高考数学 选修45 第二节证明不等式的基本方法、数学归纳法与不等式证明课件 理(1)

合集下载

不等式证明的基本方法

不等式证明的基本方法

不等式证明的基本方法
1.数学归纳法:归纳法是数学证明中最常用的方法之一,通常用来证
明自然数的性质。

对于不等式证明来说,如果我们希望证明不等式对于所
有自然数都成立,可以使用数学归纳法。

首先证明当自然数为1时不等式
成立,然后假设当自然数为k时不等式成立,再证明当自然数为k+1时不
等式也成立。

通过这种逐步推导的方法,可以证明不等式对于所有自然数
都成立。

2.数学推理法:数学推理法是一种基于数学定理和公理的推理方法,
通过逻辑推理来证明不等式的成立。

这种方法通常需要使用一些已知的数
学定理和性质来推导出不等式。

例如,可以使用数学的四则运算定律、平
方差公式、三角不等式等来推导不等式。

3.数学变换法:数学变换法是一种将不等式进行变换的方法,通过变
换不等式的形式来证明不等式的成立。

这种方法通常需要使用一些数学中
常见的变换方法,例如平方去根、换元法、倍加倍减等。

通过适当的变换,可以将不等式转化为更简单的形式,从而更容易证明。

无论采用哪种方法,不等式的证明都需要逻辑严谨、推理正确,以及
对数学定理和性质的熟练应用。

在实际证明中,常常需要综合运用多种方
法来解决问题,使得证明更加简洁和明了。

此外,证明中的每一步变换和
推理都需要严格地说明和证明,避免出现漏洞和错误。

证明基本不等式的方法

证明基本不等式的方法

证明基本不等式的方法基本不等式是解决数学不等式问题中常用的方法,其核心思想是将一个不等式转化为另一个更简单的不等式,从而得到所需的解集。

在证明基本不等式的方法上,可以分为以下几种常见的方式:1.数学归纳法:数学归纳法是证明基本不等式的一种常用方法。

首先,我们需要证明当不等式成立时,对于一些特定的值$n$,不等式也成立。

接着,我们假设当$n=k$时不等式成立,可以通过这个假设证明当$n=k+1$时不等式成立。

最后,根据归纳法的原理,我们可以得出不等式对于所有自然数$n$成立。

2.递推法:递推法是证明基本不等式的另一种常用方法。

我们首先找到一个较小的数$k$,证明不等式对于这个特定的数成立。

然后,我们假设当$n=k$时不等式成立,接着通过这个假设证明当$n=k+1$时不等式也成立。

最后,根据递推法的原理,我们可以得出不等式对于所有自然数$n$成立。

3.反证法:反证法是证明基本不等式的另一种有效方法。

我们首先假设不等式不成立,即假设存在一些数使得不等式不成立。

接着,我们通过一系列的推导和推理,得出矛盾的结论。

这表明我们的假设是错误的,即不等式是成立的。

4.变量替换法:变量替换法是证明基本不等式的一种常用方法。

我们首先对不等式进行变量替换,将其转化为一个使用其他变量的等价不等式。

然后,通过对这个等价不等式进行一系列的变换和推导,我们可以得出所需的结论。

5.辅助不等式法:辅助不等式法是证明基本不等式的一种有效方法。

我们首先找到一个与原不等式相关的不等式,这个不等式往往更容易证明。

然后,我们通过对这个辅助不等式的推导和推理,结合原不等式的特点,得出所需的结论。

无论采用哪种方法,证明基本不等式的关键在于用恰当的方法将其转化为另一个更简单或更容易证明的不等式。

此外,在证明过程中需要注意推导的合理性和严密性,关注每一步的符号变化和不等式的严格性,避免出现错误的结论。

在证明过程中,也可以适当地运用数学知识和技巧,如代数运算、函数性质和数列性质等,使证明更加简洁和高效。

如何通过数学归纳法证明不等式

如何通过数学归纳法证明不等式

如何通过数学归纳法证明不等式数学归纳法是一种证明数学命题的常用方法,其基本思想是利用已知的某些命题推出新的命题。

在数学证明中,常常使用归纳法来证明一些不等式,这种方法既简单又直观,下面我们来探讨如何通过数学归纳法证明不等式。

一、归纳法的基本思想首先,我们来了解一下归纳法的基本思想。

设P(n)是一个依赖于自然数n的命题,则通过归纳法证明P(n)对于所有自然数n成立的一般方法为:1.证明当n=1时P(1)成立;2.假设当n=k时P(k)成立,即前提条件为P(k)成立;3.证明当n=k+1时P(k+1)成立,即由前提条件P(k)可以导出P(k+1)。

这就是数学归纳法的基本思想。

二、通过数学归纳法证明不等式接下来我们探讨如何通过数学归纳法证明不等式。

对于一些不等式,我们可以通过归纳法来证明它们的成立性。

1. 首先,我们需要确定适用于归纳法的不等式类型。

一般来说,递推式、等差数列、等比数列等都是适用于归纳法的不等式类型。

2. 其次,我们需要证明当n=1时不等式成立。

通常情况下,我们可以通过代数化简或数值计算的方法证明不等式在n=1时成立。

3. 第三步是归纳假设。

假设当n=k时不等式成立,即前提条件为不等式在n=k时成立。

4. 第四步是证明当n=k+1时不等式成立。

通过推导得出不等式在n=k+1时成立。

5. 最后需要证明这个不等式在所有自然数下成立。

通常情况下,我们可以通过归纳证明法的反证法来证明,如果该不等式在某个自然数下不成立,那么其前面的所有自然数也不成立,即矛盾。

因此,该不等式在所有自然数下成立。

比如,对于一个递推式an=a(n-1)+n,我们可以通过数学归纳法证明其大于等于n(n+1)/2。

具体证明如下:当n=1时,an=1,n(n+1)/2=1,因此不等式在n=1时成立。

假设当n=k时,an大于等于k(k+1)/2成立。

当n=k+1时,an=a(k+1-1)+(k+1)=ak+k+1。

根据归纳假设,ak 大于等于k(k+1)/2,于是k+ak大于等于k(k+1)/2+k+1=(k+1)(k+2)/2,因此,an大于等于(k+1)(k+2)/2。

