最新10第十章重积分答案72997汇总
同济大学(高等数学)-第十章-重积分

同济大学(高等数学)-第十章-重积分第十章重积分一元函数积分学中,我们曾经用和式的极限来上的定积分,并已经建定义一元函数()f x在区间,a b⎡⎤⎣⎦立了定积分理论,本章将把这一方法推广到多元函数的情形,便得到重积分的概念. 本章主要讲述多重积分的概念、性质、计算方法以及应用.第1节二重积分的概念与性质1.1 二重积分的概念下面我们通过计算曲顶柱体的体积和平面薄片的质量,引出二重积分的定义.1.1.1. 曲顶柱体的体积曲顶柱体是指这样的立体,它的底是x Oy平面上的一个有界闭区域D,其侧面是以D的边界为准线的母线平行于z轴的柱面,其顶部是在区域D上的连续函数(),=,且(),0z f x yf x y≥所表示的曲面(图10—1).234分为n 个小曲顶柱体.(2)在每个小闭区域上任取一点()()()1122,, ,, , ,n n ξηξηξη对第i 个小曲顶柱体的体积,用高为,()i i f ξη而底为iΔσ的平顶柱体的体积来近似代替.(3)这n 个平顶柱体的体积之和1(,)ni i ii f ξησ=∆∑ 就是曲顶柱体体积的近似值.(4)用λ表示n 个小闭区域i Δσ的直径的最大值,即()max 1i i n λd Δσ≤≤=.当0λ→ (可理解为i Δσ收缩为一点)时,上述和式的极限,就是曲顶柱体的体积:01lim (,).ni i ii V f λξησ→==∆∑ 1.1.2 平面薄片的质量设薄片在x Oy 平面占有平面闭区域D ,它在点,()x y 处的面密度是,()ρρx y =.设()0x y ρ>,且在D 上连续,求薄片的质量(见图10-3).图10-3先分割闭区域D 为n 个小闭区域n σσσ∆∆∆12,,, 在每个小闭区域上任取一点5()()()1122,, ,, , ,n n ξηξηξη 近似地,以点,()i i ξη处的面密度,()i i ρξη代替小闭区域i Δσ上各点处的面密度,则得到第i 块小薄片的质量的近似值为,()i i iρξηΔσ,于是整个薄片质量的近似值是1(,)ni i ii ρξησ=∆∑ 用()max 1i i n λd Δσ≤≤=表示n 个小闭区域i Δσ的直径的最大值,当D 无限细分,即当0λ→时,上述和式的极限就是薄片的质量M ,即01lim (,)ni i iλi M ρξηΔσ→==∑. 以上两个具体问题的实际意义虽然不同,但所求量都归结为同一形式的和的极限.抽象出来就得到下述二重积分的定义.定义1 设D 是x Oy 平面上的有界闭区域,二元函数,()z f x y =在D 上有界.将D 分为n 个小区域n σσσ∆∆∆12,,,同时用i Δσ表示该小区域的面积,记i Δσ的直径为()i d Δσ,并令()max 1i i n λd Δσ≤≤=.在i Δσ上任取一点,, 1,2,,()()i i ξηi n =,作乘积()Δ,i i i f ξησ并作和式Δ1(,)ni i ii n S f ξησ==∑. 若0λ→时,n S 的极限存在(它不依赖于D 的分法及点(,)i iεη的取法),则称这个极限值为函数,()z f x y =在D6上的二重积分,记作(,)d Df x y σ⎰⎰,即01(,)d lim (,)Δn i ii i D f x y f λσξησ→==∑⎰⎰,(10-1-1)其中D 叫做积分区域,,()f x y 叫做被积函数,d σ叫做面积元素,,d ()f x y σ叫做被积表达式,x 与y 叫做积分变量,Δ1(,)ni i ii f ξησ=∑叫做积分和. 在直角坐标系中,我们常用平行于x 轴和y 轴的直线(y =常数和x =常数)把区域D 分割成小矩形,它的边长是x ∆和Δy ,从而ΔΔΔσx y =⋅,因此在直角坐标系中的面积元素可写成d dx dy σ=⋅,二重积分也可记作01(,)d d lim (,)ni i ii D f x y x y f λξησ→==∆∑⎰⎰. 有了二重积分的定义,前面的体积和质量都可以用二重积分来表示.曲顶柱体的体积V 是函数,()z f x y =在区域D 上的二重积分(,)d DV f x y σ=⎰⎰;薄片的质量M 是面密度,()ρρx y =在区域D 上的二重积分(,)d DM x y ρσ=⎰⎰.因为总可以把被积函数,()z f x y =看作空间的一曲面,所以当,()f x y 为正时,二重积分的几何意义就是曲顶柱体的体积;当,()f x y 为负时,柱体就在x Oy 平面下方,二重积分就是曲顶柱体体积的负值. 如果,()f x y 在某部分区域上是正的,而在其余的部分区域7上是负的,那么,()f x y 在D 上的二重积分就等于这些部分区域上柱体体积的代数和.如果,()f x y 在区域D 上的二重积分存在(即和式的极限(10-1-1)存在),则称,()f x y 在D 上可积.什么样的函数是可积的呢?与一元函数定积分的情形一样,我们只叙述有关结论,而不作证明.如果,()f x y 是闭区域D 上连续,或分块连续的函数,则,()f x y 在D 上可积.我们总假定,()z f x y =在闭区域D 上连续,所以,()f x y 在D 上的二重积分都是存在的,以后就不再一一加以说明.1.1.3 二重积分的性质设二元函数,,,()()f x y g x y 在闭区域D 上连续,于是这些函数的二重积分存在.利用二重积分的定义,可以证明它的若干基本性质.下面列举这些性质.性质1 常数因子可提到积分号外面.设k 是常数,则(,)d (,)d D Dkf x y k f x y σσ=⎰⎰⎰⎰.性质 2 函数的代数和的积分等于各函数的积分的代数和,即[]()()d ()d ()d D D Df x yg x y f x y g x y σσσ±=±⎰⎰⎰⎰⎰⎰,,,,.8性质3 设闭区域D 被有限条曲线分为有限个部分闭区域,则D 上的二重积分等于各部分闭区域上的二重积分的和.例如D 分为区域1D 和2D (见图10-4),则12(,)d (,)d (,)d D D D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰. (10-1-2)图10-4性质3表示二重积分对积分区域具有可加性. 性质4 设在闭区域D 上,1()f x y =,σ为D 的面积,则1d d D D σσσ==⎰⎰⎰⎰.从几何意义上来看这是很明显的.因为高为1的平顶柱体的体积在数值上就等于柱体的底面积.性质5 设在闭区域D 上有,,()()f x y g x y ≤,则(,)d (,)d D Df x yg x y σσ≤⎰⎰⎰⎰.由于 (,)(,)(,)f x y f x y f x y -≤≤又有(,)d (,)d D D f x y f x y σσ≤⎰⎰⎰⎰.9这就是说,函数二重积分的绝对值必小于或等于该函数绝对值的二重积分.性质 6 设、M m 分别为()f x y ,在闭区域D 上的最大值和最小值,σ为D 的面积,则有(,)d Dm f x y M σσσ≤≤⎰⎰.上述不等式是二重积分估值的不等式.因为()m f x y M ≤≤,,所以由性质5有d (,)d d D D Dm f x y M σσσ≤≤⎰⎰⎰⎰⎰⎰,即 d (,)d d D D D m m f x y M M σσσσσ=≤≤=⎰⎰⎰⎰⎰⎰.性质7 设函数,()f x y 在闭区域D 上连续,σ是D 的面积,则在D 上至少存在一点,()ξη使得(,)d ()Df x y f σξησ=⋅⎰⎰,.这一性质称为二重积分的中值定理.证 显然0σ≠.因,()f x y 在有界闭区域D 上连续,根据有界闭区域上连续函数取到最大值、最小值定理,在D 上必存在一点()11x y ,使()11f x y ,等于最大值M ,又存在一点22()x y ,使22()f x y ,等于最小值m ,则对于D 上所有点,()x y ,有()()()2211.m f x y f x y f x y M =≤≤=,,,由性质1和性质5,可得d (,)d d D D Dm f x y M σσσ≤≤⎰⎰⎰⎰⎰⎰.10 再由性质4得(,)d D m f x y M σσσ≤≤⎰⎰,或 1(,)d Dm f x y M σσ≤≤⎰⎰.根据闭区域上连续函数的介值定理知,D 上必存在一点,()ξη,使得1(,)d ()Df x y f σξησ=⎰⎰,, 即(,)d ()D f x y f σξησ=⎰⎰,,,()ξηD ∈.证毕.二重积分中值定理的几何意义可叙述如下: 当:,()S z f x y =为空间一连续曲面时,对以S 为顶的曲顶柱体,必定存在一个以D 为底,以D 内某点,()ξη的函数值,()f ξη为高的平顶柱体,它的体积,()f ξησ⋅就等于这个曲顶柱体的体积.习题10—11.根据二重积分性质,比较ln()d D x y σ+⎰⎰与[]2ln()d Dx y σ+⎰⎰的大小,其中(1)D 表示以10,()、1,0()、1,1()为顶点的三角形;(2)D 表示矩形区域(){}|35,2,0x y x y ≤≤≤≤.2.根据二重积分的几何意义,确定下列积分的值:(1)(22d Da x y σ+⎰⎰,()222{|}D x y x y a =+≤,;(2)Dσ,()222{|}D x y xy a =+≤,.3.设(),f x y 为连续函数,求21lim (,)d πr Df x y rσ→⎰⎰,()()()22200{,}D x y x x y y r =-+-≤|.4.根据二重积分性质,估计下列积分的值:(1)DI σ=,()22{|00}D x y x y =≤≤≤≤,,;(2)22sinsin d DI x y σ=⎰⎰,()ππ{,|00}D x y x y =≤≤≤≤,; (3)()2249d DI xy σ=++⎰⎰,()224{,|}D x y x y =+≤.5.设[][]0,10,1D =⨯,证明函数()()()()1,,,,,为内有理点即均为有理数,,为内非有理点0x y D x y f x y x y D ⎧⎪=⎨⎪⎩在D 上不可积.第2节 二重积分的计算只有少数二重积分(被积函数和积分区域特别简单)可用定义计算外,一般情况下要用定义计算二重积分相当困难.下面我们从二重积分的几何意义出发,来介绍计算二重积分的方法,该方法将二重积分的计算问题化为两次定积分的计算问题.2.1 直角坐标系下的计算在几何上,当被积函数(),0f x y ≥时,二重积分(,)d Df x y σ⎰⎰的值等于以D 为底,以曲面,()z f x y =为顶的曲顶柱体的体积.下面我们用“切片法”来求曲顶柱体的体积V .设积分区域D 由两条平行直线,x a x b ==及两条连续曲线()()y x y x ϕϕ==12,(见图10—5)所围成,其中()()a b x x ϕϕ<<12,,则D 可表示为()()(){}12,,|D x y a x b φx y φx =≤≤≤≤.图10—5用平行于y Oz 坐标面的平面()0x x a x b =≤≤去截曲顶柱体,得一截面,它是一个以区间()()12x x φφ⎡⎤⎣⎦,为底,以,0()z f x y =为曲边的曲边梯形(见图10—6),所以这截面的面积为()d 2010()()(,)φx φx f x y y A x =⎰.图10—6由此,我们可以看到这个截面面积是0x 的函数.一般地,过区间[,]a b 上任一点且平行于y Oz 坐标面的平面,与曲顶柱体相交所得截面的面积为()d 21()()(,)φx φx f x y A y x =⎰,其中y 是积分变量,x 在积分时保持不变.因此在区间[,]a b 上,()A x 是x 的函数,应用计算平行截面面积为已知的立体体积的方法,得曲顶柱体的体积为d d d 21()()()(,)bbφx aaφx A x x f x y V y x ⎡⎤=⎢⎥⎣=⎦⎰⎰⎰, 即得21()()(,)d (,)d d b x a x Df x y f x y y xϕϕσ⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰, 或记作21()()(,)d d (,)d bx a x Df x y x f x y yϕϕσ=⎰⎰⎰⎰.上式右端是一个先对y ,后对x 积分的二次积分或累次积分.这里应当注意的是:做第一次积分时,因为是在求x 处的截面积()A x ,所以x 是,a b 之间任何一个固定的值,y 是积分变量;做第二次积分时,是沿着x 轴累加这些薄片的体积()A x dx ⋅,所以x 是积分变量.在上面的讨论中,开始假定了,()0f x y ≥,而事实上,没有这个条件,上面的公式仍然正确.这里把此结论叙述如下:若,()z f x y =在闭区域D 上连续,()():D a x b x y x ϕϕ≤≤≤≤12,,则21()()(,)d d d (,)d bx ax Df x y x y x f x y y ϕϕ=⎰⎰⎰⎰. (10-2-1)类似地,若,()z f x y =在闭区域D 上连续,积分区域D 由两条平行直线y a y b ==,及两条连续曲线()()x y x y ϕϕ==12,(见图10—7)所围成,其中()()c d x x ϕϕ<<12,,则D 可表示为()()(){},|D x y c y d y x y ϕϕ=≤≤≤≤12,.则有21()()(,)d d d (,)d dx cx Df x y x y y f x y x ϕϕ=⎰⎰⎰⎰. (10-2-2)图10—7以后我们称图10-5所示的积分区域为X 型区域,X 型区域D 的特点是:穿过D 内部且平行于y 轴的直线与D 的边界的交点不多于两个.称图10—7所示的积分区域为Y 型区域,Y 型区域D 的特点是:穿过D 内部且平行于x 轴的直线与D 的边界的交点不多于两个.从上述计算公式可以看出将二重积分化为两次定积分,关键是确定积分限,而确定积分限又依赖于区域D 的几何形状.因此,首先必须正确地画出D 的图形,将D 表示为X 型区域或Y 型区域.如果D 不能直接表示成X 型区域或Y 型区域,则应将D 划分成若干个无公共内点的小区域,并使每个小区域能表示成X 型区域或Y 型区域,再利用二重积分对区域具有可加性相加,区域D 上的二重积分就是这些小区域上的二重积分之和(图10—8).图10-8例1 计算二重积分d Dxy σ⎰⎰,其中D 为直线y x =与抛物线2y x =所包围的闭区域.解 画出区域D 的图形,求出y x =与2y x =两条曲线的交点,它们是()0,0及()1,1.区域D (图10—9)可表示为:20.x x y x ≤≤≤≤1,图10—9因此由公式(10-2-1)得()221120d d d 2x x xxDx xy x x ydy y xσ==⎰⎰⎰⎰⎰d 135011()224x x x -==⎰.本题也可以化为先对x ,后对y 的积分,这时区域D 可表为:1,0y y y x ≤≤≤≤.由公式(10-2-2)得1d d d yyDxy y y x x σ=⎰⎰⎰⎰.积分后与上面结果相同.例2 计算二重积分221d Dyx y σ+-⎰⎰,其中D 是由直线,1y x x ==-和1y =所围成的闭区域.解 画出积分区域D ,易知D :11,1x x y -≤≤≤≤ (图10-10),若利用公式(10-2-1),得图10-1011222211d (1d )d xDy x y y x y y xσ-+-=+-⎰⎰⎰⎰()d 1312221113xx y x -⎡=⎤-+-⎢⎥⎣⎦⎰()d 113310121(33x x -=--=--⎰⎰x 12=.若利用公式(10-2-2),就有()1222211d 1d d Dx y y x y x yσ--+-=+-⎰⎰⎰⎰,也可得同样的结果.例3 计算二重积分22d Dxyσ⎰⎰,其中D 是直线2,y y x==和双曲线1x y =所围之闭区域.解 求得三线的三个交点分别是1,(1,1)2,2⎛⎫ ⎪⎝⎭及2,2().如果先对y 积分,那么当121x ≤≤时,y 的下限是双曲线1y x =,而当12x ≤≤时,y 的下限是直线y x =,因此需要用直线x =1把区域D 分为1D 和2D 两部分(图10—11).1211, 21:D x y x≤≤≤≤; 22, 2:1D x x y ≤≤≤≤.图10—11于是12222221222112222212d d d d d d d x x DD D x x x x x x y x yy y y y y σσσ=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 2222121112x x x x x xy y ⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰ d d 2212311222x x x x x x⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎰⎰ 1243231124626x x x x ⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦812719264==.如果先对x 积分,那么:12, 1 D y x y y≤≤≤≤,于是 223221222111d d d d 3yy y Dy x x x y x y y y y σ⎡⎤==⎢⎥⎣⎦⎰⎰⎰⎰⎰ d 22254111136312y y y y y ⎡⎤⎡⎤=-=+⎢⎥⎢⎥⎣⎦⎣⎦⎰2764=.由此可见,对于这种区域D ,如果先对y 积分,就需要把区域D 分成几个区域来计算.这比先对x 积分繁琐多了.所以,把重积分化为累次积分时,需要根据区域D 和被积函数的特点,选择适当的次序进行积分.例4 设,()f x y 连续,求证d d d d (,)(,)bxbbaaayx f x y y y f x y x =⎰⎰⎰⎰.证 上式左端可表为d d d (,)(,)b xaaDx f x y y f x y σ=⎰⎰⎰⎰,其中,:D a x b a y x ≤≤≤≤ (图10—12)区域D 也可表为:,a y b y x b ≤≤≤≤,图10—12于是改变积分次序,可得(,)d d (,)d bbayDf x y y f x y xσ=⎰⎰⎰⎰由此可得所要证明的等式.例5 计算二重积分d sin Dxσx⎰⎰,其中D 是直线y x =与抛物线2y x =所围成的区域. 解 把区域D 表示为x型区域,即(){}2D =x ,y |0x 1,x y x ≤≤≤≤.于是d d d d 221100sin sin sin xx x x Dxx x σx y y x x x x ⎛⎫== ⎪⎝⎭⎰⎰⎰⎰⎰()sin d 11x x x=-⎰()10cos cos sin x x x x =-+-1sin 10.1585=-≈ 注:如果化为y 型区域即先对x 积分,则有d d d 1sin sin yyDx xσy x x x =⎰⎰⎰⎰.由于sin x x的原函数不能由初等函数表示,往下计算就困难了,这也说明计算二重积分时,除了要注意积分区域D 的特点(区分是x 型区域,还是y 型区域)外,还应注意被积函数的特点,并适当选择积分次序.2.2 二重积分的换元法与定积分一样,二重积分也可用换元法求其值,但比定积分复杂得多.我们知道,对定积分()d b af x x ⎰作变量替换()x φt =时,要把()f x 变成()()f φt ,d x 变成d ()φt t ',积分限,a b 也要变成对应t 的值.同样,对二重积分(),d Df x y σ⎰⎰作变量替换()(),,,,x x u v y y u v ⎧=⎪⎨=⎪⎩时,既要把(),f x y 变成()()(),,,f x u v y u v ,还要把x Oy 面上的积分区域D 变成uOv 面上的区域uvD ,并把D 中的面积元素d σ变成uvD 中的面积元素d *σ.其中最常用的是极坐标系的情形.2.2.1 极坐标系的情形下面我们讨论利用极坐标变换,得出在极坐标系下二重积分的计算方法.把极点放在直角坐标系的原点,极轴与x 轴重合,那么点P 的极坐标(),P r θ与该点的直角坐标(),P x y 有如下互换公式:πcos ,sin ;0,02x r θy r θr θ==≤<+∞≤≤;22,arctan ;,yr x y θx y x=+=-∞<<+∞. 我们知道,有些曲线方程在极坐标系下比较简单,因此,有些二重积分(),d Df x y σ⎰⎰用极坐标代换后,计算起来比较方便,这里假设(),z f x y =在区域D 上连续.在直角坐标系中,我们是以平行于x 轴和y 轴的两族直线分割区域D 为一系列小矩形,从而得到面积元素d d d σx y =.在极坐标系中,与此类似,我们用“常数r =”的一族同心圆,以及“常数θ=”的一族过极点的射线,将区域D 分成n 个小区域(),1,2,,ijσi j n ∆=,如图10—13所示.图10—13小区域面积()2212ij i i j i j σr r θr θ⎡⎤∆=+∆∆-∆⎣⎦212i i j i jr r θr θ=∆∆+∆∆.记 ()()()22,,1,2,,iji j ρr θi j n ∆=∆+∆=,则有 ()ij i i j ijσr r θορ∆=∆∆+∆,故有d d d σr r θ=.则()()DD⎰⎰⎰⎰这就是直角坐标二重积分变换到极坐标二重积分的公式.在作极坐标变换时,只要将被积函数中的,x y 分别换成cos ,sin r θr θ,并把直角坐标的面积元素d d d σx y =换成极坐标的面积元素d d r r θ即可.但必须指出的是:区域D 必须用极坐标系表示.在极坐标系下的二重积分,同样也可以化为二次积分计算.下面分三种情况讨论:(1) 极点O 在区域D 外部,如图10—14所示.图10—14设区域D 在两条射线,θαθβ==之间,两射线和区域边界的交点分别为,A B ,将区域D 的边界分为两部分,其方程分别为()()12,r r θr r θ==且均为[],αβ上的连续函数.此时()()(){}12,|,D r θr θr r θαθβ=≤≤≤≤.于是()()()()d d d d 21cos ,sin cos ,sin βr θαr θDf r θr θr r θθf r θr θr r =⎰⎰⎰⎰(2) 极点O 在区域D 内部,如图10—15所示.若区域D 的边界曲线方程为()r r θ=,这时积分区域D 为()(){}且()r θ在π0,2⎡⎤⎣⎦上连续.图10—15于是()()()πd d d d 200cos ,sin cos ,sin r θDf r θr θr r θθf r θr θr r=⎰⎰⎰⎰.(3) 极点O 在区域D 的边界上,此时,积分区域D 如图10—16所示.图10—16()(){},|,0D r θαθβr r θ=≤≤≤≤, 且()r θ在π0,2⎡⎤⎣⎦上连续,则有()()()d d d d 0cos ,sin cos ,sin βr θαDf r θr θr r θθf r θr θr r=⎰⎰⎰⎰.在计算二重积分时,是否采用极坐标变换,应根据积分区域D 与被积函数的形式来决定.一般来说,当积分区域为圆域或部分圆域,及被积函数可表示为()22f x y +或y f x ⎛⎫ ⎪⎝⎭等形式时,常采用极坐标变换,简化二重积分的计算.例6 计算二重积分22221d d 1Dx y I x yx y --=++⎰⎰,其中()(){}222,|01D x y x y a a =+≤<<.解 在极坐标系中积分区域D 为(){}π,|0,02D r θr a θ=≤≤≤≤,则有2222π22211d d d d 11aDx y r I x y r r x y rθ---==+++⎰⎰⎰⎰ 222200211πd πd 11aa t r t r r r t r t--=+-=⎰⎰令()()22220πarcsin 1πarcsin 11a t ta a =+-=+--.