2.7 有理数的乘法 课件9(北师大版七年级上)
北师大版数学七年级上册2.7《有理数的乘法》(第2课时)说课稿
![北师大版数学七年级上册2.7《有理数的乘法》(第2课时)说课稿](https://img.taocdn.com/s3/m/53acb809302b3169a45177232f60ddccda38e680.png)
北师大版数学七年级上册2.7《有理数的乘法》(第2课时)说课稿一. 教材分析《有理数的乘法》是北师大版数学七年级上册第2.7节的内容,本节课的主要内容是有理数的乘法法则,以及如何运用这些法则进行计算。
在教材中,学生已经学习了有理数的加法、减法、乘法和除法,这些知识为本节课的学习打下了基础。
二. 学情分析面对七年级的学生,他们对有理数的加减乘除已经有了一定的了解,但对有理数的乘法法则可能还不是很熟悉。
因此,在教学过程中,我需要引导学生通过观察、思考、讨论,从而发现并掌握有理数的乘法法则。
三. 说教学目标1.知识与技能:让学生掌握有理数的乘法法则,能熟练地进行有理数的乘法计算。
2.过程与方法:通过观察、思考、讨论,培养学生发现问题、分析问题、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 说教学重难点1.教学重点:有理数的乘法法则及其运用。
2.教学难点:理解有理数乘法法则的推导过程,以及如何运用这些法则进行计算。
五.说教学方法与手段在本节课的教学过程中,我将采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考;通过案例分析,让学生理解并掌握有理数的乘法法则;通过小组合作学习,培养学生的团队合作意识。
六. 说教学过程1.导入:通过复习有理数的加减乘除,引导学生进入本节课的主题——有理数的乘法。
2.新课讲解:讲解有理数的乘法法则,并通过案例进行分析。
3.课堂练习:让学生进行有理数的乘法计算,巩固所学知识。
4.小组讨论:让学生分组讨论,发现并总结有理数乘法法则的推导过程。
5.总结:对本节课的内容进行总结,强调重点知识点。
6.课后作业:布置相关的课后练习,巩固所学知识。
七. 说板书设计板书设计如下:有理数的乘法法则:1.同号相乘,取相同符号,并把绝对值相乘。
2.异号相乘,取相反符号,并把绝对值相乘。
3.任何数乘以0,结果都是0。
八. 说教学评价本节课的教学评价主要从学生的课堂表现、课后作业和小组合作学习三个方面进行。
北师大版数学七年级上册有理数的乘方课件
![北师大版数学七年级上册有理数的乘方课件](https://img.taocdn.com/s3/m/ba16b96686c24028915f804d2b160b4e767f81a1.png)
(2)原式
1 2
1 2
1 2
1 8
1 2
1 16
【当堂检测】
(3)
23 6
(3)原式
222 6
8 6
4 3
(4)(-1.2)3
(4)原式 =(-1.2)×(-1.2)×(-1.2) = 1.44 × (-0.2) = -1.728
四、典型例题
例3.计算 (1)22, 23,24, 25
(2)(-2)2 ,(-2)3 ,(-2)4 ,(-2)5
解:(1)22=2×2=4
23=2×2×2=8 24=2×2×2×2=16 25=2×2×2×2×2=32
(2)(-2)2=(-2)×(-2)=4 (-2)3=(-2)×(-2)×(-2)=-8 (-2)4=(-2)×(-2)×(-2)×(-2)=16 (-2)5=(-2)×(-2)×(-2)×(-2)×(-2)=-32
∴(-1)2n的结果为正,(-1)2n+1的结果为负; 又∵-1的正整数次方结果只有-1和1; ∴(-1)2n的结果为1,(-1)2n+1的结果为-1.
五、课堂总结
1.乘方的概念:
n个相同的因数a相乘,即a·a·a·…·a 记做an,
读做a的n次方.
n个a
2.乘方符号的确定:
指数
an 幂
底数
根据有理数的乘法法则可以得出:
解:式(1)的结果是负号;式(2)的结果是正号;式(3)的结果是正号
式(4)的结果是正号;式(5)的结果是负号.
【当堂检测】
4.设n为正整数,求(-1)2n和(-1)2n+1的值.
分析:先判断指数的奇偶性,再根据“负数的奇次幂是负数,负数的 偶次幂是正数”求出结果.