人教课标版高中数学选修4-5 基本方法与拓展延伸:数学归纳法证明不等式

人教课标版高中数学选修4-5 基本方法与拓展延伸:数学归纳法证明不等式
数学归纳法证明不等式
基本方法与拓展延伸
2 数学归纳法的使用要点
例 2-1 下列式子若 n = k 时成立,能证出
(1)用数学归纳法进行证明时,要分 两个步骤.其中第一步是证明时递推 的基础,第二步是推理的根据.把第一 步结论与第二步结论联系在一起,才
n = k +1 时成立吗?若可以,能判断对任 意的 n N 都成立吗? ①1+2+3+…+ n = n(n 1) +1
[误解]忽视了这一表述.因此,数学归 证明:(1) n =1 时, xn y n = x y 能被
纳法通过两步证
x y 整除,命题成立.
明,代替了客观上无法实现的无限次 (2)假设 n =2 k -1 时( k N +),命题
验证,以“有
成立,
限”步骤证明涉及“无限”的问题,代 替了客观上
即 x 2k1 y 2k1 能被 x y 整除,
例 3-1-1 用数学归纳法证明:
1-(3+x) n ( n N +)能被 x+2 整除. 证明:(1)n =1 时,1-(3+x)=-(x+2), 能 被 x+2 整除,命题成立. (2)假设 n =k( k ≥1)时,1-(3+x) n 能被
的构成情况.解这类题的关键在于,第 x+2 整除,则可设 1-(3+x)k=(x+2)f(x)(f(x)
被 x y 整除. ∴ n =2 k +1 时命题仍成立.
由(1)(2)可知,当 n 为正奇数时
有关整除的知识,例如:(1)如果 xn y n 能被 x y 整除.
a 能被 c 整除,那么 a 的倍数 pa 也能 例 3-2 用数学归纳法证明

利用数学归纳法证明不等式的基本技巧

利用数学归纳法证明不等式的基本技巧

利用数学归纳法证明不等式的基本技巧利用数学归纳法证明不等式的基本技巧:1、比较法:比较法证明不等式的一般步骤:作差(作商)—变形—判断—结论.作差法:差与“0”比较。

为了判断作差后的符号,经常需要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,判断其正负.作商法:商与“1”相比较。

作商时,需要满足两者均为正数。

2、综合法(顺推):综合法是指从已知条件出发,经过逐步的逻辑推理,最后得到结论,其特点是“执因索果”,即由“已知”,利用已经证明过的不等式或不等式的性质逐步推向“未知”。

综合法证明不等式的逻辑关系是:A B1B2…Bn B,及从已知条件A 出发,逐步推演不等式成立的必要条件,推导出所要证明的结论 B.3、分析法(逆推):从求证的结论出发,分析使这个结论成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,即“执果索因”.即从“未知”看“需知”,逐步靠拢“已知”。

4、放缩法:要证明不等式A<B 成立,借助一个或多个中间变量通过适当的放大或缩小达到证明不等式的方法.放缩法证明不等式的理论依据主要有:①不等式的传递性;②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.常用的放缩技巧有:①应用均值不等式进行放缩;②舍掉(或加进)一些项;③在分式中放大或缩小分子或分母。

5、反证法:即从正难则反的角度去思考,要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B. 凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不可能”、“不存在”等词语时,可以考虑用反证法.6、常数代换法常数代换是指利用某些带有常数项的恒等式,把常量化为变量代入到所求证的式子中,以到达化繁为简的目的。

