某船舶推进轴系扭振计算分析-不错的论文
船舶推进轴系振动与功率测量分析研究
![船舶推进轴系振动与功率测量分析研究](https://img.taocdn.com/s3/m/9c0dde586d175f0e7cd184254b35eefdc8d31598.png)
讨论
根据实验结果和分析,本次演示对船舶轴系振动的原因进行了深入探讨。研 究发现,船舶轴系振动主要受到螺旋桨激振力、轴系不平衡等因素的影响。为了 有效控制船舶轴系振动,可以从以下几个方面入手:
1、优化螺旋桨设计,减小螺旋桨的激振力。通过改变螺旋桨的叶片形状、 数目等参数,降低螺旋桨运转过程中产生的激振力,从而降低船舶轴系振动的幅 度。
文献综述
近年来,国内外学者针对船舶推进轴系振动问题进行了广泛的研究。研究内 容主要包括推进轴系的模态分析、振动特性分析、振动故障诊断等方面。
在模态分析方面,研究者通过有限元方法对推进轴系进行模态模拟,得到了 轴系的固有频率和振型。研究表明,推进轴系的模态特性与船舶的动力学特性密 切相关。
在振动特性分析方面,研究者对推进轴系在不同工况下的振动响应进行了测 量和分析。结果表明,推进轴系的振动响应受到船舶运行工况、推进轴系结构及 材料等因素的影响。
在振动故障诊断方面,研究者通过对比正常和故障轴系的振动数据,利用谱 分析、小波变换等信号处理方法,实现了对推进轴系故障的早期发现和诊断。
然而,现有研究大多于推进轴系的振动特性和故障诊断,而对推进轴系振动 的抑制方法研究较少。因此,本研究将针对这一问题展开探讨。
研究方法
本研究采用实验测试与数值模拟相结合的方法,对推进轴系的振动进行抑制 研究。首先,利用振动测试设备对推进轴系的振动响应进行实验测试,获取丰富 的实验数据。然后,通过有限元方法对推进轴系进行建模,并对模型进行动力学 分析,得到轴系的模态频率和振型。
1、在实验测试方面,由于测试设备和条件的限制,未能对不同类型和规模 的船舶推进轴系进行全面的测试和分析。因此,未来的研究可以进一步拓展实验 测试的范围,以验证方法的普适性和有效性。
船舶轴系扭振计算与测量分析_殷志飞 (1)
![船舶轴系扭振计算与测量分析_殷志飞 (1)](https://img.taocdn.com/s3/m/b45a29f1c8d376eeaeaa3179.png)
青岛远洋船员职业学院学报
VOL. 34
NO. 2
文章编号: 2095 - 3747 ( 2013 ) 02 - 0028 - 04
船舶轴系扭振计算与测量分析
殷志飞
1
高莹莹
2
( 1. 青岛远洋船员职业学院; 2. 青岛齐耀瓦锡兰菱重麟山船用柴油机有限公司技术部, 山东 青岛 266071) 要: 随着现代船舶计算的发展, 船舶轴 系 扭转振 动 成 为 船 舶 动 力装置 安全 运 行 的 重 要 , 因素之一 各船级社规范也对船舶轴系扭振提 出了 计 算 和实测 的 要 求, 本文 结 合 实 例 对船 舶轴 摘 系用霍尔茨法进行自由振动计算和采用能量法进行共振计算进行了简单介绍, 结合实船 的 扭振 测量的结果和理论计算 结果进行 对比 分析。 结果表 明, 根 据精 确 的 原 始轴 系 数据和 柴 油机 参 数, 扭振计算的理论结果和实测结果非常吻合, 本船的理论计算值符合实船状况, 转速 禁 区 设 定 正确。 关键词: 当量系统 中图分类号: U66 霍尔茨法 能量法 测量 修正 文献标识码: A 590N / mm2 ; 螺旋桨轴长 10233mm, 艉轴承处直径 2 850mm, 抗拉强度为 590N / mm 。 螺旋桨为 4 叶定 螺距桨, 直 径 10m, 螺 距 比 为 0. 7207 , 总重量为 76100kg。
n
∑ k = 1 C k,k +1 ( αk
n
- α k +1 ) 2]
( 5)
求得共振的振幅后, 可以按照前述的应力尺 标的定义求得各轴段上的扭转应力 。 4 非共振近似计算 共振计算后, 若发现超过规范许用值的共振
振幅和应力, 则应确定转速禁区。 同时, 还须求出 , 共振点两侧的振幅和应力 即作非共振计算。 轴系非共振计算时, 第一质量振幅, 根据轴系 中任一质量点 k 的力矩平衡方程及共振假设, 经 推导与单质量系统的公式一样: A st A1 = ω ω1 2 [ 1 - ( ) 2] +( ) ωn ωn M 式中:
58.7m锚作供应船推进轴系扭振计算研究
![58.7m锚作供应船推进轴系扭振计算研究](https://img.taocdn.com/s3/m/90c398d3ad51f01dc281f1b5.png)
1 自 由端 驱动 消 防泉 ; . 防泵 齿 轮 箱 ; . 弹 性 联 轴 器 ; . 2消 3商
1 锚 作 供 应船 推 进 轴 系的特 点
该 5 . 锚作 供应 船采 用 了 co 87m Jy系统 及 D 1 P
动力定位 系统 , 可通过 co o t l r 推力进 行 实 JyC nr l 对 oe 时分 配 , 因此 , 有高 度 的灵 活性 , 具 自动化程度 较 高。
() 3 螺旋 桨 满 螺 距 运转 , 消 防泵 全 负 荷 运 转 外
( prt gMoe3 。 O ea n d ) i
() 4 螺旋 桨零 螺距 运 转 , 消 防泵 全 负 荷 运 转 外
( prt gMoe4 。 O ea n d ) i
各工况下功率分配见表 1 。
第 5期
锚作供应船 自 身的功能特点 , 其推进系统 的构成与 普通 的推进 轴 系有 较大 不 同。因此 , 扭 转振 动 特 其
性也 有所不 同 。对锚 作供 应船推 进轴 系的扭转 振动
进行 分析研究 , 掌握 其扭转 振动一 般特性 , 明影响 探 其扭 转振动 特性 的因素可极 大地 为该类 船舶 的轴系
张少凯 :8 7m锚作 供应船推进轴系扭振计算研究 5 .
