工程力学第一章--静力学基础知识
大学工程力学重点知识点总结—期末考试、考研必备!!
工程力学重点总结—期末考试、考研必备!!第一章静力学的基本概念和公理受力图一、刚体P2刚体:在力的作用下不会发生形变的物体。
力的三要素:大小、方向、作用点。
平衡:物体相对于惯性参考系处于静止或作匀速直线运动。
二、静力学公理1、力的平行四边形法则:作用在物体上同一点的两个力,可以合成为仍作用于改点的一个合力,合力的大小和方向由这两个力为边构成的平行四边形的对角线矢量确定。
2、二力平衡条件:作用在同一刚体上的两个力使刚体保持平衡的必要和充分条件是:这两个力的大小相等、方向相反,并且作用在同一直线上。
3、加减平衡力系原理:作用于刚体的任何一个力系中,加上或减去任意一个平衡力系,并不改变原来力系对刚体的作用。
(1)力的可传性原理:作用在刚体上某点的力可沿其作用线移动到该刚体内的任意一点,而不改变该力对刚体的作用。
(2)三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
4、作用与反作用定律:两个物体间相互作用的力,即作用力和反作用力,总是大小相等,方向相反,作用线重合,并分别作用在两个物体上。
5、刚化原理:变形体在某一力系作用下处于平衡状态时,如假想将其刚化为刚体,则其平衡状态保持不变。
三、约束和约束反力1、柔索约束:柔索只能承受拉力,只能阻碍物体沿着柔索伸长的方向运动,故约束反力通过柔索与物体的连接点,方位沿柔索本身,指向背离物体。
2、光滑面约束:约束反力通过接触点,沿接触面在接触点的公法线,并指向物体,即约束反力为压力。
3、光滑圆柱铰链约束:①圆柱、②固定铰链、③向心轴承:通过圆孔中心或轴心,方向不定的力,可正交分解为两个方向、大小不定的力;④辊轴支座:垂直于支撑面,通过圆孔中心,方向不定。
4、链杆约束(二力杆):工程中将仅在两端通过光滑铰链与其他物体连接,中间又不受力作用的直杆或曲杆称为连杆或二力杆,当连杆仅受两铰链的约束力作用而处于平衡时,这两个约束反力必定大小相等、方向相反、沿着两端铰链中心的连线作用,具体指向待定。
工程力学:第一章静力学的基本概念
对刚体,力作用三要素为:大小,方向,作用线 滑动矢量
推理2:三力平衡汇交定理 刚体受三力作用而平衡,若其中两力作
用线汇交于一点,则另一力的作用线必汇交 于同一点,且三力的作用线共面。(必共面, 在特殊情况下,力在无穷远处汇交——平行 力系。) 证: ∵ , , 为平衡力系,
例1—2 屋架如图所示。A处为固定铰链支座,B处为滚动支座, 搁在光滑的水平面上。已知屋架自重P,在屋架的AC边上承受了 垂直于它的均匀分布的风力,单位长度上承受的力为q。试画出 屋架的受力图。
例1—3 如图所示,水平梁AB用斜杆CD支撑,A、C、D三处 均为光滑铰链连接。均质梁重 其上放置一重为 的电动机。 如不计杆CD的自重,试分别画出杆CD和梁AB(包括电动机)的 受力图。
公理5告诉我们:处于平衡 状态的变形体,可用刚体静 力学的平衡理论。
§1-3 约束和约束反力
一、概念 自由体:位移不受限制的物体叫自由体。
非自由体:位移受限制的物体叫非自由体。
约束:对非自由体的某些位移预先施加的限制条件。 注:此处约束是名词,而不是动词的约束。
约束反力:约束给被约束物体的力叫约束反力。 约束反力特点: ①大小常常是未知的,与作为主动力的载荷相对应,为被动力;
∴ , 也为平衡力系。
又∵ 二力平衡必等值、反向、共线,
∴ 三力 , , 必汇交,且共面。
公理4 作用力和反作用力定律
两物体间相互作用的力总是同时存在,大小相等、 方向相反、沿同一直线,分别作用在两个物体上。
[例] 吊灯
公理5 刚化原理
变形体在某一力系作用下处于平衡,如将此变形体变成 刚体(刚化为刚体),则平衡状态保持不变。
《工程力学》第一章 静力学基础及物体受力分析
• 在工程实际中,为求未知约束反力,需依 据已知力应用平衡条件求解。为此,首先 要确定构件(物体)受有多少力的作用以及 各作用力的作用位置和力的方向。这个确 定分析过程称为物体的受力分析。
• 四、作用与反作用原理
• 任何二物体间相互作用的一对力总是等值、 反向、共线的,并同时分别作用在这两个 物体上。这两个力互为作用力和反作用力。 这就是作用与反作用原理。
• 五、刚化原理 • 当变形体在已知力系作用下处于平衡时,
若把变形后的变形体刚化为刚体,则其 平衡状态保持不变。这个结论称为刚化 原理。
合力,其合力作用点在同一点上,合力的方向 和大小由原两个力为邻边构成的平行四边形的 对角线决定(图1-4)。这个性质称为力的平 行四边形原理。其矢量式为
• 即合力矢R等于二分力F1和F2的矢量和。