北师大版七年级数学上册 (有理数的乘法)有理数及其运算课件(第1课时)
![北师大版七年级数学上册 (有理数的乘法)有理数及其运算课件(第1课时)](https://img.taocdn.com/s3/m/d23793d76394dd88d0d233d4b14e852459fb3971.png)
乘法分配律:a(b+c)=ab+ac
知2-导
根据分配律可以推出:一个数同几个数的和相 乘,等于把这个数分别同这几个数相乘,再把 积相加.
知2-讲
例3 计算:
(1)
-
5 6
+
3 8
-24;
(2)
-7
-
4 3
5 14
.
解: (1)
倒数的性质: (1)如果a,b互为倒数,那么ab=1; (2)0没有倒数(因为0与任何数相乘都不为1); (3)正数的倒数是正数,负数的倒数是负数; (4)倒数等于它本身的数是±1; (5)倒数是成对出现的.
1.必做: 完成教材P51-52,随堂练习(1)、 (3), 习题T1(1)-(4)、2、3、4
知1-练
(来自《典中点》)
知1-练
3 若五个有理数相乘的积为正数,则五个数中负
数的个数是( D )
A.0 B.2 C.4 D.0或2或4
4
(中考·台湾)算式
-1
1 2
-3
1 4
2 3
之
值为何?( D )
A. 1 B. 11 C. 11 D. 13
4
12
4
4
(来自《典中点》)
知识点 2 有理数的乘法运算律
知1-讲
要点精析: (1)在有理数乘法中,每个乘数都叫做一个因数. (2)几个有理数相乘,先确定积的符号,然后将绝对
值相乘. (3)几个有理数相乘,如果有一个因数为0,那么积
就等于0;反之,如果积为0,那么至少有一个因 数为0.
知1-讲
例2 计算:
(1)(-5)×(-4)×(-2)×(-2);
北师大版《有理数的乘法》优课一等奖课件
![北师大版《有理数的乘法》优课一等奖课件](https://img.taocdn.com/s3/m/d1be9122a58da0116d17498c.png)
3 9
解:原式
(
8 3
4 9
)
32 27
同号得正, 绝对值相乘
➢活动一
活动规则:班级分成8个小组,每个小 组成员写出自己喜欢的有理数,老师将会任 选两名小组的成员来展示,要求其他同学回 答他们的乘积.
➢探究二
先计算,再观察算式和结果特征,得出结论.
(1)( 8) ( 3) 38
解:原式 (8 3) 38
请列出算式,完成填空. (1)5 分钟后,液体冰激凌的温度是__(_2_)__5___℃. (2)8 分钟 前,液体冰激凌的温度是_(__2_)_(___8)___℃.
➢探究新知
甲水库的水位每天升高3厘米,乙水库的水位每天下 降3厘米,4天后甲、乙水库水位的总变化量各是多少?
➢探究新知
如果用正号表示水位上升,用负号表示水 位下降,那么4天后甲水库的水位变化量为:
(2)(0.125) (8) 解:原式 (0.1258)
1
1
从以上两题的求解中你发现了什么?
乘积为1的两个有理数互为倒数.
➢实践出真知
例2:计算
(1)(6)
7(5)源自4(2) 3 10 2
5 9
解:原式
6
7
5 4
解:原式
3 5
10 9
2
(42) ( 5) 4
42 5 4
北师大版七年级上第二章有理数及其运算
2.7 有理数的乘法
➢情景引入
在冷冻室中,用冷却的方法可将液体冰激凌的温度每1 分钟下降 2 ℃.如果现在液体冰激凌的温度是0 ℃.
规定用正数表示温度上升,负数表示温度下降;以现在对应时间 为“基准”0分钟, 往后记为正, 之前记为负, 如:1分钟前记为-1分钟.
2.7.1有理数的乘法北师大版七年级数学上册点拨训练习题PPT课件
![2.7.1有理数的乘法北师大版七年级数学上册点拨训练习题PPT课件](https://img.taocdn.com/s3/m/a958a7d97375a417876f8f67.png)
B.负数
第二章 有理数及其运算
C.零 第二章 有理数及其运算
第二章 有理数及其运算
D.无法确定
第二章 有理数及其运算
第1课时 有理数的乘法
第二章 有理数及其运算
第1课时 有理数的乘法
第二章 有理数及其运算
第二章 有理数及其运算
6.如图,数轴上的 A,B,C 三点所表示的数分别为 a,b,c.根 据图中各点的位置,下列式子正确的是( D )
18.一辆出租车在一条东西走向的大街上营运.一天上午,这辆车 一共连续送客 10 次,其中 4 次向东行驶,每次行驶 10 km;6 次向西行驶,每次行驶 7 km.问:
(1)该出租车连续送客 10 次后,停在离出发点的什么地方? 解:规定向东为正,则 10×4+(-7)×6=40+(-42)=-2(km). 所以该出租车停在出发点的西边 2 km 处.
