血流动力学与氧代谢监测-陆国平

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 综合指标,不能反映局部组织的氧合
• 氧需求增加时首先增加CO,其次增加氧摄取率,导致
SvO2的降低;如果心脏储备功能降低,CO增加不能满
足需求,机体通过增加氧摄取率代偿。 • CO、SaO2、Hb(DO2)--VO2(O2ER)--SvO2
氧输送与氧代谢
静脉血氧饱和度(SVO )
2
• 通过中心静脉导管测得的ScvO2 与SvO2 有一定 的相关性,临床上ScvO2更具可操作性,休克 时ScvO2 值比SvO2 值高5% ~15%
血流动力学与氧代谢监测
复旦大学附属儿科医院重症医学科 上海市小儿急救中心
陆国平
血流动力学


外周循环 组织细胞 输送营养、排出废物
血流动力学共同通路
循环系统认识主要在于输送与灌注
休 克 : 组 织 有 效 灌注不足/血流 分布异常所致广 泛的细胞低氧性 急性循环衰竭
早期休克:组织灌注不足 晚期休克:血压下降
但提高败血症病人的氧输送量并不能完全降低 死亡率。
Shoemaker 提出使危重病人达到“超正常
(Supernormal) ” 可改善预后 其他研究表明:单纯通过增加CO而导致DO2增 加,并不能降低危重患者的死亡率
氧输送与氧代谢
静脉血氧饱和度(SVO )
2
• SVO2是反映全身氧供-需平衡的重要参数
氧输送与氧代谢
氧消耗(O2 consumption, VO2)
C O2(混合静脉血氧含量ml/dl)
=1.36×Hb×S O2+0.003P O2 可简化为: C O2=1.36× Hb×S O2
VO2(ml· min-1· m-2)=(CaO2-C O2) ×10×CI
正常值100~180ml· min-1· m-2
• PiCCO缺点:CVP始终波动,需要经肺热稀释法的 校正以及系统正确性与动脉波形密切相关
无创血液动力学监测
无创心排量监测
• 超声心动图ECHO技术
• USCOM技术:超声探头置于胸骨上窝或锁骨上窝或胸 骨左缘第2 ~ 4 肋间隙
• NICOM技术:采用射频波相位移,可连续监测
• 食管超声技术( TEE):超声探头经口置入食道,探头位 置置于第三、四肋或第五六胸椎间隙水平 • 经气管导管多普勒测定法( Transtracheal Doppler , TTD):前端带有超声换能器(直径5mm )的特殊气管 导管置入气管
局部灌注 pHi OPS PtcO2 PtcCO2 StO2
后负荷 SVR PVR
有创血流动力学监测
中心静脉压
CVP反映右心功能和有效循环血容量负荷、循环血量、 静脉张力和胸腔内压,不能反映左心的功能 结合血压、脉搏等连续观察CVP 变化可判断血容量、 心功能及外周静脉压状况
使用呼吸机正压通气和呼气末正压通气(PEEP) 等导 致CVP升高:计算CVP 1) 撤除PEEP 2)减去PEEP
稳定循环系统是输送满足灌注的基本条件
监测的转向
• 氧代谢监测理论和技术发展改变了对危重病人 的评估方式和治疗策略
• 对危重病人的治疗由以往的调整血流动力学转 向改善氧代谢状态
• 改善组织氧代谢为休克和其他危重症治 疗的基本目标
血流动力学监测的基础
系统表现
心泵 血管 组织
监护内容
前负荷、心肌收缩力 后负荷、心率/心律 PVR、SVR 氧输送和氧代谢
氧输送与氧代谢
氧输送(DO2, Oxygen delivery)
• 指每分钟由左心室向主动脉输出的氧量 • 同名:氧转运 氧供 DO2(ml·min-1·m-2) =CaO2×10×心脏指数(CI) CaO2=1.36×Hb× SaO2 DO2 : CI Hb SaO2
正常值520~720ml· min-1·m-2
PMAN\FREIDOKU\SCHULUNG\Pi CCO\high_level\PiCCO_highLevelV 20
有创血流动力学监测
经肺热稀释脉搏轮廓技术 (PiCCO)
• 心脏功能:CO、SV、(dP/mx)、GEF • 外周阻力:SVR/SVRI
• 容量监测:GEDV、胸内血容量(ITBV)和血管外肺 水(EVLW), ITBV 较RVEDV、CVP更准确反映心 脏前负荷,压力监测发展为容量监测
Aortic Access LV CO
Pulmonary Access RV CO
USCOM
无创血液动力学监测
无创心输出量检测仪(NICOM)
原理
血流经过胸腔时引起射频波相
位移的改变,分析高频电流的 相位变化来推断出被监测者的 心输出量
连续监测,敏感度高,不易干