常用的带有常数项的恒等式,可由题目中的条件变形得到,也可用常用的公式或公式变形。

7、几何法通过构造几何图形,利用几何图形的性质来证明不等式的方法称为几何法。

不等式证明基本方法

不等式证明基本方法

不等式证明基本方法一、数学归纳法数学归纳法是证明自然数性质的一种基本方法,对于与整数有关的不等式,我们也可以利用数学归纳法进行证明。

其基本思路是先证明当n=1时不等式成立,再假设当n=k时不等式成立,然后通过数学推理证明当n=k+1时不等式也成立。

二、反证法当我们尝试利用数学归纳法证明不等式时,有时可能会遇到困难,这时我们可以尝试使用反证法。

反证法的证明过程是:先假设不等式不成立,然后推导出与已知条件或已证明的定理矛盾的结论,从而证明原不等式的正确性。

三、插值法插值法也是一种常见的不等式证明方法。

其基本思路是在待证不等式的两边加入适当的不等式,并利用不等式的传递性和可加减性进行推导,最终得到待证不等式的真假结论。

四、绝对值法对于涉及绝对值的不等式,我们可以利用绝对值的性质进行证明。

例如,对于,a-b,>c这样的绝对值不等式,我们可以根据绝对值的定义将其拆分为两个不等式,再分别进行证明。

另外,利用绝对值不等式的性质,我们还可以进行变量替换等操作,将原不等式化简为更简单的形式进行证明。

五、特殊化方法特殊化方法是指将不等式中的一些变量或参数取特殊值,从而达到简化不等式的目的。

例如,对于含有幂函数的不等式,我们可以通过取特殊值使得幂函数变为常数或者线性函数,从而将原不等式化简为更简单的形式。

综上所述,不等式证明的基本方法包括数学归纳法、反证法、插值法、绝对值法和特殊化方法等。

在具体的证明过程中,我们需要根据待证不等式的特点选择合适的方法,并灵活运用各种数学工具和技巧,从而得到准确的证明结论。

证明不等式的基本方法

证明不等式的基本方法
用换元法证明不等式时一定要注意新元的 约束条件及整体置换策略. 主要是三角换元和均值换元。
x2
例7(1)设

y2
1, 求x
y的最大值,
16 9
并求此时的x, y值。 三角换元
(2)设 x, y R,且 x2 y 2 1,
求证:| x2 2xy y 2 | 2 ;
(1)设 x r sin, y r cos,且 | r | 1
证明:∵ a, b 是正数,且 a b , ∴要证 aabb abba ,只要证 lg (aabb ) lg(abba ) ,
只要证 a lg a b lgb b lg a a lgb .
(a lg a b lg b) (b lg a a lg b) = (a b)(lg a lg b)
= (a2 b2 )(a b) = (a b)(a b)2
∵ a,b 是正数,且 a b ,∴ a b 0, (a b)2 >0
∴ (a3 b3 ) (a2b ab2 ) >0,∴ a3 b3 a2b ab2
注:比较法是证明不等式的基本方法,也是 最重要的方法,另外,有时还可作商比较.
当且仅当(a b)(b c)≥0 时,等号成立.
四.反证法:
假设命题结论的反面成立,经过正确的推理, 引出矛盾,因此说明假设错误,从而证明原命题 成立,这样的证明方法叫反证法.(正难则反)
例、已知 f (x) x2 px q,求证:
1
| f (1) |,| f (2) |,| f (3) |中至少有一个不小于2 。
求证:已知a, b, c R+,求证 :书P25页2(2)

用数学归纳法证明不等式 课件

用数学归纳法证明不等式  课件

2k+2 ·2k+1

2
2k+2 2k+1

4k2+8k+4 2 2k+1 Nhomakorabea>
4k2+8k+3 2 2k+1

2k2+· 32·k+2k1+1=
2k+1+1
2
.
∴n=k+1 时,不等式也成立.
由①,②知,对一切大于 1 的自然数 n,不等式都成立.
方法二:①当 n=2 时,左边=1+13=43,右边= 25,左边 >右边,∴不等式成立.
② 假 设 当 n = k(k≥2 , k ∈ N*) 时 , 命 题 成 立 , 即 1+13
1+15 … 1+2k-1 1 >
2k+1 2




n=k+1
时 , 1+13
1+15…1+2k-1 11+2k+1 1> 2k2+11+2k+1 1= k2+k+1 1,要
证不等式成立,只需证明 k2+k+1 1> 2k+2 1+1,只要证明 4k2
用数学归纳法证明与数列有关的不等式问题,要注意用 到递推关系式 xn=38+12x2n-1,通过正确的放缩来达到目的.
1.使用数学归纳法证明不等式,难点在于由n=k时命题 成立推出n=k+1时命题成立,为完成这步证明,不仅要正确 使用归纳假设,还要灵活利用问题中的其他条件和相关知 识.其中,比较法、分析法、综合法、放缩法等常被灵活地应 用.
用数学归纳法证明不等式
1.贝努利不等式:如果x是实数且x>-1,x≠0,n为大于 1的自然数,则____(_1_+__x_)n_>__1_+__n_x.
2.设α为有理数,x>-1,如果0<α<1,则(1+x)α____1 + αx ≤; 如 果 α < 0 或 α > 1 , 则 (1 + x)α______1 + αx , 当≥且 仅 当 ____________时,等x=号0成立.

不等式的基本性质和证明的基本方法

不等式的基本性质和证明的基本方法
证明方法
通过构造平方和并利用非负性进行证明。
应用领域
在线性代数、函数分析和概率论中有广泛应用,如证明某些函数的可 积性等。
切比雪夫不等式
定义
对于任意两个实数序列,序列和的乘积小于或等于序列各项乘积 的和。
证明方法
通过排序后应用算术-几何平均不等式进行证明。
应用领域
在数论、概率论和统计学中有应用,如证明某些概率分布的性质等。
06
经典不等式介绍及其证明
算术-几何平均不等式
定义
对于所有非负实数,算术平均数永远大于或等于 几何平均数。
证明方法
通过数学归纳法或拉格朗日乘数法进行证明。
应用领域
在概率论、信息论和统计学中广泛应用,如证明 熵的最大值等。
柯西-施瓦茨不等式
定义
对于任意两个向量,它们的内积的绝对值小于或等于它们的模的乘 积。
数列的单调性
利用不等式的性质,可以判断数列的单调性,即数列是递增还是 递减。
数列的有界性
通过不等式的性质,可以证明数列的有界性,即数列的每一项都落 在某个区间内。
数学归纳法中的不等式证明
在数学归纳法中,经常需要利用不等式的性质进行证明,如证明某 个不等式对所有的自然数都成立。
05
证明不等式的基本策略
不等式在数学、物理、工程等领域都有广泛应用,研究不等式有 助于解决实际问题。
不等式的基本性质概述
01
传递性
02
可加性
03 可乘性
04
特殊性
对称性
05
如果a>b且b>c,则a>c。 如果a>b,则a+c>b+c。 如果a>b且c>0,则ac>bc。 任何数都大于负数,小于正数。 如果a=b,则b=a。