例7 计算二重积分2d Dxy σ⎰⎰,其中D 是单位圆在第I 象限的部分.解 采用极坐标系. D可表示为π, 1002θr ≤≤≤≤(图10-17),图10-17于是有π12222d d cos sin d Dxy r r r r σθθθ=⋅⋅⎰⎰⎰⎰ πd d 12421cos sin 15θθθr r ==⎰⎰.例8 计算二重积分Dx σ⎰⎰2d ,其中D 是二圆221xy +=和224x y +=之间的环形闭区域.解 区域D :2,120θπr ≤≤≤≤,如图10—18所示.图10—18于是2π22π22230111cos 215d cos d d d π24Dx r r r r r θσθθθ+=⋅==⎰⎰⎰⎰⎰⎰2d .2.2.2. 直角坐标系的情形我们先来考虑面积元素的变化情况.设函数组,,,()()x x u v y y u v ==为单值函数,在uvD 上具有一阶连续偏导数,且其雅可比行列式(,)0(,)J x y u v ∂≠∂=, 则由反函数存在定理,一定存在着D 上的单值连续反函数,,,()()u u x y v v x y ==.这时uvD 与D 之间建立了一一对应关系,uOv 面上平行于坐标轴的直线在映射之下成为x Oy 面上的曲线,,,0()()u x y u v x y v ==.我们用uOv 面上平行于坐标轴的直线,1,,,1,,,(2;2)i j u u v v i n j m ====将区域uvD 分割成若干个小矩形,则映射将uOv 面上的直线网变成x Oy 面上的曲线网(图10—19).图10—19在uv D 中任取一个典型的小区域ΔuvD (面积记为*Δσ)及其在D 中对应的小区域ΔD (面积记为Δσ),如图10—20所示.图10—20设ΔD 的四条边界线的交点为1211322,,,,,0()()()P x y P x x y y P x x y y +∆+∆+∆+∆和ΔΔ433,0()P x x y y ++.当ΔΔ,u v 很小时,()ΔΔ123,,,iix y i =也很小,ΔD 的面积可用12P P 与14P P 构成的平行四边形面积近似.即Δ1214P P P P σ⨯≈.而 ()()ΔΔ1112x y P P =+i j()()()ΔΔ[][]00000000,,,(,x u u v x u v y u u v y u v =+-++-i j()()ΔΔ[][]0000,,u u x u v u y u v u ≈'+'i j.同理()()ΔΔ[][]001400,,v v P P x u v v y u v v ≈'+'i j.从而得ΔΔΔΔΔ1214y xu u u u P P P σP y x v v vv∂∂∂∂⨯=∂∂∂=∂的绝对值*(,)(,)(,)(,)x y x y Δu Δv u v u v Δσ∂∂==∂∂.因此,二重积分作变量替换,,,()()x x u v y y u v ==后,面积元素d σ与d *σ的关系为*(,),(,)x y d d u v σσ∂=∂ 或(,)(,)x y dxdy dudv u v ∂=∂.由此得如下结论:定理 1 若,()f x y 在x Oy 平面上的闭区域D 上连续,变换:,,,()()T x x u v y y u v ==,将uOv 平面上的闭区域uvD 变成x Oy 平面上的D ,且满足:(1),,,()()x u v y u v 在uvD 上具有一阶连续偏导数, (2)在uvD 上雅可比式(0(,),)x y J u v ∂∂=≠;(3)变换:uvT DD→是一对一的,则有[](,)d d (,),(,)d d .uvDD f x y x y f x u v y u v J u v =⎰⎰⎰⎰例9 计算二重积分e d d y x y x Dx y -+⎰⎰,其中D 是由x 轴,y 轴和直线2x y +=所围成的闭区域.解 令,u y x v y x =-=+,则,22x y v u v u -==+. 在此变换下,x Oy 面上闭区域D 变为uOv 面上的对应区域D '(图10—21).图10—21雅可比式为11(,)122(,)21122x y u v J -∂==-∂=, 则得1ed de d d 2y x u y xvDD x y u v -+'=-⎰⎰⎰⎰-1d e d (e e )22001122uv v v v u -==-⎰⎰⎰e e 1=--.例10 设D 为x Oy 平面内由以下四条抛物线所围成的区域:222,,x ay x by y px ===,2y qx =,其中<<, <<00a b p q ,求D 的面积.解 由D 的构造特点,引入两族抛物线22,y ux x vy ==,则由u 从p 变到q ,v 从a 变到b 时,这两族抛物线交织成区域D '(图10—22).图10—22雅可比行列式为(,)1(,)(,)(,)J x y u v u v x y ∂=∂∂∂= 222211322y y x x x x yy==---,则所求面积()()11d d d d 33D D S x y u v b a q p '===--⎰⎰⎰⎰.习题10—21.画出积分区域,把(,)d Df x y σ⎰⎰化为二次积分:(1)()1,1,{,0}D x y x y y x y =+≤-≤≥|;(2)()22{,}D x y y x x y =≥-≥|,.2.改变二次积分的积分次序: (1)2d d 22(,)yy y f x y x⎰⎰;(2)e1d d ln 0(,)xx f x y y ⎰⎰;(3)()220,xxdx f x y dy⎰⎰; (4)1-1d (,)d x f x y y ⎰.3.设(,)f x y 连续,且(,)(,)d Df x y xy f x y σ=+⎰⎰,其中D 是由直线0,1y x ==及曲线2y x =所围成的区域,求(,).f x y4.计算下列二重积分:(1)()22Dx y d σ+⎰⎰,(){},|1,1D x y x y =≤≤;(2)d sin Dxσx⎰⎰,其中D 是直线y x =与抛物线y x π=所围成的区域;(3)Dσ,(){}22,|D x y xy x =+≤;(4)22-y ed d ⎰⎰Dx x y,D 是顶点分别为()0,0O ,(),11A ,()0,1B 的三角形闭区域.5.求由坐标平面及2,3,4x y x y z ==++=所围的角柱体的体积.6.计算由四个平面0,0,1,1x y x y ====所围的柱体被平面0z =及236x y z ++=截得的立体的体积.7.在极坐标系下计算二重积分: (1)d Dx y ⎰⎰, ()ππ22224{,|}D x y x y =≤+≤;(2)()d d D x y x y +⎰⎰,(){},|22D x y x y x y =+≤+; (3)d d Dxy x y ⎰⎰,其中D 为圆域222x y a +≤;(4)22ln(1)d d Dxy x y++⎰⎰,其中D 是由圆周221xy +=及坐标轴所围成的在第一象限内的闭区域.8. 将下列积分化为极坐标形式:(1) 2d d 22)x x y y +⎰a;(2) d 0xx y ⎰⎰a.9.求球体2222x y z R ++≤被圆柱面222x y Rx +=所割下部分的体积.10.作适当坐标变换,计算下列二重积分:(1)22d d Dx x y y⎰⎰,由12,,xy x y x ===所围成的平面闭区域; (2)d d y x yDex y+⎰⎰,(){,|0,0}1,D x y x y x y =+≤≥≥;(3)d Dx y , 其中D 是椭圆22221y x a b +=所围成的平面闭区域;(4)()()sin d d Dx y x y x y +-⎰⎰,(){,|0,0}D x y x y x y ππ=≤+≤≤-≤.11.设闭区域D 由直线100,,x y x y +===所围成,求证:1cos d d sin1.2Dx y x y x y +⎛⎫= ⎪-⎝⎭⎰⎰ 12.求由下列曲线所围成的闭区域的面积:(1) 曲线334,8,5,15xy xy xy xy ====所围成的第一象限的平面闭区域;(2) 曲线,,,x y a x y b y x y x αβ+=+===所围的闭区域0,0()a b αβ<<<<.第3节 三重积分3.1 三重积分的概念三重积分是二重积分的推广,它在物理和力学中同样有着重要的应用.在引入二重积分概念时,我们曾考虑过平面薄片的质量,类似地,现在我们考虑求解空间物体的质量问题.设一物体占有空间区域Ω,在Ω中每一点,,()x y z 处的体密度为,,()ρx y z ,其中,,()ρx y z 是Ω上的正值连续函数.试求该物体的质量.先将空间区域Ω任意分割成n 个小区域12, , , nΔv Δv Δv(同时也用iΔv 表示第i 个小区域的体积).在每个小区域i Δv 上任取一点,,()i i iξηζ,由于,,()ρx y z 是连续函数,当区域iΔv 充分小时,密度可以近似看成不变的,且等于在点,,()i i i ξηζ处的密度,因此每一小块iΔv 的质量近似等于,,()i i i iρξηζΔv ,物体的质量就近似等于1(,,)ni i ii ρξηζΔv =∑i .令小区域的个数n 无限增加,而且每个小区域iΔv 无限地收缩为一点,即小区域的最大直径()max 10ii nλd Δv ≤≤=→时,取极限即得该物体的质量1lim (,,)ni i iλi ρξηζΔv M →==∑i .由二重积分的定义可类似给出三重积分的定义:定义1 设Ω是空间的有界闭区域,,,()f x y z 是Ω上的有界函数,任意将Ω分成n 个小区域12,,,nΔv Δv Δv ,同时用i Δv 表示该小区域的体积,记iΔv 的直径为()id Δv ,并令()max 1i i nλd Δv ≤≤=,在i Δv 上任取一点,,()i i iξηζ,1,2,,()i n =,作乘积,,()i i i if ξηζΔv ,把这些乘积加起来得和式1(,,)n i i ii f ξηζΔv =∑i ,若极限01lim (,,)ni i iλi f ξηζΔv →=∑i 存在(它不依赖于区域Ω的分法及点(,,)iiiξηζ的取法),则称这个极限值为函数,,()f x y z 在空间区域Ω上的三重积分,记作(),,f x y z dv Ω⎰⎰⎰,即 ()01,,lim (,,)ni i i ii f x y z dv f v λξηζ→=Ω=∆∑⎰⎰⎰,其中,,()f x y z 叫做被积函数,Ω叫做积分区域,d v 叫做体积元素.在直角坐标系中,若对区域Ω用平行于三个坐标面的平面来分割,于是把区域分成一些小长方体.和二重积分完全类似,此时三重积分可用符号(),,d d d f x y z x y z Ω⎰⎰⎰来表示,即在直角坐标系中体积元素d v可记为d d d x y z .有了三重积分的定义,物体的质量就可用密度函数,,()ρx y z 在区域Ω上的三重积分表示,即(),,M x y z dv Ωρ=⎰⎰⎰,如果在区域Ω上,,1()f x y z =,并且Ω的体积记作V ,那么由三重积分定义可知1d v dv V ΩΩ==⎰⎰⎰⎰⎰⎰.这就是说,三重积分dv Ω⎰⎰⎰在数值上等于区域Ω的体积.三重积分的存在性和基本性质,与二重积分相类似,此处不再重述.3.2 三重积分的计算 为简单起见,在直角坐标系下,我们采用微元分析法来给出计算三重积分的公式.三重积分(,,)d f x y z v Ω⎰⎰⎰表示占空间区域Ω的物体的质量.设Ω是柱形区域,其上、下分别由连续曲面()()z z x y z z x y ==12,,,所围成,它们在x Oy 平面上的投影是有界闭区域D ;Ω的侧面由柱面所围成,其母线平行于z 轴,准线是D 的边界线.这时,区域Ω可表示为(){}12,,, ,,,|()()()Ωx y z z x y z z x y x y D =≤≤∈ 先在区域D 内点,()x y 处取一面积微元d d d σx y =,对应地有Ω中的一个小条,再用与x Oy 面平行的平面去截此小条,得到小薄片(图10—23).图10—23于是以d σ为底,以dz 为高的小薄片的质量为,,d d d ()f x y z x y z .把这些小薄片沿z 轴方向积分,得小条的质量为d d d 21(,)(,)(,,)z x y z x y f x y z z x y ⎡⎤⎢⎥⎣⎦⎰. 然后,再在区域D 上积分,就得到物体的质量21(,)(,)(,,)d d d z x y z x y Df x y z z x y ⎡⎤⎢⎥⎣⎦⎰⎰⎰. 也就是说,得到了三重积分的计算公式(),,f x y z dv Ω⎰⎰⎰=21(,)(,)(,,)d d d z x y z x y Df x y z z x y ⎡⎤⎢⎥⎣⎦⎰⎰⎰21(,)(,)d d (,,)d z x y z x y Dx y f x y z z=⎰⎰⎰.(10-3-1)例1 计算三重积分d d d x x y z Ω⎰⎰⎰,其中Ω是三个坐标面与平面1x y z ++=所围成的区域(图10—24).图10—24解 积分区域Ω在x Oy 平面的投影区域D 是由坐标轴与直线1x y +=围成的区域:10x ≤≤,10y x ≤≤-,所以11110d d d d d d d d d x yxx yDx x y z x y x z x y x z -----Ω==⎰⎰⎰⎰⎰⎰⎰⎰⎰ d d 110(1)xx x x y y --=-⎰⎰d 21(1)1224x x x -==⎰.例2 计算三重积分d z vΩ⎰⎰⎰,其中2222:,,, 000Ωx y z x y z R ≥≥≥++≤(见图10—25).图10—25解 区域Ω在x Oy 平面上的投影区域222:,,00D x y x y R ≥≥+≤.对于D 中任意一点,()x y ,相应地竖坐标从0z =变到222R x z y --=.因此,由公式(10-3-1),得()2222221d d d d d d 2R x y DDz v x y z R x y x y --Ω==--⎰⎰⎰⎰⎰⎰⎰ π01d d 2222()R θR ρρρ-=⎰⎰221π240224RρρR ⎛⎫⋅⋅- ⎪ ⎪⎭=⎝π416R =.三重积分化为累次积分时,除上面所说的方法外,还可以用先求二重积分再求定积分的方法计算.若积分区域Ω如图10-26所示,它在z 轴的投影区间为[,]A B ,对于区间内的任意一点z ,过z 作平行于x Oy 面的平面,该平面与区域Ω相交为一平面区域,记作D (z ).这时三重积分可以化为先对区域()D z 求二重积分,再对z 在[]A B ,上求定积分,得()(,,)d d (,,)d d BAD z f x y z v z f x y z x y Ω=⎰⎰⎰⎰⎰⎰.(10-3-2)图10—26我们可利用公式(10-3-2)重新计算例2中的积分.区域Ω在z 轴上的投影区间为[,]0R ,对于该区间中任意一点z ,相应地有一平面区域():,00D z x y ≥≥与2222R x y z +≤-与之对应.由公式(10-3-2),得()zd d d d RD z v z z x y Ω=⎰⎰⎰⎰⎰⎰.求内层积分时,z 可以看作常数:并且()2222:R D z x y z +≤-是14个圆,其面积为()π224R z =-,所以 ()01πzd π416Rv =z R z z R Ω⋅-=⎰⎰⎰⎰224d . 例3 计算三重积分2d z v Ω⎰⎰⎰,其中:1222222y x z a b Ωc+≤+.解 我们利用公式(10-3-2)将三重积分化为累次积分.区域Ω在z 轴上的投影区间为[,]c c -,对于区间内任意一点z ,相应地有一平面区域()D z :122222222(1)(1)y xz za b c c --≤+ 与之相应,该区域是一椭圆(图10—27),其面积为π221z c ab ⎛⎫- ⎪⎝⎭.所以22222()d d d d π1d ccc c D z z z v =z z x y abz z c --Ω⎛⎫=- ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰π3415abc =π3415abc =.图10—27 3.3 三重积分的换元法对于三重积分(,,)f x y z dv Ω⎰⎰⎰作变量替换:(,,)(,,)(,,)x x r s t y y r s t z z r s t =⎧⎪=⎨⎪=⎩它给出了Orst 空间到Ox yz 空间的一个映射,若()()(),,,,,,,,x r s t y r s t z r s t 有连续的一阶偏导数,且(,,)(,,)0x y z r s t ∂≠∂,则建立了Orst 空间中区域*Ω和Ox yz 空间中相应区域Ω的一一对应,与二重积分换元法类似,我们有d d d d (,,)(,,)x y z r s t v r s t ∂∂=. 于是,有换元公式[]*(,,)(,,)(,,),(,,),(,,)d d d (,,)x y z f x y z dv f x r s t y r s t z r s t r s tr s t ΩΩ∂=⋅∂⎰⎰⎰⎰⎰⎰.作为变量替换的实例,我们给出应用最为广泛的两种变换:柱面坐标变换及球面坐标变换.3.3.1 柱面坐标变换三重积分在柱面坐标系中的计算法如下: 变换cos ,sin ,x r θy r θz z =⎧⎪=⎨⎪=⎩称为柱面坐标变换,空间点(),,M x y z 与,,()r θz 建立了一一对应关系,把,,()r θz 称为点(),,M x y z 的柱面坐标.不难看出,柱面坐标实际是极坐标的推广.这里,r θ为点M在x Oy 面上的投影P 的极坐标.π<,2,<<00r θz ≤+∞≤≤-∞+∞(图10—28).图10—28柱面坐标系的三组坐标面为 (1)常数r =,以z 为轴的圆柱面; (2)常数θ=,过z 轴的半平面; (3)常数z =,平行于x Oy 面的平面. 由于cos sin 0(,,)sin cos 0(,,)001θr θx y z θr r rθθz -∂==∂,则在柱面坐标变换下,体积元素之间的关系式为:d d d d d d x y z r r θz=.于是,柱面坐标变换下三重积分换元公式为:(,,)d d d (cos ,sin ,)d d d f x y z x y z =f r r z r r z θθθ'ΩΩ⎰⎰⎰⎰⎰⎰.(10-3-3)至于变换为柱面坐标后的三重积分计算,则可化为三次积分来进行.通常把积分区域Ω向x Oy 面投影得投影区域D ,以确定,r θ的取值范围,z 的范围确定同直角坐标系情形.例4 计算三重积分22d d d z x y x y z Ω+⎰⎰⎰,其中Ω是由锥面22z x y =+与平面1z =所围成的区域.解 在柱面坐标系下,积分区域Ω表示为π1,1,200r z r θ≤≤≤≤≤≤ (图10—29).图10—29所以有2π11222d d d d d d rz x y x y z r z r z θΩ+=⋅⎰⎰⎰⎰⎰⎰d π1221220(1)r r r =-⎰.例5 计算三重积分()22d d d xy x y zΩ+⎰⎰⎰,其中Ω是由曲线22,0yz x ==绕z 轴旋转一周而成的曲面与两平面2,8z z ==所围之区域.解 曲线2=2,0y z x =绕z 旋转,所得旋转面方程为222x y z +=.设由旋转曲面与平面2z =所围成的区域为1Ω,该区域在x Oy 平面上的投影为1D ,(){}4221|D x ,y x +y =≤.由旋转曲面与8z =所围成的区域为2Ω,2Ω在x Oy 平面上的投影为2D ,()21622{|}D x ,y x +y =≤.则有21ΩΩΩ=,如图10—30所示.图10—30()21288223322d d d d d d d d d r D D xy x y z r r z r r zθθΩ+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰2d d d 8d 222243326ππθr r θr r ⎛⎫=+- ⎪⎝⎭⎰⎰⎰⎰r π336=.3.3.2 球面坐标变换三重积分在球面坐标系中的计算法如下: 变换sin cos ,sin sin ,cos x r φθy r φθz r φ=⎧⎪=⎨⎪=⎩称为球面坐标变换,空间点(),,M x y z 与,,()r φθ建立了一一对应关系,把,,()r φθ称为点(),,M x y z 的球面坐标(图10-31),其中ππ<,,2000r φθ≤+∞≤≤≤≤.图10-31球面坐标系的三组坐标面为: (1)常数r =,以原点为中心的球面;(2)常数φ=,以原点为顶点,z 轴为轴,半顶角为φ的圆锥面;(3)常数θ=,过z 轴的半平面.由于球面坐标变换的雅可比行列式为sin cos cos cos sin sin (,,)sin sin cos sin sin cos (,,)cos sin 0φθr φθr φθx y z φθr φθr φθr φθφr φ-∂=∂-2sin r φ=,则在球面坐标变换下,体积元素之间的关系式为:2d d d sin d d d x y z r φr θφ=.于是,球面坐标变换下三重积分的换元公式为 2(,,)d d d (sin cos ,sin sin ,cos )sin d d d f x y z x y z =f r r r r r ϕθϕθϕϕϕθ'ΩΩ⋅⎰⎰⎰⎰⎰⎰. (10-3-4)例6 计算三重积分222()d d d xy z x y zΩ++⎰⎰⎰,其中Ω表示圆锥面222x y z +=与球面2222x y z R z ++=所围的较大部分立体.解 在球面坐标变换下,球面方程变形为2cos r R φ=,锥面为π4φ=(图10—32).这时积分区域Ω表示为π2, , 2cos 4000θπφr R φ≤≤≤≤≤≤,图10—32所以22222()d d d sin d d d x y z x y z =r r r ϕϕθ'ΩΩ++⋅⎰⎰⎰⎰⎰⎰ππd d d 22cos 44sin R φθφr φr =⎰⎰⎰ππd π52cos 0540228sin ()515R φφr φR ==⎰.例7 计算三重积分22(2)d d d y x z x y zΩ++⎰⎰⎰,其中Ω是由曲面2222x y z a ++=,22224x y z a ++=,22x y z +=所围成的区域.解 积分区域用球面坐标系表示显然容易,但球面坐标变换应为sin cos sin sin cos ,,x r φθz r φθy r φ===,这时2d sin d d d v r φr φθ=,积分区域Ω表示为ππ224,00,a r a φθ≤≤≤≤≤≤ (图10—33).图10—33所以π2π2222400(2)d d d d d (2cos sin )sin d a a y x z x y z =r r r r θϕϕϕϕΩ+++⎰⎰⎰⎰⎰⎰ππ41515816a ⎛⎫ ⎪⎝⎭=+.值得注意的是,三重积分的计算是选择直角坐标,还是柱面坐标或球面坐标转化成三次积分,通常要综合考虑积分域和被积函数的特点.一般说来,积分域Ω的边界面中有柱面或圆锥面时,常采用柱面坐标系;有球面或圆锥面时,常采用球面坐标系.另外,与二重积分类似,三重积分也可利用在对称区域上被积函数关于变量成奇偶函数以简化计算.习题10-31.化三重积分(,,)d d d I f x y z x y z Ω=⎰⎰⎰为三次积分,其中积分区域Ω分别是.(1) 由双曲抛物面x y z =及平面100x y z +-==,所围成的闭区域;(2) 由曲面22z x y =+及平面1z =所围成的闭区域. 2.在直角坐标系下计算三重积分: (1)()d d d 2+xy z x y z Ω⎰⎰⎰,其中[][][]-2,5-3,30,1Ω=⨯⨯;。
(完整word版)高等数学第10章课后习题答案(科学出版社)

