΔH 3=C p ΔT=1×2.033×20= 40.66kJ ΔS 1=C p ln (T 2/T 1)=4.224ln (373.15/393.15) ΔS 3=C p ln (T 2/T 1)=2.033ln (393.15/373.15)=-0.2205kJ .K -1 =0.1061kJ .K -1H 2O(l) 101.325kPa,373.15KH 2O(g)ΔH 2=2257.4kJΔS 2=ΔH 2/T=2257.4/373.15=6.0496kJ .K -1ΔH=ΔH 1+ΔH 2+ΔH 3= -84.48+2257.4+40.66=2213.58kJ ΔS=ΔS 1+ΔS 2+ΔS 3= -0.2205+6.0496+0.1061=5.9352kJ .K -1 ΔG=ΔH -T ΔS=2213.58-393.15×5.9352= -119.84kJ或由22112211T T T p T T p T T T H H C dTC dT S S T∆=∆+∆∆∆=∆+⎰⎰计算40.(1) Δr H øm =2Δf H øm,CO +2Δf H øm,H2-Δf H øm,CH4-Δf H øm,CO2=2(-110.525)+0-(-74.81)-(-393.509)=247.269kJ .mol -1 Δr S øm =2S øm,CO +2S øm,H2-S øm,CH4-S øm,CO2=2×197.674+2×130.684-186.264-213.74=256.712J .K -1.mol -1 Δr G øm =Δr H øm -T Δr S øm =247.269-298.15×256.712/1000=170.730 kJ .mol -1 (2) Δr G øm =2Δf G øm,CO +2Δf G øm,H2-Δf G øm,CH4-Δf G øm,CO2=2(-137.168)+0-(-50.72)-(-394.359)=170.743kJ .mol -1(3) 反应物(150kPa) 产物(50kPa)ΔS 1=nR ln (p 1/p 2)=2R ln (150/100)=6.742 ΔS 2=nR ln (p 1/p 2)=4R ln (100/50)=23.053 ΔG 1=-nRT ln (p 1/p 2)=-2010 ΔG 1=-nRT ln (p 1/p 2)=-6873反应物(100kPa) 产物(100kPa)Δr S øm Δr G ømΔr S m =Δr S øm +ΔS 1+ΔS 2=256.712+6.742+23.053=286.507J .K -1.mol -1Δr G m =Δr G øm +ΔG 1+ΔG 2=170.743-2.010-6.873=161.860 kJ .mol -1 或 先求出各压力下的S m 、Δf G m 值或 由等温方程Δr G m =Δr G øm +RT ln J p (见第五章化学平衡) P208(多组分系统热力学):2. (1)/////(1)/0.095/0.1801580.01040.095/0.180158(10.095)/0.0180153B B BB BB B AB B A AB B B An m M mw M x n n m M m M mw M m w M ===+++-==+-(2) -3/0.0951036.5546mol m /0.180158B B B B B Bn m M w c V m M ρρ⨯=====⋅(3) -1//0.095/0.1801580.583mol kg (1)10.095B B BB B B AAB n m M mw M b m m m w =====⋅--7. k B =p B /x B =101.325/0.0425=2384kPa由 p=p A +p B =p A *x A +k B x B 101.325=10.0(1-x B )+2384x B x B =0.03847//36.4610.03847///36.461100/78.114B B BB B B AB B A AB n m M m x n n m M m M m ====+++m B =1.867g24.b B =ΔT f /K f =0.200/1.86=0.1075mol .kg -1**1000/18.01533.167 3.161kPa 1000/18.01530.1075A A A A A A Bn p p p x p n n ===⋅=⨯=++25.-30.400010000.16136mol m 8.3145298.15B c RT∏⨯===⋅⨯4-13/10 6.2010g mol0.16136110B B BB B B B n m M c VV m M c V-=====⨯⋅⨯⨯27.b B =ΔT f /K f =0.56/1.86=0.301mol .kg -1(1) Π=c B RT=ρb B RT=1000×0.301×8.3145×310.15=7.76×105Pa(2) /B B B BB An n m M b m m Vρ=≈=30.301100010342.30103g B B B m b VM ρ-==⨯⨯⨯=P245(化学平衡):5. 反应之间的关系为:(3)=2(2)-(1)故 Δr G øm,3=2Δr G øm,2-Δr G øm,1-RTlnK ø3=2(-RTlnK ø2)-(-RTlnK ø1) K ø3=( K ø2)2/ K ø16. SO 2Cl 2 == SO 2 + Cl 2开始压力 0 44.786 47.836 平衡压力 p 44.786-p 47.836-p平衡总压Σ=p+44.786-p+47.836-p=86.096 得p=6.526kPa22222222(44.786 6.526)(47.836 6.526)2.4226.526100SOCl SO ClSO Cl SO Cl p p p p ppK p p ppφφφφφ⋅⋅--====⋅⨯8. (1) PCl 5 == PCl 3 + Cl 2开始量 1 0 0平衡量 1-a a a 平衡总量Σ=1+a摩尔分数 1 111αααααα-+++ 325210.31211PCl ClPCl p p p p p p K p pppφφφφφφαααα⋅⋅+===-⋅+⎛⎫ ⎪⎝⎭代入p=200kPa ,p ø=100kPa ,得a =0.367 (2) PCl 5 == PCl 3 + Cl 2 开始量 1 0 5平衡量 1-a a 5+a 平衡总量Σ=6+a摩尔分数 15 666αααααα-++++ 3255660.31216PClClPCl p p p p pp p p K p pppφφφφφφφαααααα+⋅⋅⋅++===-⋅+⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭代入p=101.325kPa ,p ø=100kPa ,得a =0.26810.32266.66/20.1111100NH H Sp p K p p φφφ=⋅==⎛⎫ ⎪⎝⎭(1) NH 4HS (s) == NH 3 + H 2S 开始压 0 39.99平衡压 p 39.99+p 平衡总压Σ=39.99+2p 3239.990.111110010018.87kPa39.99277.73kPaNH H Sp p p p K ppp p φφφ+=⋅=⋅==∑=+=(2) 即要求Δr G m >0,也即J p =32NH H Sp p ppφφ⋅>K ø6.6660.1111100100p⨯> p>166.7kPa17.AgCl 的溶度积即反应AgCl==Ag ++Cl -的平衡常数Δr G øm =Δf G øm,Ag++Δf G øm,Cl --Δf G øm,AgCl=77.107+(-131.22)-(-109.789)=55.676kJ .mol -1105-355.6761000ln 22.4598.3145298.151.7610 1.3310mol dmr m G K RTK s c c φφφ--+-∆⨯=-=-=-⨯=⨯====⨯⋅下册P46(电化学): 10.Λm =κ/c=0.0368/(0.05×1000)=0.000736Ω-1.m 2.mol -1Λm ∞=λ+∞+λ-∞=0.034982+0.00409=0.039072Ω-1.m 2.mol -1 a =Λm /Λm ∞=0.000736/0.039072=0.018842250.050.01884 1.80910110.01884c K φαα-⨯===⨯--19.(1) Pb + Hg 2SO 4 == PbSO 4 + 2Hg(2) Δr G m = -zFE= -2×96485×0.9647= -186.16×103J .mol -1 Δr S m =zF(∂E/∂T)p =2×96485×1.74×10-4=33.58J .K -1.mol -1 Δr H m =Δr G m +T Δr S m = -186.16×103+298.15×33.58= -176.15×103 J .mol -1 Q r,m =T Δr S m =298.15×33.58=10.01×103 J .mol -1 21.Ag + 0.5Hg 2Cl 2 == AgCl + HgΔr S m =S m,AgCl +S m,Hg -S m,Ag -0.5S m,Hg2Cl2=96.2+77.4-42.55-0.5×195.8=33.15J .K -1.mol -1 Δr G m =Δr H m -T Δr S m =5435-298.15×33.15= -4449J .mol -14-144490.04611V19648533.15 3.43610V K 196485r m r m pG E zFS E T zF -∆=-==⨯∆∂===⨯⋅∂⨯⎛⎫ ⎪⎝⎭35.负极反应:2Sb+3H 2O -6e →Sb 2O 3+6H +6*21210.05916lg 0.05916lg 0.05916pH60.05916pH 0.05916pH 0.34510.228pH pH 3.98 5.960.059160.05916H H a a E E E E φφφφϕϕϕϕϕϕϕϕ++----+-+-=+=+=-=-=-+=+--=+=+=37.(1) 反应Fe 2++Ag +==Fe 3++Ag 相应电池为:Pt|Fe 2+,Fe 3+||Ag +|AgE ø=φ+ø-φ-ø=0.7994-0.770=0.0294V1964850.0294ln 1.1448.3145298.153.14zFE K RTK φφφ⨯⨯===⨯=(2) Fe 2+ + Ag + == Fe 3+ + Ag 开始浓度 0 0 0.05 平衡浓度 x x 0.05-x2-30.05 3.140.0439mol dmx K xx φ-===⋅40.(1) 溴化银电极的标准电势即银电极的非标准电势,||||130.05916lg 0.05916lg4.88100.79940.05916lg0.07105V1sp Ag AgBr Br Ag Ag Ag Ag Ag Ag Ag BrK a a φφφϕϕϕϕ-++++--==+=+⨯=+=(2) AgBr 的Δf G øm 即反应Ag+0.5Br 2==AgBr 的Δr G øm该反应相应电池为:Ag,AgBr|Br -|Br 2,Pt E ø=φ+ø-φ-ø=1.065-0.07105=0.99395V Δr G m ø= -zFE ø= -1×96485×0.99395= -95.901×103J .mol -1 P191(界面现象):3.汞γ乙醚-汞=γ水-汞+γ乙醚-水cos θ 0.379=0.375+0.0107cos θ θ=68.050 4. 02lnr p Mp RTrγρ=920.072750.018015ln1.07722.337998.38.3145293.15106.863kPar r p p -⨯⨯==⨯⨯⨯=6. 对水中气泡,66220.05885 1.17710Pa 0.110p r γ-⨯∆===-⨯-⨯ 对空中水滴,66220.05885 1.17710Pa 0.110p rγ-⨯∆===⨯⨯P289(化学动力学):7. CH 3NNCH 3 == C 2H 6 + N 2t=0 21.332 0 0 t=1000s p 21.332-p 21.332-p 总压Σ= p+(21.332-p)+(21.332-p)=22.732得 p=19.932kPa一级反应5-10141/2511121.332l n l n 6.78810s100019.932l n 2l n 21.02110s 6.78810p k t p t k --===⨯===⨯⨯9. 由题意 r 0=k 1c 0=1×10-3r=k 1c=0.25×10-3 两式相除,得 c 0/c=4一级反应 -1011/2111ln ln 40.0231min60ln 2ln 230.0min0.0231c k t c t k ======c 0=1×10-3/k 1=1×10-3/0.0231=0.0433mol .dm -313.二级反应 3-1-1201111110.0333d m m o l m i n1010.251k t c c =-=-=⋅⋅-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ 23.由题意,半衰期与初压成反比,可知该反应为二级反应-1-1201/2110.00493kPa s 101.3252k p t ===⋅⨯30.1111lna E k k R T T =--⎛⎫⎪⎝⎭-1103.3100011ln1.56060.2928.3145353.15338.151.390minkk ⨯=--==⎛⎫⎪⎝⎭由速率常数的单位可知反应为一级反应,故1/2ln 2ln 20.4987min 1.390t k === 37.由动力学方程()11001ln1nnc kt cc kt c n --=-=-或可知:反应从某相同初始浓度c 0到达某一定浓度c 时,k 与t 成反比。