2 l
表 1 各计算 工 况下功 率分 配表
工况
1
位移矢 量 ;. 、 c 和 [ 分 别 为 系统 的转 动惯 量 、 [ ] [ ] K] , 阻尼 和扭转 刚度 矩 阵 ; t } 系 统 的激 励 力矩 矢 { )为 (
额定 转速 16 0rm n 主机 自由端 装 配有 2 70 4 0 i, / 4 -8 5 型粘 性阻尼 减振器 , 出端 装配 2 33 1.A 2 输 4 .2 6S E 1型
船舶推进轴系扭转振动计算分析
![船舶推进轴系扭转振动计算分析](https://img.taocdn.com/s3/m/3063bde3ba0d4a7302763aa4.png)
作者签名: 年 月 日
学位论文版权使用授权书
本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保 留并向有关学位论文管理部门或机构送交论文的复印件和电子版, 允许论文被查 阅和借阅。 本人授权省级优秀学士论文评选机构将本学位论文的全部或部分内容 编入有关数据进行检索, 可以采用影印、缩印或扫描等复制手段保存和汇编本学 位论文。 本学位论文属于 1、保密囗,在 2、不保密囗 。 年解密后适用本授权书
关键词:扭转振动;轴系;霍尔茨法;MATLAB
-2-
武汉理工大学毕业设计(论文)
Abstract
Ship propulsion shafting is a complicated flexible system with multi-masses, whose function is mainly as follows: transferring the power generated by main engine to drive the propeller, so the thrust is born for ship moving. Propulsion shafting torsional vibration is one of the combustion engine power unit malfunction reasons. The torsional vibration aggravated problems can cause crankshaft, intermediate shaft, propeller shaft and other shaft segment fracture can cause gear wear, tooth surface pitting, coupler damage, excessive noise and other issues. These all affect the dynamic property and safety of ship driving, so the propulsion shafting torsional vibration research has very important significance. Having looked up to plenty of information, this paper is taking ship propulsion shafting as a researched object, gives a brief summary of principles and methods for research and study of torsional vibration. The main works are as follows: (1)Establish a lumped parameter model for various parts of the ship shafting to transfer the complex shafting to a simple model: homogeneous rigid disc elements, no inertia damping elements, no inertia torsion spring elements. (2)Do the study or research about the theory of the inherent characteristics of torsion vibration (natural frequencies and mode shape) in ship propulsion shafting torsional vibration calculation. Comparing different characteristics and applicable features by their calculation process. (3) Verify the correctness of the methods used by modeling specific real ship
某船舶推进轴系扭振计算分析
![某船舶推进轴系扭振计算分析](https://img.taocdn.com/s3/m/8fb44a10964bcf84b8d57b07.png)
r u n y a d te c re p n ig rs n n e s e d f q e c n h o rs o dn eo a c p e , a l a h irt n a l u e o h r e e d a d te e swel ste vb ai mpi d fte fe n n h o t
第2 2卷
第 5期 ( 第 1 1期 ) 总 3
21年 1 01 O月
船
舶
Vo . 2 No 5 1 2 Oc o e , 01 tb r 2 1
S P & B0AT HI
[ 船舶轮机 ]
ቤተ መጻሕፍቲ ባይዱ
某船舶推进轴系扭振计算分析
金 立 平
( 吉林 省地 方 海事 局 长 春 1 0 6 ) 3 0 1
JN L — ig I ipn
(ii oa MaimeSft A m ns a o , h n cu 30 1 J nL cl r i ae d ii rt n C a gh n1 0 6 ) L t y t i
Ke wo d :ma i e p o u so h t g F y rs rn r p lin s a i ; EM ; et me t t ri n lvb a in f n i ri mo n ; so a i r t n a o o Ab t a t h r c s rg n lp r me e s a e c i c lf r i r v n h ac l t n a c r c fs a o so a sr c :T e p e i e o ii a a a t r r rt a o mp o i g t e c l u ai c u a y o h f t r in l i o t vb a i n A t r e d me so a d fa h l c a k i sa ls e n t e fn t l me t a ay i s fw r o i r to . h e — i n i n mo e o a f r n s e t b ih d i h i i e e n n l ss ot a e t l e a c r t l a c lt h r i a a a t r u h a h me to n ri n o so a t f e s o a h s a t c u a ey c l u ae t e o i n l p r mee s s c s t e mo n f i e t a d tr in l si n s f e c h f g a f s c i n Ba e n t e e t b ih d r a h p s a t g e u v ln y tm, t i a e ac l td t e fe i r t n et . o s d o h sa l e e l s i h i q i a e t s se s f n h s p p rc l u a e h r e vb a i o
船舶柴油机的轴系扭转振动的分析与研究
![船舶柴油机的轴系扭转振动的分析与研究](https://img.taocdn.com/s3/m/cd8b0d7f01f69e314332949e.png)
船舶柴油机的轴系扭转振动的分析与研究【摘要】本文通过一些国内因轴系扭转振动而引起的断轴断桨的事故实例,来分析引起轴系扭转振动的主要原因,分析扭振主要特性,并提取一些减振和防振的基本控制措施。