2.(2019·温州)计算:(-3)×5 的结果是( A )
A.-15
B.15
C.-2
D.2
3.下列运算结果为负数的是( C )
A.-11×(-2)
B.0×(-2 019)
C.(-6)-(-4)
D.(-7)+18
4.一个有理数和它的相反数之积为负
C.一定不大于 0
第二章 有理数及其运算
2.7 有理数的乘法 第1课时 有理数的乘法
提示:点击 进入习题
1 见习题 2 A
3C
4C
答案显示
5B
6 D 7 A 8 -20;15 9 1;0;±1 10 A
11 D
12 B
13 C
14 D
15 见习题
16 见习题 17 见习题 18 见习题 19 见习题
北师大初中数学七上《2.7 有理数的乘法》PPT课件 (16)
![北师大初中数学七上《2.7 有理数的乘法》PPT课件 (16)](https://img.taocdn.com/s3/m/0cec0e918bd63186bcebbc78.png)
(3) 3 (11).
(4)( 27) 0.
53
8
【思路点拨】确定两数符号→积的符号→绝对值相乘
【自主解答】(1)(-3)×7=-(3×7)=-21. (2)(-8)×(-2)=+(8×2)=16.
(3) 3 (11) (3 4) 4. 5 3 53 5
(4)( 27) 0 0. 8
(10 1 1 6) 2. 3 10
(2) 3 5 14 (0.25) 65
3 5 9 1 9. 654 8
【总结提升】有理数乘法运算“三步法”
题组一:两个有理数相乘 1.下列说法正确的是( ) A.同号两数相乘,符号不变 B.积一定大于每一个因数 C.两数相乘,如果积为正,那么这两个因数都是正数 D.两数相乘,如果积为负,那么这两个因数异号 【解析】选D.由有理数乘法法则可得D正确.
7 有理数的乘法
第1课时
1.熟记有理数的乘法法则.(重点) 2.能根据有理数的乘法法则计算有理数的乘法.(重点) 3.知道倒数的概念. 4.会判断多个非零有理数相乘积的符号.(难点)
一、有理数的乘法法则
正
负
(1)符号:两数相乘,同号得___,异号得___.
(2)绝对值:把绝对值_相__乘__.
(3)同0相乘:任何数与0相乘,积仍为_0_.
交换分子、分母的位置即得其倒数
【自主解答】(1)因为
34 43
1,所以
3 4
的倒数是
4. 3
(2)因为 0.2
1,( 5
1) 5
(5)
1,
所以-0.2的倒数是-5.
(3)因为2 2 8 ,( 8) ( 3) 1,
七年级数学上册第二章有理数及其运算2.7有理数的乘法课件新版北师大版
![七年级数学上册第二章有理数及其运算2.7有理数的乘法课件新版北师大版](https://img.taocdn.com/s3/m/98da524e227916888486d75e.png)
拓展提升
解:∵a与b互为相反数, ∴a+b=0, ∵c与d互为倒数, ∴cd=1, ∵e为绝对值最小的数, ∴e=0,
体验收获
今天我们学习了哪些知识?
1.有理数的乘法法则 2.倒数 3.有理数乘法运算
布置作业
教材54页习题第1,3题。
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
4个 -3相加
活动探究
(-3)×4= -12 (-3)×3= -9 (-3)×2= -6
(-3)×1= -3
一个因数减小 1时,积怎样变
化?
(-3)×(-1)= 3
(-3)×0= 0
(-3)×(-2)= 6
一个因数减少1时,积增大3.
(-3)×(-3)= 9
你能写出右边各式的 结果吗?
(-3)×(-4)= 12
Q
-12 -9 -6 -3 0 3 6 9 12
3 ×(-4)= -12
在Q点左侧12cm处
讲授新知 3×4=12 (-3)×(-4)=12
正数乘正数积为_正_数 负数乘负数积为_正_数
同号 得正
3×(-4)= -12 (-3)×4= -12
负数乘正数积为_负_数 正数乘负数积为_负_数
异号 得负
= +(5×7) 同号得正,绝对值相乘 =35
观察(3)(4)小题的结果,你发现了什么?