物理化学第四版答案(胡英主编_高等教育出版社)

物理化学第四版答案(胡英主编_高等教育出版社)

及 101325Pa 时 1g 水的体积为 1.044cm3,1 g 水蒸气的体积为 1673cm3。
(1) 试求此过程的功; (2) 假定略去液态水的体积,试求结果的百分误
差; (3) 假定把水蒸气当作理想气体,试求结果的百分误差; (4) 根
据(2)、(3)的假定,证明恒温下若外压等于液体的饱和蒸气压,则物质
=

1 1672
=
−0.06 %
(3) 1 g 水蒸气的体积
V
=
nRT
=
⎡ ⎢ ⎢
1 18.02
×
8.3145
×
(100
+
273.15)
⎤ ⎥ ⎥
m
3
p⎢
101325

⎢⎣
⎥⎦
= 1.699 ×10−3 m 3 = 1699cm3
[ ] W = − 101325 × (1699 − 1.044) × 10−6 × 18.02 J
对值也小得多,常可略去。冰熔化成水,体积缩小,故系统得功。
9. 使 H2 (g)在 101325 Pa 下以一定流速通过内有通电的电阻丝的绝 热管。达稳定状态后的三次实验数据见下表。求 H2(g)在各温度范围的
第 1 章 物质的 pVT 关系和热性质
·31·
平均摩尔定压热容。
进气温度/ o C
15.5 -78 -183
苯的饱和蒸气压。设空气通过溴苯之后即被溴苯蒸气所饱和;又设饱和
器 前 后 的 压 力 差 可 以 略 去 不 计 。 ( 溴 苯 C6H5Br 的 摩 尔 质 量 为 157.0 g ⋅ mol−1 )
pV ⎡ 101325 × (20 × 10−3 ) ⎤

物理化学第四版课后习题答案

物理化学第四版课后习题答案

物理化学第四版课后习题答案【篇一:物理化学第四版上册课后答案天津大学第三章】>3.1卡诺热机在(1)热机效率;的高温热源和的低温热源间工作。

求(2)当向环境作功源放出的热。

时,系统从高温热源吸收的热及向低温热解:卡诺热机的效率为根据定义3.5高温热源温度,低温热源。

今有120 kj的热直接从高温热源传给低温热源,龟此过程的解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之时,两热源的总熵变间。

求下列三种情况下,当热机从高温热源吸热。

(1)可逆热机效率(2)不可逆热机效率(3)不可逆热机效率。

解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。

3.7 已知水的比定压热容下列三种不同过程加热成100 ?c的水,求过程的(1)系统与100 ?c的热源接触。

今有1 kg,10 ?c的水经。

(2)系统先与55 ?c的热源接触至热平衡,再与100 ?c的热源接触。

(3)系统先与40 ?c,70 ?c的热源接触至热平衡,再与100 ?c的热源接触。

解:熵为状态函数,在三种情况下系统的熵变相同在过程中系统所得到的热为热源所放出的热,因此3.8 已知氮(n2, g)的摩尔定压热容与温度的函数关系为将始态为300 k,100 kpa下1 mol的n2(g)置于1000 k的热源中,求下列过程(1)经恒压过程;(2)经恒容过程达到平衡态时的解:在恒压的情况下。