无创血流动力学监测
功能性心功能监测(FHM)
氧输送与氧代谢
氧输送和氧消耗
一定范围内如DO2下降, 机体增加O2 ER 以维
持VO2பைடு நூலகம்不变
若DO2 降至临界值以下, O2 ER 仍可增加, 但已
不能满足有氧代谢需求,VO2 随DO2 下降呈线
性下降,两者存在依赖关系,乏氧出现
VO2
DO2=300 O2ER=0.33
O2ER 生 理 性
病理性
交感
治疗参数-心血管
Preload
CO
Afterload
Systemic Vascular Resistance 外周血管阻力
Fluid volume 液体容量
+ 液体复苏 - 利尿
+ 正性心肌肌力药物 - 负性心肌肌力药物
+ 血管收缩药物 - 血管扩张药物
心源性休克三个成份(ESC 2012)
• •
Osman, et al. CCM 2007 心脏的充盈压无法预测 液体容量反应性
容量状态评估
• SVV(SVVI)、PPV: predicting fluid responsiveness 40 patients undergoing elective OPCABG

ITBV、SVV 、 GEDV: Cardiac preload
Chest 2005, 128:848–854
有创血流动力学监测
肺动脉漂浮导管( PAC)
肺动脉漂浮导管 监测血流动力学 是临床血流动力 学监测的金标 技术要求高,并 发症多而逐渐被 替代
有创血流动力学监测
经肺热稀释脉搏轮廓技术 (PiCCO)
• 经肺热稀释法(TPTD):PATD和跨肺双指示 剂稀释技术+动脉脉搏波形(pulse contour,PC) 分析技术结合,同时具备连续C心排量、容量 指标、血管阻力监测 • PiCCO只需深静脉和动脉置管即可完成,不需 要漂浮导管 • PiCCO 对心排的监测与肺动脉导管温度稀释曲 线相关良好
氧代谢监测
全身氧代谢指标
氧动力学参数: 氧输送(DO2 ) 、氧消耗(VO2 )、氧摄 取率( O2 ER ) 氧代谢参数: SPO2 、血乳酸、混合静脉血氧饱和 度 ( SvO2 ) 或 中 心 静 脉 血 氧 饱 和 度 ( ScvO2 )、PtcCO2
氧代谢监测
局部氧代谢指标
胃黏膜内PHi测定(基本摒弃) 舌下二氧化碳测定(PsLCO2 )
DO2
氧输送与氧代谢
氧输送和氧消耗
病理性VO2对DO2依赖
VO2对DO2的依赖范围扩大,在甚高的水平VO2
才呈现平台,甚或形不成平台
DO2 Crit超出正常,可达700以上
病理性依赖=乏氧代谢存在
病理性氧供依赖是组织水平缺氧和产生氧债的结果
氧输送与氧代谢
氧输送与氧代谢
氧输送和氧消耗
提高氧输送是对休克进行支持治疗的基本原则
提示心输出量是否随容量负荷试验而增加, 但心输出量 随容量负荷试验增加并不代表患者一定需要容量复苏 仅仅用来鉴别患者对前负荷的反应,用于已知或怀疑 组织低灌注的患者
无创血流动力学监测
被动抬腿试验
• 容量负荷试验有反应患者,实施被动抬腿 30°可以短暂增加静脉回流 • 仅仅是鉴别低血容量的一种方法并非低血 容量的治疗方法。对于负荷试验有反应的 患者, 被动抬腿30 s后, 平均动脉流量持续 增加15 s • 优点:可逆的容量负荷试验, 容易实施
氧输送和氧消耗
氧输送(DO2 ) 循环系统向全身组织输送氧能力
氧消耗(VO2 )是组织细胞氧的消耗量, 两者之比 为氧摄取率(O2 ER),反映组织微循环灌注和细 胞线粒体的呼吸功能, 正常值为0.25~0.33,危 重病人氧摄取率接近50%危险
通过肺动脉漂浮导管抽取肺动脉内混合静脉血, 结合动脉血气分析和血红蛋白,可计算DO2 、 VO2和O2 ER
同时CVP不能反映左室前负荷,依据CVP不能判断
病人在Frank-Stailing曲线所处位置