讲授新知 如果两个有理数的乘积为1,那么称其中一个数是 另一个的倒数,也称这两个有理数互为倒数。
北师大版七年级数学上册《有理数的乘法》课件
![北师大版七年级数学上册《有理数的乘法》课件](https://img.taocdn.com/s3/m/95c731e0c9d376eeaeaad1f34693daef5ff71341.png)
7 10
=7 3
3
2 3
5 4
=
2 3
5 4
= 5 6
4
24 13
16 7
0
4 3
=0
5
5 4
1.2
1 9
=
5 4
6 5
1 9
=
3 2
1 9
=1 6
6
3 7
1 2
8 15
=
3 14
8 15
4 35
课堂小结
通过这节课的学习活动,你有什么收获?
24
(2) 7
4 3
5 14
解:(1)
5 6
3 8
24
在应用乘法对加 法的分配律时,括号
=
5 6
24
3 8
24
外的因数与括号内各
项相乘,各项应包含
=20 9
=11
前面的符号.
解:(2) 7
4 3
5 14
=
7
5 14
4 3
=
5 2
4 3
= 10 3
随堂练习
1.计算:
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
第2课时 有理数乘法的运算律
北师大版·七年级上册
知识回顾
1.有理数乘法法则是什么? 2.大家学过乘法的哪些运算律?
有理数乘法法则
两数相乘,同号得正,异号得负,并把 绝对值相乘.任何数与 0 相乘,积仍为 0.
乘法交换律 两个数相乘,交换因数的位置,积不变. 乘法结合律 三个数相乘,先把前两个数相乘,再和另 外一个数相乘,或先把后两个数相乘,再 和另外一个数相乘,积不变.
北师大版七年级上册数学:有理数乘方的运算(公开课课件)
![北师大版七年级上册数学:有理数乘方的运算(公开课课件)](https://img.taocdn.com/s3/m/cf0ed134ec3a87c24028c4b0.png)
或 应13该分 13添数上时括,号底数
探索规律
计算:
(2)2 = (-2) ×(-2) = 4
(2)3 = (-2) ×(-2) ×(-2) = -8
(2)
4
=
(-2)
×(-2)
×(-2)
×(-2)=
16
(2)5 = (-2) ×(-2) ×(-2) ×(-2) ×(-2) = -32
22 =4 2 3 =8
2.9 有理数的乘方
学习目标
1.理解并掌握有理数的乘方、幂、底数、指数的 概念及意义. 2.会把特殊的乘法运算转变成乘方运算。 3.能够正确进行有理数的乘方运算.
情景:异想天开
珠穆朗玛峰是世界的最高 峰,它的海拔高度 8844.43米
把一张足够大的厚度为 0.1毫米的纸,连续对折 30次的厚度可能超过珠穆 朗玛峰。你相信吗?
24 =16
25 =32
归纳总结
根据有理数的乘法法则可以得出:
负数的奇次幂是负数, 负数的偶次幂是正数. 正数的任何正整数次幂都是正数
你能迅速判断下列各幂的正负吗?
— (-6)3
—25 4
011
— (3) 6
(1)101
( 1 )50 4
二 有理数乘方的运算
计算: (1) —(-3)4;
(2) -24;
2 3
,指数是 )
7
,读作
(3)在 3 16中,-3是 底 数,16是 指 数,读作
-3的16次方 ;表示( )
(4) a 的底数是 a ;指数是 1 ;读作
a的1次方 ;
试一试:
把下列相同因数的乘积写成幂的形式,
并指出底数和指数
(1)(-6)×(-6幂)×的(-6)底数是负数
新北师大版七年级数学上册第二章《有理数及其运算》全章各课时课件
![新北师大版七年级数学上册第二章《有理数及其运算》全章各课时课件](https://img.taocdn.com/s3/m/d9593b262af90242a895e566.png)
现在,你能解决前面提出的问题了吗?
零上5º C 零下5º C
你
能
吗
5º C
-5º C
2013年12月1日星期日 14:39:03
现在,你能解决前面提出的问题了吗?
你
吐鲁番海拔 -155米
能
吗
2013年12月1日星期日 14:39:03
现在,你能解决前面提出的问题了吗?
如果答对题所得的分用正数表示,那么每 个代表队答题得分的情况如下表:
分数
负分数
2013年12月1日星期日 14:39:03
把下列各数填入相应的集合中:
2 1 1 3,7, ,. 6, 0,8 , 15, - - 5 3 4 9
巩 固 练 习
1 正数集合:{ 3,. 6, 15, 5 9 1 2 负数集合:{ - 7, ,8 3 4
…} …} …}
…}
- 0 15 整数集合:{ 3,7,, ,
你能举出生活中一些具 有相反意义的量吗?