在恒容情况下,将氮(n2, g)看作理想气体将代替上面各式中的,即可求得所需各量3.9始态为同途径变化到,,的某双原子理想气体1 mol,经下列不的末态。

求各步骤及途径的。

(1)恒温可逆膨胀;(2)先恒容冷却至使压力降至100 kpa,再恒压加热至;(3)先绝热可逆膨胀到使压力降至100 kpa,再恒压加热至。

解:(1)对理想气体恒温可逆膨胀,?u = 0,因此(2)先计算恒容冷却至使压力降至100 kpa,系统的温度t:(3)同理,先绝热可逆膨胀到使压力降至100 kpa时系统的温度t:根据理想气体绝热过程状态方程,各热力学量计算如下【篇二:物理化学第四章课后答案傅献彩第五版】lass=txt>第七章电化学7.1 用铂电极电解能析出多少质量的解:电极反应为溶液。

物理化学(天津大学第四版)课后答案 第四章 多组分系统热力学

物理化学(天津大学第四版)课后答案 第四章 多组分系统热力学

第四章多组分系统热力学4.1有溶剂A 与溶质B 形成一定组成的溶液。

此溶液中B 的浓度为cB ,质量摩尔浓度为bB ,此溶液的密度为。

以MA ,MB 分别代表溶剂和溶质的摩尔质量,若溶液的组成用B 的摩尔分数xB 表示时,试导出xB 与cB ,xB 与bB 之间的关系。

解:根据各组成表示的定义4.2D-果糖溶于水(A )中形成的某溶液,质量分数,此溶液在20°C 时的密度。

求:此溶液中D-果糖的(1)摩尔分数;(2)浓度;(3)质量摩尔浓度。

解:质量分数的定义为4.3在25°C ,1kg 水(A )中溶有醋酸(B ),当醋酸的质量摩w ww .k h d a w .c o m 课后答案网尔浓度bB 介于和之间时,溶液的总体积。

求:(1)把水(A )和醋酸(B )的偏摩尔体积分别表示成bB 的函数关系。

(2)时水和醋酸的偏摩尔体积。

解:根据定义当时4.460°C 时甲醇的饱和蒸气压是84.4kPa ,乙醇的饱和蒸气压是47.0kPa 。

二者可形成理想液态混合物。

若混合物的组成为二者的质量分数各50%,求60°C 时此混合物的平衡蒸气组成,以摩尔分数表示。

解:质量分数与摩尔分数的关系为w w w .k h d a w .c o m 课后答案网求得甲醇的摩尔分数为根据Raoult 定律4.580°C 是纯苯的蒸气压为100kPa ,纯甲苯的蒸气压为38.7kPa 。

两液体可形成理想液态混合物。

若有苯-甲苯的气-液平衡混合物,80°C 时气相中苯的摩尔分数,求液相的组成。

解:根据Raoult 定律4.6在18°C ,气体压力101.352kPa 下,1dm3的水中能溶解O20.045g ,能溶解N20.02g 。

现将1dm3被202.65kPa 空气所饱和了的水溶液加热至沸腾,赶出所溶解的O2和N2,并干燥之,求此干燥气体在101.325kPa ,18°C 下的体积及其组成。