2020版高考数学大一轮复习不等式选讲第2讲不等式的证明课件理新人教A版选修4_5

2020版高考数学大一轮复习不等式选讲第2讲不等式的证明课件理新人教A版选修4_5

“放”和“缩”的常用技巧
在不等式的证明中,“放”和“缩”是常用的推证技巧.
常见的放缩变换有:
(1)变换分式的分子和分母,如k12<k(k1-1),k12>k(k1+1),1k
<
2 k+
k-1,
1k>
2 k+
k+1.上面不等式中
k∈N*,k>1;
(2)利用函数的单调性; (3)真分数性质“若 0<a<b,m>0,则ab<ab+ +mm”. [提醒] 在用放缩法证明不等式时,“放”和“缩”均需把握一 个度.
2.不等式的证明方法 证明不等式常用的方法有比较法、综合法、分析法、反证法、 放缩法、数学归纳法等. 3.数学归纳法证明不等式的关键 使用数学归纳法证明与自然数有关的不等式,关键是由 n=k 时不等式成立推证 n=k+1 时不等式成立,此步的证明要具有 目标意识,要注意与最终达到的解题目标进行分析、比较,以 便确定解题方向.
(2)证明:要证1a-b-abcc>1,只需证|1-abc|>|ab-c|, 只需证 1+a2b2c2>a2b2+c2,只需证 1-a2b2>c2(1-a2b2), 只需证(1-a2b2)(1-c2)>0, 由 a,b,c∈A,得-1<ab<1,c2<1,所以(1-a2b2)(1-c2)>0 恒 成立. 综上,1a-b-abcc>1.
所以 a2+2ab+b2=1.
因为 a>0,b>0,
所以a12+b12=(a+a2b)2+(a+b2b)2=1+2ab+ba22+1+2ba+ab22=
2 + 2ab+2ba + ba22+ab22 ≥ 2 + 2
2ab·2ba + 2

高考数学一轮复习 不等式选讲 第2课时 不等式的证明与柯西不等式课件 理(选修45)

高考数学一轮复习 不等式选讲 第2课时 不等式的证明与柯西不等式课件 理(选修45)

(2)放缩法的注意事项:
①舍去或加上一些项,如(a+12)2+34>(a+12)2;
②将分子或分母放大(缩小),如
1 k2
<
1 kk-1

1 k2
>
1 kk+1

1 k<
2 k+
k-1

1 k>
k+2 k+1 (k∈N*,k>1)
等.
③放大或缩小时注意要适当,必须目标明确,合情合
理,恰到好处,且不可放缩过大或过小,谨慎地添或减是放
则M,N的大小关系是( )
A.M<N
B.M>N
C.M=N • 答案 B
D.不确定
解析 由已知得0<ab<1, 故M-N=1+1 a+1+1 b-1+a a-1+b b =11- +aa+11- +bb=12+1a-1a+bb>0. 故M>N.
3.已知a,b,c是正实数,且a+b+c=1,则
题型二 三个正数的算术——几何平均不等式问题
• 例2 已知x∈R+,求函数y=x(1-x2)的最大值.
【思路】
利用平均值不等式abc≤(
a+b+c 3
)3(a>0,
b>0,c>0)求解.
【解析】 ∵y=x(1-x2),
∴y2=x2(1-x2)2=2x2(1-x2)(1-x2)·12. ∵2x2+(1-x2)+(1-x2)=2, ∴y2≤12(2x2+1-3x2+1-x2)3=247.
5.(2013·湖北)设x,y,z∈R,且满足:x2+y2+z2=1, x+2y+3z= 14,则x+y+z=________.
答案
3 14 7
解析 由柯西不等式,得(x2+y2+z2)(12+22+32)≥(x+

选修4-5 第二节 不等式证明的基本方法

选修4-5 第二节 不等式证明的基本方法
返回
4.反证法 先假设要证的命题 不成立 ,以此为出发点,结合已知条 件,应用公理、定义、定理、性质等,进行正确的 推理 ,得到和命题的条件(或已证明的定理、性质、明显 成立的事实等) 矛盾 的结论,以说明假设 不正确 ,从而 证明原命题成立,我们把它称为反证法.
5.放缩法 证明不等式时,通过把不等式中的某些部分的值放大 或, 缩小 简化不等式,从而达到证明的目的,我们把这种方法 称为放缩法.
返回
解析:∵1<1a<1b,∴0<b<a<1. ∴logab>1>logba>0. ∴A、B、C选项均正确,选项D错误.
答案:D
返回
4.若|x|<1,|y|<1,则xy+1与x+y的大小关系为________. 解析:xy+1-x-y =(y-1)(x-1), ∵|x|<1,|y|<1,∴y-1<0,x-1<0. ∴(y-1)(x-1)>0.∴xy+1>x+y. 答案:xy+1>x+y
返回
(2) bac+ abc+ acb=a+abb+c c.
在(1)中已证 a+b+c≥ 3.
因此要证原不等式成立,只需证明
1≥ abc
a+
b+
c,
即证 a bc+b ac+c ab≤1,
即证 a bc+b ac+c ab≤ab+bc+ca.
返回
而 a bc= ab·ac≤ab+2 ac, b ac≤ab+2 bc,c ab≤bc+2 ac. ∴a bc+b ac+c ab≤ab+bc+ca(当且仅当 a=b=c= 33时 等号成立). ∴原不等式成立.
返回
2.综合法 从已知条件 出发,利用定义、公理、定理、性质等,经 过一系列的推理、论证而得出命题成立,即“由因导果” 的方法,这种证明不等式的方法称为综合法或顺推法.