于是所求的曲面积分为
.
(2) ,其中 为旋转抛物面 介于 之间部分的下侧。
解由两类曲面积分之间的联系,可得
,
在曲面 上,有
。
故
。
再依对坐标的曲面积分的计算方法,得
。
注意到
,
故
。
(3) ,其中 为 , 的上侧;
解 在 面上的投影为半圆域 , ,
=
= =
由对称性 = , =
∴原式= =
(4) ,其中 是由平面 , , , 所围成的四面体的表面的外侧。
,
其中 为上半球面 , , ,故
,
其中 是 在 坐标面上的投影区域,利用极坐标计算此二重积分,于是得
= ,
是一个无界函数的反常积分,按反常积分的计算方法可得
,
故
。
解法2设球面方程为 ,定直径在 轴上,依题意得球面上点 的密度为 ,从而得球面的质量为 ,由轮换对称性可知: ,故有
.
2设某流体的流速为 ,求单位时间内从圆柱 : ( )的内部流向外侧的流量(通量)。
,其中 从 变到 ,
故
。
解法2作有向线段 ,其方程为
,其中 从 变到 ,
则有向曲线 与有向线段 构成一条分段光滑的有向闭曲线,设它所围成的闭区域为 ,由格林公式,有
,
即
,
而
,
故
。
3.计算 ,其中 为平面 在第一卦限中的部分;
解 将曲面 投影到 面上,得投影区域为 ,此时曲面方程可表示为
,
于是
,
。
4. 计算 ,其中 是球面 的上半部分并取外侧;
解如右图所示,因为闭曲面取外侧,所以 取下侧, 取后侧, 取左侧, 取上侧。于是
中北大学高数习题 第十章-2答案

1
e
2
0
ydy e
0
1
y
2
2
d (
y
2
) e
y
2
2
2
|0 1 e
1
1 2
.
(2)
I
D
dxdy,其中D是由直线 y x 及曲线 y 2 x
所围成的闭区域. 解: 画出D的图形:
y
y
dy 2 dx
y y
1
2
x
yx
D
sin y y
1
dxdy
6
dx
0 2 0
2
2 x
(6 3x 2 y)dy
2 2 x
0
(6 y 3xy y ) |0
2 0
dx
2
2
3
[6(2 x ) 3x (2 x ) (2 x ) ]dx (2 x 8x 8)dx (
2 0 2
2
2 3
9.计算下列二重积分: (1) e
D 2
dxdy
D 是由 x 0, y x, y 1 所围成的区域.
机动
目录
上页
下页
返回
结束
解:画出D 的图形:
e
D
y
2
2
dxdy e
0 y
2
1
y
2
2
dy dx
0 y
2
y
e
0
1
2
x |0 dy
sin y y
(完整版)同济大学高数第10章重积分