物理化学简明教程第四版课后习题答案

物理化学简明教程第四版课后习题答案

物理化学简明教程第四版课后习题答案物理化学简明教程第四版课后习题答案物理化学是一门研究物质的性质、结构和变化规律的学科。

它是化学和物理学的交叉领域,涉及到了许多基本概念和理论。

为了帮助学生更好地理解和掌握物理化学的知识,教材通常会提供一些课后习题。

下面是物理化学简明教程第四版课后习题的答案。

1. 习题一:化学平衡答案:化学平衡是指化学反应在一定条件下达到动态平衡的状态。

在平衡状态下,反应物和生成物的浓度保持不变,但是反应仍在进行。

平衡常数K是描述平衡状态的一个重要参数,它的大小决定了反应的方向和强度。

平衡常数的计算方法是根据反应物和生成物的浓度之比来确定。

2. 习题二:热力学答案:热力学是研究能量转化和能量传递的学科。

热力学第一定律是能量守恒定律,它表明能量可以从一种形式转化为另一种形式,但总能量守恒。

热力学第二定律是热力学不可逆性原理,它表明自然界中存在着一种趋势,即熵增加的趋势。

熵是描述系统无序程度的物理量,熵增加意味着系统的无序程度增加。

3. 习题三:电化学答案:电化学是研究电与化学反应之间相互作用的学科。

电化学反应可以分为两类:电解反应和电池反应。

电解反应是指在外加电势的作用下,将化学物质分解成离子的反应。

电池反应是指利用化学反应产生电能的反应。

电化学反应的关键是电子的转移,它通过氧化还原反应来实现。

4. 习题四:量子力学答案:量子力学是研究微观世界的物理学理论。

它描述了微观粒子的运动和相互作用。

量子力学的基本假设是波粒二象性,即微观粒子既可以表现出波动性,又可以表现出粒子性。

量子力学的基本方程是薛定谔方程,它描述了微观粒子的波函数演化规律。

波函数可以用来计算微观粒子的位置、动量和能量等物理量。

5. 习题五:分子动力学答案:分子动力学是研究分子运动的理论和方法。

它基于牛顿力学和统计力学的原理,通过求解分子运动方程来描述分子的运动轨迹。

分子动力学可以用来研究分子的结构、动力学性质和相互作用。

物理化学(天津大学第四版)课后答案 第三章 热力学第二定律

物理化学(天津大学第四版)课后答案 第三章 热力学第二定律

第三章热力学第二定律3.1卡诺热机在的高温热源和的低温热源间工作。

求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。

解:卡诺热机的效率为根据定义3.5高温热源温度,低温热源。

今有120kJ 的热直接从高温热源传给低温热源,龟此过程的。

解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6不同的热机中作于的高温热源及的低温热源之间。

求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。

(1)可逆热机效率。

w w w .k h d a w .c o m 课后答案网(2)不可逆热机效率。

(3)不可逆热机效率。

解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。

3.7已知水的比定压热容。

今有1kg ,10°C 的水经下列三种不同过程加热成100°C 的水,求过程的。

(1)系统与100°C 的热源接触。

(2)系统先与55°C 的热源接触至热平衡,再与100°C 的热源接触。

(3)系统先与40°C ,70°C 的热源接触至热平衡,再与100°C 的热源接触。

解:熵为状态函数,在三种情况下系统的熵变相同在过程中系统所得到的热为热源所放出的热,因此w w w .k h d a w .c o m 课后答案网3.8已知氮(N 2,g )的摩尔定压热容与温度的函数关系为将始态为300K ,100kPa 下1mol 的N 2(g)置于1000K 的热源中,求下列过程(1)经恒压过程;(2)经恒容过程达到平衡态时的。

解:在恒压的情况下w w w .k h d a w .c o m 课后答案网在恒容情况下,将氮(N 2,g )看作理想气体将代替上面各式中的,即可求得所需各量3.9始态为,的某双原子理想气体1mol ,经下列不同途径变化到,的末态。