图1-4
图1-5
• 推论:作用于刚体上三个相互平衡的力, 若其中二力作用线汇交于一点,则此三力 必在同一平面内,且第三力的作用线必定 通过汇交点。这个推论被称为三力平衡汇 交定理。
• 力对物体作用的效应取决于力的三个要素:力的大小、方向和作 用点。
• 力的作用点是指物体承受力的那个部位。两个物体间相互接触时 总占有一定的面积,力总是分布于物体接触面上各点的。当接触 面面积很小时,可近似将微小面积抽象为一个点,这个点称为力 的作用点,该作用力称为集中力;反之,当接触面积不可忽略时, 力在整个接触面上分布作用,此时的作用力称为分布力。分布力 的大小用单位面积上的力的大小来度量,称为载荷集度,用 q(N/cm2)表示。
《工程力学》课后习题与答案全集
由 ,作出速度平行四边形,如图示:
即:
7.图示平行连杆机构中, mm, 。曲柄 以匀角速度 2rad/s绕 轴转动,通过连杆AB上的套筒C带动杆CD沿垂直于 的导轨运动。试示当 时杆CD的速度和加速度。
解:取CD杆上的点C为动点,AB杆为动系。对动点作速度分析和加速度分析,如图(a)、(b)所示。图中:
解:设该力系主矢为 ,其在两坐标轴上的投影分别为 、 。由合力投影定理有:
=-1.5kN
kN
kN
;
由合力矩定理可求出主矩:
合力大小为: kN,方向
位置: m cm,位于O点的右侧。
2.火箭沿与水平面成 角的方向作匀速直线运动,如图所示。火箭的推力 kN与运动方向成 角。如火箭重 kN,求空气动力 和它与飞行方向的交角 。
(d)由于不计杆重,杆AB在A、C两处受绳索作用的拉力 和 ,在B点受到支座反力 。 和 相交于O点,
根据三力平衡汇交定理,
可以判断 必沿通过
B、O两点的连线。
见图(d).
第二章力系的简化与平衡
思考题:1.√;2.×;3.×;4.×;5.√;6.×;7.×;8.×;9.√.
1.平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm,求此力系向O点简化的结果,并确定其合力位置。
则
(mm/s)
故 =100(mm/s)
又有: ,因
故:
即:
第四章刚体的平面运动
思考题
1.×;2.√; 3.√;4.√;5.×.
习题四
1.图示自行车的车速 m/s,此瞬时后轮角速度 rad/s,车轮接触点A打滑,试求点A的速度。
工程力学第1章
这类约束是由绳索、链条或胶带等柔性体构成的。因为柔体只能受拉,不能受压。因此,只能限制与 其接触的物体沿柔体伸长方向的运动,而不能限制其它方向的运动。所以,柔体约束对物体的约束反力 方向,只能是沿着柔体拉直时的中心线而背离被约束物体,如图1-8所示。
图1-7作用与反作用力
作用与反作用定律概括了自然界中物体相互作用的关系。表明作用的力总是成对出现,有作用力就有 反作用力,两者总是同时存在,又同时消失。 1.3常见约束与约束反力
在力学中常把物体分为两大类:能在空间自由运动的物体称为自由体。例如空中飞行的气球。受到其 它物体限制而不能在空间自由运动的物体称为非自由体,例如轨道上的火车和机床的刀具等。火车只能 沿轨道运动,向其它方向的运动将受到轨道的限制。
注1: 因为力是物体间相互的机械作用,所以它不能脱离物体而存在。 注2:力对物体作用的效应决定于力的大小、方向和作用点。通常称为力的三要素。当这三个要素中 任何一个有所改变时,力的作用效果就会改变。 注3:本书采用国际单位制,牛[顿](N)或千牛(kN)。 注4:力是矢量。在图上它可用一有向线段(矢线)来表示,如图1-1所示。线段的长度(按一定的比例) 表示力的大小,线段的箭头表示力的指向,线段的始端或末端表示力的作用点,线段所在的直线称为力 的作用线。
所谓刚体,就是在任何情况下,任意两点间距离都保持不变的物体。当然,在宇宙中并无刚体存在, 一切物体受力都要产生变形,刚体只是一个理想的力学模型。工程力学的静力学和运动力学部分在研究 物体的平衡或运动时,将物体的微小变形忽略不计,而将物体视为刚体。在材料力学部分需研究物体的 变形,故不能把物体看成刚体。
工程力学(静力学与材料力学)-1-静力学基础
力偶及其性质
力偶-最简单、最基本的力系
工程中的
力偶实例
F1
F2
1. 力偶的定义
两个力大小相等、方向相反、作用线互相平行、
但不在同一直线上,这两个力组成的力系称为力
偶(couple)。
(F,F)
力偶臂
dF F
力偶的作用面
平面力偶及其性质
m
B
F
o
dA
F’
力偶没有合力,不能用一个力来代替,也不能用一个力与之平
力偶及其性质
力偶及其性质
力偶-最简单、最基本的力系 力偶的性质 力偶系及其合成
力偶及其性质
力偶-最简单、最基本的力系