多元函数积分学是定积分概念的推广,包括二重积分、三重积分、曲线积分和曲面积分.它们所解决的问题的类型不同,但解决问题的思想和方法是一致的,都是以“分割、近似、求和、取极限”为其基本思想,它们的计算最终都归结为定积分.本章主要介绍二重积分与三重积分的概念、性质、计算方法及其应用.27610.1 二重积分的概念及性质10.1.1 二重积分的概念实例1 设函数),(y x f z =在有界闭区域D 上连续,且0),(≥y x f .以函数),(y x f z =所表示的曲面为顶,以区域D 为底,且以区域D 的边界曲线为准线而母线平行于z 轴的柱面为侧面的立体叫做曲顶柱体,如图10.1.1所示.求该曲顶柱体的体积V .图10.1.1 图10.1.2 对于平顶柱体,它的体积就等于底面积乘高.现在曲顶柱体的顶是曲面,当点),(y x 在D 上变动时,其高度),(y x f z =是一个变量,因此不能直接用上述方法求其体积,但是可以沿用求曲边梯形面积的方法和思路求其体积.具体步骤如下第一步(分割).用一组曲线网将区域D 任意分成n 个小区域1σ∆,2σ∆,…i σ∆,…n σ∆,其中记号i σ∆ (i = 1,2,…,n )也用来表示第i 个小区域的面积.分别以每个小区域的边界曲线为准线作母线平行于z 轴的柱面,这些柱面把原来的曲顶柱体分割成n 个小曲顶柱体1V ∆,2V ∆…,i V ∆…,n V ∆,其中记号i V ∆(i = 1,2,…,n )也用来表示第i个小曲顶柱体的体积.第二步(近似).因为),(y x f 在区域D 上连续,在每个小区域上其函数值变化很小,这个小曲顶柱体可以近似地看作平顶柱体(如图10.1.2).分别在每个小区域i σ∆上任取一点),(i i ηξ,以),(i i f ηξ为高,i σ∆为底的小平顶柱体的体积i i i f σηξ∆),(作为第i 个小曲顶柱体体积i V ∆的近似值,即),,2,1(),(n i f V i i i i Λ=∆≈∆σηξ.第三步(求和).这n 个小平顶柱体体积之和可作为原曲顶柱体体积V 的近似值,即i i ni i n i i f V V σηξ∆≈∆=∑∑==),(11.第四步(取极限).对区域D 分割越细,近似程度越高,当各小区域直径的最大值0→λ(有界闭区域的直径是指区域上任意两点间距离的最大值)时,若上述和式的极限存在,则该极限值就是曲顶柱体的体积V ,即有i i ni i f V σηξλ∆=∑=→),(lim 10. 实例 2 设有一个质量非均匀分布的平面薄片,它在xOy 平面上占有有界闭区域D ,此薄片在点D y x ∈),(处的面密度为),(y x ρ,且),(y x ρ在D 上连续.求该薄片的质量M .如果平面薄片是均匀的,即面密度是常数,则薄片的质量就等于面密度与面积的乘积.现在薄片的面密度随着点),(y x 的位置而变化,我们仍然可以采用上述方法求薄片的质量.用一组曲线网将区域D 任意分成n 个小块1σ∆,2σ∆…,n σ∆;由于),(y x ρ在D 上连续,只要每个小块i σ∆ (i = 1,2,…, n )的直径很小,这个小块就可以近似地看作均匀小薄片.在i σ∆上任取一点),(i i ηξ,用点),(i i ηξ 图10.1.3处的面密度),(i i ηξρ近似代替区域i σ∆上各点处的面密度(如图10.1.3),从而求得小薄片i σ∆的质量的近似值),(i i i M ηξρ≈∆i σ∆),,2,1(n i Λ=;整个薄片质量的近似值为i i ni i M σηξρ∆∑≈=),(1.将薄片无限细分,当所有小区域i σ∆的最大直径0→λ时,若上述和式的极限存在,这个极限值就是所求平面薄片的质量,即 i ni i i M σηξρλ∆∑==→),(lim 10. 尽管上面两个问题的实际意义不同,但解决问题的方法是一样的,而且最终都归结为求二元函数的某种特定和式的极限.在数学上加以抽象,便得到二重积分的概念.根据二重积分的定义可知,例10.1.1中曲顶柱体的体积V 是其曲顶函数),(y x f 在底面区域D 上的二重积分,即⎰⎰=Dy x f V σd ),(;例10.1.2中平面薄片的质量M 是其面密度函数),(y x ρ在其所占闭区域D 上的二重积分,即⎰⎰=Dy x M σρd ),(.关于二重积分的几点说明.(1) 如果函数),(y x f 在区域D 上的二重积分存在,则称函数),(y x f 在D 上可积.如果函数),(y x f 在有界闭区域D 上连续,则),(y x f 在D 上可积.(2) 当),(y x f 在有界闭区域D 上可积时,积分值与区域D 的分法及点),(i i ηξ的取法无关.(3) 二重积分只与被积函数),(y x f 和积分区域D 有关.二重积分⎰⎰Dy x f σd ),(的几何意义.(1) 若在闭区域D 上0),(≥y x f ,二重积分表示曲顶柱体的体积;(2) 若在闭区域D 上0),(≤y x f ,二重积分表示曲顶柱体体积的负值;(3) 若在闭区域D 上),(y x f 有正有负,二重积分表示各个部分区域上曲顶柱体体积的代数和.10.1.2 二重积分的性质二重积分有与定积分完全类似的性质,这里我们只列举这些性质,而将证明略去.280例10.1.1比较⎰⎰+D y x σd )(与⎰⎰+Dy x σd )(3的大小,其中D 是由直线0,0==y x 及1=+y x 所围成的闭区域.解 由于对任意的D y x ∈),(,有1≤+y x ,故有y x y x +≤+3)(,因此≥+⎰⎰D y x σd )(⎰⎰+Dy x σd )(3. 例10.1.2 估计⎰⎰++Dy x σd )1(的值,其中D 为矩形区域,10≤≤x ,20≤≤y .解 被积函数在区域D 上的最大值与最小值分别为4和1,D 的面积为2,于是⎰⎰≤++≤Dy x 8d )1(2σ.习题10.11.使用二重积分的几何意义说明12231()d D I x y σ=+⎰⎰与22232()d D I x y σ=+⎰⎰的之间关系,其中D 1是矩形域-1 ≤ x ≤ 1,-1 ≤ y ≤ 1,D 2是矩形域0 ≤ x ≤ 1,0 ≤ y ≤ 1.2. 比较下列积分的大小.(1)σd y x D ⎰⎰+=I 21)(与σd y x D⎰⎰+=I 32)(,其中D 由x 轴、y 轴及直线1=+y x 所围成;(2) σd y x D ⎰⎰+=I )ln(1与()[]σd y x D ⎰⎰+=I 22ln ,其中{}10,53),(≤≤≤≤=y x y x D .3.估计下列积分值的大小.(1) σd y x xy D⎰⎰+=I 4)(,其中D :0 ≤ x ≤ 2, 0 ≤ y ≤ 2; (2) σd y x D ⎰⎰++=I )94(22,其中D :422≤+y x .4.一薄片(不考虑其厚度)位于xOy 平面上,占有区域D ,薄片上分布有面密度为u = u (x ,y )的电荷,且u (x ,y )在D 上连续,使用二重积分表示薄片的全部电荷Q .10.2 二重积分的计算28210.2.1 直角坐标系下二重积分的计算我们知道,如果函数),(y x f 在有界闭区域D 上连续,则在区域D 上的二重积分存在,且它的值与区域D 的分法和各小区域i σ∆ ),,2,1(n i Λ=上点),(i i ηξ的选取无关,故可采用一种便于计算的划分方式,即在直角坐标系下用两族平行于坐标轴的直线将区域D 分割成若干个小区域. 则除去靠区域D边界的不规则的小区域外,其余的小区域全部是小矩形区域. 图10.2.1设小矩形区域σ∆的边长分别为x ∆和y ∆(如图10.2.1),则小矩形区域的面积为y x ∆∆=∆σ.因此,在直角坐标系下,可以把面积元素记为y x d d d =σ.则在直角坐标系下,二重积分可表示成下面我们将利用平行截面法来求曲顶柱体的体积,以获得利用直角坐标系计算二重积分的方法.设曲顶柱体的顶是曲面),(y x f z =(0),(≥y x f ),底是xOy 平面上的闭区域D (如图10.2.2),即区域D 可用不等式组表示为{})()(,),(21x y y x y b x a y x D ≤≤≤≤=,其中函数),(y x f z = 在区域D 上连续,函数)()(21x y x y 与在区间[a ,b ]上连续,该区域的特点是:穿过区域D 内部且垂直于x 轴的直线与D 的边界的交点不多于两点.图10.2.2用过区间[a ,b ]上任意一点x 且垂直于x 轴的平面去截曲顶柱体,所得到的截面是一个以)](),([21x y x y 为底,以),(y x f z =为曲边的曲边梯形(如图10.2.3),其面积为⎰=)( )( 21d ),()(x y x y y y x f x A .再利用平行截面面积为已知的立体的体积公式,便得到曲顶柱体的体积为x y y x f x x A V b a b a x y x y d ]d ),([d )( )( )( 21⎰⎰⎰==. 图10.2.3根据二重积分的几何意义可知,这个体积也就是所求二重积分的值,从而有上式右端称为先对y 后对x 的二次积分.由此看到,二重积分的计算可化成计算两次单积分来进行,这种方法称为累次积分法.对y 积分时,把x 看作常数,把),(y x f 只看作y 的函数,并对y 从)(1x y 到)(2x y 进行定积分;然后把算得的结果(关于x 的函数)再对x 在区间[a ,b ]上进行定积分.在上述过程中,我们假定0),(≥y x f ,但实际上公式并不受此条件的限制.类似地,如果积分区域D 如图10.2.4所示,则区域D 可表示为{}d y c y x x y x y x D ≤≤≤≤=,)()(),(21,其中函数)()(21y x y x 与在区间[c ,d ]上连续,该区域的特点是:穿过区域D 内部且垂直于y轴的直线与D 的边界的交点不多于两点.284图10.2.4这时则有以下公式:上式右端称为先对x 后对y 的二次积分.如果积分区域D 不属于上述两种类型,如图10.2.5所示.即平行于x 轴或y 轴的直线与D 的边界的交点多于两点,这时可以用平行于x轴或平行于y 轴的直线把D 分成若干个小区域,使每个小区域都属于上述类型之一,则可利用性质3,将D 上的积分化成每个小区域上积分的和.图10.2.5 图10.2.6 例10.2.1 计算⎰⎰=Dy x xy I d d 2,其中区域D :10≤≤x ,12y ≤≤.解 作区域D 的图形(如图10.2.6),这是矩形区域.化成累次积分时,积分上下限均为常数.如果先对y 积分,则把x 看作常数,得y xy x y x xy I D d d d d 1 0 2 1 22⎰⎰⎰⎰==⎰⎰===1 0 10 21367d 37d ]3[x x x y x . 如果先对x 积分,则有67d 21d ]2[d d d d 2 1 21021222 1122=====⎰⎰⎰⎰⎰⎰y y y x y x xy y y x xy I D.例10.2.2 计算⎰⎰Dy x xy d d 22,其中D 由抛物线x y =2及直线2-=x y 所围成.解 画D 的图形(如图10.2.7 a ).解方程组⎩⎨⎧-==22x y xy ,得交点坐标为(1, -1),(4, 2).图10.2.7 a 图10.2.7 b若选择先对x 积分,这时D 可表示为{}21,2),(2≤≤-+≤≤=y y x y y x D ,从而y y y y y y x y x xy y y x xy y yy y Dd )44(d ][d 2d d d 22162342221221 2 2222⎰⎰⎰⎰⎰⎰-+--+-++=== 35615]7345[217345=-++=-y y y y .若先对y 积分后对x 积分,由于下方边界曲线在区间[0,1]与[1,4]上的表达式不一致,这时就必须用直线1=x 将区域D 分成1D 和2D 两部分(如图10.2.7 b ).则1D 和2D 可分别表示为{}10,),(1≤≤≤≤-=x x y x y x D , {}41,2),(2≤≤≤≤-=x x y x y x D ,由此得286⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--+=+=xx xxD D Dy xy x y xy x y x xy y x xy y x xy 224 11 02222d 2d d 2d d d 2d d 2d d 221.显然,计算起来要比先对x 后对y 积分麻烦,所以恰当地选择积分次序是化二重积分为二次积分的关键.选择积分次序与积分区域的形状及被积函数的特点有关.例10.2.3 求由两个圆柱面222R y x =+和222R z x =+相交所形成的立体的体积. 解 根据对称性,所求体积V 是图10.2.8 a 所画出的第一卦限中体积的8倍.第一卦限的立体为一曲顶柱体,它以圆柱面22x R z -=为顶,底为xOy 面上的四分之一圆(如图10.2.8 b ),用不等式组表示为⎭⎬⎫⎩⎨⎧≤≤-≤≤=R x x R y y x D 0,0),(22,所求体积为y x R x y x x R V Rx R Dd d 8d d 8 0222222⎰⎰⎰⎰--=-=32 02 0022316d )(8d ][822R x x R x y x R RRx R=-=-=⎰⎰-.图10.2.8 a 图10.2.8 b以上我们采用的是先对y 后对x 的积分次序,如果先对x 后对y 积分,则有x x R y y x x R V Rx R Dd d 8d d 8 0222222⎰⎰⎰⎰--=-=.虽然也能得到相同的结果,但计算要复杂的多.例10.2.4 计算二重积分x xxy yyd sin d 1 0⎰⎰. 解 积分区域D 如图10.2.9所示,直接计算显然不行,因为x xxd sin ⎰不能表示为初等函数.但被积函数与y 无关,因此我们考虑交换积分次序后再计算.x y xx y x x x x x xy x x x x yyd ][sin d sin d d sin d 221 0 1 0 1 0⎰⎰⎰⎰⎰== ⎰⎰⎰-=-=111d sin d sin d )sin (sin x x x x x x x x x 1sin 1)1sin 1(cos )1cos 1(-=-+-=. 图10.2.910.2.2 极坐标系下二重积分的计算前面讨论了在直角坐标系下计算二重积分的方法.但有些二重积分,其被积函数和积分区域(如圆形、扇形、环形域等)用极坐标系表示时比较简单,这时可考虑利用极坐标计算二重积分.下面介绍在极坐标系下二重积分的计算方法.因为二重积分与积分区域D 的分法无关,所以可用极坐标系下以极点为中心的一族同心圆=r 常数以及从极点发出的一族射线=θ常数来分割区域D .不失一般性,我们考虑极径由r 变到r r d +和极角由θ变到θθd +所得到的区域(如图10.2.10).该小区域可近似地看作边长分别为r d 和θd r 的小矩形,于是极坐标下的面积元素θσrdrd d =.再用坐标变换θcos r x =,θsin r y =代替被积函数),(y x f 中的x 和y ,于是得到二重积分在极坐标系下的表达式图10.2.10 图10.2.11实际计算时,与直角坐标情况类似,还是化二重积分为累次积分来进行计算,这里仅介绍先r 后θ的积分次序,积分的上下限则要根据极点与区域D 的位置而定.下面分三种情况说明在极坐标系下,如何化二重积分为累次积分.(1)极点O 在积分区域D 之外(如图10.2.11).此时区域D 界于射线αθ=和βθ=之间(βα<﴿,这两条射线与D 的边界的交点把区域边界曲线分为内边界曲线)(1θr r =和外边界曲线)(2θr r =两个部分,则{}βθαθθ≤≤≤≤=,)()(),(21r r r y x D ,(2)极点O 在积分区域D 之内(如图10.2.12).此时极角θ从0变到π2,如果D 的边界曲线方程是)(θr r =,则{}πθθ20,)(0),(≤≤≤≤=r r y x D ,(3)极点O 在积分区域D 的边界上(如图10.2.13)此时极角θ从α变到β,设区域D 的边界曲线方程是)(θr r =,则{}βθαθ≤≤≤≤=,)(0),(r r y x D ,图10.2.12 图10.2.13特别地,当1)sin ,cos (=θθr r f 时,σσσ( =⎰⎰Dd 为区域D 的面积),即当βθαθθθ≤≤== ),()(0)(21r r r ,时,即为在定积分应用中用极坐标计算曲边扇形面积的公式.一般情况下,当二重积分的被积函数中自变量以22y x ±,xy ,x y ,y x 等形式出现且积分区域由圆弧与射线组成(如以原点为中心的圆域、扇形域、圆环域,以及过原点而中心在坐标轴上的圆域等),利用极坐标计算往往更加简便.用极坐标计算二重积分时,需画出积分区域D 的图形,并根据极点与区域D 的位置关系,选用上述公式.例10.2.5 将二重积分⎰⎰Dy x f σd ),(化为极坐标系下的累次积分,其中D 表示为{}0,2),(22≥≤+=y Rx y x y x D ,解 画出D 的图形(如图10.2.14),在极坐标系下,D 可表示为⎭⎬⎫⎩⎨⎧≤≤≤≤=20,cos 20),(πθθR r y x D ,于是可得290⎰⎰⎰⎰=2cos 2 0d )sin ,cos (d d ),(πθθθθσR Dr r r r f y x f .图10.2.14 图10.2.15例10.2.6 计算⎰⎰--Dy xy x d d e 22,其中D 是圆盘222a y x ≤+在第一象限的部分.解 画出D 的图形(如图10.2.15),在极坐标系下,D 可表示为⎭⎬⎫⎩⎨⎧≤≤≤≤=20,0),(πθθa r r D ,于是可得⎰⎰⎰⎰⎰⎰----==Dar r Dy x r r r r y x 2d ed d d ed d e2222πθθ)e 1(4d ]e 21[22020 a a r ---=-=⎰πθπ.例10.2.7 求由球面22224a z y x =++与圆柱面ax y x 222=+所围且含于柱面内的立体体积.图10.2.16 a 图10.2.16 b解 如图10.2.16 a 所示,由于这个立体关于xOy 面与xOz 面对称,所以只要计算它在第一卦限的部分.这是以球面2224y x a z --=为顶,以曲线22x ax y -=与x 轴所围成的半圆D 为底(如图10.2.16 b )的曲顶柱体,其体积为σd 44222⎰⎰--=Dy x a V .在极坐标下,⎭⎬⎫⎩⎨⎧≤≤≤≤=20,cos 20),(πθθθa r r D ,于是得到 θθθππθd )4(34d 4d 4cos 2 0223222cos 2 022a a r a r r a r V ⎰⎰⎰--=-=)43(916d )sin 1(3323233-=-=⎰πθθπa a . 习题10.21.画出积分区域并计算下列二重积分. (1)(1)d d Dx y x y --⎰⎰,:0, 0,1D x y x y ≥≥+≤;(2) 22(),D xy d σ+⎰⎰其中D 是矩形闭区域:||1,||1;x y ≤≤;(3)cos(),Dx x y d σ+⎰⎰其中D 是顶点分别为(0,0),(,0)π和(,)ππ的三角形闭区域.;(4)e d d xy Dy x y ⎰⎰,1:2, 12D y x x≤≤≤≤.2.将二重积分(,)d d Df x y x y ⎰⎰化为二次积分,其中积分区域D 是:(1) 以(0,0),(1,0),(1,1)为顶点的三角形区域; (2) 由直线2,==x x y 及双曲线)0(1>=x xy 所围成的区域.3.交换下列二次积分的积分次序.(1)112 0 d (,)d xx x f x y y -⎰⎰; (2) 0d (,)d aa x f x y y -⎰⎰;(3)dx y x f dyeey⎰⎰10),(; (4) 1 22 0 0 1 0d (,)d d (,)d xxx f x y y x f x y y -+⎰⎰⎰⎰.2924.画出下列积分区域,并把二重积分⎰⎰Dy x y x f d d ),(化成极坐标系下的二次积分.(1) D :)0(2222b a b y x a <<≤+≤; (2) D :x y x 222≤+.5.将积分 22 0 0d ()d Rx f x y y +⎰⎰化成极坐标形式.6.利用极坐标计算下列积分. (1)(632)d d Dx y x y --⎰⎰,D :222R y x ≤+;(2)d Dx y ⎰⎰,D :22224ππ≤+≤y x ;(3)D,D :122≤+y x .7.选择适当的坐标系计算下列积分.(1)2d d Dy x y ⎰⎰,D 由, , 0, cos 4x x y y x ππ====所围成;(2)22ln(1)d d Dx y x y ++⎰⎰;D :222x y R +≤,0, 0x y ≥≥;(3)22d d Dx yx y x y ++⎰⎰,D :122≤+y x ,1≥+y x . 8.求圆锥面221y x z +-=与平面z = x ,x = 0所围成的立体体积.9. 求由平面0=x ,0=y ,1=z ,1=+y x 及y x z ++=1所围成的立体的体积.10.3 三重积分10.3.1 三重积分的概念将二重积分的概念推广,就得到三重积分的概念.在直角坐标系中,如果用平行于坐标面的平面来划分Ω,那么除了包含Ω的边界点的一些不规则小闭区域外,得到的小闭区域i v ∆为长方体. 设长方体小闭区域i v ∆的边长为j x ∆、k y ∆、l z ∆,则l k j i z y x v ∆∆∆=∆.因此在直角坐标系中,有时也把体积微元dv 记作dxdydz ,而把三重积分记作⎰⎰⎰Ωdxdydz z y x f ),,(其中dxdydz 叫做直角坐标系中的体积微元.当函数(,,)f x y z 在闭区域Ω上连续时,(10.3.1)式右端的和的极限必定存在,也就是函数(,,)f x y z 在闭区域Ω上的三重积分必定存在. 以后我们总假定函数(,,)f x y z 在闭区域Ω上是连续的.关于二重积分的一些术语,例如,被积函数、积分区域等,也可相应地用294到三重积分上. 三重积分的性质也与二重积分的性质类似,这里不再重复了.如果(,,)f x y z 表示某物体在点),,(z y x 处的密度,Ω是该物体所占有的空间闭区域,(,,)f x y z 在Ω上连续,则i ni iiiv f ∆∑=1),,(ζηξ是该物体的质量m 的近似值,这个和当0→λ时的极限就是该物体的质量m ,所以⎰⎰⎰Ω=dv z y x f m ),,(当(,,)1f x y z ≡时,⎰⎰⎰Ωdv 积分值就等于积分区域Ω的体积.10.3.2 在直角坐标系下三重积分的计算 1 先一后二法设函数(,,)f x y z 在空间有界闭区域Ω上连续.设区域Ω在xoy 面上的投影区域为D ,如果平行于z 轴且穿过区域Ω的直线与Ω的边界曲面的交点不超过两个,此区域表示为{}D y x y x z z y x z z y x ∈≤≤=Ω),(,),(),(),,(21.即过区域Ω在xoy 面上的投影区域D 内任一点),(y x ,做平行于z 轴的直线,穿进Ω的点总在曲面1∑:),(1y x z z =上,穿出Ω的点总在曲面2∑:),(2y x z z =上,且),(),(21y x z y x z ≤(如图10.3.1).此时三重积分可化为⎰⎰⎰⎰⎰⎰=ΩDy x z y x z dz z y x f d dv z y x f ),(),(21),,(),,(σ即先对z 积分再计算在D 上的二重积分(先一后二法).假如闭区域},)()(),{(21b x a x y y x y y x D ≤≤≤≤=把这个二重积分化为二次积分,于是得到三重积分的计算公式 即把三重积分化为先对z ,再对y ,最后对x 的三次积分如果平行于x 轴或y 轴且穿过闭区域Ω内部的直线与Ω的边界曲面S 相交不多于两点,也可把闭区域Ω投影到yoz 面上或xoz 面上,这样便可以把三重积分化为按其他顺序的三次积分.因此,在直角坐标系下的三重积分可能有6种不同顺序的三次积分.如果平行于坐标轴且穿过闭区域Ω内部的直线与边界曲面S 的交点多于两个,也可像处理二重积分那样,把Ω分成若干部分,使Ω上的三重积分化为各部分闭区域上的三重积分的和.例10.3.1 计算三重积分⎰⎰⎰Ω=z y x x I d d d ,其中积分区域Ω为平面12=++z y x 及三个坐标面所围成的闭区域.,)296解 积分区域Ω是如图10.3.2所示的四面体, 将Ω投影在xoy 面,投影区域D 为 }10,210),{(≤≤-≤≤=x xy y x D在D 内任取一点),(y x ,过此点作平行于z 轴的直线,该直线通过平面0=z 穿入Ω内,然后通过平面y x z 21--=穿出Ω外,所以,积分区域Ω表示为 ),,{(z y x =Ωy x z 210--≤≤,}10,210≤≤-≤≤x xy . 于是,由公式(10.3.2)得⎰⎰⎰⎰⎰⎰Ω--==Dyx xdz dxdyz y x x I 210d d d⎰⎰⎰---=yx x xdz dydx2102101dy y x xdx x⎰⎰---=2101)21(481)2(411032=+-=⎰dx x x x 例10.3.2 计算三重积分⎰⎰⎰Ωv x d ,其中积分区域Ω为椭圆抛物面222z x y =+及抛物柱面22z x =-所围成的闭区域.解 积分区域Ω如图10.3.3所示,Ω在xoy 坐标面上的投影区域为}1),{(22≤+=y x y x D .积分区域Ω表示为 ),,{(z y x =Ω}),(,22222D y x x z y x ∈-≤≤+于是x⎰⎰⎰⎰⎰⎰-+Ω=22222d x y x Dxdz d v x σ2221212xx y dx xdz --+=⎰⎰1221(1)dx x x y dy -=--⎰0= 图10.3.32 先二后一法有时,我们计算一个三重积分也可以化为先计算一个二重积分、再计算一个定积分. 设空间区域Ω如图10.3.4所示,则12c z c ≤≤,12(,)z c c ∀∈,过z 点作z 轴的垂面,与区域Ω的截面为z D ,则⎰⎰⎰⎰⎰⎰=ΩzDc cd z y x f dz dv z y x f σ),,(),,(21即先计算在z D 上的二重积分,再对z 积分(先二后一法).例10.3.3 计算三重积分⎰⎰⎰Ωv z d 2,其中Ω是椭球体),,{(z y x =Ω2222221x y z a b c ++≤}. 图10.3.4 解 将Ω投影到z 轴上,则c z c -≤≤,对任意),(c c z -∈,过点),0,0(z 的平面截椭球体得到椭圆域为z D :2222221x y z a b c+≤-,),(c c z -∈(如图10.3.5),即空间闭区域Ω可表示为{}c z c cz b y a x z y x ≤≤--≤+=Ω,1),,(222222,于是zy22y +2983222221541d abc dz z c z ab dxdy dz z v z zD cc cc ππ=⎪⎪⎭⎫ ⎝⎛-==⎰⎰⎰⎰⎰⎰⎰--Ω但是,若采用“先一后二法” 将Ω投影到xoy 平面上得⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤+=1),(2222b y a x y x D则⎰⎰⎰Ωv z d22a adx dz -=⎰⎰⎰32223222)3a a x y c dx dy a b -=--⎰⎰. 此积分很难完成. 图10.3.5 10.3.3柱坐标系和球坐标系下三重积分的计算 1 利用柱坐标系计算三重积分.空间直角坐标系中,将xoy 面用极坐标系表示所建立的坐标系就是柱坐标系. 设),,(z y x M 为空间直角坐标系中一点图10.3.6此点在xoy 面上投影点)0,,(y x P 表示成相应的极坐标形式为),(θr ,则M 点的柱坐标为),,(z r θ(如图10.3.6).这里规定r ,θ,z 的变化范围为+∞<≤r 0,02θπ≤≤,+∞<<∞-z在柱坐标系中: 0r r =(常数),表示以z 轴为中心的圆柱面;θ=0θ(常数),表示通过z 轴的半平面,此半平面与zox 面的夹角为0θ;z =0z (常数),表示平行于xoy 坐标面的平面.空间直角坐标与柱坐标的关系为⎪⎩⎪⎨⎧===.,sin ,cos z z r y r x θθ (10.3.2)现在要把三重积分⎰⎰⎰Ωdv z y x f ),,(中的变量变换为柱面坐标.为此,用=r 常数,θ=常数,z =常数把Ω分成许多小闭区域,除了含Ω的边界点的一些不规则小闭区域外,这种小闭区域都是柱体.考虑由r ,θ,z 各取得微小增量dr ,θd ,dz 所成的柱体的体积(如图10.3.7).这个体积等于高和底面积的乘积.现在高为dz 、底面积在不计高阶无穷小时为θrdrd (即极坐标系中的面积元素),于是得dz rdrd dv θ=,这就是柱面坐标系中的体积元素.300图10.3.7再注意到关系式(10.3.2),就得到三重积分的变量从直角坐标变换为柱面坐标的公式(10.3.3).设空间区域Ω在xoy 面上的投影区域}),()(),{(21βθαθϕθϕθ≤≤≤≤=r r D , 空间区域Ω}),(),,(),(),,{(21D r r z z r z z r ∈≤≤=θθθθ 则柱坐标系下的三重积分化为三次积分为:dz rdrd z r r f θθθ⎰⎰⎰Ω),sin ,cos (⎰⎰⎰=),(),()()(2121),sin ,cos (θθθϕθϕβαθθθr z r z dz z r r f rdrd例10.3.4 计算三重积分⎰⎰⎰Ωv z d ,其中Ω是由圆锥面z =、圆柱面222x y x +=与平面0z =所围成的闭区域.解 积分区域Ω在xoy 平面上的投影区域(如图10.3.8),20y =}2),{(22x y x y x D ≤+=,并且0z ≤≤图10.3.8于是,}22,cos 20,0),,{(πθπθθ≤≤-≤≤≤≤=Ωr r z z r . 43d 0cos 2022πθθθππ===⎰⎰⎰⎰⎰⎰⎰⎰⎰-ΩΩrzdz rdr d dz drd zr v z . 例10.3.5 计算三重积分⎰⎰⎰Ω++221d d d yx z y x ,其中Ω是由抛物面z y x 422=+及 平面)0(>=h h z 所围成的闭区域.解 在柱坐标系下积分区域Ω表示为 (如图10.3.9)}20,20,),,{(42πθθ≤≤≤≤≤≤=Ωh r h z z r r则⎰⎰⎰Ω++221d d d yx zy x ⎰=πθ20d ⎰+hr rr202d 1⎰hr z 42d]4)41ln()41[(4h h h -++=π.图10.3.92 利用球坐标系计算三重积分除直角坐标系、柱坐标系之外,空间点还可以用球坐标系表示.设),,(z y x M 为空间直角坐标系中一点,此点在xoy 面上投影点为)0,,(y x P ,用r 表示点M 到原点o 的距离,θ表示x 轴正向按逆时针到向量OP 的转角, ϕ表示z 轴正向与向量OM 的夹角,则坐标),,(ϕθr 称为点M 的球坐标(如图10.3.10).这里r ,θ,ϕ的变化范围为0r ≤<+∞,02θπ≤≤,πϕ≤≤0302点M 的球坐标),,(ϕθr 与直角坐标),,(z y x 的关系:sin cos sin sin cos x r y r z r ϕθϕθϕ=⎧⎪=⎨⎪=⎩(10.3.4)图10.3.10在球坐标系下,r =常数,表示中心在原点的球面;θ=常数,表示过z 轴的半平面;ϕ=常数,表示原点为顶点,z 轴为中心轴的圆锥面.为了把三重积分中的变量从直角坐标系变换为球面坐标,设),,(z y x f 定义在空间有界闭区域Ω上的连续函数,用r =常数,θ=常数,ϕ=常数,分割空间区域Ω,考虑由r ,θ,ϕ各取得微小增量dr ,θd ,ϕd 所成的六面体的体积(如图10.3.11).不计高阶无穷小,可把这个六面体看作长方体,其经线方向的长为ϕrd ,纬线方向的宽为θϕd r sin ,向径方向的高为dr ,于是得ϕθϕd drd r dv sin 2=.这就是球面坐标系中的体积元素.图10.3.11再注意到关系式(10.3.4),就得到三重积分的变量从直角坐标变换为球面坐标的公式(10.3.5).要计算变量变换为球面坐标后的三重积分,可把它化为对r 、对θ及对ϕ的三次积分. 例10.3.6计算三重积分⎰⎰⎰Ω++z d y d x d z y x )(222,其中Ω是由圆锥面22z x y =+与球面2212z x y =--.解 在球坐标系下,圆锥面22z x y =+的方程为4πϕ=,球面2212z x y =--的方程为32=z .如图10.3.12所示,Ω表示为 图10.3.12Ω),,{(θϕr =03r ≤≤02θπ≤≤,04πϕ≤≤}于是⎰⎰⎰Ω++z d y d x d z y x )(222⎰⎰⎰Ω⋅=ϕθϕd d r d r r sin 2223r =4πϕ=ϕθϕϕθϕθϕd drd r r r r f dv z y x f sin )cos ,sin sin ,cos sin (),,(2⎰⎰⎰⎰⎰⎰ΩΩ= (10.3.5)304⎰=πθ20d ⎰40d sin πϕϕ⎰3204d r r)22(53288-=π. 习题 10.31.化三重积分⎰⎰⎰Ωdv z y x f ),,(为三次积分,其中积分区域Ω分别是:(1) 由曲面22y x z +=及平面1=z 所围成的闭区域;(2) 由圆柱面122=+y x 及平面1=z ,0=z ,0=x ,0=y 所围成的位于第一卦限内的闭区域.2.计算三重积分,zdxdydz Ω⎰⎰⎰其中积分区域Ω是由三个坐标面及平面1=++z y x 所围成的闭区域.3.利用柱面坐标计算下列积分.(1) ⎰⎰⎰Ω+dv y x )(222,其中Ω是由圆柱体122=+y x 、0=z 及3=z 所围成的闭区域.(2) ⎰⎰⎰Ω+dxdydz y x 22,其中Ω是由曲面229z x y =--与0z =所围成的闭区域;(3)⎰⎰⎰Ωdxdydz x 2,其中Ω是由曲面221z x y =+=与0z =所围成的闭区域.4.利用球面坐标计算下列积分.(1) 2,y dxdydz Ω⎰⎰⎰其中积分区域Ω为介于两球面2222x y z a ++=与2222x y z b ++=之间的部分()0a b ≤≤;(2) 22(),x y dxdydz Ω+⎰⎰⎰其中积分区域Ω是由曲面z与z 所围成的闭区域.5.选用适当的坐标计算下列三次积分.(1) 11310;dx dz -⎰(2) 1;dx ⎰6.一个物体由旋转抛物面22y x z +=及平面1=z 所围成,已知其任一点处的密度ρ与到z 轴距离成正比,求其质量m .10.4 重积分的应用我们曾用元素法讨论了定积分的应用问题,该方法也可以推广到重积分的应用中. 假设所求量U 对区域D 具有可加性,即当区域D 分成若干小区域时,量U 相应地分成许多部分量,且量U 等于所有部分量之和.在D 内任取一直径很小的小区域σd ,设),(y x 是σd 上任一点,如果与σd 相应的部分量可以近似地表示为σd ),(y x f 的形式,那么所求量U 就可用二重积分表示为⎰⎰=Dy x f U σd ),(,其中σd ),(y x f 称为所求量U 的元素或微元,记为U d ,即σd ),(d y x f U =.10.4.1 立体体积和平面图形的面积设一立体Ω,它在xOy 面上的投影为有界闭区域D ,上顶与下底分别为连续曲面),(2y x z z =与),(1y x z z =,侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面,求此立体的体积V (如图10.4.1).在区域D 内任取一直径很小的小区域σd ,设),(y x 是σd 图 10.4.1 上任一点,以σd 的边界曲线为准线作母线平行于z 轴的柱面,截立体得一个小柱形(如图10.4.1),因为σd 的直径很小,且),(2y x z z =,),(1y x z z =在D 上连续,所以可用高为-=),(2y x z z ),(1y x z z =,底为σd 的小平顶柱体的体积作为小柱形体积的近似值,得体积元素为σd )],(),([d 12y x z y x z V -=将体积元素在D 上积分,即得立体的体积306例10.4.1 求由曲面22y x z +=及222y x z --=所围成的立体的体积.解 如图10.4.2所示,立体的上顶曲面是222y x z --=,下底曲面是22y x z +=,在xOy 面上的投影区域D 的边界曲线方程为122=+y x ,它是上顶曲面和下底曲面的交线在xOy 面上的投影,是从22y x z +=与222y x z --=中消去z 而得出的.利用极坐标,可得σσd )](1[2d ])()2[(222222y x y x y x V DD+-=+---=⎰⎰⎰⎰ππθπ=-⋅⋅=-=⎰⎰10422 010 2]42[22d )1(d 2r r r r r .图10.4.2 图10.4.3例10.4.2 求曲线θsin 2=r 与直线6πθ=及3πθ=围成平面图形的面积(如图10.4.3).解 设所求图形的面积为A ,所占区域为D ,则⎰⎰=DA σd .利用极坐标可将区域D 表示为⎪⎩⎪⎨⎧≤≤≤≤θπθπsin 2036r ,于是⎰⎰⎰⎰⎰===3 6 sin 202sin 2 036 d 21d d d ππθθππθθσr r r A D6d )2cos 1(d sin 23 63 6 2πθθθθππππ=-==⎰⎰.10.4.2 曲面面积假设曲面S 的方程为),(y x f z =,S 在xOy 面上的投影是有界闭区域xy D ,函数),(y x f 在xy D 上具有连续偏导数,求曲面S 的面积A .在闭区域xy D 内任取一直径很小的小区域σd ,设),(y x p 是σd 内任一点,则曲面S 上的对应点为)),(,,(y x f y x M .过点M 作曲面S 的切平面T ,并以小区域σd 的边界曲线为准线,作母线平行于z 轴的柱面,它在曲面S 和切平面T 上分别截得小块曲面A ∆和小块切平面A d (如图10.4.4).显然,A ∆与A d 在xOy 面上的投影都是σd ,因为σd 的直径很小,所以小块曲面的面积就可以用小块切平面的面积近似代替,即有≈∆A A d ,从而A d 为曲面S 的面积元素.图10.4.4 图10.4.5设曲面S 在点M 处的法向量与z 轴正向的夹角为锐角γ,则切平面T 与xOy 面的夹角也为γ (如图10.4.5),于是cos d d γσ⋅=A .注意到切平面的法向量为n =}1 ),( ),({,,z y f y x f y x --,所以 ),(),(11cos 22y x f y x f yx++=γ,即得 σγσd ),(),(1cos d d 22y x f y x f A y x ++==, 这就是曲面S 的面积元素,在xy D 上积分得曲面S 的面积为这就是计算曲面面积的公式.308如果曲面S 的方程为),(z y g x =或),(x z h y =,S 在yOz 面或zOx 面上的投影区域分别记为yz D 或zx D .类似地,可得曲面S 的面积为例10.4.3 求球面22224a z y x =++被圆柱面ax y x 222=+截下部分的面积(如图10.4.6).图10.4.6解 利用对称性,只需求出球面在第一卦限部分的面积,再4倍即可.在第一卦限,球面方程为2224y x a z --=,投影区域xy D 为半圆形区域:0≥y , ax y x 222≤+.2224yx a x xz ---=∂∂,2224yx a y yz ---=∂∂,2222242)()(1yx a a yz x z --=∂∂+∂∂+,利用极坐标,得到r r ra a y x yx a a A a D xyd 42d 4d d 4242cos 2 022222⎰⎰⎰⎰-=--=πθθ⎰⎰-=--=22cos 20222d )sin 1(16d ]4[8πθπθθθar a a a)12(162-=πa .10.4.3 平面薄片的重心由力学知道,由n 个质点构成的质点组的重心坐标为.∑∑====ni ini ii y mmx MM x 11,∑∑====ni ini ii x mmy MM y 11,其中),(i i y x 是第i 个质点的位置坐标,i m 是第i 个质点的质量,M 是n 个质点的总质量,x M 和y M 分别是质点组对x 轴和y 轴的静力矩.设有一平面薄板,它占有xOy 面上的有界闭区域D ,在点),(y x 处的面密度为),(y x ρ,且),(y x ρ在D 上连续,求薄片的重心坐标(如图10.4.7).为求薄片的重心坐标,在区域D 上任取一直径很小的小区域σd ,设),(y x 是σd 上任一点,注意到),(y x ρ在区域D 上连续且σd 的直径很小,可知σd 上的部分质量近似等于σρd ),(y x ,从而得质量元素为d (,)d M x y ρσ=.图10.4.7可将小薄片σd 视为位于点),(y x 处的一个质点,则小薄片对x 轴和y 轴的静力矩分别为σρd ),(d y x y M x =,σρd ),(d y x x M y =.将上述元素在D 上积分,即得⎰⎰=Dy x M σρd ),(,⎰⎰=Dx y x y M σρd ),(,⎰⎰=Dy y x x M σρd ),(.因此平面薄片的重心坐标为特别地,如果薄片是均匀的,则面密度ρ为常数,从而薄片的重心即为薄片占有的平。
最新定积分重积分及其应用答案