【关键词】船舶柴油机轴系扭振危害分析措施在现代船舶机械工程中,船舶柴油机轴系扭转振动已经成为一个很普遍的问题,它是引起船舶动力装置故障的一个很常见的原因,国内外因轴系扭转而引起的断轴断桨的事故也屡见不鲜,随着科学水平的提高和航运业的发展,人们越来越重视船舶柴油机组的轴系扭转振动,我国《长江水系钢质船舶建造规范》和《钢质海船入级与建造规范》(简称《钢规》)和也均规定了在设计和制造船舶过程中,必须要向船级社呈报柴油机组的轴系扭转振动测量和计算报告,以此来表明轴系扭转振动的有关测量特性指标均在“规范”的允许范围内。
1 船舶柴油机轴系扭转振动现象简介凡具有弹性与惯性的物体,在外力作用下都能产生振动现象。
它在机械,建筑,电工,土木等工程中非常普遍的存在着。
振动是一种周期性的运动,在许多场合下以谐振的形式出现的,船舶振动按其特点和形式可分为三种,船体振动,机械设备及仪器仪表振动,和轴系振动。
船舶柴油机轴系振动按其形式可分为三种:扭转振动,纵向振动,横向振动。
柴油机扭转振动主要是由气缸内燃气压力周期性变化引起的,它的主要表现是轴系上各质点围绕轴系的旋转方向来回不停的扭摆,各轴段产生不相同的扭角。
纵向振动主要是由螺旋桨周期性的推力所引起的。
横向振动主要是由转抽的不平衡,如螺旋桨的悬重以及伴流不均匀产生的推力不均匀等的力的合成。
船舶由于振动引起的危害不但可以产生噪音,严重影响旅客和船员休息,还会造成仪器和仪表的损害,严重的时候甚至出现船体裂缝断轴断桨等海损事故,直接影响船舶的航行安全。
而在船舶柴油机轴系的三种振动中,产生危害最大的便是扭转振动,因扭转振动而引起的海损事故也最多,因此对扭转振动的研究也最多。
而且当柴油机轴系出现扭转振动时,一般情况下,船上不一定有振动的不适感,因此这种振动也是最容易被忽视的一种振动形式,一旦出现扭转振动被忽视,往往意味着会发生重大的事故。
船舶轴系扭转振动有限元分析及求解
![船舶轴系扭转振动有限元分析及求解](https://img.taocdn.com/s3/m/ec2f784d767f5acfa1c7cd38.png)
有限元法的基本思想是“化整为零 ”,即化复杂的不规则的整体为有限个单元的集合 体 ,以一定程度的近似为代价求出扭振系统的数值解 。具体地说 ,借助于有限元法 ,可以把 一个复杂的连续体看成是若干个基本离散单元的集合体 ,对扭振而言 ,有限元法使连续的扭 振问题变成一个有限自由度系统的振动问题 ,从而使得问题可以借助于线性方程组求解 。
一 引 言
船舶柴油机动力装置轴系的扭转振动是影响该动力装置安全运行的重要动力性能之 一 ,也是当前柴油机推进装置的重要故障原因之一 ,世界多数国家的船舶检验机构规定 ,超 过 150马力的内燃机动力装置必须进行扭转振动计算和测量 ,中国船舶标准化技术委员会 专业标准也有类似的规定 。目前 ,扭转振动计算方法有多种 ,计算的内容是进行系统的自由 振动和强迫振动计算 。自由振动计算的方法很多 ,如 Holzer法 、Tolle法 、Tepckux法等 ,以往 以 Holzer表格法应用较多 ;强迫振动计算多采用能量法 、放大系数法 。本文主要在 matlab7. 0环境下采用直接求解法求解自由振动 ,采用振型叠加法求解强迫振动 。matlab是近年来 开始流行的实用性工程数学计算软件 ,它以矩阵为计算基本单元 ,本文利用其强大的矩阵计 算功能进行轴系扭转振动计算 。
k1
- k1
0… 0
0
0
- k1 k1 + k2 - k2 …
0
0
0
K= … … … … …
…
…
0
0
0
… - kn - 2 kn - 2 + kn - 1 - kn - 1
0
0
0… 0
- kn - 1
kn - 1
对单支系统 ,矩阵带宽为 3;
船舶轴系扭转振动校核及案例分析
![船舶轴系扭转振动校核及案例分析](https://img.taocdn.com/s3/m/441b282315791711cc7931b765ce05087632756f.png)
99/0
4
1
0.123
2.539E-07
99/0
5
1
0.153
2.491E-07
99/0
6
1
0.153
2.539E-07
99/0
7
1
0.123
2.539E-07
99/0
8
1
0.153
1.474E-07
99/0
9
1
2.348
1.493E-05
0/0
10
1
0.038
1.143E-06
52/0
11
1
0.117
46
中国水运
第 21 卷
根据《钢质内河船舶建造规范》(2016),案例船有 6 缸, 应计算航行工况和离合器脱开工况及在这两种工况下每一缸 熄火工况的扭振计算。通过 COMPASS 软件的计算,得出上 述工况下的曲轴扭转振动应力、中间轴扭转振动应力、螺旋 桨轴扭转振动应力、齿轮啮合处振动扭矩、弹性联轴器振动 扭矩。
3.704E-07
82/71.5
12
1
0.041
0
0/0
13
1
0.077
1.585E-07
73/0
14
1
0.013
0
0/0
15
1.733
0.022
1.608E-06
70/0
16
1.733
0.021
1.315E-06
75/0
17
1.733
0.032
4.957E-06
100/0
18
1.733
0.040
5.364E-05
船舶轴系的振动与控制分析船舶专业毕业设计毕业论文
![船舶轴系的振动与控制分析船舶专业毕业设计毕业论文](https://img.taocdn.com/s3/m/a85dfd5ce55c3b3567ec102de2bd960590c6d919.png)
船舶轴系的振动与控制分析摘要本文主要进行船舶轴系振动的模态分析(固有频率与固有振型),通过MATLAB 平台实现了船舶轴系纵向振动模态计算的通用程序,并且分别应用该通用程序与ANSYS中的模态分析计算了船舶轴系扭转振动与纵向振动(给定轴系)的模态,并对所计算的结果进行了对比与分析。
同时,本文也介绍了船舶轴系强迫振动的计算以及船舶轴系振动的控制分析。
本文以船舶推进轴系的振动为研究对象,查阅了国内外大量文献,首先介绍了船舶推进轴系振动的分类,接着以一种通俗的方式阐述了各种振动的机理。
其次论述了轴系振动计算的几种常用的方法:霍尔兹法、传递矩阵法与有限元法。
接着论证了传递矩阵法的可用性,以及在什么情况下使用该方法可以达到所需的精度要求。
然后通过MATLAB平台实现了船舶轴系振动(包括扭转振动与纵向振动)的通用程序。
紧随其后,使用该程序计算了一个扭转振动与纵向振动的实例,再后来使用ANSYS对同样的例子进行了计算分析,通过比对,证实了通过MATLAB平台实现的通用程序计算的结果是令人满意的。
随后介绍了轴系的强迫振动及计算强迫振动的传递矩阵法,并给出了该方法的一个简单的算例,之后介绍了避振的几种思路。
最后对研究成果和有关问题进行了总结,对研究中的不足作了说明,对今后的工作做出了展望。
关键词:纵向振动,传递矩阵法,有限元法,通用程序,强迫振动Analysis of Vibration and ControlOn Ship ShaftingAbstractThis paper is mainly researching the vibration characteristics on ship shafting (natural frequencies and mode shapes). Through the platform of MATLAB, we get the general program which can calculate the mode of the longitudinal vibration and torsional vibration on ship shafting, and using this general program, an instance is calculated. ANSYS is applied to, too. And then both of the calculated results were compared and analyzed. At the same time, the paper also describes the calculation of the forced oscillation of ship shafting and the analysis of ship shaft vibration control.In this paper, viewing vibration of ship propulsion shafting as the research object, I consulted relevant data at home and abroad. First, I have introduced the classification of ship propulsion shafting vibration, and then described in a easy manner to various vibration mechanism.Next, several commonly used methods to vibration