求各步骤及途径的。

(1)恒温可逆膨胀;(2)先恒容冷却至使压力降至100kPa ,再恒压加热至;(3)先绝热可逆膨胀到使压力降至100kPa ,再恒压加热至。

物理化学第四版课后习题答案

物理化学第四版课后习题答案

物理化学第四版课后习题答案物理化学第四版课后习题答案物理化学是一门综合性的学科,涵盖了物理学和化学的知识。

学习物理化学需要理解和掌握一定的理论知识,并通过解决问题来加深对这些知识的理解。

课后习题是一个很好的学习工具,通过解答习题可以巩固和应用所学的知识。

本文将为大家提供物理化学第四版课后习题的答案。

第一章:量子力学基础1. 量子力学是描述微观世界的物理理论,它通过波函数描述微观粒子的运动状态。

波函数的平方表示了找到粒子在某个位置的概率。

2. 波函数的归一化条件是∫|Ψ(x)|^2dx = 1,其中Ψ(x)是波函数。

3. 薛定谔方程描述了波函数的演化,它是一个时间无关的定态方程,形式为HΨ = EΨ,其中H是哈密顿算符,Ψ是波函数,E是能量。

4. 电子在原子中的运动状态由量子数来描述。

主量子数n描述了电子的能级大小,角量子数l描述了电子的轨道形状,磁量子数ml描述了电子在轨道上的方向。

5. 电子自旋是电子的一个内禀属性,它有两个可能的取值:向上自旋和向下自旋。

第二章:分子结构与光谱学1. 分子的几何构型对其性质有重要影响。

分子的几何构型可以通过VSEPR理论来确定,根据原子间的排斥力确定分子的空间结构。

2. 共振现象是指分子中电子的位置可以在不同原子间跳跃,从而使分子的结构发生变化。

3. 光谱学是研究物质与光的相互作用的学科。

分子的光谱可以提供关于分子结构和化学键的信息。

4. 红外光谱可以用来确定分子中的化学键类型和它们的存在形式。

5. 核磁共振光谱可以提供关于分子中原子核的信息,包括原子核的类型、数量和化学环境。

第三章:热力学1. 热力学是研究能量转化和能量传递的学科。

它描述了物质和能量之间的关系。

2. 热力学第一定律是能量守恒定律,它表明能量可以从一种形式转化为另一种形式,但总能量保持不变。

3. 热力学第二定律描述了能量转化的方向性,它表明自然界中能量转化总是朝着熵增的方向进行。

4. 熵是描述系统无序程度的物理量,它可以用来判断一个过程的可逆性。

物理化学第四版邵光杰王锐课后答案

物理化学第四版邵光杰王锐课后答案

物理化学第四版邵光杰王锐课后答案1、在图65的四种情境中,人对物体做功的是()[单选题]A.提着桶在水平地面上匀速前进B.举着杠铃保持杠铃静止C.用力搬石头但没有搬动D.推着小车前进(正确答案)2、下列说法中正确的是()*A.密闭房间内,温度升高,空气的相对湿度变大B.密闭房间内,温度越高,悬浮在空气中的PM2.5运动越剧烈(正确答案)C.可看作理想气体的质量相等的氢气和氧气,温度相同时氧气的内能小(正确答案)D.系统的饱和汽压不受温度的影响3、35.下列物态变化现象中,属于放热的是()[单选题] *A.天气热的时候,从冰柜中拿出的冰,一会儿就变成了水B.北方的冬天,可以看到户外的人不断呼出“白气”(正确答案)C.夏天在教室地面上洒的水,过一会儿就会变干D.衣柜里防虫用的樟脑片,过一段时间会变小4、58.最早通过实验研究光的色散现象的科学家是()[单选题] *A.牛顿(正确答案)B.赫兹C.焦耳D.欧姆5、4.我国自行研制的J-31隐形战机在起飞前从静止开始做匀加速直线运动,达到起飞速度v所需时间为t,则起飞前的运动距离为vt. [判断题] *对错(正确答案)6、94.由同种材料制成的A,B两个金属球,其中有一个是空心的,它们的质量分别为mA =128g、mB=72g,体积分别为VA=16cm3、VB=12cm3,则下列说法正确的是()[单选题] *A.A是空心球,B是实心球B.空心球的空心部分体积为3cm3(正确答案)C.实心球的密度是8kg/cm3D.空心球的密度是8g/cm37、水的温度没有达到沸点时,水是不能变为水蒸气的[判断题] *对错(正确答案)答案解析:水在任何温度下都可以蒸发变成水蒸气8、2.运动员将足球踢出,球在空中飞行是因为球受到一个向前的推力.[判断题] *对错(正确答案)9、两个共点力的合力与分力的关系,以下说法中正确的是()*A.合力的作用效果与两个分力共同作用的效果相同(正确答案)B.合力与分力是同时存在的C.合力的大小一定等于两个分力的大小之和D.合力的大小可以小于它的任一个分力(正确答案)10、36.关于热现象和热学规律﹐下列说法正确的是()*A.布朗运动表明,构成悬浮微粒的分子在做无规则运动B.两个分子的间距从极近逐渐增大到10ro的过程中,分子间的引力和斥力都在减小(正确答案)C.热量可以从低温物体传递到高温物体(正确答案)D.物体的摄氏温度变化了1℃,其热力学温度变化了273KE:两个分子的间距从极近逐渐增大到10ro的过程中,它们的分子势能先减小后增大。

最新《物理化学》课后习题答案(天津大学第四版)ppt课件

最新《物理化学》课后习题答案(天津大学第四版)ppt课件

尔融化热
。已知在-10 °C ~ 0 °C范围内
过冷水(H2O, l)和冰的摩尔定压热容分别为

。求在常压及-10 °C下过冷水结冰的摩尔凝
固焓。
解:过程图示如下
平衡相变点
,因此
2.33 25 °C下,密闭恒容的容器中有10 g固体奈C10H8(s)在过量的 O2(g)中完全燃烧成CO2(g)和H2O(l)。过程放热401.727 kJ。求
因此绝热线在
处的斜率为
恒温线在
处的斜率为
由于 ,因此绝热可逆线的斜率的绝对值大于恒温可逆线的绝 对值。
2.25 一水平放置的绝热恒容的圆筒中装有无摩擦的绝热理想活塞, 活塞左、右两侧分别为50 dm3的单原子理想气体A和50 dm3的双原子 理想气体B。两气体均为0 °C,100 kPa。A气体内部有一体积和热 容均可忽略的电热丝。现在经过通电缓慢加热左侧气体A,使推动活 塞压缩右侧气体B到最终压力增至200 kPa。求:
过程的

解:过程图示如下:
假定将绝热隔板换为导 热隔板,达热平衡后, 再移去隔板使其混合, 则
由于外压恒定,求功是方便的
由于汽缸为绝热,因此
2.20 在一带活塞的绝热容器中有一固定的绝热隔板。隔板靠活塞一
侧为2 mol,0 °C的单原子理想气体A,压力与恒定的环境压力相等;
隔板的另一侧为6 mol,100 °C的双原子理想气体B,其体积恒定。
今将绝热隔板的绝热层去掉使之变成导热板,求系统达平衡时的T及
过程的