定积分重积分及其应用答案定积分、重积分及其应用一、基本题1、设«Skip Record If...»2、设«Skip Record If...»3、设«Skip Record If...»4、«Skip Record If...»;«Skip Record If...»;«Skip Record If...»;«Skip Record If...»5、«Skip Record If...»;«Skip Record If...»6、下列式子中正确的是( B )«Skip Record If...»«Skip Record If...»«Skip Record If...» «Skip Record If...»无法确定7、设«Skip Record If...»,«Skip Record If...», «Skip Record If...»,则( B )«Skip Record If...»8、设«Skip Record If...»在«Skip Record If...»上满足,«Skip Record If...»。
令«Skip Record If...»,«Skip Record If...», «Skip Record If...»,则( B )«Skip Record If...»9、«Skip Record If...»;«Skip Record If...»;«Skip Record If...»10、«Skip Record If...»;«Skip Record If...»11、«Skip Record If...»«Skip Record If...»12、«Skip Record If...»13、«Skip Record If...»«Skip Record If...»14、设«Skip Record If...»,则«Skip Record If...»15、判定下列广义积分的敛散性:1)«Skip Record If...»,发散«Skip Record If...»,发散;«Skip Record If...»,收敛;«Skip Record If...»,发散2)«Skip Record If...»,发散;«Skip Record If...»,发散;«Skip Record If...»,收敛;«Skip Record If...»,发散 3)«Skip Record If...»,收敛;«Skip Record If...»,发散4)«Skip Record If...»;«Skip Record If...»16、设«Skip Record If...»,则«Skip Record If...»17、设«Skip Record If...»,则«Skip Record If...»二重积分的几何意义18、平面区域«Skip Record If...»由«Skip Record If...»所围成,«Skip Record If...»,«Skip Record If...», «Skip Record If...»,则«Skip Record If...»的大小关系是«Skip Record If...»19、交换下列积分次序:1)«Skip Record If...»2)«Skip Record If...»20、二次积分«Skip Record If...»21、设«Skip Record If...»为«Skip Record If...»,«Skip Record If...»则«Skip Record If...»二、计算题1、«Skip Record If...»;«Skip Record If...»2、«Skip Record If...»;«Skip Record If...»;«Skip Record If...»3、«Skip Record If...»;«Skip Record If...»4、«Skip Record If...»;«Skip Record If...»; «Skip Record If...»;«Skip Record If...»5、«Skip Record If...»;«Skip Record If...»; «Skip Record If...»6、设«Skip Record If...»,求«Skip Record If...»7、设«Skip Record If...»,求«Skip Record If...»8、«Skip Record If...»;«Skip Record If...»9、设«Skip Record If...»在«Skip Record If...»上连续可导,«Skip Record If...»,计算«Skip Record If...»10、已知«Skip Record If...»,求«Skip Record If...»。
高数第十章习题.docx