calculations are discussed: the Holzer method, the transfer matrix method and the finite element method.Then the availability of the transfer matrix method is demonstrated, and also is the required precision when we can achieve by the method.After that, through the platform of MATLAB, we get the general program which can calculate the mode of the vibration (including the longitudinal and the torsional vibration) vibration on ship shafting. Then we use the general program to calculate an instance of longitudinal and torsional vibration. And then we use ANSYS to calculate the same example. By comparison, we confirm the results by the general program through MATLAB platform are satisfactory.Then we introduce the forced vibration of ship shafting and the transfer matrix method of the forced vibration, and a simple example is showed, after that we introduce several ideas to avoid vibration.Finally, a summary about the achievement and problems is presented. An explanation of imperfectness in the study and pieces of advisement for the future work is given.Key words: Longitudinal Vibration,Transfer Matrix Method,Finite Element Method,General Program, Forced Vibration目录摘要........................................................................................................................ I ABSTRACT ................................................................................................................. I I 目录 ................................................................................................................ III 一绪论 (1)1.课题研究的目的和意义 (1)2.国内外研究概况 (2)3.本文主要工作 (3)二船舶轴系振动简介 (5)1.纵向振动 (5)2.扭转振动 (6)3.回旋振动 (7)三轴系振动计算方法 (9)1.霍尔兹(Holzer)法 (9)2.传递矩阵法 (11)3.有限元法 (19)四轴系振动通用程序实现 (23)1.船舶轴系的构造 (23)2.轴系振动通用程序实现 (25)3.轴系振动通用程序的应用与检验 (28)五船舶轴系振动的控制 (46)1.船舶轴系的强迫振动 (46)2.船舶轴系强迫振动的传递矩阵法 (46)3.强迫振动算例 (48)4.船舶轴系避振措施 (50)六总结 (52)1.结论 (52)2.设计评价和展望 (52)致谢 (53)附录 (54)参考文献 (62)一绪论1.课题研究的目的和意义声明:本论文中除特殊说明之外出现的所有物理量的单位均为国际制单位,即长度为米,时间为秒,质量为千克等。
冰载荷冲击下的船舶推进轴系瞬态扭转振动响应分析_杨红军
![冰载荷冲击下的船舶推进轴系瞬态扭转振动响应分析_杨红军](https://img.taocdn.com/s3/m/444359f79b89680203d825ef.png)
第19卷第1-2期船舶力学Vol.19No.1-2 2015年2月Journal of Ship Mechanics Feb.2015文章编号:1007-7294(2015)01-0176-06冰载荷冲击下的船舶推进轴系瞬态扭转振动响应分析杨红军1,2,车驰东1,张维竞1,仇挺2(1上海交通大学船舶海洋与建筑工程学院,上海200240;2南通中远川崎船舶工程有限公司,江苏南通226005)摘要:传统的推进轴系扭转振动响应计算聚焦于稳态响应,而传递矩阵法、系统矩阵法,可以取得满意的稳态计算结果,但无法处理冰区船舶、海洋工程船舶所遇到的变载荷、变惯量等瞬态工况。
为了克服频域扭振计算方法在处理瞬态条件扭振问题的局限性,使用Newmark法从时域求解轴系扭转振动微分方程组,基于该算法对某船推进轴系在冰载荷作用下的瞬态响应做了数值计算。
其结果表明,在冰载荷冲击下,轴系瞬态扭矩比稳态扭矩大;通过时频分析,在冰载荷作用期间,出现了明显的螺旋桨叶频激励,因此须避免冰载荷激励产生轴系扭转振动的叶次共振。
Newmark法扭振计算结果与实船测试结果对比表明,该方法在稳态响应计算和时域曲线上都与实际测量结果基本一致,具有工程实用性。
关键词:船舶推进轴系;冰载荷冲击;扭转振动;Newmark法中图分类号:U664.21文献标识码:A doi:10.3969/j.issn.1007-7294.2015.h1.020Transient torsional vibration analysis forice impact of ship propulsion shaftYANG Hong-jun1,2,CHE Chi-dong1,ZHANG Wei-jing1,QIU Ting2(1Shanghai Jiao Tong University,Shanghai200240,China;2Nantong COSCO KHI Ship Engineer Co.,Ltd,Nantong226005,China)Abstract:The conventional torsional vibration calculation for ship propulsion system concentrates on the response of steady state.And the transfer matrix method and system matrix method,could get a good result of steady response.But these methods can not solve the momentary problem for ship navigation in ice and engineering ship.By employing the Newmark method to solve the torsional vibration equation in time do-main,the result was gotten for the propulsion shaft with ice impact torque on propeller.During the ice im-pact,the transient torque is bigger than steady torque and the blade frequency exciting component was found by time-frequency analysis.Avoiding blade number order resonance of ice impact is necessary.The com-parison between Newmark method result and measurement shows that Newmark method is practicable for the response of steady state and time domain curve,which results are basically the same as the measure-ment result.Key words:ship propulsion shaft;ice impact;torsional vibration;newmark method收稿日期:2014-03-04作者简介:杨红军(1982-),男,博士生,E-mail:yhj99373aman@;车驰东(1980-),男,博士,讲师。