第2节证明不等式的基本方法

第2节证明不等式的基本方法

第2节证明不等式的基本方法证明不等式的基本方法总结如下:一、利用数学分析中的中值定理、极值、单调性等性质进行证明。

1.利用中值定理:利用连续函数介值定理或拉格朗日中值定理,根据函数的一些性质,可以推出不等式的成立。

例如,证明一个凸函数在区间上的函数值不小于端点的函数值。

2.利用极值:通过求导或其他方法,找到函数的极值点,然后证明这些极值点就是不等式的最小(最大)值点。

例如,证明两数之积不大于它们的平方和,可以通过求导得到函数的极值点,然后通过证明这个极值点为最小值点来完成。

3.利用单调性:如果已知函数在一些区间上是严格递增(递减)的,可以通过证明不等式在一些特殊点成立,并通过函数的单调性推出在整个区间上成立。

例如,证明一个正数的倒数小于它自己,则可以先证明在0到1之间成立,然后利用单调性推出在整个正数范围内成立。

二、利用数学归纳法进行证明。

如果不等式中的变量是正整数,可以利用数学归纳法进行证明。

首先证明当n=1时不等式成立,然后假设当n=k时不等式成立,再证明当n=k+1时不等式也成立。

例如,证明n个正数的平均值不小于它们的几何平均值,可以先证明当n=1时成立,然后假设当n=k时成立,再证明当n=k+1时也成立,最后利用数学归纳法推出结论。

三、利用代数方法。

1.利用等价变形:对于一个复杂的不等式,可以通过进行等价变形来简化证明。

通过将不等式的两边同时加上或减去一些式子,或者将不等式两边同时乘以或除以一些式子,可以得到一个等价的不等式,然后证明这个等价的不等式。

例如,证明正数的n次方大于等于它的平方,可以将不等式两边同时开方,然后证明这个等价的不等式。

2. 利用加减法、乘除法不等式:对于一个分式或多项式不等式,可以通过利用加减法、乘除法的不等式性质,将不等式化简为更简单的形式,再进行证明。

例如,证明a+b≤2ab,则可以将两边同时减去a+b再加上2,利用不等式的性质简化后得到ab≥1,再证明这个等价的不等式。

高考数学总复习 第2节 证明不等式的基本方法课件 新人教A版选修4-5

高考数学总复习 第2节 证明不等式的基本方法课件 新人教A版选修4-5

放缩法证明不等式,就是利用不等式的传递性进行证明
不等关系,即要证 a> b ,只需先证明 a >p ,且 p > b. 其中 p 的 确定是最重要,也是最困难的,要凭借对题意的深刻分析, 对式子巧妙变形的能力,以及一定的解题经验.
设 m 是|a|,|b|和 1 中最大的一个,当|x|>m 时. a b 求证:|x+x2|<2. 【思路点拨】根据已知条件有:“m≥|a|,m≥|b|,m≥
|f(-1)|=|1-p+1|=|2-p|<2,
则4=(2+p)+(2-p)≤|2+p|+|2-p|<4矛盾, ∴假设不成立. ∴原结论成立.
【活学活用】 3.若 a,b,c 均为实数,且 a=x2-2y π π π 2 2 + 2 ,b=y -2z+ 3 ,c=z -2x+ 6 . 求证:a,b,c 中至少有一个大于 0.
【活学活用】 1.已知:a+b+c=0,求证:ab+bc+ ca≤0.
证明:证法一(综合法) ∵a+b+c=0,∴(a+b+c)2=0, a2+b2+c2 展开,得 ab+bc+ca=- .∴ab+bc+ca≤0. 2
证法二(分析法) 要证 ab+bc+ca≤0, ∵a+b+c=0,故只需证 ab+bc+ca≤(a+b+c)2, 即证 a2+b2+c2+ab+bc+ca≥0, 1 即2[(a+b)2+(b+c)2+(a+c)2]≥0, ∴显然原式成立. 证法三:∵a+b+c=0,∴-c=a+b, ∴ab+bc+ca=ab+(a+b)c=ab-(a+b)2 =-a2-b2-ab b 2 3b2 =-[(a+ ) + ]≤0. 2 4
(2)作商比较法 a ①理论依据:b>0,b>1⇒ a>b ; a b<0, >1⇒ a<b b .

高考数学一轮总复习 2不等式证明的基本方法课件(选修4-5)

高考数学一轮总复习 2不等式证明的基本方法课件(选修4-5)

放缩法等.
A
9
对点自测
知识点一
基本不等式
1.若 0<a<b<1,则 a+b,2 ab,a2+b2,2ab 中最大的一个是 ________.
A
10
解析 ∵a+b>2 ab,a2+b2>2ab. 又(a2+b2)-(a+b)=a(a-1)+b(b-1). ∵0<a<1,0<b<1,∴a(a-1)+b(b-1)<0. ∴a2+b2<a+b.
由平均不等式可得a13+b13+c13≥3 3 a13·b13·c13, 即a13+b13+c13≥a3bc. 所以a13+b13+c13+abc≥a3bc+abc.
而a3bc+abc≥2 a3bc·abc=2 3.
所以a13+b13+c13+abc≥2 3.
A
16
R 热点命题·深度剖析
研考点 知规律 通法悟道
答案 a+b
A
11
2.已知 x,y∈R,且 xy=1, 则1+1x1+1y的最小值为 ________.
解析 1+1x1+1y≥1+ 1xy2=4. 答案 4
A
12
知识点二
柯西不等式
3.已知 x,y,z 为正数,且 x+y+z=1,则 x2+y2+z2 的最小
值是__________.
解析 x2+y2+z2=(12+12+12)(x2+y2+z2)×13≥(1·x+1·y+ 1·z)2×13=13.
A
19
(2)反证法必须从否定结论进行推理,且必须根据这一条件进 行论证,否则,仅否定结论,不从结论的反面出发进行论证,就 不是反证法.
(3)推导出来的矛盾可能多种多样,有的与已知矛盾,有的与 假设矛盾,有的与定理、公理相违背等等,但推导出的矛盾必须 是明显的.