2013年12月1日星期日 14:39:03
在正数前面加上“—”号的数叫做负
探 索 新 知
数.如-3,-8,-2.5等.负数都比0小.
带有“—”的数一定是负数吗?
不一定
0既不是正数也不是负数.它是正数和 负数的分界.
2013年12月1日星期日 14:39:03
你
能
+8
-3
吗
0 0
2013年12月1日星期日 14:39:03
例 题 讲 解
2013年12月1日星期日 14:39:03
1、(1)在知识竞赛中如果用“+10”表示 加10分,那么扣20分记作什么?
巩 固 练 习
七年级数学北师大版(上册)2.7有理数的乘法法则课件
![七年级数学北师大版(上册)2.7有理数的乘法法则课件](https://img.taocdn.com/s3/m/bec7202ea517866fb84ae45c3b3567ec112ddc14.png)
例2 已知a与b互为相反数,c与d互为倒数,m的绝对值为
6,求
a
m
b
-cd+|m|的值.
解:由题意得a+b=0,cd=1,|m|=6.
∴原式=0-1+6=5;
ab m
故
-cd+|m|的值为5.
1. 若 ab>0,则必有 ( D )
A. a>0,b>0 B. a<0,b<0 C. a>0,b<0 D. a>0,b>0或a<0,b<0
解:(1)原式 (3 5 9 1 ) 27 .
654
8
(2)原式 5 6 4 1 6. 54
(+2)×(+3)= 6 (-2)×(-3)= 6
同号两数相乘
(+2)×(-3)= - 6 异号两数相乘
(-2)×(+3)= - 6
0 × 5= (0 -5)× 0 = 0
一数与0相乘
你能从中发现规律吗?结果的符号怎么定?绝对值怎么算?
有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数与0相乘,积仍为0.
= −(4×5)
=+(5×7)
=−20 ;
(3)(
3 8
)
(
8 3
);
(3 8) 83
=1 ;
=35;
(4) (3)( 1 ); 3
= +(3× 1 ) 3
=1 .
观察(3)、(4)两题你有什么发现?
2.倒数
我们把乘积为1的两个有理数称为互为倒数, 其中的一个数是另一个数的倒数.
(1)正数的倒数是正数,负数的倒数是负数; (2)分数的倒数是Байду номын сангаас子与分母颠倒位置; (3)求小数的倒数,先化成分数,再求倒数; (4)0没有倒数.
2.3+第1课时+有理数的乘法法则+课件+2024-—2025学年北师大版数学七年级上册
![2.3+第1课时+有理数的乘法法则+课件+2024-—2025学年北师大版数学七年级上册](https://img.taocdn.com/s3/m/426e4b2fc950ad02de80d4d8d15abe23492f0365.png)
·导学建议· 1.学生在小学已经学过倒数,现阶段的难点是负数的倒数,学 生易丢掉符号. 2.可以把互为相反数与互为倒数两个概念放在一起,让学生 比较、辨别.
4.-17表示 ( A )
A.-7的倒数 B.-7的相反数 C.7的倒数 D.7的相反数
5.(1)-1的倒数是
-1 ,113的倒数是
3 4
6月份小明连续观察了5天,长江中游某支流的某河段的水位 平均每天升高1.2米.若用正数表示升高,用负数表示降低,5天后 该河段的水位将怎样变化?11月份小明连续观察了3天,该河段 的水位平均每天下降0.5米,若用正数表示升高,用负数表示降 低,3天后该河段的水位将怎样变化?你做出来了吗?
1.写出下列算式的结果. (1)3×4;(2)(-3)×(-4);(3)3×(-4);(4)(-3)×4.
(1)两数相乘, 同号得正, 异号 得负,并把绝对值相乘.任何 数与0相乘,积仍为 0 .
(2)有理数乘法运算的步骤:先定性,后定值,即先确定乘积的 符号 ,再确定乘积的 绝对值 .
·导学建议· 对于有理数乘法法则,本学段最重要的是要落实到按照法则 进行乘法运算上,对法则的合理性的解释,不要提过高的要求.
七年级·数学·北师大版·上册
3 有理数的乘除运算
3 有理数的乘除运算
第1课时 有理数的乘法法则
素养目标
1.知道有理数乘法的意义和法则,并能熟练利用有理数乘法 法则进行运算.
2.知道什么是互为倒数,会求一个数的倒数. 3.经历探索归纳有理数乘法法则的过程,增强观察、归纳、 猜测、验证等能力
有理数的乘法法则,熟练进行有理数的乘法运算. 有理数乘法法则合理性的探索过程.