船舶轴系扭振计算与测量分析
![船舶轴系扭振计算与测量分析](https://img.taocdn.com/s3/m/93a3937431b765ce050814ba.png)
—
U k =∑ :
^=1 h 十 2
-
k+l
O / k + 1
U +l 一
.
∞
川
n
% O l n _ 1 一
U n - =∑∞ : %
n=1
将 上式 列 成表 格 即为表 1 霍 尔 茨表 格 , 其 形式 如 下 :
系用霍 尔茨法进行 自由振动计算和采用能量法进行共振计算进行 了简单介绍 , 结合 实船 的扭振 测量的结果和理论计算 结果进行对比分析。结果表 明, 根据精确的原始轴 系数据和 柴油机参 数, 扭 振计 算 的理论 结 果和 实测 结果 非常 吻合 , 本船 的理论 计 算值符 合 实船状 况 , 转 速 禁 区设 定
该船安装 的是 瓦锡 兰 7 R T—f l e x 8 2 T电喷 柴油 机, 主机 的额 定 功 率 3 1 6 4 0 K W, 额定 转速 8 0 r p m。
中 间 轴 9 9 2 7 m m, 直径 7 0 0 m m, 抗 拉 强 度 为
收稿 日期 : 2 o 1 3— 0 3— 0 1
2 自由振 动计 算
对 于多质 量 扭 振振 动 系统 的 自 由振 动 计 算 , 目前 普遍 采用 的是 霍 尔茨 法 。它 是 一种 逐 次渐 近 法, 通 过 数次渐 近求 得近 似 的固有频 率 。 系统 第 k一1质量 与第 k质 量 间 的轴 段 弹 性 力矩 为 : U ㈦ k质量 产 生 的惯 性 力 矩 S ; 第 k与 第 k+1质量 间 的轴 段弹 性力矩 u + 。 。
第一作者简介 : 殷志飞 , 男, 讲 师
・
2 8・
2 0 1 3 年第 2 期
某39 000 DWT散货船轴系扭振计算
![某39 000 DWT散货船轴系扭振计算](https://img.taocdn.com/s3/m/afab1bfd18e8b8f67c1cfad6195f312b3169eb15.png)
某39 000 DWT散货船轴系扭振计算作者:***来源:《广东造船》2021年第01期摘要:本文以39000DWT散货船轴系扭转振动计算为实例,简要介绍调整轴系中间轴及螺旋桨轴的参数、匹配调频轮及转动飞轮的转动惯量来改变其固有频率,降低扭转应力峰值,以满足船级社规范的要求,达到控制扭振的目的,消除船舶营运中轴系扭转振动故障的风险。
关键词:船舶;轴系;扭振计算;共振;频率;临界转速中图分类号:U664.21 文献标识码:AAbstract: In this paper, the calculation of shafting torsional vibration for 39 000 DWT bulk carrier is taken as an example, the natural frequency is changed and torsional stress is reduced by adjusting the parameters of the middle shaft and propeller shaft, matching the moment of inertia for tuning wheel and flywheel, so as to meet the requirements of the classification rules, achieve the purpose of controlling torsional vibration and eliminate the risk of shafting torsional vibration failure in ship operation.Key words: Ship; Shafting; Torsional vibration calculation; Resonance; Frequency; Critical speed1 前言扭振比其他形式的軸系振动(轴向振动、回转振动等)具有更大的危害性,它关系到船舶的航行安全,亦是船东最关心的问题之一。
船舶推进轴系扭振研究综述
![船舶推进轴系扭振研究综述](https://img.taocdn.com/s3/m/5ed32ba09ec3d5bbfc0a7438.png)
船舶推进轴系扭振研究综述摘要:船舶推进轴系振动特性是船舶动力性能的重要方面。
本文从扭振模型、扭振计算方法、关键因素分析及扭振软件开发四个方面综述了船舶推进轴系扭振的研究现状,对轴系扭振研究具有一定的知道意义。
关键词:扭振模型;扭振方法;扭振关键因素;扭振软件引言船舶推进轴系扭振研究是船舶动力性能研究的重要方面,对于船舶的安全性、舒适性及可靠性具有重要意义,历来都是船舶设计者需要重点考虑的问题。
德国的Geiger于1916年发表了利用机械式盖格尔扭振仪测量轴系扭振的文章,从而使扭振的研究进入了实测和实验阶段,在1921年又提出了用于计算扭振固有频率和固有振型的计算方法——霍尔茨法[1],扭振的研究在20世纪50年代逐渐变得成熟,到了60年代至80年代,随着计算机技术的高速发展,内燃机向着高速率大功率方向发展,扭振变得更加剧烈,事故发生事件层出不穷,促使人们对扭振进行更深一步的研究,主要体现在精密仪器的使用和计算软件精度的提高上,到了20世纪90年代以后,扭振的研究进入了纵深发展期,力学模型的建立更加精确,如Kouji Fujii建立了发动机的曲轴平面模型,利用传递矩阵法求解曲轴的扭转振动及弯曲振动[2],日本的日立zosen公司等五家公司共同设计出一种新的推进轴系,在稳态性、可靠性等方面都有很大的提升,并降低了成本[3]。
本文重点从扭振模型、扭振计算方法、关键因素分析及扭振软件开发四个方面对船舶内燃机轴系扭振近年来的研究进行分类概述,使读者能够更清晰的了解近年来船舶推进轴系扭振研究的最新成果。
1 扭振的研究结构及数学模型从传统的研究来看,轴系模型一般分为两大类:集总参数模型和分布参数模型。
国内外学者又在此基础上从不同角度建立了不同的轴系模型取得了更好的效果。
涂耿伟等利用模型修正法对缩减后的模型作了进一步的修正,大大提高了模型的精度[4];艾维等利用Pro/E建立了实船轴系三维仿真模型,通过动力仿真分析了轴系振动特性,达到了良好的效果[5];张俊红等采用有限元法结合多体动力学方法对某X8170C型柴油机轴系扭振进行了研究,建立了轴系扭振仿真虚拟样机并引入BP神经网络对减振参数进行了优化[6];肖志建建立了数理模型,利用有限元法对船舶推进轴系扭振问题进行分析,取得了不错的效果[7];姜雪洁等建立了轴系的动态计算模型,对不同转速下的轴系的动态响应进行了计算[8]。
船舶复杂轴系扭振计算研究及其应用
![船舶复杂轴系扭振计算研究及其应用](https://img.taocdn.com/s3/m/7fc521de4793daef5ef7ba0d4a7302768e996fcc.png)
船舶复杂轴系扭振计算研究及其应用船舶复杂轴系扭振计算研究及其应用船舶是一种大型复杂的机械结构,它在航行过程中会受到许多不同的力和振动的作用。
其中,轴系扭振是船舶运行中不可避免的问题。
轴系扭振不仅导致了能量的损失,还会给船舶的结构和设备带来损害,甚至威胁到船舶的安全。
因此,对船舶复杂轴系扭振进行研究和计算,具有重要的理论和应用价值。
一、轴系扭振的产生原因轴系扭振是由于主机和驱动设备的功率、转速和转矩等因素的变化所引起的。
这些因素的变化往往是不规则的,并且受到液动力、气动力、悬挂系统和支撑系统等因素的干扰,从而引起了船舶轴系扭振问题的产生。
二、船舶复杂轴系扭振的计算方法为了对船舶复杂轴系扭振进行计算和分析,需要采用一种有效的方法来模拟船舶复杂轴系结构的动态特性。
目前主要的计算方法有有限元方法和刚柔耦合方法。
1、有限元方法有限元方法采用离散法对船舶轴系结构进行离散化,将结构划分为有限个小单元,然后建立它们之间的连接关系。
通过对结构进行受力和运动分析,计算出所需要的振动响应,从而得到结构的扭振刚度矩阵和微分方程,并求解该方程得到轴系的振动特性。
2、刚柔耦合方法刚柔耦合方法是建立在有限元方法基础上的一种模拟方法。
它将轴系划分为刚性部分和柔性部分,根据物理实验结果对这些部分进行优化,在悬浮和支撑装置上设置适当的振动吸收材料,从而改善船舶的振动特性。