解:过程图示如下
显然,在过程中A为恒压,而 B为恒容,因此
同上题,先求功 同样,由于汽缸绝热,根据热力学第一定律
2.23 5 mol双原子气体从始态300 K,200 kPa,先恒温可逆膨胀到压
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。

解:根据理想气体方程1.5两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。

若将其中的一个球加热到100 ︒C,另一个球则维持0 ︒C,忽略连接细管中气体体积,试求该容器内空气的压力。

解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。

标准状态:因此,1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。

(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。

(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。

(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。

重复三次。

求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。

解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。

设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。

重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。

1.13 今有0 ︒C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals 方程计算其摩尔体积。

实验值为。

解:用理想气体状态方程计算气(附录七)用van der Waals计算,查表得知,对于N2,用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 ︒C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 ︒C,使部分水蒸气凝结为水。

试求每摩尔干乙炔气在该冷却过程中凝结出水的物质的量。

已知25 ︒C及10 ︒C时水的饱和蒸气压分别为3.17 kPa及1.23 kPa。

解:该过程图示如下设系统为理想气体混合物,则1.17 一密闭刚性容器中充满了空气,并有少量的水。

但容器于300 K条件下大平衡时,容器内压力为101.325 kPa。

若把该容器移至373.15 K的沸水中,试求容器中到达新的平衡时应有的压力。

设容器中始终有水存在,且可忽略水的任何体积变化。

300 K时水的饱和蒸气压为3.567 kPa。

解:将气相看作理想气体,在300 K时空气的分压为由于体积不变(忽略水的任何体积变化),373.15 K时空气的分压为由于容器中始终有水存在,在373.15 K时,水的饱和蒸气压为101.325 kPa,系统中水蒸气的分压为101.325 kPa,所以系统的总压第二章热力学第一定律2.5 始态为25 ︒C,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。

途经a先经绝热膨胀到 -28.47 ︒C,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。

途径b为恒压加热过程。

求途径b的及。

解:先确定系统的始、末态对于途径b,其功为根据热力学第一定律2.6 4 mol的某理想气体,温度升高20 C,求的值。

解:根据焓的定义2.10 2 mol某理想气体,。

由始态100 kPa,50 dm3,先恒容加热使压力体积增大到150 dm3,再恒压冷却使体积缩小至25 dm3。

求整个过程的。

解:过程图示如下由于,则,对有理想气体和只是温度的函数该途径只涉及恒容和恒压过程,因此计算功是方便的根据热力学第一定律2.13 已知20 ︒C液态乙醇(C2H5OH,l)的体膨胀系数,等温压缩率,密度,摩尔定压热容。

求20 ︒C,液态乙醇的。

解:由热力学第二定律可以证明,定压摩尔热容和定容摩尔热容有以下关系2.14 容积为27 m3的绝热容器中有一小加热器件,器壁上有一小孔与100 kPa 的大气相通,以维持容器内空气的压力恒定。

今利用加热器件使器内的空气由0 ︒C加热至20 ︒C,问需供给容器内的空气多少热量。

已知空气的。

假设空气为理想气体,加热过程中容器内空气的温度均匀。

解:在该问题中,容器内的空气的压力恒定,但物质量随温度而改变注:在上述问题中不能应用,虽然容器的体积恒定。

这是因为,从小孔中排出去的空气要对环境作功。

所作功计算如下:在温度T时,升高系统温度 d T,排出容器的空气的物质量为所作功这正等于用和所计算热量之差。

2.15 容积为0.1 m3的恒容密闭容器中有一绝热隔板,其两侧分别为0 ︒C,4 mol 的Ar(g)及150 ︒C,2 mol的Cu(s)。

现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的。

已知:Ar(g)和Cu(s)的摩尔定压热容分别为及,且假设均不随温度而变。

解:图示如下假设:绝热壁与铜块紧密接触,且铜块的体积随温度的变化可忽略不计则该过程可看作恒容过程,因此假设气体可看作理想气体,,则(g)的摩尔2.16 水煤气发生炉出口的水煤气的温度是1100 ︒C,其中CO(g)和H2分数均为0.5。

若每小时有300 kg的水煤气由1100 ︒C冷却到100 ︒C,并用所收回的热来加热水,是水温由25 ︒C升高到75 ︒C。

求每小时生产热水的质量。

(g)的摩尔定压热容与温度的函数关系查本书附录,水的CO(g)和H2比定压热容。

解:300 kg的水煤气中CO(g)和H(g)的物质量分别为2300 kg的水煤气由1100 ︒C冷却到100 ︒C所放热量设生产热水的质量为m,则2.18 单原子理想气体A于双原子理想气体B的混合物共5 mol,摩尔分数,始态温度,压力。