1.-27的倒数是 ( B ) A.27 B.-72 C.72 D.-27
七年级数学上册 第二章 有理数及其运算 7 有理数的乘法课件 (新版)北师大版
![七年级数学上册 第二章 有理数及其运算 7 有理数的乘法课件 (新版)北师大版](https://img.taocdn.com/s3/m/74b8b44058f5f61fb73666dc.png)
C.恰有一个数为零 D.均为零
答案 B 0乘任何数均为零.多个有理数相乘,当积为零时,因数中至少
有一个数为零.
5.-1 3 的倒数与 1 的相反数的积为
.
5
20
答案 1
32
解析
-1
3 5
=-
8 5
,它的倒数为-
5 8
,
1 20
的相反数为-
1 20
,
5 8
×
1 20
=
5 8
×
1 20
=
1 ,故答案为 1 .
(1)-10;(2) 5 ;(3)-0.25;(4)3 1 .
7
2
解析 求倒数时,对于小数和带分数,应先将小数化成分数,将带分数化
成假分数,然后将分子、分母交换位置即可.
(1)-10的倒数是- 1 .
10
(2) 5 的倒数是 7 .
7
5
(3)-0.25=- 1,所以-0.25的倒数是-4.
4
(4)3 1 = 7 ,所以3 1 的倒数是 2 .
32
32
6.(2016江西小松中学联考)某商店以32元的价格购进30个茶杯,针对不 同的顾客,30个茶杯的售价不完全相同.若以47元为标准,将超过的钱数 记为正,不足的钱数记为负,记录结果如下表:
售出个数
7
6
3
5
4
5
每件(元)
+3
+2
+1
0
-1
-2
该超市售完这30个茶杯后,赚了多少钱? 解析 (+3)×7+(+2)×6+(+1)×3+0×5+(-1)×4+(-2)×5=22(元). (47-32)×30+22=472(元). 答:该超市售完这30个茶杯后,赚了472元.
第课 有理数的乘法北师大版七年级数学上册
![第课 有理数的乘法北师大版七年级数学上册](https://img.taocdn.com/s3/m/603d3be6a32d7375a41780e8.png)
三级拓展延伸练
15.学习了有理数的运算后,薛老师给同学们出了这样
一道题目:
计算
,看谁算得又对又快,两名同学给
出的解法如下.
小强:原式=
小莉:原式=
(1)对于以上两种解法,你认为谁的解法更好?理由 是什么?对你有何启发?
解:(1)我认为小莉的方法更好.理由是小莉能巧 妙地利用分析的思想,把带分数拆成一个整数与一 个真分数的和,再应用分配律,大大地简化了计算 过程.
•
8.少年时阅历不够丰富,洞察力、理 解力有 所欠缺 ,所以 在读书 时往往 容易只 看其中 一点或 几点, 对书中 蕴含的 丰富意 义难以 全面把 握。
•
9.自信让我们充满激情。有了自信, 我们才 能怀着 坚定的 信心和 希望, 开始伟 大而光 荣的事 业。自 信的人 有勇气 交往与 表达, 有信心 尝试与 坚持, 能够展 现优势 与才华 ,激发 潜能与 活力, 获得更 多的实 践机会 与创造 可能。
•
5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。
•
6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。
•
7.阅历之所以会对读书所得产生深浅 有别的 影响, 原因在 于阅读 并非是 对作品 的简单 再现, 而是一 个积极 主动的 再创造 过程, 人生的 经历与 生活的 经验都 会参与 进来。
感谢观看,欢迎指导!
384 ;
(3)2×(-4)×(-6)×(-8)=
-384 ;
(4)(-2)×(-4)×(-6)×(-8)=
最新北师大版七年级数学上册《有理数的乘法》优质教学课件
![最新北师大版七年级数学上册《有理数的乘法》优质教学课件](https://img.taocdn.com/s3/m/1371968cf46527d3250ce092.png)
课第后二研章讨
第1课时 有理数的乘法
知识要点基础练
综合能力提升练
拓展探究突破练
-9-
上完这节课,你收获了什么? 有什么样的感悟?与同学相互交 流讨论。
第二章 第1课时 有理数的乘法
课 后 作 业 知识要点基础练
综合能力提升练
拓展探究突破练
-10-
1. 从课后习题中选取; 2. 完成练习册本课时的习题.