Marik PE, Chest 2008, 134:172-178
压力不再是液体容量反应性的指标
症结: CVP 和 PAOP(PAWP) 是容量状态的不良指标
压力不再是液体容量反应性的指标
压力推导容量的 敏感性和特异性 ≈ 50-55%
无创心功能:心脏超声、TEE、TTD、 USCOM、
胸腔生物电阻抗法:NICOM技术 CO2部分重复法(NICO)等
血流动力学监测
有创监测
Swan-Gans导管、PiCCO技术监测等:
中心静脉压(CVP)、有创动脉压(ABP) 右 房 压 ( RAP ) 、 右 室压 ( RVP ) 、 肺 动 脉 压 ( PAP )、肺动脉嵌压( PAWP )、肺循环阻力 ( PVR )、全心舒张末期容积( GEDV )、胸腔 内血量(ITBT) 心 排 ( CO ) 与 心 排 指 数 ( CI ) 、 心 肌 收 缩 力 (dp/dt),EF(60%, >45)、FS(34%, >28) 外周血管阻力(SVR)及局部内脏血供
PiCCO plus detailed setup
Central Venous Catheter
Injectate temperature sensor housing
AP
13.03 16.28 TB37.0
AP 117
140 92
(CVP) 5 SVRI PC 2762
PCCI
CI HR SVI
正交极化光谱成像(OPS)
近 红 外 线 脑 氧 测 定 ( NIRO-200N , INVOS-5100、TASH-100)
心肌收缩力 SV/SVI EF/SF dp/dt 前负荷 CVP PAWP GEDV ITBV
心排量 CO CI SV 全身灌注 DO2 VO2 PH LAC SvO2 /ScvO2
静态血流动力学监测具有局限性 以心肺交互为基础,动态测定前负荷的变化 应用血流动力学指标, 结合生理状态, 采用一定的治疗措 施动态观察机体血流动力学现有和储备情况, 指导治疗 容量负荷试验
被动抬腿试验
中心静脉压动态改变 正压通气时左室心输出量改变等
无创血流动力学监测
容量负荷试验
短时间内快速给予一定量的液体, 观察血压、脉 搏、心输出量、中心静脉压等血流动力学变化 目前对容量负荷量及输注速度尚无统一认识
CVP作为压力指标替代容量负荷评价指标受到了挑 战,只是压力指标,压力指标与容量曲线并不成直线 相关,受到心室顺应性的影响
近年来建议采用胸腔内容量变化ITBV替代
有创血流动力学监测
CVP受到质疑
Marik PE等荟萃分析,百余篇临床研究证明,
CVP与液体反应没有相关性,仅两篇关于马的动
物实验认为两者有一些相关性
• 心血管
– 心率 – 脉搏/CRT – 血压(早期正常,晚期下降)

– – –
末梢器官灌注(三个窗口)
脑 皮肤 肾脏

组织灌注不良
◦ ◦ ◦ 高乳酸血症 ScvO2降低 PtcO2/StO2降低
血流动力学监测
无创监测
心率(HR)、心音 脉搏:足背、桡部脉搏与大动脉脉搏,CRT 无创动脉血压(SBP)
• 缺点:需使用超声多普勒监测平均动脉流 量的情况下才能实施;严重低血容量状态 该方法并不敏感
Thomas
PLR 联合NICOM容量反应。 陆国平,闫钢风,2012.6; ped crit care med; unpublicated
FBThreshold PLRThreshold
29
氧输送与氧代谢
3.24 78 42
SVV 5% dPmx 1140 (GEDI) 625
Injectate temperature sensor cable
Pressure cable
Temperature interface cable PULSION disposable pressure transducer Arterial thermodilution catheter
相关文档
最新文档