第十章重积分第二节二重积分计算法习题 一、填空题:1、+ 3兀2歹 + y 3)d(j = _______________ .其中 D: 0 < x < 1,0 < y < 1.D2、 J jxcos(x+yW = ___________________ •其中D 是顶点分别为(0,0),(龙,0),(兀,兀)的三角形闭区域.D3、 将二重积分JJ/(x,yW ,D 是由X 轴及半圆周%4 5 + y 2 = r 2(y>0)所围成的闭区域,化为先对y 后对x 的二次积分,应为D4、将二重积分Jj f(x, y)db ,其中D 是由直线y = x,x = 2及双曲线y = -(x>0)所围成的闭域,化为先对X 后对y 的二次积分, D X应为 ___________________________ ・ sinxx /(匕y)dy 改换积分次序,应为 -sin —2£_2 dyf. f(x, y)dx +〜y)dx 改换积分次序,应为 ____________________________________二、画出积分区域,并计算下列二重积分:1、 J j e x+y d(y,其中D 是由|x| + |^| <1所确定的闭区域.D2、 J J(%2+ /-x)da 其中D 是由直线y = 2y y = xRy = 2兀所围成的闭区域. D训JD三、 设平面薄片所占的闭区域D 由直线x+ y = 2, y = x 和x 轴所围成,它的面密度p(x, y) = x 2 + y 2,求该薄片的质量. 四、 求由曲面z = x 2+ 2y 2及z = 6 — 2+ — y2,所围成的立体的体积. 答案f(x,y)dy ; 4.刃6仕+『创了(兀,以仕;5、(创*: ' /(兀,y 皿;2 7 v_y4、将(心[/(x, y)dy 化为极坐标形式的二次积分为 ______________________________ .5、将£ (x 2 + y 2)^dy 化为极坐标形式的二次积分为 ____________________ ,其值为 ________________二、计算下列二重积分:1、jjln(l + x 2 + y 2)da t 其中D 是由圆周x 2 + y 2 = 1及坐标轴所围成的在第一彖限内的区域.DD4 将JJ f(x, y)dxdy , D 为x 2 + y 2<2x,表示为极坐标形式的二次积分,为 ______________D5 将JJ/(x,y)dxdy 小为05 y 51—兀,05x51,表示为极坐标形式的二次积分为W一]13 5 兀 4 、〜二 1、e-e : 2、—:3、 兀;4、—F —•二 S 一•四、6龙63 2 3极坐标习题一.填空题:arcsin v/•() p/r「1 /•^•-arcsin vr2 r\+x 26、Whc 加(3)如 IM 如/(3心 7、WL f^y )dy.5、将二次积分 MTy)dy 改换积分次序,应为 ___________________________7、将二次积分3' «[”(兀皿=)?叫dy(彳-x )(x-刃3>将X 2 +)労化为极坐标形式的二次积分为 y-x 2 dxdy,其中D : -1 <x<l,0< y <2.2、 Jj(x 2 + y 2)d(m 中 D 是由直线 y 二兀,y = x + a,y = a,y = 3a(a > 0)所罔成的区域. D3、 JJjF 一F — bdb,其中D 是由圆周X 2 + y 2 = Rx 所围成的区域.D4、 j||x 2 + / -2c/cr, Jt 中 D :F + y2s3.D芒/*2acos^三、 试将对极坐标的二次积分I = J/(rcos^,rsin^)rJr 交换积分次序."4°yz 7^ /> ° 四、 设平面薄片所占的闭区域D 是由螺线r = 2 &上一段弧(0<3<-)与直线0 =-所闱成,它的面密度为p(x, y) = x^ + y\求 这薄片的质量.五、计算以xoy 面上的圆周x 2 + y 2 = ax 成的闭区域为底,而以曲面z = x 2 + y 2为顶的曲顶柱体的体积. 答案r — r2cos^r — p(cos^+sin^)"—、1、J :d/(rcos^,rsin 0ydr ; 2、 啊&sineI/(厂cos&rsin&)厂dr ; 5、|4kccOlan*JO4、丄龙.三、/ = £ 1rdr^\ f(rcosO,rsin2 ° "4第三节三重积分习题 一、填空题:1、若Q 由ill 「血z = x 2 + >?2及平血z=l 所围成,则三重积分JJJ/(%, y, z)dxdydz 化为三次积分是 Q222、若O 是由illiiiicz = A ><C >0), * +》〒 = l,z=o 所围成的在第一卦限内的闭区域,则三重积分jjj/(x,z^dxdydz 可化为三61 Q次积分为 ________ ■3、 若Q:0<x< 1,()< y < 1,0<z< 1,则 jj (兀 + y + z)dxdydzQ4、 若 Q :是由 x = 0, z = 0, z = h(h > 0), x + 2y =。
重积分总结

重积分总结第一篇:重积分总结多重积分的方法总结计算根据被积区域和被积函数的形式要选择适当的方法处理,这里主要是看被积区域的形式来选择合适的坐标形式,并给区域一个相应的表达,从而可以转化多重积分为多次的积分形式.具体的一些作法在下面给出.一.二重积分的计算重积分的计算主要是化为多次的积分.这里首先要看被积区域的形式, 选择合适的坐标系来进行处理.二重积分主要给出了直角坐标系和极坐标系的计算方法.我们都可以从以下几个方面把握相应的具体处理过程:1.被积区域在几何直观上的表现(直观描述,易于把握);2.被积分区域的集合表示(用于下一步确定多次积分的积分次序和相应的积分限);3.化重积分为多次积分.1.在直角坐标下:(a)X-型区域几何直观表现:用平行于y轴的直线穿过区域内部,与边界的交点最多两个.从而可以由下面和上面交点位于的曲线确定两个函数y=y1(x)和y=y2(x);被积区域的集合表示:D={(x,y)a≤x≤b,y1(x)≤y≤y2(x)};二重积分化为二次积分:⎰⎰Df(x,y)dxdy=⎰dx⎰aby2(x)y1(x)f(x,y)dy.(b)Y-型区域几何直观表现:用平行于x轴的直线穿过区域内部,与边界的交点最多两个.从而可以由左右交点位于的曲线确定两个函数x=x1(x)和x=x2(x);被积区域的集合表示:D={(x,y)c≤y≤d,x1(x)≤x≤x2(x)};二重积分化为二次积分:⎰⎰f(x,y)dxdy=⎰Ddcdx⎰x2(y)x1(y)f(x,y)dx.2.在极坐标下:几何直观表现:从极点出发引射线线穿过区域内部,与边界的交点最多两个.从而可以由下面和上面交点位于的曲线确定两个函数r=r1(θ)和r=r2(θ)(具体如圆域,扇形域和环域等);被积区域的集合表示:D={(r,θ)θ1≤θ≤θ2,r1(θ)≤r≤r2(θ)},注意,如果极点在被积区域的内部,则有特殊形式D={(r,θ)0≤θ≤2π,0≤r≤r2(θ)};直角坐标下的二重积分化为极坐标下的二重积分,并表示成相应的二次积分:⎰⎰Df(x,y)dxdy=⎰⎰f(rcosθ,rsinθ)rdrdθ=⎰dθ⎰Dθ2r2(θ)θ1r1(θ)f(rcosθ, rsinθ)rdr.注:具体处理题目时,首要要能够选择适当的处理方法,并能够实现不同积分次序及直角坐标和极坐标的转化.3.二重积分的换元法:z=f(x,y)在闭区域D上连续,设有变换⎧x=x(u,v)T⎨,(u,v)∈D'y=y(u,v)⎩将D'一一映射到D上,又x(u,v),y(u,v)关于u, v有一阶连续的偏导数,且J=∂(x,y)≠0,(u,v)∈D'∂(u,v)则有⎰⎰f(x,y)dxdy=⎰⎰f(x(u,v),y(u,v))Jdudv.DD'二.三重积分的计算三重积分具体的处理过程类似于二重积分,也分为三个步骤来进行处理. 1.在直角坐标下:空间区域几何直观表现:用平行于z轴的直线穿过区域内部,与边界曲面的交点最多两个.从而可以由下面和上面交点位于的曲面确定两个函数z=z1(x,y)和z=z1(x,y),并把区域投影到xoy面上从而确定(x,y)的范围,记为Dxy;被积区域的集合表示:V={(x,y,z)(x,y)∈Dxy,z1(x,y)≤z≤z2(x,y)}, 进一步地, Dxy可以表示成X-型区域或Y-型区域;三重积分化为三次积分:⎰⎰⎰f(x,y,z)dV=⎰⎰dxdy⎰VDxybaz2(x,y)z1(x,y)f(x,y,z)dz(所谓“二套一”的形式)dy⎰z2(x,y)=⎰dx⎰dy2(x)y1(x)z1(x,y)f(x,y,z)dz(Dxy为X-型)=⎰dy⎰cx2(y)x1(y)dx⎰z2(x,y)z1(x,y)f(x,y,z)dz(Dxy为Y-型)注:类似于以上的处理方法,把空间区域投影到yoz面或zox面又可把三重积分转化成不同次序的三次积分.这时区域几何直观表现,区域的集合表示,以及新的三次积分次序如何?可见,三重积分最多可以对应六种积分次序.这里还有所谓一套二的处理方法,区域的直观表现为:平行于xoy面的截面面积容易求得.作为被积函数最好与x,y无关,即可表示为为f(z).则区域表示为:V={(x,y,z)c≤z≤d,(x,y)∈Dz}, 其中Dz表示垂直于z轴的截面.此时,三重积分化为:⎰⎰⎰f(x,y,z)dV=⎰Vdcdz⎰⎰f(z)dxdy(所谓“一套二”的形式)Dz=⎰f(z)SDzdzcd其中SDz表示截面Dz的面积,它是关于z的函数.2.在柱坐标下:柱坐标与直角坐标的关系:⎧x=rcosθ⎪⎨y=rsinθ,(0≤r<∞,0≤θ≤2π,-∞<z<+∞)⎪z=z⎩空间区域几何直观表现:用平行于z轴的直线穿过区域内部,与边界曲面的交点最多两个,从而可以由下面和上面交点位于的曲面确定两个函数z=z1(x,y)和z=z1(x,y).空间区域在xoy面上的投影区域易于用参数r 和θ表示范围(具体如圆域,扇形域和环域等),并且z=z1(x,y)和z=z1(x,y)也易于进一步表示z成关于r,θ较简单的函数形式,比如x2+y2可以看成一个整体(具体如上、下表面为旋转面的情形);被积区域的集合表示:V={(r,θ)θ1≤θ≤θ2,r1(θ)≤r≤r2(θ),z1(r,θ)≤z≤z2(r,θ)};直角坐标下的三重积分化为极坐标下的三重积分,并表示成相应的三次积分:⎰⎰⎰f(x,y,z)dV=⎰⎰⎰f(rcosθ,rsinθ,z)rdrdθdzVV=⎰dθ⎰θ1θ2r2(θ)r1(θ)rdr⎰z2(r,θ)z1(r,θ)f(rcosθ,rsinθ,z)dz.3.在球坐标下:球坐标与直角坐标的关系:⎧x=rsinϕcosθ⎪⎨y=rsinϕsinθ,(0≤r<∞,0≤θ≤2π,0≤ϕ≤π)⎪z=cosϕ⎩空间区域几何直观表现:从原点出发引射线穿过区域内部,与边界曲面的交点最多两个,从而可以由下面和上面交点位于的曲面确定两个球坐标函数r=r1(r,θ)和r=r2(r,θ);(具体如球心在原点或z轴上的球形域)被积区域的集合表示:V={(r,θ,ϕ)θ1≤θ≤θ2,ϕ1≤ϕ≤ϕ2,r1(θ,ϕ)≤r≤r2(θ,ϕ)};直角坐标下的三重积分化为极坐标下的三重积分,并表示成相应的三次积分:⎰⎰⎰Vf(x,y,z)dV=⎰⎰⎰f(rsinϕcosθ,rsinϕsinθ,rcosθ)r2sinϕdrdθdϕV=⎰2π0dθ⎰dϕ⎰02ππr2(θ,ϕ)r1(θ,ϕ)f(rsinϕcosθ,rsinϕsinθ,rcosθ)r2s inϕdr.如球心在原点半径为a的球形域下:⎰⎰⎰Vf(x,y,z)dV=⎰dθ⎰dϕ⎰f(rsinϕcosθ,rsinϕsinθ,rcosθ)r2sinϕdr.000πa4.三重积分的换元法:u=f(x,y,z)在闭区域V上连续,设有变换⎧x=x(u,v,w)⎪T:⎨y=y(u,v,w),(u,v,w)∈V'⎪z=z(u,v,w)⎩将V'一一映射到V上,又x(u,v,w),y(u,v,w)和z(u,v,w)关于u, v和w有一阶连续的偏导数,且J=∂(x,y,z)≠0,(u,v)∈V'∂(u,v,w)则有⎰⎰⎰f(x,y,z)dV=⎰⎰⎰f(x(u,v,w),y(u,v,w),z(u,v,w))Jdudvdw.VV三.重积分的几何和物理应用 1.几何应用a)二重积分求平面区域面积;b)二重积分求曲顶柱体体积;c)三重积分求空间区域的体积;d)二重积分求空间曲面的面积.求曲面的面积A,对应着曲面方程为直角坐标系下的二元函数形式和参数方程形式分别有以下公式:i)曲面方程 S:z=f(x,y),(x,y)∈DA=⎰⎰1+fx2+fy2dxdyD⎧x=x(u,v)⎪ii)曲面参数方程S:⎨y=y(u,v),(u,v)∈Duv⎪z=z(u,v)⎩iA=⎰⎰(xui+yuj+zuk)⨯(xvi+yvj+zvk)dudv=⎰⎰xuDuvDuvjy uyvkzududv zvxv注:这里的公式都对函数有相应的微分条件.2.物理应用包括求质量、质心、转动惯量和引力等应用,积分是研究物理问题的重要工具.建立物理量对应的积分公式的一般方法是从基本的物理原理出发,找到所求量对应的微元,也就是对应积分的被积表达式了.以上对多重积分的计算方法做了个小结,关键要在具体的情况下要找到对应的适宜的处理方法.处理重积分计算时从几何形式出发,则易于直观把握.注意选择适当的坐标系,注意被积区域的表达,还要注意函数关于区域的对称性.这种对称性包括奇对称和偶对称,从而可以简化计算过程.第二篇:重积分证明题证明题(共 46 小题)1、设函数f(x,y)和g(x,y)在有界闭域D上连续,证明2、设函数f(x,y)和g(x,y)在D上连续,且f(x,y)≤g(x,y),(x,y)∈D,利用二重积分定义证明:3、设函数f(x,y)在有界闭域D上连续,且M,m分别是f(x,y)在D上的最大值与最小值,证明:其中σ是D的面积。
10第十章 重积分答案.