第二节证明不等式的基本方法、数学归纳法证明不等式

第二节证明不等式的基本方法、数学归纳法证明不等式

(2)某个命题与正整数n有关,如果当n=k时该命题成立.那么可
推导出当n=k+1时也成立.现已知n=12时,该命题不成立.那么 可推得n=______时,该命题不成立. 【解析】∵n=12时,命题不成立.∴n=11时命题不成立.同理 n=10、9、8、…、2、1时命题均不成立. 答案:1、2、3、…、11
往往用分析法找思路,用综合法写步骤,由此可见,分析法与综
合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,
可以拓宽解题思路,开阔知识视野.
2.分析法的应用
当所证明的不等式不能使用比较法,且和重要不等式、基本不 等式没有直接联系,较难发现条件和结论之间的关系时,可用 分析法来寻找证明途径,使用分析法证明的关键是推理的每一 步必须可逆.
4 4 4 1 64 . 1 4 ,
三式同向相乘,得(1-a)a(1-b)b(1-c)c> 又 1 a a
1 c c
( ( 1 a a 2 )
2
) 1 4 .
2
1 4
, 1 b b (
1 b b 2
)
2
1 c c 2
∴(1-a)a(1-b)b(1-c)c≤
1 2
) 2+
1 2
]≥0,
∴1+2x4≥2x3+x2.
方法二:(1+2x4)-(2x3+x2) =x4-2x3+x2+x4-2x2+1 =(x-1)2·x2+(x2-1)2≥0 ∴1+2x4≥2x3+x2.
(2)
a b
a
b
ab
ba
ab
ab 2
a

人教数学选修4-5全册精品课件:第四讲二用数学归纳法证明不等式

人教数学选修4-5全册精品课件:第四讲二用数学归纳法证明不等式

【思路点拨】
本题由递推公式先计算前几项,然
后再进行猜想,最后用数学归纳法进行证明;对于 (2)中的第①题,要利用数学归纳法进行证明;②利 用放缩法证明.
【解】 (1)由 a1=2,得 a2=a2-a1+1=3;由 a2= 1 3,得 a3=a2-2a2+1=4;由 a3=4,得 a4=a2-3a3 2 3 +1=5. 由此猜想:an=n+1(n∈N+). (2)①用数学归纳法证明: 当 n=1 时,a1≥3=1+2,不等式成立; 假设当 n=k(k≥1)时,不等式成立,即 ak≥k+2. 那么当 n=k+1 时,ak+1=a2-kak+1=ak(ak-k)+ k 1≥(k+2)(k+2-k)+1=2(k+2)+1≥k+3=(k+1) +2,也就是说,当 n=k+1 时,ak+1≥(k+1)+2. 综上可得,对于所有 n≥1,有 an≥n+2.
=k+1成立时没有进行推证,而是直接写出结论, 这样是不符合数学归纳法要求的.
【自我校正】 (1)同上. (2)假设当 n=k(k≥1)时,结论成立. kk+1 k+12 即 <ak< . 2 2 当 n=k+1 时,ak+1=ak+ k+1k+2 kk+1 kk+1 > + k+1k+2> +(k+1) 2 2 k+1[k+1+1] = . 2
当 n=k+1 时, k+1k+2 ak+1=ak+ k+1k+2> . 2 k+2 2 又 ak+1=ak+ k+1k+2<( ), 2 ∴当 n=k+1 时,结论也成立. 由(1)、(2)知,对一切 n∈N+,不等式成立.
【错因】
错误出在(2)中,从n=k成立,证明n
假设当n=k时, 起始自然数)不等式成立 ______________________;第二步是_____________

选修4-5_高考不等式证明的基本方法(good)

选修4-5_高考不等式证明的基本方法(good)