B.a-b>0 D.|b|<|a|
第二章
第1课时 有理数的乘法
知识要点基础练
综合能力提升练
面问题.规定:水位上升为正,水位下降为负;几天后为正,几天前 为负.如果水位每天下降4 cm,那么3天后的水位变化用算式表示正确的是( C ) A.( +4 )×( +3 ) B.( +4 )×( -3 ) C.( -4 )×( +3 ) D.( -4 )×( -3 ) 10.如果四个互不相等的整数的积为4,那么这四个数的和是( A )
5.若-3,5,a 的积是一个负数,则 a 的值可以( D )
A.-15
B.-2
C.0
D.15
6.( 原创 )下列各式中,积为负数的是( D )
A.( -2 )×3×( -6 )
B.( -3.2 )×( +5.7 )×( -3 )×( -2 )×0
C.-(
-5
)×
-
1 5
×(
-4
)
D.6×(
-3
)×(
A.1 B.2 C.3 D.4 2.如果两个有理数的积是负数,和也是负数,那么这两个有理数( D ) A.同号且均为负数 B.异号且正数的绝对值比负数的绝对值大 C.同号且均为正数 D.异号且负数的绝对值比正数的绝对值大 3.在-2,3,-4,-5这四个数中任取两个数相乘,得到的积最大的是( A )
北师大版数学七年级上册有理数的乘方说课课件
![北师大版数学七年级上册有理数的乘方说课课件](https://img.taocdn.com/s3/m/d53a7e998ad63186bceb19e8b8f67c1cfbd6ee0d.png)
教学过程
创设情境 导入新课
5分钟
设计意图
以细胞分裂为情境,引 入有理数的乘方。学生借 助图形直观的感受细胞分 裂时数量的变化,增强趣 味性,吸引学生的注意力. 同时直观的图形也有助于 学生发现规律,帮助理解 乘方的现实意义和乘方运 算的结果增长的很快这一 特点。
教学过程
创设情境 导入新课
教学过程
创设情境 导入新课
5分钟
交流学习 出示目标
2分钟
分层作业 巩固提高
2分钟
小组合作 探究新知
20分钟
达标检测 反馈改正
6分钟
夯实理解 巩固新知
5分钟
举一反三 拓展提升
5分钟
设计意图
通过作业环节的 设计让学生养成良好 的学习习惯,巩固所 学新知识,发现和补 偿教与学中的遗漏和 不足,分层布置作业 兼顾各层次学生的需 求,到达教学目标。
5分钟
交流学习 出示目标
2分钟
小组合作 探究新知
20分钟
达标检测 反馈改正
6分钟
夯实理解 巩固新知
5分钟
举一反三 拓展提升
5分钟
设计意图
通过设置几个有梯 度性的题目,帮助学 生及时检测本堂课学 习的有效性,突出本 节课的重点,回扣学 习目标,具有针对性。 同时又能掌握学生本 堂课的学习程度,反 馈学习结果,深化本 节课所学知识。
北师大版义务教育教科书 七年级上册
第二章 有理数及其运算
2.9.1 有理数的乘方说课
一、说教材
二、说学情
说课过程
三、说目标 四、说模式 五、说方法
六、说设计 七、说板书
一、说教材
有理数的 减法
有理数的 乘法
有理除数法的有乘理数方有的理数的混
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考:用“>”“<”“=”号填空。 (1)如果a>0,b>0,那么a· b____0. (2)如果a>0 b<0, 那么a· b____0. (3)如果a<0, b<0 , 那么a· b____0 . (4)如果a=0, b≠0, 那么a· b____0 例3.计算⑴(-4)×5×(-0.25); ⑵(-3÷5)×(-5÷6)×(-2); 结论:多个数相乘,积的符号由负因数的个数决定, 当负因数有奇数个时,积的符号为负;当负因数有 偶数个时,积的符号为正.只要有一个数为零,积就为零。
• 1 如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什 么位置? • 2 如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什 么位置? • 3 如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什 么位置? • 4 如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什 么位置? • 思考:一个数同0相乘,如何解释?
活动4:根据你对有理数乘法的思考,填空:
正数乘正数积为______数。 负数乘正数积为______数。 正数乘负数积为______数。 负数乘负数积为_____数。 乘积的绝对值等于各乘数绝对值的___________
归纳 有理数的乘法法则 •两数相乘,同号得正,异号得负,并把绝对值相乘。 •任何数同0相乘,都得0.
2、商店降价销售某种商品,每件降5元,售出60件后,与原价 销售同样数量的商品相比,销售额有什麽变化?