第十章重积分第一节二重积分的概念与性质1.根据二重积分的几何意义,确定下列积分的值。
解:由二重积分的几何意义知,解:由二重积分的几何意义知,2.根据二重积分的性质,比较下列积分的大小。
解:由知即于是所以于是解:因在D内x+y>e, 故 ln(x+y>1,于是解:在D中,且而不在直线x+y=1上的D内任何点(x,y, 都有故于是3.利用二重积分的性质估计下列积分的值。
解:从而即解:则f(x,y在D上的最大值最小值区域D的面积从而4.设f(x,y为一连续函数,试证:证:由于f(x,y连续,由二重积分中值定理知,存在点,使得所以第二节二重积分的计算1.计算下列二重积分(1解:。
(2解:。
解:。
(4解:。
(5解:。
2.画出积分区域,并计算下列二重积分。
(1解:。
解:。
(3解:。
3.将二重积分化为二次积分(两种次序都要),其中积分区域D是(1解:。
(2解:。
4.画出积分区域,改变下列二次积分的积分次序。
(1解:(2解:(3解:。
5.设平面板由曲线及直线所围成,质量面密度为,求板的质量。
解:所求板的质量。
6.求由坐标平面、平面、及抛物面所围成的立体体积。
解:立体在xoy面投影区域为,,所求立体体积为。
7.计算二重积分。
其中}。
解:设则8.把二重积分化为极坐标下的二次积分,其中积分区域是:(1 由所围成;(2 圆与圆之间的区域。
解:(1(29.将下列各题中的积分化为极坐标形式的二次积分。
(1 ;解:(1 两个二次积分所对应的重积分的积分区域分别是和两者的并集是环形区域在第一象限的部分,于是(2(3 。
10.利用极坐标计算下列各题。
(1 ,其中为的圆域;解:(2 ,其中;解:(3 ,其中;解:(4 ,其中。
解:11.选用适当的坐标计算下列积分。
(1 ,其中是由直线,,,所围成的闭区域;解:选用直角坐标计算二重积分(2 ,其中;解:选用极坐标计算二重积分(另外,本题亦可用对称性计算)(3 ,其中由直线,及上半圆周所围的区域。
第十章 重积分试题库(无水印)

一、知识点(第十章重积分)01 二重积分0101 二重积分的概念010101 二重积分的定义010102 二重积分的几何意义010103 二重积分的物理意义0102 重积分的性质010201 二重积分的性质010202 二重积分的对称性0103 二重积分的直角坐标计算法010301 用直角坐标计算二重积分010302 交换积分次序0104 二重积分的极坐标计算法010401 二重积分化为极坐标系下二次积分02 三重积分0201 三重积分的概念020101 三重积分的概念020102 三重积分的性质020103 三重积分的对称性0202 三重积分的计算020201 用直角坐标计算三重积分020202 用柱面坐标计算三重积分020203 用球面坐标计算三重积分03 重积分的应用0301 几何应用030101 计算曲面的面积030102 计算立体体积0302 物理应用030201 计算物体质心030202 计算转动惯量030203 计算引力一 填空题[100101][填空题][易 0.2][二重积分的定义][ ][二重积分的定义][试题内容]设函数(,)f x y 在有界闭区域D 上有界,把D 任意分成几个小区域i σ∆(1,2,)i n =⋯,,在每一个小区域i σ∆上任取一点(,)i i ξη, 如果极限01lim (,)ni i i i f λξησ→=∆∑存在(其中λ是_________________),则称此极限值为函数(,)f x y 在D 上的二重积分,记作(,)Df x y d σ⎰⎰.[试题答案及评分标准]i σ∆(1,2,)i n =⋯,的最大直径。
[100102][填空题][易 0.2][二重积分的定义][ ][二重积分的定义][试题内容]设函数(,)f x y 在有界闭区域D 上有界,把D 任意分成n 个小区域i σ∆(1,2,)i n =⋯,,在每一个小区域i σ∆任意选取一点(,)i i ξη,如果极限01lim (,)ni i i i f λξησ→=∆∑(其中λ是i σ∆(1,2,)i n =⋯,的最大直径)存在,则称此极限值为______________的二重积分。
最新(高起专)第十章二重积分习题解答

(高起专)第十章二重积分习题解答(高起专)第十章二重积分习题解答(一)选择题(在每小题给出的四个选项中,只有一项符合题目要求,选出正确的选项)1.«Skip Record If...»,则交换积分次序后得 C 。
(A)«Skip Record If...»;(B)«Skip Record If...»;(C)«Skip Record If...»;(D)«Skip Record If...»。
2.设积分域为«Skip Record If...»,则«Skip Record If...» D. .(A) «Skip Record If...» , (B)«Skip Record If...», (C) 4«Skip Record If...», (D) «Skip Record If...»;3. 设积分域«Skip Record If...»由直线«Skip Record If...»围成,则«Skip Record If...» C(A) «Skip Record If...» , (B) «Skip Record If...», (C) «Skip Record If...», (D) «Skip Record If...».; 4.«Skip Record If...»,D:«Skip Record If...»,化为极坐标形式是 D 。
(A)«Skip Record If...»;(B)«Skip Record If...»;(C)«Skip Record If...»;(D)«Skip Record If...»。
重积分的知识点总结

重积分的知识点总结一、多重积分的概念1. 多元函数多元函数是指自变量不止一个的函数,通常表示为$z=f(x,y)$,其中$x$、$y$是自变量,$z$是因变量。
2. 二重积分二重积分是对二元函数在平面区域上的积分,其定义如下:$\iint_Df(x,y)\,d\sigma=\lim_{\lambda\rightarrow0}\sum_{i=1}^nf(\xi_i,\eta_i)\Delta\sig ma_i$其中$D$为平面区域,$f(x,y)$为在$D$上的连续函数,$\Delta\sigma_i$为区域$D$上第$i$个小面积,$\xi_i$、$\eta_i$为$(x,y)$的取值点。
$\lambda$是面积的划分趋于0时的极限。
3. 三重积分三重积分是对三元函数在空间区域上的积分,其定义如下:$\iiint_{\Omega}f(x,y,z)\,dV=\lim_{\lambda\rightarrow0}\sum_{i=1}^nf(\xi_i,\eta_i,\zeta_ i)\Delta V_i$其中$\Omega$为空间区域,$f(x,y,z)$为在$\Omega$上的连续函数,$\Delta V_i$为区域$\Omega$上第$i$个小体积,$\xi_i$、$\eta_i$、$\zeta_i$为$(x,y,z)$的取值点。
$\lambda$是体积的划分趋于0时的极限。
4. 一般情况下的重积分对于$n$元函数在$n$维空间上的积分通常可以表示为:$\int...\int_Df(x_1,x_2,...,x_n)dV$其中$D$为空间区域,$f(x_1,x_2,...,x_n)$为在$D$上的连续函数,积分区域为$D$,$dV$为该区域上的$n$维体积元。
二、多重积分的性质1. 多重积分的可加性重积分在可加性方面与定积分类似,即若函数$f(x,y)$在区域$D$上连续,则有:$\iint_Df(x,y)\,d\sigma=\iint_{D_1}f(x,y)\,d\sigma+\iint_{D_2}f(x,y)\,d\sigma$其中$D=D_1\cup D_2$,$D_1$、$D_2$为$D$的互不相交子区域。
高等数学第十章重积分PPT课件

总结词
矩形区域上的重积分计算是重积分中最基础的一种计算方 法。
详细描述
在矩形区域上,可以将积分区域划分为若干个小矩形,然后对每个小矩形进行 积分,最后将所有小矩形的积分结果相加即可得到整个矩形区域的积分值。
公式
$int_{a}^{b}int_{c}^{d}f(x,y)dxdy$
圆形区域上的重积分计算
公式
根据具体情况而定,一般需要通过微分几何和拓扑学知识 进行推导和计算。
03
重积分的应用
重积分在几何学中的应用
80%
计算立体体积
通过重积分可以计算三维空间中 物体的体积,如旋转体、曲面和 不规则体的体积。
100%
计算表面积
重积分可以用来计算封闭曲面或 复杂曲面的表面积,如球面、椭 球面和抛物面等。
化简积分表达式
在计算过程中,尽量化简积分 表达式,以减少计算量。
避免重积分的常见错误
上下限错误
确保上下限的确定是正确的,特别是对于复杂区 域。
公式应用不当
使用不合适的公式可能导致计算错误或无法得出 结果。
积分次序错误
选择错误的积分次序可能导致计算结果不正确。
计算失误
在计算过程中,可能会因为疏忽或笔误导致结果 不准确。
求解流体动力学问 题
重积分在流体动力学中有重要应 用,如计算流体压力、速度和密 度等。
重积分济活动中 涉及到的成本和收益,如生产成 本、销售收入和利润等。
预测经济趋势
通过重积分可以建立经济模型, 预测未来经济趋势和市场变化, 为决策提供依据。
优化资源配置
二重积分的定义
二重积分是计算平面区域上的面积的数学工具,其值等于二元函数在平面区域上的所有点的函数值与该点处面积微元 相乘后累加的总和。
重积分习题与答案