选修4-5 等式证明的基本方法不等式的证明方法: ①作差法②作商法 ③综合法:由因到果 ④分析法:执果索因 ⑤放缩法:常见类型有⑴nn n n n n n n n 111)1(11)1(11112--=-<<+=+- (放缩程度较大);⑵)1111(2111122+--=-<n n n n(放缩程度较小);⑶1(212221--=-+<=n n n n nn )⑥数学归纳法:常用于数列类的不等式 ⑦利用函数单调性法1.已知a ,b ,c 均为正数,证明:a 2+b 2+c 2+(1a +1b +1c )2≥63,并确定a ,b ,c 为何值时,等号成立. 证明:法一:因为a ,b ,c 均为正数,由平均值不等式得a 2+b 2+c 2≥3(abc )23,① 1a +1b +1c ≥3(abc )31-,② 所以(1a +1b +1c )2≥9(abc ) 23-.故a 2+b 2+c 2+(1a +1b +1c)2≥3(abc )23+9(abc )23-. 又3(abc )23+9(abc )23-≥227=63,③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立.当且仅当3(abc ) 23=9(abc )23-时,③式等号成立.即当且仅当a =b =c =314时,原式等号成立.法二:因为a ,b ,c 均为正数,由基本不等式得 a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac . 所以a 2+b 2+c 2≥ab +bc +ac ,① 同理1a 2+1b 2+1c 2≥1ab +1bc +1ac ,②故a 2+b 2+c 2+(1a +1b +1c )2≥ab +bc +ac +31ab +31bc +31ac ≥6 3.③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立,当且仅当a =b =c ,(ab )2=(bc )2=(ac )2=3时,③式等号成立. 即当且仅当a =b =c =314时,原式等号成立. 2.已知x ,y 均为正数,且x >y ,求证:2x +1x 2-2xy +y 2≥2y +3.解:因为x >0,y >0,x -y >0,2x +1x 2-2xy +y 2-2y =2(x -y )+1(x -y )2=(x -y )+(x -y )+1(x -y )2≥33(x -y )21(x -y )2=3, 所以2x +1x 2-2xy +y 2≥2y +3.3.已知正实数a ,b ,c 满足1a +2b +3c =1,求证:a +b 2+c 3≥9.证明:因为a ,b ,c 均为正实数,所以1a +2b +3c ≥331a ·2b ·3c .同理可证:a +b 2+c 3≥33a ·b 2·c 3. 所以(a +b 2+c 3)(1a +2b +3c )≥33a ·b 2·c 3·331a ·2b ·3c =9. 因为1a +2b +3c =1,所以a +b 2+c 3≥9,当且仅当a =3,b =6,c =9时,等号成立.4.已知x 、y 、z ∈R, 且2x +3y +3z =1,求x 2+y 2+z 2的最小值.解:由柯西不等式得,(2x +3y +3z )2≤(22+32+32)(x 2+y 2+z 2). ∵2x +3y +3z =1,∴x 2+y 2+z 2≥122,当且仅当x 2=y 3=z 3,即x =111,y =z =322时,等号成立, ∴x 2+y 2+z 2的最小值为122.5.设f (x )=2x 2-2x +2 010,若实数a 满足|x -a |<1 ,求证:|f (x )-f (a )|<4(|a |+1). 证明:∵f (x )=2x 2-2x +2 010,∴|f (x )-f (a )|=2|x 2-x -a 2+a |=2|x -a |·|x +a -1|<2|x +a -1|,又∵2|x +a -1|=2|(x -a )+2a -1|≤2(|x -a |+|2a -1|)<2(1+|2a |+1)=4(|a |+1). 6.求证:1n +1+1n +2+…+13n >12(n ≥2,n ∈N *).证明:法一:利用数学归纳法:(1)当n =2时,左边=13+14+15+16>12,不等式成立.(2)假设当n =k (k ≥2,k ∈N *)时不等式成立.即1k +1+1k +2+…+13k >12.则当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13k +3=1k +1+1k +2+…+13k +(13k +1+13k +2+13k +3-1k +1)>12+(3×13k +3-1k +1)=12. 所以当n =k +1时不等式也成立, 由(1),(2)知原不等式对一切n ≥2,n ∈N *均成立. 法二:利用放缩法: ∵n ≥2,∴1n +1+1n +2+…+13n >13n +13n +…+13n =23>12.即1n +1+1n +2+…+13n >12(n ≥2,n ∈N *).7.已知a ,b ,c 为实数,且a +b +c +2-2m =0,a 2+14b 2+19c 2+m -1=0.(1)求证:a 2+14b 2+19c 2≥(a +b +c )214; (2)求实数m 的取值范围.解:(1)由柯西不等式得[a 2+(12b )2+(13c )2]()12+22+32≥(a +b +c )2,即(a 2+14b 2+19c 2)×14≥(a +b +c )2. ∴a 2+14b 2+19c 2≥(a +b +c )214. 当且仅当|a |=14|b |=19|c |取得等号.(2)由已知得a +b +c =2m -2,a 2+14b 2+19c 2=1-m ,∴14(1-m )≥(2m -2)2.即2m 2+3m -5≤0.∴-52≤m ≤1. 又∵a 2+14b 2+19c 2=1-m ≥0,∴m ≤1,∴-52≤m ≤1.一.函数思想例1已知b a ,是两个不相等的正数, 求证:22233)())((b a b a b a +>++证明:构造二次函数)()(2)()(33222b a x b a x b a x f +++++=,0)()()(22>+++=b x b a x a x f ,0))((4)(43322<++-+=∆∴b a b a b a从而,22233)())((b a b a b a +>++例2 求证||1||||||1||||b a b a b a b a +++≥+++ 证明:设xx x x x x f +-=+-+=+=1111111)(,所以,函数f(x)的定义域为)1,|{≠∈x R x x 且,且函数f(x)在定义域上单调递增,0||||||≥+≥+b a b a ||1||||||1|||||)(||)||(|b a b a b a b a b a f b a f +++≥++++≥+∴即 二、数形结合思想例3 (课本P 23例3)已知 |a| < 1, | b |< 1 ,求证:11<++abb a分析:因为a+ b = 1/2[(1+ a)( 1+ b )-(1- a)(1 – b)], 1 + ab = 1/2[ (1+ a)( 1+ b )+(1- a)(1 – b)] 所以ab b a ++1=)1)(1()1)(1()1)(1()1)(1(b a b a b a b a --+++---++,这与过两点的斜率公式1212x x y y k --=相同,因此,可用比较斜率大小的方法来证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 证明不等式的基本方法、 数学归纳法与不等式证明