总结收获,畅谈体会
1、今天这节课我学到的新知识是________ 2、今天这节课我学到的数学思想或解决问题 的方法是_______________________ 3、今天这节课给我留下印象最深的是_______ 4、今天这节课留给我的疑惑还有__________
(1)如果蜗牛一直以每分钟2cm的速度向右爬行 , 3分钟后它在什么位置?
(2) (3) 6
(2)如果蜗牛一直以每分钟2cm的速度向左爬行, 行,3分钟后它在什么位置?
(2) (3) 6
(3)如果蜗牛一直以每分钟2cm的速度向右爬行, 行,3分钟前它在什么位置?
(2) (3) 6
学习目标:
理解有理数乘法的意义, 掌握有理数乘法法则,并能 准确地进行有理数的乘法运 算;会求一个有理数的倒数; 能够确定多个有理数相乘积 的符号。
师生互动,探究新知
活动2:如图,一只蜗牛沿直线L爬行,它现在的位置恰好在 L上的点O。 L O
为区分方向,规定:向左为负,向右为正; 为区分时间,规定:现在前为负,现在后为正;
解决问题,综合运用
例1.计算: (1)(-3)×9 (2)(-1/2)×2 (3)(-1/3)×(-3) (4)(-2/3)×(-3/2)
注意:乘积是1的两个数互为倒数.一个数同+1相乘, 得原数,一个数同-1相乘,得原数的相反数。
例2 用正负数表示气温的变化量,上升为正,下降为负。 登山队攀登一座山峰,每登高1km气温的变化量为-60C, 攀登3km后,气温有什么变化? 问题:实际生活中,还存在其他类似的例子吗,说出来 和大家一起分享吧!
体验成功,享受快乐
•活动6 1.抢答题(1)翻牌游戏老师任意摸两张扑克牌,学生说出 它的积,规定:红色为正,黑色为负。 (2)计算 ①6×(-9) ④(-6)×0
②(-4)×6 4 ⑤(– )×(– 1 ) ③(-6)×(-1) ⑥(-1/3)×18
3
4Leabharlann (3)写出下列各数的倒数。 1,-1,1/3, -1/3, 5, -5, 2/3, -2/3.
分析法则,掌握实质
活动5 填空:1.(—5)×(—3)同号相乘 (—5)×(—3)=+( )____得正 5×3=15把绝对值相乘 2.(—7)×4__________ (—7)×4=—( )___________ 7×4=28__________ (—7)×4=__________ •归纳:有理数相乘,先确定积的_____ , 再确定积的 _____________.
创设情境,复习导新 : 活动1:1、计算: ①(—5)+(—5) ②(—5)+(—5)+(—5) ③(—5)+(—5)+(—5)+(—5) ④(—5)+(—5)+(—5)+(—5)+ ( —5 )
2、猜想下列各式的值 (—5)×2;(—5)×3; (—5)×4;(—5)×5, 3、两个有理数相乘有几种情况?
布置作业,巩固深化
一、数学小日记 日期_________ •今天数学课的课题:__________________ •所涉及的重要的数学知识______________ •理解最好的地方____________________ •不明白或还需要进一步理解的地方______ • 所学的内容能够应用在日常生活中,举例说明 ) (8)(– ____________________________________ 二、必做题 1、计算. (1)(-8)×(-7) (2) 12×(-5) (3)2.9×(-0.4) (4)-30.5×0.2 (5)100×(-0.001) 1 (6)-4.8×(-1.2) (7)(–72)×(+1 ) 3
2、小欣到知慧迷宫去游玩,发现了一个秘密机关,机关的 门口有一些写着整数的数字按纽,此时传来了一个机器人 的声音“按出两个数字,积等于8”,请问小欣有多少种按 法?你能一 一写出来吗?(不管顺序) 选做题 小丽收集了9个可乐瓶盖,她把9个瓶盖都盖口朝上排放成 一行,她每次都任意翻动两个瓶盖(盖口朝上的翻成朝下, 盖口朝下的翻成朝上),问她能否经过若干次翻动后,所有的 瓶盖都盖口朝下?
(4)如果蜗牛一直以每分钟2cm的速度向左爬行, 行,3分钟前它在什么位置?
(2) (3) 6
活动3(1)那么下列一组算式的结果应该如何
计算?请同学们思考: •(-3)×3=_____; •(-3)×2=_____; •(-3)×1=_____; •(-3)×0=_____. (2)当同学们写出结果并说明道理时,让学生 通过观察这组算式等号两边的特点去发现积的变 化规律,然后再出示一组算式猜想其积的结果: •(-3)×(-1)=______; •(-3)×(-2)=______; •(-3)×(-3)=______; •(-3)×(-4)=______.