力偶及其性质
力偶-最简单、最基本的力系
工程中的力偶实例
钳工用绞杠丝锥攻螺纹时, 两手施于绞杆上的力和,如果 大小相等、方向相反,且作用 线互相平行而不重合时, 便组成一力偶 。
O
d1
d d2
F1
力和力矩
合力之矩定理
FR
n
mOFR=mOFi
i1
F2
例1 已知:如图 F、R、r, a , 求:MA(F)
解:应用合力矩定理
R Fy
F
r
a
a
Fx
M A ( F ) M A ( F x ) M A ( F y )
A
a a
M A ( F ) F x ( R r c) o F y r s sin
解 : 可以直接应用力矩公式计算力F 对O点之矩。但是,在本例的情形 下,不易计算矩心O到力F作用线的 垂直距离h。
如果将力F分解为互相垂直的
两个分力Fl和F2,二者的数值分别
为
F1=Fcos45
工程力学第一章静力学基础知识
1-2 静力学公理
公理一的应用 人在划船离岸时,常把浆向岸上撑。这就是利用了作用力与反作用力的原理。
§1-2 静力学公理
二力平衡公理示意图
二、二力平衡公理(公理二)
作用于同一刚体上的两个力,使刚体平衡的必要且充分条件是,这两个力的大小相等,方向相反,作用在同一条直线上。
第一章 静力学基础知识
202X
第一章 静力学基础知识
理解力、刚体和约束等概念。
深刻理解静力学各公理的内涵。
了解各种常见典型约束的性质,会正确表示各种典型约束的约束反力。
初步学会对物体进行受力分析的方法,能正确画出研究对象的受力图。
1-1 力与静力学模型
力
1.力的概念
1-1 力与静力学模型
02
几种常见的约束及其约束反力
1-3 约束与约束反力
1-3 约束与约束反力
约束与约束反力 自由体和非自由体
1-3 约束与约束反力
当物体沿着约束所能限制的方向有运动趋势时,约束为了阻止物体的运动,必然对物体有力的作用,这种力称为约束反力或反力。
约束——对非自由物体的限制
2.主动力与约束反力
足球
§1-1 力与静力学模型
弹簧形变
力的内效应
内效应——力使物体的形状发生变化的效应。
§1-1 力与静力学模型
4.力的三要素
大小 方向 作用点
力的三要素
§1-1 力与静力学模型
夹紧力作用点的选择 夹紧力作用点的选择
模型——对实际物体和实际问题的合理抽象与简化
刚体——对物体的合理抽象与简化
1-3 约束与约束反力
巧夹球形工件 用平口钳夹球形工件很难夹紧,这是因为平面与球面接触,接触面积小(理论上为点接触),要产生一定大小的约束反力F1、F2和摩擦刀矩M2,与轴向力F和切削力矩M1平衡,需要很大的夹紧力,易损坏球形工件。若用螺母代替,将是环面接触,加大了接触面积,改变了约束条件。因此,只需较小的夹紧力,就可使球形工件夹得很牢固。 4
第一章-工程力学知识【可修改文字】
第一节 静力学的基本概念和物体受力分析 五、简单力系分析
1、平面汇交力系合成与平衡的几何法 平面汇交力系:各力的作用线位于同一平面内并且
汇交于同一点的力系,如图1-19。
图1-19 平面汇交力系
第一节 静力学的基本概念和物体受力分析
(1)平面汇交力系的合成的几何法 用平面四边形法则或力三角形法求两个共点力的合
图1-12 光滑接触面约束
第一节 静力学的基本概念和物体受力分析
(1)中间铰链约束,如图1-13 :用中间铰链约束的 两物体都能绕接触点转动,两物体相互转动又相互制约。
约束反力的确定:其约束反力用过铰链中心两个大 小未知的正交分力来表示。
图1-13 中间铰链约束
第一节 静力学的基本概念和物体受力分析
(4)平面力偶系的简化与平衡: 1)作用在物体同一平面内的各力偶组成平面力偶系。 平面力偶系可以合成为一合力偶,此合力偶的力偶矩等 于力偶系中各力偶的力偶矩的代数和,即:M=m1+ m2+…+mn=Σm; 2)平面力偶系平衡的必要与充分条件:平面力偶 系中所有各力偶的力偶矩的代数和等于零,即:Σm=0。
(1)二力平衡公理:作用于刚体 上的两个力处于平衡的必要和充分条 件是:力的大小相等、方向相反、作 用于同一个物体同一直线上。矢量式 可表示为:F1=-F2,如图1-5。
图1-5 二力平衡条件
第一节 静力学的基本概念和物体受力分析
二力杆件(或二力体):受两个力作用而平衡的杆件,
如图1-6。
F1
F2
(1)力对物体的作用效力 内效应:使物体发生变形的效
应。 注:静力学只考虑外效应。
(2)力的三要素:力的大小、方向、作用点。 (3)力是矢量(用一带箭头的线段表示)如图1-1表 示,单位为N或KN。
工程力学第一章
物体受到约束时,物体与约束之间相互有作用力,约束对被约束物体 的作用力称为约束力(或约束反力)。