三、船舶复杂轴系扭振的应用船舶复杂轴系扭振的应用涉及到船舶设计、制造和运行等方面。
在船舶设计和制造的过程中,需要对船舶复杂轴系的动态特性进行精确的计算和分析,以满足设计要求,并保证船舶的安全运行。
在船舶的实际运行中,轴系扭振问题往往会引起船舶运行的不稳定性和船员的不适感,因此需要对其进行有效的控制。
总之,船舶复杂轴系扭振计算研究及其应用是当前工程领域的一个重要课题,其研究成果可以为船舶行业提供重要的科学依据和技术支撑,以确保船舶在运行中的安全和稳定性。
船舶轴系扭振产生的原因及对策
![船舶轴系扭振产生的原因及对策](https://img.taocdn.com/s3/m/f580392a974bcf84b9d528ea81c758f5f71f2951.png)
船舶轴系扭振产生的原因及对策摘要:近年以来,随着中国现代化进程的发展,为适应中国海洋事业的快速发展时期,综合确保船舶航行安全的同时,相关工作人员也对船舶轴系扭振成因进行了深入的研究,以期对船舶轴系的扭振特性及规律进行相应的完善与总结,严格按照有关规定处理船舶轴系扭转振动问题,尽量减少轴系扭转振动造成的船舶安全事故。
关键词:船舶轴系,扭振,原因及对策,探讨1前言一般来说,振动定律可以直接使用正弦波来表示轴向运动。
扭转振动是在扭矩变化的作用下所发生的周期性运动。
扭矩振动主要发生在输出和扭矩吸收不均匀的机械装置中,如柴油机运行的某些设备或装置、电机压力机、电机泵等等。
就柴油发动机而言,包括减速齿轮之间的碰撞、齿面的点蚀及断裂、连接螺栓的断裂、橡胶接头的撕裂、引擎零件的加速磨损等。
在运行过程中发生的严重事故,对此方面的研究始终在持续,力度也不再不断加大,积累了大量的经验和数据。
人们一直在探索和寻找一种相对简单的近似计算方法,包括轴系怠速振动固有频率和临界转速的计算方法。
最后,它算是处理实际问题逐渐形成的方法。
2船舶轴系扭转振动的概述主动推进装置的扭转振动问题非常重要,值得去好好深入地研究。
通常情况下,当气缸关闭之后,后续的操作才更安全。
然而,一些辅助振荡器的相对振幅矢量不会减小。
相反,共振应力增大,甚至接近或超过允许的扭转应力。
此外,每个圆柱的分解振幅矢量的相对值也会受到不同程度的影响。
了解气缸轴承拆卸后产生较大冲击应力的推力控制,对于避免单个气缸的拆卸事故具有重要的意义。
在柴油机的实际运行过程中,在电梯试验以及运行试验中,不仅要进行单缸停油试验,而且在柴油机发生紧急故障时,必须要密封气缸进行运行。
此外,最大燃烧压力、排气温度调节等平衡性差异以及各种故障往往导致燃烧不良现象。
因此,在计算转向轴系的振动时,必须考虑这种情况。
在细致完成相关工作之后,还要向船公司提供船舶运行中的计算结果和注意事项,以确保船舶在正常运行和气缸密封运行中的正确操作和管理。
37500DWT油船轴系扭振计算及问题分析
![37500DWT油船轴系扭振计算及问题分析](https://img.taocdn.com/s3/m/465737b6d1f34693daef3ed0.png)
37 500 D W T油船轴系扭振计算及问题分析韩阳泉蔡虎(广船国际技术中心)摘要:本文介绍了37 500 D W T油船轴系扭振计算中发现的问题,以及由扭振引起 的螺旋桨压入计算、校中计算等问题,并寻找解决方案。
关键词:轴系扭振校中螺旋桨DOI:10.3969/j.issn.2095-4506.2016.04.0020前言37 500 DWT化学品/成品油轮是公司为 适应市场需求而研发的一型浅吃水节能型 船舶,入级D N V,采用M A N-B&W5S50ME-B9.2Ti e r I I主机,MCR点为 8900k W x l l7rpm。
为降低油耗,提髙螺旋 桨效率,主机选择降功率、降转速使用,SMCR点是6900kW x99rpxno本船为单轴系,主机带动一根中间轴 和一根螺旋桨轴,驱动螺旋桨,中间轴上 布置一个中间轴承,螺旋桨上布置两个艉 管轴承。
理论上螺旋桨转速越低、直径越大、推进效率越高。
本船SMCR点的转速仅99 rpm,在同类船舶中转速最低;螺旋桨设计 直径6.37m,比我公司所建造的同类船大约 0.8 m,其附连水后的转动惯量达到33,135 kg •m2,比同尺度船大13,135 kg ■m2左 右。
5缸柴油机的自身振动不平衡性比较剧 烈,其振动输出特性也高于我厂常规使用的 6缸柴油机。
本文详细介绍该船扭振计算过程中遇 到的问题,以及受扭振计算结果的影响,螺旋桨压入计算及轴系校中计算的问题,并寻求每个问题的解决方案。
1扭转振动计算在一系列的轴系计算中,扭振计算是作者简介:韩阳泉(1981--),男,工程师,轮机设计。
蔡虎(1986--),男,助理工程师,轮机设计。
关键。
按照轴系扭振计算流程,见图1所 示,进行轴系扭振计算。
如果扭振计算结 果不满足规范要求,可采取以下几种措施 进行调整:⑴增大主机飞轮;⑵增加主机 调频轮;⑶增加轴系的直径;⑷调整各个轴的长度。
以上步骤应逐个尝试直到计算结 果满足要求,如果上面各种措施均不满足要 求,则考虑配置扭振减振器。
船舶轴系振动研究
![船舶轴系振动研究](https://img.taocdn.com/s3/m/7a7d55c70342a8956bec0975f46527d3240ca6de.png)
船舶轴系振动研究船舶轴系振动研究一、引言船舶轴系振动是指船舶轴系统在运行过程中发生的振动现象。
船舶的轴系由主机、轴、轴承、减速器等组成,其运行状态和振动特性对航行安全和机械寿命具有重要影响。
本文将探讨船舶轴系振动的研究现状、影响因素以及振动控制手段,以期为船舶设计和运行提供参考。
二、研究现状1. 轴系振动的定义与分类船舶轴系振动可分为弦振动和扭振动两类。
弦振动是指轴系在弯曲载荷作用下发生的振动,其频率与轴的弹性特性有关。
扭振动则是轴系在扭矩作用下发生的振动,其频率与主机输出转速相关。
2. 振动特性的研究方法为了研究船舶轴系振动特性,常采用模态分析和频域分析等方法。
模态分析通过计算轴系的固有频率和振型,揭示了其特征。
频域分析则通过将时域信号变换到频域,得到频率成分的谱分析图,可以深入了解振动的频率分布特性。
三、影响因素1. 轴系结构与材料轴系的结构参数和材料强度对振动具有重要影响。
合理的轴系设计和材料选择能够减小振动幅度和频率,提高航行平稳性。
2. 主机质量分布和转速控制主机的质量分布和转速控制方式会对轴系振动产生显著影响。
合理设计主机及其配套设备,细致调节主机转速能够减小振动幅值和频率。
3. 轴承刚度和润滑状态轴承的刚度和润滑状态也是造成振动的重要因素。
适宜的轴承刚度和润滑方式可减小振动,并提高轴系的稳定性和寿命。
四、振动控制手段1. 结构优化设计轴系结构的优化设计可以减小振动幅值和频率,提高航行平稳性。
通过调整轴的形状、材料、连接方式和支承方式等,可以改善轴系的振动特性。
2. 动平衡技术动平衡是消除轴系振动的重要措施之一。
通过在轴上加重或减重,使轴系在运行时达到平衡状态,减小振动幅度和频率。
3. 振动控制装置安装振动控制装置可以减小轴系振动。
例如,在轴上安装阻尼器或减振器,能够吸收振动能量和调节振动频率。
五、结论船舶轴系振动对航行安全和机械寿命具有重要影响。
通过研究轴系振动的特性和影响因素,可以采取合理的控制手段,减小振动幅值和频率,提高航行平稳性和机械性能。
船舶推进轴系扭振超标实例分析及改善方案研究
![船舶推进轴系扭振超标实例分析及改善方案研究](https://img.taocdn.com/s3/m/11df9174168884868762d6d1.png)
文章 编 号 : 1 6 7 4 —5 9 4 9 ( 2 0 1 4 ) 0 1 —0 0 3 9 —0 4
船 舶 推进 轴 系扭 振超 标 实例 分 析及 改 善 方 案研 究
C
h n
王 京 , 郑英 男 , 张 涛。
h
p
p
( 中海 工业 ( 江 苏) 有 限公 司 , 江苏 扬州 2 2 5 2 1 1 )
s i on vi b r a t i on ou t o f t he de s i gn e d s t r e s s l i mi t s . Thi s pa p e r a na l yz e s o ne c a s e o f e x c e s s i v e s ha f t t o r s i o na l vi br a t i on,a nd s ug ge s t s
h n c he c k e d a f t e r t h e i ns t a l l a t i on . Dur i ng t h e pr oc e s s of b ui l d i n g a s hi p,t he r e a r e qu i t e a f e w t hi ngs w hi c h wi l l ma k e t he s ha f t t o r —
som e cor re et m e asur es.