今该混合气体绝热反抗恒外压膨胀到平衡态。

求末态温度及过程的。

解:过程图示如下分析:因为是绝热过程,过程热力学能的变化等于系统与环境间以功的形势所交换的能量。

因此,单原子分子,双原子分子由于对理想气体U和H均只是温度的函数,所以2.19 在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2 mol,0 ︒C 的单原子理想气体A及5 mol,100 ︒C的双原子理想气体B,两气体的压力均为100 kPa。

活塞外的压力维持在100 kPa不变。

今将容器内的隔板撤去,使两种气体混合达到平衡态。

求末态的温度T及过程的。

解:过程图示如下假定将绝热隔板换为导热隔板,达热平衡后,再移去隔板使其混合,则由于外压恒定,求功是方便的由于汽缸为绝热,因此2.20 在一带活塞的绝热容器中有一固定的绝热隔板。

隔板靠活塞一侧为2 mol,0 ︒C的单原子理想气体A,压力与恒定的环境压力相等;隔板的另一侧为6 mol,100 ︒C的双原子理想气体B,其体积恒定。

今将绝热隔板的绝热层去掉使之变成导热板,求系统达平衡时的T及过程的。

解:过程图示如下显然,在过程中A为恒压,而B为恒容,因此同上题,先求功同样,由于汽缸绝热,根据热力学第一定律2.23 5 mol双原子气体从始态300 K,200 kPa,先恒温可逆膨胀到压力为50 kPa,在绝热可逆压缩到末态压力200 kPa。

求末态温度T及整个过程的及。

解:过程图示如下要确定,只需对第二步应用绝热状态方程,对双原子气体因此由于理想气体的U和H只是温度的函数,整个过程由于第二步为绝热,计算热是方便的。

而第一步为恒温可逆2.24 求证在理想气体p-V图上任一点处,绝热可逆线的斜率的绝对值大于恒温可逆线的绝对值。

证明:根据理想气体绝热方程,得,因此。

因此绝热线在处的斜率为恒温线在处的斜率为。

由于,因此绝热可逆线的斜率的绝对值大于恒温可逆线的绝对值。

2.25 一水平放置的绝热恒容的圆筒中装有无摩擦的绝热理想活塞,活塞左、右两侧分别为50 dm3的单原子理想气体A和50 dm3的双原子理想气体B。

两气体均为0 C,100 kPa。

A气体内部有一体积和热容均可忽略的电热丝。

现在经过通电缓慢加热左侧气体A,使推动活塞压缩右侧气体B到最终压力增至200 kPa。

求:(1)气体B的末态温度。

(2)气体B得到的功。

(3)气体A的末态温度。

(4)气体A从电热丝得到的热。

解:过程图示如下由于加热缓慢,B可看作经历了一个绝热可逆过程,因此功用热力学第一定律求解气体A的末态温度可用理想气体状态方程直接求解,将A与B的看作整体,W= 0,因此2.25 在带活塞的绝热容器中有4.25 mol的某固态物质A及5 mol某单原子理想气体B,物质A的。

始态温度,压力。

今以气体B为系统,求经可逆膨胀到时,系统的及过程的。

解:过程图示如下将A和B共同看作系统,则该过程为绝热可逆过程。

作以下假设(1)固体B的体积不随温度变化;(2)对固体B,则从而对于气体BO, l)在100 ︒C的饱和蒸气压,在此温度、压2.26 已知水(H2力下水的摩尔蒸发焓。

求在在100 ︒C,101.325 kPa下使1 kg水蒸气全部凝结成液体水时的。

设水蒸气适用理想气体状态方程式。

解:该过程为可逆相变2.28 已知 100 kPa 下冰的熔点为 0 °C,此时冰的比熔化焓热J·g-1. 水的平均定压热容。

求在绝热容器内向1 kg 50 °C 的水中投入 0.1 kg 0 °C 的冰后,系统末态的温度。

计算时不考虑容器的热容。

解:经粗略估算可知,系统的末态温度T应该高于0 °C, 因此2.29 已知 100 kPa 下冰的熔点为0 °C,此时冰的比熔化焓热J·g-1. 水和冰的平均定压热容分别为及。

今在绝热容器内向1 kg 50 °C 的水中投入 0.8 kg 温度 -20 °C 的冰。

求:(1)末态的温度。

(2)末态水和冰的质量。

解:1 kg 50 °C 的水降温致0 °C 时放热0.8 kg -20 °C 的冰升温致0 °C 时所吸热完全融化则需热因此,只有部分冰熔化。

所以系统末态的温度为0 °C。

设有g的冰熔化,则有系统冰和水的质量分别为2.30 蒸汽锅炉中连续不断地注入 20 °C的水,将其加热并蒸发成 180 °C,饱和蒸汽压为 1.003 MPa 的水蒸气。

求生产 1 kg 水蒸气所需要的热量。

已知:水在 100 °C的摩尔蒸发焓,水的平均摩尔定压热容,水蒸气的摩尔定压热容与温度的函数关系见附录。

解:将过程看作是恒压过程(),系统的初态和末态分别为和。

相关文档
最新文档