约束力有两个特点: (1)约束力的方向总是与约束所限制的运动(或趋势)方向相反。 (2)约束力的大小与被约束物体的运动状态及受力情况有关。 作用于非自由体上除约束力以外的力统称为主动力,如重力、推力等。 相对于主动力,约束力是被动力。工程中约束的种类很多,下面介绍几 种常见的约束类型,并分析其特点。
画受力图是求解力学问题的重要一步,不能省略,更不能发生错误,否则将 导致以后分析计算上的错误结果。画受力图应遵循如下步骤: (1)根据题意,明确并选取研究对象,即分离体。按照需要可以选取单个物体, 也可以选取几个物体组成的物体系统。如果有二力杆,要先取出来研究其受 力。 (2)画出分离体上的全部主动力。 (3)按照被解除约束的类型,逐一画出研究对象周围的所有约束对它的约束力。 特别要注意铰链约束力以下两点的画法: ①铰链约束的特点是能完全限制各被连接物体的移动,但无法限制物体绕销 钉的转动。 ②被销钉连接的各物体之间没有直接的相互作用,它们分别与销钉发生相互 作用。铰链约束力,就是销钉对构件的反作用力。
能使柔绳平衡。
图1-4
公理2 加减平衡力系公理
在作用于刚体的力系中,添加或除去平衡力系,不改变原力系对刚体的 作用效果。 公理2只适用于刚体,对于变形体不成立。加减平衡力系是力系简化的重 要依据,给出如下推论,用公理2加以证明。
推论1 力的可传性原理
作用在刚体上的力,可沿力的作用线在刚体上移动,而保持它对 刚体的作用效果不变。Biblioteka 第三节约束和约束力
在空间可以自由运动,可获得任意方向 位移的物体,称之为自由体。例如,天空中飞 行的飞机、火箭、人造卫星等。位移受到某种 限制的物体,称之为非自由体。 约束:限制物体自由运动的条件(或周围物体)。
工程力学-第1章 静力学基础
约束力的方向与它所限制物体的运动或运动趋势的方向相反,其 大小和方向是随主动力的不同而不确定,是一个未知力。
二、常见约束的类型
约束类型—把一构件与它构件的联接形式,按其限制构件运动 的特性抽象为理想化的力学类型,称为约束类型。
常见约束的约束类型—为柔体、光滑面、铰链和固定端。
值得注意的是,工程实际中的约束与约束类型有些比较相近,有 些差异很大。必须善于观察,正确认识约束类型及其应用意义。
工程力学的任务: 研究构件的受力分析、平衡规律(重 点)和运动规律(简介),以及构件的变形破坏规律。为构件 的设计和制造提供基本的理论依据和实用的计算方法。
第一章 静力学基础和受力图
△
一、基本概念 1.力的定义
◆ 课节1–1 静力学基础
力是物体间相互的机械作用。
2.力的三要素及表示法
B
G
F A
FN
2)固定铰支座 约束限制了构件销孔端的随意移动,不限制构 件绕圆柱销这一点的转动。
物体间相互的机械作用可以用力的符号表示。一个力的箭头符
号表示一个机械作用,相互机械作用需二个力的箭头符号。
3.力系与平衡
4.合力与分力 若一个力与一个力系等效,则称这个力为该力系 的合力,而该力系中的各力称为这个力的分力。
5. 平衡力系 一力系使物体处于平衡状态,则该力系称为平衡 力系。
二、基本公理 1.二力平衡公理 两个力使刚体平衡的必充条件是:这两个力
C
例1-1图
FA
FC
例1-2 图示结构,分析AB、BC杆的受力。
F
FB
B
BB
A
例1-2图
C A FB' FA
F 解:1.分离出AB、BC杆 2.对AB杆进行受力分析
工程力学-第一章
第一篇 静力学
第1章 静力学基本概念与物体的受力分析
本章首先介绍静力学的基本概念, 包括力和力系概念、力对点之矩与力 对轴之矩的概念、约束与约束力的概 念。介绍受力分析的基本方法, 包括隔离体的选取与受力图的画法。
第1章 静力学基本概念与物体的受力分析
静力学模型 力与力系的基本概念 力对点之矩与力对轴之矩 工程常见约束与约束力 受力分析方法与过程 结论与讨论
力与力系的基本概念
力与力系 静力学基本原理
返回
力的基本概念
力与力系
力是物体间的相互作用,这种作用将 使物体的运动状态发生变化-运动效应 (静力学),或使物体发生变形-变形效 应(材料力学)。
力是矢量;当力作用在刚体上时,力可以 沿着其作用线滑移,而不改变力对刚体的作 用效应,这时的力是滑动矢量;
力的基本概念
静力学基本原理
推论Ⅰ:力的可传性原理 (principle of transmissibility of a force) 作用 于刚体上的力可沿其作用线滑移至刚体内 任意点而不改变力对刚体的作用效应。
F F
F
F
F'
F =-F'
力的基本概念
F
静力学基本原理
F
F
F
F'
推论表明,对于刚体,力的三要素为:力 的大小、方向和作用线。 可沿方位线滑动的矢量称为滑动矢量。 作用于刚体上的力是滑动矢量。
约束与约束力
滑动轴承与止推轴承