Ke y wo r d s:di e s e l e ng i n e; t o r s i on a l v i br a t i on
轴 系扭振 的机 理 与危 害
船 舶推 进轴 系是 船 舶动力 装 置 的一个 重要 组成 部分 , 承 担 着将 主 机 功率 传 递至 螺 旋 桨并 推 动 船舶 前 进
船舶推进轴系校中对轴系振动影响分析
![船舶推进轴系校中对轴系振动影响分析](https://img.taocdn.com/s3/m/8357809dd05abe23482fb4daa58da0116d171f4d.png)
实际案例分析:结合实际案例,分析轴系振动对船舶推进性能的影响 以及校中方法的优化效果。
未来研究方向:探讨未来在船舶推进轴系校中与轴系振动影响分析 方面的研究方向,为相关领域的研究提供参考。
06
案例分析:船舶推进轴系校中与轴系振动 的实际应用
案例一:某型船的推进轴系校中与振动控制
某型船的推进轴 系校中与振动控 制背景
某型船的推进轴 系校中与振动控 制目的
某型船的推进轴 系校中与振动控 制过程
某型船的推进轴 系校中与振动控 制结果
案例二:某大型船队的推进轴系校中与振动控制实践
案例背景:某大型船队在运营过程中遇到了推进轴系振动问题,需要进行Fra bibliotek中和振动控制。
定期维护与保养:对轴系进行定 期维护和保养,确保轴系的正常 运行和使用寿命。
添加标题
添加标题
添加标题
添加标题
调整轴系振动:根据轴系振动监 测结果,对轴系进行必要的调整, 以降低振动水平。
应急处理措施:在出现紧急情况 时,采取相应的应急处理措施, 以避免事故的发生。
轴系振动的控制效果评估
轴系振动控制方法:介绍船舶推进轴系校中过程中,采用的控制轴系 振动的方法,如优化设计、调整安装等。
03
轴系振动对船舶推进的影响
轴系振动的原因
螺旋桨设计不合理
螺旋桨安装误差
添加标题
添加标题
螺旋桨制造误差
添加标题
添加标题
螺旋桨运行过程中产生的振动
轴系振动对船舶推进性能的影响
• 轴系振动对船舶推进效率的影响 * 振动会降低轴承的润滑效果,增加摩擦阻力 * 振动会导致轴系中的应力分布不均,影响材料性能 * 振动会引发船舶推进 系统中的其他问题,如密封失效、轴承磨损等 • * 振动会降低轴承的润滑效果,增加摩擦阻力 • * 振动会导致轴系中的应力分布不均,影响材料性能 • * 振动会引发船舶推进系统中的其他问题,如密封失效、轴承磨损等
船舶轴系振动研究
![船舶轴系振动研究](https://img.taocdn.com/s3/m/91d6c20786c24028915f804d2b160b4e767f81c0.png)
船舶轴系振动研究引言随着全球贸易和交通的发展,船舶运输作为重要的水上交通方式,扮演着越来越重要的角色。
然而,船舶运行过程中可能会遇到各种问题,其中船舶轴系振动问题尤为突出。
船舶轴系振动不仅影响船舶的运行效率和安全性,还可能对船体结构造成损害,因此对于船舶轴系振动的研究显得尤为重要。
相关研究在过去的几十年中,船舶轴系振动问题已经引起了国内外学者的广泛。
他们针对船舶轴系的振动特性、影响因素以及控制方法等方面进行了深入研究。
研究结果表明,船舶轴系振动主要受到螺旋桨、船体结构、轴系不平衡等多种因素的影响。
此外,船舶轴系振动问题不仅涉及到船舶运行过程中的稳定性,还与船体结构的疲劳损伤密切相关。
研究方法本文采用理论分析与实验研究相结合的方法,对船舶轴系振动问题进行深入研究。
首先,利用有限元分析软件对船舶轴系进行建模,并进行模态分析以获取轴系的固有振动特性。
其次,通过实验测试,获取船舶轴系在运行过程中的振动数据,包括振动位移、速度和加速度等。
最后,对实验数据进行频域和时域分析,探讨船舶轴系振动的内在机制。
实验结果与分析实验结果表明,船舶轴系振动主要集中在低频区域,高频区域的振动幅度较小。
通过对实验数据的频域分析,发现船舶轴系振动主要表现为纵振和横振,且两者之间存在耦合现象。
此外,实验结果还显示,船舶轴系振动的幅值和频率受到螺旋桨转速、负荷等因素的影响。
在时域分析方面,研究发现船舶轴系振动具有非线性特性,且在不同工况下表现出明显的复杂性。
通过对实验数据的详细分析,发现船舶轴系振动主要受到轴系不平衡、螺旋桨激振力等多种因素的影响。
此外,船体结构的固有振动特性和阻尼比对船舶轴系振动也有重要影响。
讨论根据实验结果和分析,本文对船舶轴系振动的原因进行了深入探讨。
研究发现,船舶轴系振动主要受到螺旋桨激振力、轴系不平衡等因素的影响。
为了有效控制船舶轴系振动,可以从以下几个方面入手:1、优化螺旋桨设计,减小螺旋桨的激振力。
通过改变螺旋桨的叶片形状、数目等参数,降低螺旋桨运转过程中产生的激振力,从而降低船舶轴系振动的幅度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.92
47
第 22 卷 第 5 期(总第 131 期) 2011 年 10 月
船舶 SHIP & BOAT
Vol.22 No.5 October,2011
图 4 当量系统模型
120度 CA,发火顺序为 1-5-3-4-2-6。 对于实际的 船舶内燃机轴系,由于柴油机的转速较低,而且高频 的激振力矩很小,所以一般不会出现高频的振动。 3.1 自由振动结果分析
单、 双结振动下,1~12 各谐次对应的临界转速 (r/min)如下表 2 所示。
图 7 自由端扭振振幅随转速变化关系
由于主机额定转速为 127 r/min,12 谐次以下的
激振,能够激起单结和双结振动,对于 3 结及以上的
共振则无能为力。 在柴油机转速范围内没有出现危
险共振。
3.2 强迫振动结果分析
150
瞬时许用应用
轴 段 应 力 (MPa)
100
图 12 最大扭矩与转速关系
50
0
20
40
60
80 100 120 140 160 180
曲 轴 转 速 (r/min)
图 9 6 谐次激振引起 1 结各轴段应力
12
轴 段 应 力 (MPa)
8
4
0
20
40
60
80 100 120 140 160 180
4结语
(1) 采 用 Ansys 有 限 元 分 析 软 件 ,绘 制 了 半 拐 的三维模型,计算出端面扭转角度,继而精确计算出 扭转刚度和转动惯量等原始参数, 提高了轴系扭振 的计算精度;
(2) 计算出了自由振动的频率和振型,转速范 围内不存在共振。轴段的最大应力小于材料许用值, 本船舶轴系扭转振动状况是良好的;
by wave absorption controller [J]. Journal of Sound and Vibration,2006,295:317-330.