1.不等式的证明方法
(1)比较法
①作差比较法
知道a>b a-b>0,a<b a-b<0,因此欲证a>b,即证 _a-__b_>_0_.
②作商比较法
由a>b>0 a >1,因此当a>0,b>0时,欲证_a_>_b_,即证 a >1.
b
b
(2)综合法与分析法 ①综合法 从已知的基本不等式出发,利用不等式的基本性质导出欲证不 等式,这种证明方法称为综合法. 所谓综合法就是由“_因__”导“_果__”,从_题__设__条__件__出发,利 用_已__知__定__义__、__公__理__、__定__理__等逐步推进,证得_所__要__求__证__的__结__论_ 的方法.
(2)用数学归纳法证明“ 1+1+1++ 1 <n(n∈N*,n>1)”
23
2n-1
时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的
项数是______.
【解析】应增加的项数为(2k+1-1)-(2k-1)=2k+1-2k=2k.
答案:2k
热点考向 1 应用比较法证明不等式
【方法点睛】
(4)放缩法 所谓放缩法是证明不等式时,通过把不等式中的某些部分的值 _放__大__或_缩__小__,简化不等式,从而达到证明目的的方法.
【即时应用】
(1)设0<x<1,则 a 2x,b 1 x,c 1 中最大的一个是
1 x
_____.
(2)对实数a和x而言,不等式x3+13a2x>5ax2+9a3成立的充要条
比较法证明不等式的两种思路
(1)作差比较法证明不等式是不等式证明的最基本的方法.作差
后需要判断差的符号,作差变形的方法常常是因式分解后,把
差写成积的形式或配成完全平方式. (2)作商法要注意使用条件,如 a >1推出a>b,这里要注意
b
a、b两数的符号.
【例1】(1)设x≥1,y≥1,证明x+y+ 1 1 1 xy;
xy x y
x2y xy2 1 y x x2y2 xy
x xy 1 yxy 1 xy 1xy 1
xy
xy 1x 1y 1
,
xy
由x≥1,y≥1得
xy 1x 1y 1
0,
xy
从而 x y 1 1成 1立.xy
xy x y
(2)当1<a≤b≤c时,记x=logab=lgb 1,
1 y 2且1 x 2
x
y
2.数学归纳法 数学归纳法两大步: (1)归纳奠基:证明当n=n0时命题_成__立__; (2)归纳递推:假设n=k(k≥n0, k∈N*)时命题成立,证明当 n=__k_+_1_时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整 数n都成立.
【即时应用】 (1)思考:在归纳假设中“n0=1”对吗? 提示:不一定,n0是使命题成立的正整数中的最小值,有时是 n0=1或n0=2.有时n0的值也比较大.而不是一定从1开始取值.
(3)至少有一个小于2的否定是均不小于2,假设 1 与y 1均 x
x
y
不小于2,即 1 ≥y 2且 1≥2x.
x
y
(4)∵a>0,b>0,∴N= a + b a + b =
a+2 b+2 a+b+2 a+b+2
a+b =M. a+b+2
∴M<N.
【答案】(1)c (2)x>a (3) (4)M<N
xy
xy x y
, 11
xy
质a>b,c>d⇒a+c>b+d只适用于同向不等式,而反向不等式之
间不能想当然地运用.
【变式训练】若实数x≠1,求证:3(1+x2+x4)>(1+x+x2)2.
【证明】3(1+x2+x4)-(1+x+x2)2
lga
y
logbc
,则lgc
lgb
1
logca
lga lgc
1 xy
,
logba
1 x
, logc b
1 y
, loga c
xy,
于是由(1)得证logab+logbc+logca≤logba+logcb+logac.
【反思·感悟】从本题条件可知, x 1 ,,y从而1 x+y≥
xy
但由于 1≤xy,且 x y 1 ,说1 明1不 x等y式的基本性
xy x y
(2)1<a≤b≤c,证明logab+logbc+logca≤logba+logcb+logac. 【解题指南】欲证第(1)题不等式成立,只需判断左右两式之差的
正负性;观察第(2)题的特征,通过换底公式化归为(1)的形式,根
据第(1)题的结论证明.
【规范解答】(1) (x y 1 ) ( 1 1 xy)
件是_____.
(3)若x,y均为正数,且x+y>2,求证: 1 y 与 1 x 中至少有一
x
y
个小于2.当你利用反证法证明此题时,第一步是假设_____.
(4)设a>0,b>0,M= a+b ,N= a + b ,则M与N的大
a+b+2
a+2 b+2
小关x> 2x.
∴只需比较1+x与 1 的大小.
1 x
∵ 1 x- 1 1 x2 1 - x2 <0,
1 x 1 x
1 x
∴1+x< 1 .从而最大的一个是c.
1 x
(2)(x3+13a2x)-(5ax2+9a3) =x3-5ax2+13a2x-9a3 =(x-a)(x2-4ax+9a2) =(x-a)[(x-2a)2+5a2]>0. ∵当x≠2a≠0时,有(x-2a)2+5a2>0.由题意故只需x-a>0 即x>a,以上过程可逆.所以不等式成立的充要条件是:x>a.
②分析法 从_欲__证__的__不__等__式__出发,执“_果__”索“_因__”,层层推求使结 论成立的_充__分__条件,直至_能__够__肯__定__这__些_充__分__条__件__已__经__具__备__为 止,进而断言原不等式成立,这种方法称为分析法.
(3)反证法的证明步骤 第一步:假设_所__要__证__的__不__等__式__不__成__立__,也就是说_不__等__式__的__反__ _面__成__立__;第二步:结合_已__知__条__件__,进而推理论证,最后推出 _和__已__知__条__件__或__已__知__不__等__式__相__矛__盾__的结果,从而断定假设错误. 因而确定要证明的不等式成立.
相关文档
最新文档