滚珠(柱)轴承 机器中常见各类轴 承,如滑动轴承或径向 轴承等。这些轴承允许 轴承转动,但限制与轴 线垂直方向的运动和位 移。轴承约束力的特点 与光滑圆柱铰链相同, 因此,这类约束可归入 固定铰支座。
考研复习—工程力学——第1章 静力学的基本概念和受力分析
解:取碾子为研究对象,取分离体并画简图。 画主动力。主动力有重力G和杆对碾子中心的拉力F。 画约束力。因碾子在A和B两处受到石块和地面的约束, 如不计摩擦,则均为光滑面约束,故在A处受石块的法向 力NA的作用,在B处受地面的法向力NB的作用,它们都沿 着碾子上接触点的公法线而指向圆心。 碾子的受力图如图所示。
第1章 1.2 静力学公理 1.2.2 公理2 二力平衡公理
用在同一刚体上的两个力,使刚体处于平衡状态的必要 和充分条件是:这两个力的大小相等,方向相反,且作用在 同一直线上,如图1-6所示,即 F1=-F2 (1-1)
图1-6
第1章 1.2 静力学公理
1.2.3 公理3 加减平衡力系公理
推论1:力的可传递性原理 作用于刚体上的力,可以沿着它的作用线移到刚体内任意一点,而不改变该力对刚体的作 用效果。如图1-7 推论2 :三力平衡汇交定理
图1-20
第1章 1.6 约束与约束力 1.6.2 光滑接触面约束
不考虑物体间地摩擦,认为是光滑接触面约束。光滑接触面约束对物体的约束力作用在 接触点处,作用线沿接触面公法线方向指向物体。通常用N表示。如图所示
图1-21
第1章 1.6 约束与约束力 1.6.3 光滑圆柱铰链约束
圆柱铰链约束包括中间铰链约束、固定铰链支座和活动铰链支座。 1.中间铰链约束 在机器中,经常用圆柱形销钉将两个带孔零件连接在一起,这种铰链只能称中间铰链 约束。
第1章 静力学的基本概念和受力分析
训教 重点
静力学的基本概念、静力学公理和推论。 工程中约束类型及其受力特点。
第1章 静力学的基本概念和受力分析
工程力学第1章静力学基本概念与物体的受力图(共71张精选PPT)
第1章 静力学基本概念与物体的受力图
1.1 基本概念
1.2 力矩与力偶
1.3 约束与约束反力 1.4 物体的受力图
思考与练习
第1章 静力学基本概念与物体的受力图
1.1 基 本 概 念
1.1.1 力的概念 力是物体间相互的机械作用。物体间相互的机械作用大致可分为
两类:一类是物体直接接触的作用,另一类是场的作用。这种作用使 物体的运动状态或形状尺寸发生改变。物体运动状态的改变称为力的 外效应或运动效应,物体形状尺寸的改变称为力的内效应或变形效应。
MO(F)=Fh=150×320=48 000 N·mm=48 N·m 在(b)种情况下,支点O到力F作用线的垂直距离h=l cos30°, 力F 使锤柄绕O点顺时针转动,则力F对O MO(F)=-Fh=-150×320×cos30°=-41 568 N·mm=-41.568 N·m
第1章 静力学基本概念与物体的受力图
可见,力的作用点对刚体来说已不是决定力作用效应的要素。因此,作 用于刚体上的力的三要素是力的大小、方向和作用线。
第1章 静力学基本概念与物体的受力图
F A
B =A
F B
图 1.5
第1章 静力学基本概念与物体的受力图
性质三
作用于物体上同一点的两个力可以合成为一个合力,合力的作 用点仍在该点,合力的大小和方向由这两个力为邻边所构成的平行 四边形的对角线来确定,如图1.6(a)所示。其矢量表达式为
标轴x、y上的单位矢量。
如图1.2所示,由力F的起点A和终点B分别作x轴的垂线, 垂足分
别为a、b,线段ab冠以适当的正负号称为力F在x轴上的投影,用Fx表
示,即
Fx=±ab
工程力学复习资料
第一章静力学基础第一节静力学的基本概念1、静力学是研究物体在力系作用下平衡规律的科学。
2、力是物体之间的相互机械作用,这种作用使物体的机械运动状态发生变化,同时使物体的形状或尺寸发生改变。
前者称为力的运动效应或外效应,后者称为力的变形效应或内效应。
3、力对物体作用的效应,取决于力的大小、方向(包括方位和指向)和作用点,这三个因素称为力的三要素。
4、力是矢量。
5、力系:作用在物体上的若干个力总称为力系。
6、等效力系:如果作用于物体上的一个力系可用另一个力系来代替,而不改变原力系对物体作用的外效应,则这两个力系称为等效力系或互等力系。
7、刚体就是指在受力情况下保持其几何形状和尺寸不变的物体,亦即受力后任意两点之间的距离保持不变的物体。
8、平衡:工程上一般是指物体相对与地面保持静止或做匀速直线运动的状态。
9、要使物体处于平衡状态,作用于物体上的力系必须满足一定的条件,这些条件称为力系的平衡条件;作用于物体上正好使之平衡的力系则称为平衡力系。