49
对于内燃机轴系,最大扭转振幅一般发生在自
由端,所以针对自由端进行分析。 图 6 示出在额定 转速下,自由端扭振振幅随曲轴转角变化的关系图。
图 8 飞轮输出端扭振振幅随转速变化关系
表 2 各谐次对应的临界转速
谐次
1
2
3
4
5
6
7
8
9
10
11
12
单结振动 370.5 185.2 123.5 92.6 74.1 61.7 52.9 46.3 41.2 37.0 33.4 30.9
8
9
10
11
转 动 惯 量 (kg·m2)
5 100 4 368 4 368 4 368 4 368 4 368 4 368 2 028 10 121 258 31 557
扭 转 刚 度 (N·m·rad-1·108)
8.50
7.94 80.20 7.79 7.99 8.33 10.87 16.26 0.43
46
某船舶推进轴系扭振计算分析
复杂形状的物体,传统计算方法实际操作上非常不 便,难以准确求解 。 [3,4]
对于单位曲柄扭转刚度的计算,目前均采用半 经验公式进行计算,由于各种经验公式都有各自特 定的使用机型,有一定的适用范围,因此很难用统一 的 公 式 来 计 算 曲 柄 的 扭 转 刚 度 [5]。
曲 轴 转 速 (r/min)
图 10 12 谐次激振引起 2 结各轴段应力
由计算得到的应力与转速图可看出,轴段应力 和转矩的整体变化趋势随转速的增大而增大。 在 62 r/min 左右的应力比较大, 原因就是由第 6 主谐 次激振引起的单结共振。 在额定转速时,输出功率 较 大 ,应 力 也 较 大 ,但 小 于 560 MPa 的 轴 段 许 用 应 力,处在安全范围之内。
Torsional vibration calculation and analysis of a ship propulsion shaft
JIN Li-ping
(JiLin Local Maritime Safety Administration,Changchun 130061) Keywords: marine propulsion shafting;FEM;inertia moment;torsional vibration Abstract: The precise original parameters are critical for improving the calculation accuracy of shaft torsional vibration. A three-dimensional mode of a half crank is established in the finite element analysis software to accurately calculate the original parameters such as the moment of inertia and torsional stiffness of each shaft section. Based on the established real ship shafting equivalent system, this paper calculated the free vibration frequency and the corresponding resonance speed, as well as the vibration amplitude of the free end and the flywheel output end, analyzed the relationship of the stress and torque of shafts and the crank angle and engine speed. The results show that in the whole speed range, the torsional amplitude is less than the allowable value and the largest shaft torque and stress are less than limited value of the material. So that the ship shafting torsional vibration is in a good situation.
(3) 计算中采用了近似计算的方法以及计算中 一些难以确定的因素,如阻尼的确定等,会不可避免 的产生一定的误差, 但理论计算对轴系的设计优化 仍具有重要的指导意义。
[参考文献] [1] 王祺. 内燃机轴系扭转振动 [M]. 大连: 大连理工大 学
出 版 社 ,1991. [2] 陈 之 炎. 船 舶 推 进 轴 系 振 动 [M]. 上 海 :上 海 交 通 大 学
Iφ咬 +C动惯量矩阵;
C 为阻尼矩阵;
K 为刚度矩阵; M 为激振力矩向量; φ 为扭转角度向量。
3 计算结果及分析
图 2 划分后的模型
本 轮 主 机 额 定 转 速 127 r/min, 发 火 间 隔 角 为
表 1 转动惯量与刚度的计算值
质量号
1
2
3
4
5
6
7
第 22 卷 第 5 期(总第 131 期) 2011 年 10 月
[船舶轮机]
船舶 SHIP & BOAT
Vol.22 No.5 October,2011
某船舶推进轴系扭振计算分析
金立平
(吉林省地方海事局 长春 130061)
[关键词] 船舶推进轴系;有限元;转动惯量;扭振 [摘 要] 提高轴系扭振计算精度,必须有精确的原始参数,以准确掌握船舶轴系扭振情况。 在有限元分析软件 中,建立曲柄半拐等的三维模型,用有限元分析方法精确的确定了各质量、轴段的转动惯量、扭转刚度等精确原始参 数。 基于建立的实船轴系当量系统,计算出了各结自由振动的频率及对应的共振转速,自由端和飞轮输出端的振幅, 分析了轴段应力和扭矩随曲轴转角及转速的变化关系。 结果表明在整个转速范围内,扭转振幅小于限定值,轴段的 最大扭矩和应力均小于材料许用值,本船舶轴系扭转振动状况是良好的。 [中图分类号] U664.21 [文献标志码] A [文章编号] 1001-9855(2011)05-0046-04
转速范围内单双结主谐次引起的各轴段应力 如图所示,其他谐次引起的应力相对较小。
由图 9、图 10 可知,主谐次对 第 9 轴 段 的 激 振 远大于对其他轴段的激振。 第 9 轴段对应于实船轴 系的飞轮后端轴,符合实际情况。 第 9 轴段承受的 最大应力与扭矩与转速的关系见图 11、12。
200
图 11 最大应力与转速关系
图 3 节点位移图
根据刚度计算公式(1),可求得半拐刚度
K= M
N·m·rad-1
(1)
φ
式中:M 为施加的扭矩,N·m;
φ 为扭转角度,rad。
整拐刚度值则为半拐刚度值的 1/2。 求得的各
质量、轴段的转动惯量和刚度如下表 1 所示。
图 1 半拐三维模型
2 当量系统模型
某船推进轴系当量系统模型如下页图 4 所示。 对应的振动系统矩阵微分方程为:
本文取其前 6 结振动,求得的各质量 1~6 结振 动的频率与振型如图 5 所示。
相对振幅
2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0
1
2 3 4 5 6 7 8 9 10 11
质量序号 图 5 1~6 结振型
图 6 自由端扭振振幅与曲轴转角关系图
可以看出, 额定转速下自由端扭振振幅在整个 周期内数值很小,完全符合要求。 图 7、8 分别示出了 自由端和飞轮输出端扭振振幅随转速变化的关系。