第二节静力学公理1、二力平衡公理:作用于同一刚体上的两个力,使刚体处于平衡状态的必要与充分条件是:这两个力大小相等,方向相反,且作用于同一条直线上(简称等值、反向、共线)。
2、对于刚体来说,这个条件既是必要的又是充分的,但对于变形体,这个条件是不充分的。
3、加减平衡力系公理:在作用于刚体的力系中,加上或减去任意平衡力系,并不改变原力系对刚体的效应。
4、力的可传性原理:作用于刚体上的力,可沿其作用线移动至该刚体上的任意点而不改变它对刚体的作用效应。
5、力的平行四边形法则:作用于物体上同一点的两个力,可以合成为一个合力,合理也作用在该点上,合力的大小和方向则由以这两个分力为邻边所构成的平行四边形的对角线来表示。
6、这种合成力的方法叫矢量加法。
7、作用与反作用定律:两物体间相互作用的力,总是大小相等,方向相反,且沿同一直线。
8、刚化原理:变形体在已知力系作用下处于平衡,如设想将此变形体刚化为刚体,则其平衡状态不会改变。
工程力学第三版课后习题答案
工程力学第三版课后习题答案工程力学第三版是一本经典的教材,对于学习工程力学的学生来说,课后习题是巩固知识、提高能力的重要途径。
然而,很多学生在做习题时会遇到困难,缺乏答案的参考。
因此,本文将为大家提供一些工程力学第三版课后习题的答案,希望能够帮助大家更好地学习和理解工程力学。
第一章:静力学基础1.1 问题:一根长为L的杆,两端分别固定在墙上和地面上,杆的重量为G,求杆在墙和地面上的支持力。
答案:根据杆的平衡条件,杆在墙和地面上的支持力分别为G/2和G/2。
1.2 问题:一根长为L的杆,一端固定在墙上,另一端用绳子悬挂,绳子与杆的夹角为θ,求杆在墙上的支持力和绳子的张力。
答案:根据杆的平衡条件,杆在墙上的支持力为G*cosθ,绳子的张力为G*sinθ。
第二章:静力学方法2.1 问题:一个物体质量为m,放在一个斜面上,斜面的倾角为α,斜面与水平面之间的摩擦系数为μ,求物体在斜面上的加速度。
答案:物体在斜面上的受力分解为垂直于斜面的力mg*sinα和平行于斜面的力mg*cosα,根据牛顿第二定律,物体在斜面上的加速度为a=g*sinα-μ*g*cosα。
2.2 问题:一个物体质量为m,放在一个光滑的斜面上,斜面的倾角为α,斜面与水平面之间的摩擦系数为μ,求物体在斜面上的加速度。
答案:由于斜面是光滑的,物体在斜面上的摩擦力为0,所以物体在斜面上的加速度为a=g*sinα。
第三章:力的分解与合成3.1 问题:一个力F作用在一个物体上,将这个力分解为平行于地面和垂直于地面的两个力F1和F2,已知F=10N,夹角θ=30°,求F1和F2的大小。
答案:根据三角函数的定义,F1=F*cosθ=10*cos30°≈8.66N,F2=F*sinθ=10*sin30°≈5N。
3.2 问题:一个力F作用在一个物体上,将这个力分解为平行于地面和垂直于地面的两个力F1和F2,已知F=20N,夹角θ=60°,求F1和F2的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1-4 物体的受力分析和受力图
分离体——为分析某一物体的受力情况而解除 限制该物体运动的全部约束,将其从相联系的周围 物体中分离出来的物体。
物体的受力图——将物体所受的全部主动力与
约束反力以力的矢量形式表示在分离体上,这样得
§1-3 约束与约束反力
2.光滑面约束
由光滑接触面所构成的约束
特点:物体可以沿光滑的支撑面自由滑动,也可向离 开支撑面的方向运动,但不能沿接触面法线并朝向支撑面 方向运动。
§1-3 约束与约束反力
3.光滑圆柱铰链约束
(1)中间铰链约束
用销钉将两个具有相同直径圆柱孔的物体连接起 来,且不计销钉与销钉孔壁之间摩擦的约束
第一章 静力学基础知识
§1-1力与静力学模型 §1-2静力学公理 §1-3约束与约束反力 §1-4物体的受力分析和受力图 *知识拓展
第一章 静力学基础知识
理解力、刚体和约束等概念。 深刻理解静力学各公理的内涵。 了解各种常见典型约束的性质,会正确 表示各种典型约束的约束反力。 初步学会对物体进行受力分析的方法, 能正确画出研究对象的受力图。
§1-3 约束与约束反力
(3)活动铰链支座 铰链将桥梁、房屋等结构连接在有几个圆柱形滚 子的活动支座上,支座在滚子上可作左右相对运动, 两支座间距离可稍有变化
约束特点:在不计摩擦的情况下,能够限制被连接件 沿着支撑面法线方向的上下运动。
ห้องสมุดไป่ตู้
§1-3 约束与约束反力
固定与活动铰链支座约束
铰链支座
铰链支座结构简图
注意:正负号判断简易方法:把矩形 看作圆心,力的方向、位置不变,把 力首尾相连并包络圆心,如果逆时针 则为正、如果顺时针则为负!
§2-3 平面力偶系的合成与平衡
【例2-3】F=100 N的力按图示两种情况作用在锤柄上,
柄长 l=300mm,试求力F对支点O的矩。
解题过程
§2-3 平面力偶系的合成与平衡
光滑圆柱铰链约束
§1-3 约束与约束反力
(1)中间铰链约束 约束特点: 只限制两物体在垂 直于销钉轴线的平面内 沿任意方向的相对移动, 而不能限制物体绕销钉 轴线的相对转动和沿其 轴线方向的相对移动。
§1-3 约束与约束反力
(2)固定铰链支座
圆柱销连接的两构件中,有一个是固定构件
约束特点:能限制物体(构件)沿圆柱销半径方向的 移动,但不限制其转动。
作用力与反作用力
作用与反作用力示意图
§1-2 静力学公理
公理一的应用
人在划船离岸时,常把浆向岸上撑。这就 是利用了作用力与反作用力的原理。
§1-2 静力学公理
二、二力平衡公理(公理二)
作用于同一刚体 上的两个力,使刚体 平衡的必要且充分条 件是,这两个力的大 小相等,方向相反, 作用在同一条直线上。
的效应。
足球
力的外效应
§1-1 力与静力学模型
内效应——力使物体的形状发生变化的效应。
弹簧形变
力的内效应
§1-1 力与静力学模型
4.力的三要素
大小
方向
作用点
力的三要素
§1-1 力与静力学模型
夹紧力作用点的选择
夹紧力作用点的选择
§1-1 力与静力学模型
二、力学模型
模型——对实际物体和实际问题的合理抽象 与简化
§2-3 平面力偶系的合成与平衡
力偶矩——力偶中的一个力的大小和力偶臂 的乘积并冠以正负号,用以表示力偶对物体转动 效应的量度。用M或M(F,F′)表示。
M F d
力偶矩是代数量,一般规定:使物体逆时针转动的力 偶矩为正,反之为负。力偶矩的单位是N•m,读作“牛米”。
§2-3 平面力偶系的合成与平衡
§1-3 约束与约束反力
二、几种常见的约束及其约束反力
1.柔性体约束 2.光滑面约束
3.光滑圆柱铰链约束
(1)中间铰链约束
(2)固定铰链支座
(3)活动铰链支座
几种常见的约束
§1-3 约束与约束反力
1.柔性体约束
由柔软而不计自重的绳索、链条、传动带等所 形成的约束
特点:只能承受拉力,不能承受压力。
§1-1 力与静力学模型
受力的木板可以抽象为刚体吗?
刚体
§1-1 力与静力学模型
2.对受力的合理抽象与简化——集中力与分布力
接触面面积很小,则可以将微小面积抽象为一个点, 将受力合理抽象简化为集中力。
接触面面积较大不能忽略时,则力在整个接触面上 分布作用,将受力合理抽象与简化为分布力。
§1-1 力与静力学模型
集中力
分布力
§1-1 力与静力学模型
3.对接触与连接方式的合理抽象与简化 ——约束
约束是构件之间的接触与连接方式的抽象与简化。
§1-2 静力学公理
一、作用与反作用公理(公理一)
二、二力平衡公理(公理二)
三、加减平衡力系公理(公理三)
四、力的平行四边形公理(公理四)
§1-2 静力学公理
一、作用与反作用公理(公理一)
§1-3 约束与约束反力
巧夹球形工件 用平口钳夹球形工件很难夹紧,这是因为平面与 球面接触,接触面积小(理论上为点接触),要产生 一定大小的约束反力F1、F2和摩擦刀矩M2,与轴向 力F和切削力矩M1平衡,需要很大的夹紧力,易损坏 球形工件。若用螺母代替,将是环面接触,加大了接 触面积,改变了约束条件。因此,只需较小的夹紧力, 就可使球形工件夹得很牢固。
2.力偶的表示方法
力偶可用力和力偶臂来表示,或用带箭头的弧线表 示,箭头表示力偶的转向,M表示力偶的大小。
§2-3 平面力偶系的合成与平衡
2.平面力偶系的平衡
必要和充分条件——所有力偶矩的代数和等于零。
M
i
0
§1-3 约束与约束反力
一、约束与约束反力
二、几种常见的约束及其约束反力
§1-3 约束与约束反力
二力平衡公理示意图
§1-2 静力学公理
二力平衡条件只适用于刚体。 二力等值、反向、共线是刚体平衡的必要与充分条件。 对于变形体,二力平衡条件只是必要的而非充分条件。
受等值、反向、共线的两个压力作 用的绳索不能保持平衡
§1-2 静力学公理
公理二的应用
二力构件——只有两个着力点而处于平衡的构件。 二力杆——略去自重和伸长的二力杆状构件。
一、力矩
1.力对点的矩
力对点的矩
扳手旋转螺母
§2-3 平面力偶系的合成与平衡
力F对O点之矩——力的大小F与力臂 Lh 的乘 积冠以适当的正负号,以符号Mo(F)表示。
Mo(F)= F Lh
正负规定:力使物体绕矩心逆时针方向转动时, 力矩为正,反之为负。力矩的单位名称为牛顿· 米, 符号为N· m。 力矩为零的两种情况:(1)力等于零;(2) 力的作用线通过矩心,即力臂等于零。
§1-1 力与静力学模型
一、力
§1-1 力与静力学模型
1.力的概念
当某一物体受到力的 作用时,一定有另一物体 对它施加这种作用。
力是物体间相互的机械作用。
§1-1 力与静力学模型
2.施力物体和受力物体
施力物体和受力物体是相对具体受力分析而言的。
§1-1 力与静力学模型
3.力的效应
外效应——指力使物体的运动状态发生改变
四、力的平行四边形公理(公理四)
作用于物体上同一点的两个力,可以合成为 一个合力,合力也作用于该点上,其大小和方向 可用以这两个力为邻边所构成的平行四边形的对 角线来表示。
力的平行四边形公理
人力队伍与大象
§1-2 静力学公理
力的三角形——将力矢F1、F2首尾相接(两个 力的前后次序任意)后,再用线段将其封闭构成一 个三角形。封闭边代表合力FR。这一力的合成方法 称为力的三角形法则。 FR = F1 + F2
§1-3 约束与约束反力
4
巧夹球形工件
钳工在球形工件上加工孔时, 直接用平口钳很难夹紧。如右图 所示,若在平口钳上放置两个螺 母,将球形工件夹在两个螺母中 间,可使球形工件夹得很牢固。
巧夹球形工件
1-平口钳 3-球形工件 2-螺母 4-钻头
§1-3 约束与约束反力
巧夹球形工件
其原因是:增加了螺母与钳口平面、螺母与球形工件之 间的接触面,限制了球形工件的上下移动和绕钻头轴线的转 动。因此,钻头钻孔时作用于球形工件的轴向力F与螺母的 约束反力F1y与F2y平衡;两螺母的约束反力F1x与F2x平衡。如下 图b所示;圆周的切削力矩M1与螺母的摩擦力矩M2平衡,如 下图c所示。 4
主动力 定 约束反力
促使物体运动或有运 阻碍物体运动的力,随主动 动趋势的力,属于主动 力的变化而改变,是一种被动 义 力,工程上常称为载荷 力
大小未知,取决于约束本身 的性质,与主动力的值有关, 特 大小与方向预先确定, 可由平衡条件求出。约束力的 可以改变运动状态 作用点在约束与被约束物体的 征 接触处。约束力的方向与约束 所能限制的运动方向相反
两个物体间的 作用力与反作用力 总是同时存在、同 时消失,且大小相 等、方向相反,其 作用线沿同一直线, 分别作用在这两个 物体上。
作用与反作用力示意图
§1-2 静力学公理
一、作用与反作用公理(公理一)
作用力与反作用力永远是 成对出现 已知作用力就可以知道反 作用力,两者总是同时存在, 又同时消失
§2-3 平面力偶系的合成与平衡
【例2-4】圆柱直齿轮受啮合力F的作用。设F =1400N,
压力角α=20°,齿轮的节圆(啮合圆)半径r=60mm,试
计算力F对轴中心O的矩。
解题过程
§2-3 平面力偶系的合成与平衡
3.力矩的平衡条件
(1)杠杆平衡应用实例
§2-3 平面力偶系的合成与平衡