第九章 重积分A1、 填空题1)交换下列二次积分的积分次序(1)()=⎰⎰-dx y x f dy y y 102,______________________________________________ (2)()=⎰⎰dx y x f dy y y 2022,______________________________________________ (3)()=⎰⎰dx y x f dy y 100,_______________________________________________ (4)()=⎰⎰---dx y x f dy y y 101122,___________________________________________ (5)()=⎰⎰dy y x f dx ex 1ln 0,______________________________________________ (6)()()=⎰⎰---dx y x f dy y y 404214,________________________________________ 2)积分dy e dx xy ⎰⎰-2022的值等于__________________________________ 3)设(){}10,10,≤≤≤≤=y x y x D ,试利用二重积分的性质估计()σd y x xy I D⎰⎰+=的 值则 。
4)设区域D 是有x 轴、y 轴与直线1=+y x 所围成,根据二重积分的性质,试比较积分 ()σd y x I D 2⎰⎰+=与()σd y x I D 3⎰⎰+=的大小________________________________5)设()⎭⎬⎫⎩⎨⎧≤≤≤≤=20,20,ππy x y x D ,则积分()dxdy y x I D⎰⎰+-=2sin 1 ___________________________________________6)已知Ω是由12,0,0,0=++===z y x z y x 所围,按先z 后y 再x 的积分次序将 ⎰⎰⎰Ω=xdxdydz I 化为累次积分,则__________________________=I7)设Ω是由球面222y x z --=与锥面22y x z +=的围面,则三重积分dxdydz z y x f I ⎰⎰⎰Ω++=)(222在球面坐标系下的三次积分表达式为2、 把下列积分化为极坐标形式,并计算积分值1)⎰⎰-+a x ax dy y x dx 2020222)(2)⎰⎰+ax dy y x dx 00223、利用极坐标计算下列各题1)⎰⎰+D y x d e σ22,其中D 是由圆周122=+y x 及坐标轴所围成的在第一象限内的闭区域.2)⎰⎰++Dd y x σ)1ln(22,其中D 是由圆周122=+y x 及坐标轴所围成的在第一象限的闭区域.3)⎰⎰D d xy σarctan,其中D 是由圆周1,42222=+=+y x y x 及直线x y y ==,0所围成的在第一象限的闭区域.4、选用适当的坐标计算下列各题 1)⎰⎰D d yx σ22,其中D 是直线x y x ==,2及曲线1=xy 所围成的闭区域.2)⎰⎰+D yd x σsin )1(,其中D 是顶点分别为)2,1(),0,1(),0,0(和)1,0(的梯形闭区域.3)⎰⎰--D d y x R σ222,其中D 是圆周Rx y x =+22所围成的闭区域.4)⎰⎰+D d y x σ22,其中D 是圆环形闭区域{}2222),(b y x a y x ≤+≤.5、设平面薄片所占的闭区域D 由螺线θρ2=上一段弧⎪⎭⎫ ⎝⎛≤≤20πθ与直线2πθ=所围成,它的面密度为()22,y x y x +=μ,求这薄片的质量(图9-5).6、求平面0=y ,()0>=k kx y ,0=z ,以及球心在原点、半径为R 的上半球面所围成的在第一卦限内的立体的体积(图9-6).7、设平面薄片所占的闭区域D 由直线2=+y x ,x y =和x 轴所围成,它的面密度 ()22,y x y x +=μ,求该薄片的质量.8、计算由四个平面0=x ,0=y ,1=x ,1=y 所围成的柱体被平面0=z 及 632=++z y x 截得的立体的体积.9、求由平面0=x ,0=y ,1=+y x 所围成的柱体被平面0=z 及抛物面z y x -=+622 截得的立体的体积.10、计算以xoy 面上的圆周ax y x =+22围成的闭区域为底,而以曲面22y x z +=为顶的曲顶柱体的体积.11、化三重积分()⎰⎰⎰Ω=dxdydz z y x f I ,,为三次积分,其中积分区域Ω分别是1)由双曲抛物面z xy =及平面0,01==-+z y x 所围成的闭区域.2)由曲面222y x z +=及22x z -=所围成的闭区域.12、设有一物体,占有空间闭区域(){}10,10,10,,≤≤≤≤≤≤=Ωz y x z y x ,在点()z y x ,, 处的密度为()z y x z y x ++=,,ρ,计算该物体的质量.13、计算⎰⎰⎰Ωdxdydz z xy 32,其中Ω是由曲面xy z =,与平面1,==x x y 和0=z 所围成的闭区域.14、计算⎰⎰⎰Ωxyzdxdydz ,其中Ω为球面1222=++z y x及三个坐标面所围成的在第一卦限内的闭区域.15、算⎰⎰⎰Ωzdxdydz ,其中Ω是由锥面22y x Rh z +=与平面()0,0>>=h R h z 所围成的闭区域.16、利用柱面坐标计算三重积分⎰⎰⎰Ωzdv ,其中Ω是由曲面222y x z --=及22y x z +=所围成的闭区域.17、利用球面坐标计算三重积分()⎰⎰⎰Ω++dv z y x 222,其中Ω是由球面1222=++z y x 所围成的闭区域.18、选用适当的坐标计算下列三重积分1)⎰⎰⎰Ωxydv ,其中Ω为柱面122=+y x 及平面1=z ,0=z 0=x ,0=y 所围成的在第一卦限内的闭区域.2)⎰⎰⎰Ωdxdydz z 2,其中Ω是两个球2222R z y x ≤++和)0(2222>≤++R Rz z y x 的公共部分.3)()⎰⎰⎰Ω+dv y x 22,其中Ω是由曲面()222254y x z +=及平面5=z 所围成的闭区域.4)()⎰⎰⎰Ω+dv y x22,其中闭区域Ω由不等式A z y x a ≤++≤<2220,0≥z 所确定.19、利用三重积分计算下列由曲面所围成的立体的体积1)226y x z --=及22y x z +=.2)()02222>=++a az z y x 及222z y x =+(含有z 轴的部分).20、球心在原点、半径为R 的球体,在其上任意一点的密度大小与这点到球心的距离成正比,求这球体的的质量.21、求球面2222a z y x =++含在圆柱面ax y x =+22内部的那部分面积.22、求锥面22y x z +=被柱面x z 22=所割下部分的曲面面积.23、求由抛物线2x y =及直线1=y 所围成的均匀薄片(面密度为常数μ)对于直线1-=y 的转动惯量.24、设薄片所占的闭区域D 如下,求均匀薄片的质心 D 是半椭圆形闭区域()⎭⎬⎫⎩⎨⎧≥≤+0,1,2222y b y a x y x .25、设平面薄片所占的闭区域D 由抛物线2x y =及直线x y =所围成,它在点()y x ,处的面密度()y x y x 2,=μ,求该薄片的质心.25、利用三重积分计算下列由曲面所围立体的质心(设密度1=ρ)1)222y x z +=,1=z2)222y x A z --=,222y x a z --=()0>>a A ,0=z26、求半径为a 高为h 的均匀圆柱体对于过中心而平行于母线的轴的转动惯量(设密度1=ρ).B1、 根据二重积分的性质,比较下列积分的大小1)()σd y x D ⎰⎰+2与()σd y x D⎰⎰+3,其中积分区域D 是由圆周()()21222=-+-y x 所围成.2)()σd y x D ⎰⎰+ln 与()[]σd y x D⎰⎰+2ln ,其中D 是三角形闭区域,三顶点分别为()0,1, ()1,1,()0,2 .2、计算下列二重积分1)⎰⎰+σd e y x ,其中(){}1,≤+=y x y x D2)()⎰⎰-+D d x y x σ22,其中D 是由直线2=y ,x y =及x y 2=所围成的闭区域3),()σd y x y D ⎰⎰+-+9632,其中(){}222,R y x y x D ≤+=3、化二重积分()σd y x f I D⎰⎰=,为而次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域D 是 1)由x 轴及半圆周222ry x =+()0≥y 所围成的闭区域2)环形闭区域(){}41,22≤+≤y x y x4、求由曲面222y x z +=及2226y x z --=所围成的立体的体积.5、计算()⎰⎰⎰Ω+++31z y x dxdydz ,其中Ω为平面0=x ,0=y ,0=z ,1=++z y x 所围成的四面体.6、计算下列三重积分 1)dxdydz z ⎰⎰⎰Ω2,其中Ω是两个球:2222R z y x ≤++和Rz z y x 2222≤++()0>R 的公共部分.2)()dv z y x z y x z ⎰⎰⎰Ω++++++11ln 222222,其中Ω是由球面1222=++z y x 所围成的闭区域.3)()d v z y⎰⎰⎰Ω+22,其中Ω是由xoy 平面上曲线x y 22=绕x 轴旋转而成的曲面与平面5=x 所围成的闭区域.7、设球体占有闭区域(){}Rz z y x z y x 2,,222≤++=Ω,它在内部各点处的密度的大小等于该点到坐标原点的距离的平方,试求这球体的球心.8、一均匀物体(密度ρ为常量)占有的闭区域Ω由曲面22y x z +=和平面0=z ,,a x =a y =所围成1)求物体的体积; 2)求物体的质心;3)求物体关于z 轴的转动.C1、利用二重积分的性质,估计积分()⎰⎰++=Dd y x I σ10,其中D 是由圆周422=+y x 所围成.2、用二重积分计算立体Ω的体积V ,其中Ω由平面0=z ,x y =,a x y +=,a y 2=和y x z 23+=所围成()0>a .3、计算二重积分⎰⎰Dydxdy ,其中D 是由直线2-=x ,0=y 以及曲线22y y x --=所围成的平面区域.4、设()y x f ,在积分域上连续,更换二次积分()⎰⎰---=yy dx y x f dy I 311102,的积分次序.5、计算二重积分dxdy x y I D⎰⎰-=2,其中积分区域D 是由20≤≤y 和1≤x 确定.6、求二重积分()dxdy xe y D y x ⎰⎰⎥⎦⎤⎢⎣⎡++22211的值,其中D 是由直线x y =,1-=y 及1=x 围成的平面区域. 7、计算⎰⎰⎰Ωdv z 2,其中Ω由曲面2222R z y x =++及()2222R r z y x =-++围成.8、计算dxdydz z xy I ⎰⎰⎰Ω=32,其中Ω是由曲面xy z =与平面1=y 及0=z 所围成的闭区域.9、设有一半径为R 的球体,0P 是此球表面上的一个定点,球体上任一点的密度与该点到0P 的距离的平方成正比(比例常数0>k ),求球体的重心的位置. 10、设有一高度为()t h (t 为时间)的雪堆在融化过程中,其侧面满足方程()()()t h y x z t h z 22+-=(设长度单位为cm ,时间单位为h ),已知体积减少的速率与侧面积成正比例(比例系数9.0),问高度为130(cm )的雪堆全部融化需多少时间?第九章 重积分答案 习 题 答 案(A )1、 填空题 1)①()()⎰⎰⎰⎰-+2120122,,x x dy y x f dx dy y x f dx②()dy y x f dx xx ⎰⎰240, ③()dy y x f dy x⎰⎰110, ④()dy y x f dx x ⎰⎰--21011,⑤()⎰⎰ee ydx y x f dy ,10⑥()⎰⎰-+-244202,x x dy y x f dx2)()4121--e 3)20≤≤I 4)()()⎰⎰⎰⎰+≥+D Dd y x d y x σσ325)2-π 6)⎰⎰⎰---yx x xdz dy dx 21021017)()⎰⎰⎰2224020sin dr r r f d d ϕϕθππ2、1)443a π 2)()[]21ln 2613++a3、1)()14-e π2)()12ln 24-π 3)2643π4、1)49 2)2sin 22cos 1sin 1cos 23--++ 3)⎪⎭⎫ ⎝⎛-34313πR 4)()3332a b -π 5、5401π 6、k R arctan 313 7、34 8、27 9、617 10、4323a π 11、1)()dz z y x f dy dx xy x⎰⎰⎰-01010,, 2)()⎰⎰⎰-+----22222221111,,x y x x x dz z y x f dy dx12、23 13、3641 14、481 15、224R h π 16、π127 17、π54 18、1)81 2)548059R π 3)π8 4)()55154a A -π19、1)π332 2)3a π 20、3R k π 21、()222-πa22、π2 23、μ105368=I 24、π34,0by x == 25、4835=x ,5435=y 26、⎪⎭⎫ ⎝⎛43,0,027、M a 221(ρπh a M 2=为圆柱体的质量) (B )1、 1)()()⎰⎰⎰⎰+≤+DDd y x d y x σσ32 2)()()⎰⎰⎰⎰+≤+DDd y x d y x σσln ln 22、1)1--e e 2) 613 3) 2494R R ππ+ 3、1)()⎰⎰--=220,x r rr dy y x f dx I ,()⎰⎰---=2222,0y r y r rdx y x f dy I2)()()()⎰⎰⎰⎰⎰⎰-------------++=222222141141114412,,,x x x x x x dy y x f dx dy y x f dx dy y x f dx I()⎰⎰---+224421,x x dy y x f dx()()()⎰⎰⎰⎰⎰⎰-----------++=222222144111114421,,,y y y y y y dx y x f dy dx y x f dy dx y x f dy I()⎰⎰-----+224412,y y dx y x f dy4、π65、⎪⎭⎫ ⎝⎛-852ln 21 ; 6、1)548059R π 2)0 3)π3250 ; 7、⎪⎭⎫ ⎝⎛R 45,0,0 8、1)438a 2)⎪⎭⎫ ⎝⎛2157,0,0a 3)645112a ρ(C )1、 解:令()10,++=y x y x f ,关键是求()y x f ,在D 上的最大值和最小值,在D 内部,1=x f ,1=y f ,因此()y x f ,在D 内部无驻点,最值点一定在边界上取得,作 ()()410,22-++++=y x y x y x F λ由方程组⎪⎩⎪⎨⎧=-+='=+='=+='0402102122y x F y F x F y x λλλ解得驻点为()2,2,()2,2-,比较可得最小值2210-=m ,最大值为2210+=M ,而D 的面积为π4,由估值定理得()()258258+≤≤-ππI 。
高等数学第十章重积分习题课

第十章 重积分一、知识要点回顾(一)二重积分 1.二重积分的定义;2.二重积分的几何意义及其物理模型;3.二重积分的性质: (1) 线性性质; (2) 区域可加性; (3) 比较定理; (4) 单调性; (5) 估值不等式; (6) 二重积分的中值定理.4.直角坐标系下二重积分化二次积分(1) X 型区域特点及积分区域为X 型区域时化二重积分为二次积分; (2) Y 型区域特点及积分区域为Y 型区域时化二重积分为二次积分; (3) 积分区域为矩型区域时化二重积分为二次积分. 5.极坐标系下二重积分的计算(1) 何种二重积分适宜选择极坐标计算,要从积分区域和被积函数两方面考虑; (2)⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(.(二)三重积分1.三重积分定义及性质。
2.三重积分的计算(1) 直角坐标下化三重积分为三次积分; (2) 柱面坐标下化三重积分为三次积分; (3) 球面坐标下化三重积分为三次积分. (三)重积分的应用1.几何应用:平面图形面积、曲面面积、空间立体体积。
2.物理应用:质量、质心(形心)、转动惯量、引力.二、习题解析(一)二重积分1、二重积分的概念与性质例1、根据重积分的性质,比较下列积分的大小:⎰⎰+Dd y x σ)ln(与⎰⎰+Dd y x σ2)ln(,其中积分区域D 是:(1)以)0 ,1(,)1 ,1(,)0 ,2(为顶点的三角形区域;(2)矩形区域:10 ,53≤≤≤≤y x .解:(1)在以)0 ,1(,)1 ,1(,)0 ,2(为顶点的三角形区域内显然有21≤+≤y x , 故在三角形区域内2()()x y x y +>+即2ln()ln()x y x y +>+, 故⎰⎰+Dd y x σ)ln(≤⎰⎰+Dd y x σ2)ln((2)矩形区域:10 ,53≤≤≤≤y x 内显然有63≤+≤y x 故在矩形区域内2()()x y x y +>+即2ln()ln()x y x y +>+, 故⎰⎰+Dd y x σ)ln(≤⎰⎰+Dd y x σ2)ln(例2、利用二重积分的性质,估计下列积分的值.(1)⎰⎰+=Dd y x xy I σ)(,其中D 是矩形区域:10 ,10≤≤≤≤y x ;(2)⎰⎰++=D d yx I σ22cos cos 1001,其中}10 ),{(≤+=y x y x D .解:(1)在矩形区域:10 ,10≤≤≤≤y x 内0()2xy x y ≤+≤,故0()2DDDd xy x y d d σσσ≤+≤⎰⎰⎰⎰⎰⎰,即:0()2DDxy x y d d σσ≤+≤⎰⎰⎰⎰,得20≤≤I(2)在}10 ),{(≤+=y x y x D 中,22111102100cos cos 100x y ≤≤++ 22111102100cos cos 100D D Dd d d x y σσσ≤≤++⎰⎰⎰⎰⎰⎰,即 22111102100cos cos 100D D Dd d d x y σσσ≤≤++⎰⎰⎰⎰⎰⎰得2102200≤≤I 。
部编版高中数学必修二第十章概率带答案知识集锦

(名师选题)部编版高中数学必修二第十章概率带答案知识集锦单选题1、如图所示,1,2,3表示三个开关,若在某段时间内它们每个正常工作的概率都是0.9,那么此系统的可靠性是( )A .0.999B .0.981C .0.980D .0.7292、掷一枚均匀的硬币,如果连续抛掷1000次,那么第999次出现正面向上的概率是A .1999B .11000C .9991000D .123、已知样本空间为Ω,x 为一个基本事件.对于任意事件A ,定义f (A )={0,x ∉A 1,x ∈A,给出下列结论:①f(Ω)=1,f(∅)=0;②对任意事件A ,0≤f(A)≤1;③如果A ∩B =∅,那么f(A ∪B)=f(A)+f(B);④f(A)+f(A )=1.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个4、抛掷一枚质地均匀的正方体骰子,若事件A =“向上的点数为3”,B =“向上的点数为6”,C =“向上的点数为3或6”,则有( )A .A ⊆B B .C ⊆B C .A ∩B =CD .A ∪B =C5、一个学习小组有5名同学,其中2名男生,3名女生.从这个小组中任意选出2名同学,则选出的同学中既有男生又有女生的概率为( )A .15B .25C .35D .456、设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P (A )+P (B )=1”,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7、某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p 1,p 2,p 3,且p 3>p 2>p 1>0.记该棋手连胜两盘的概率为p ,则( )A .p 与该棋手和甲、乙、丙的比赛次序无关B .该棋手在第二盘与甲比赛,p 最大C .该棋手在第二盘与乙比赛,p 最大D .该棋手在第二盘与丙比赛,p 最大8、若书架上放的工具书、故事书、图画书分别是5本、3本、2本,则随机抽出一本是故事书的概率为( )A .15B .310C .35D .12 多选题9、盒中装有大小相同的5个小球(编号为1至5),其中黑球3个,白球2个.每次取一球(取后放回),则( )A .每次取到1号球的概率为15B .每次取到黑球的概率为25C .“第一次取到黑球”和“第二次取到白球”是相互独立事件D .“每次取到3号球”与“每次取到4号球”是对立事件10、下列有关古典概型的说法中,正确的是( )A .试验的样本空间的样本点总数有限B .每个事件出现的可能性相等C .每个样本点出现的可能性相等D .已知样本点总数为n ,若随机事件A 包含k 个样本点,则事件A 发生的概率P (A )=k n11、某学校组织了一次劳动技能大赛,共有100名学生参赛,经过评判,这100名参赛者的得分都在[40,90]内,得分60分以下为不及格,其得分的频率分布直方图如图所示(按得分分成[40,50),[50,60),[60,70),[70,80),[80,90]这五组),则下列结论正确的是( )A.直方图中a=0.005B.此次比赛得分不及格的共有40人C.以频率为概率,从这100名参赛者中随机选取1人,其得分在[60,80)的概率为0.5 D.这100名参赛者得分的中位数为65填空题12、若A,B互为对立事件,其概率分别为P(A)=1y ,P(B)=4x,且x>0,y>0,则x+y的最小值为________.部编版高中数学必修二第十章概率带答案(五十)参考答案1、答案:B解析:求出开关1、2均正常工作的概率及开关3正常工作的概率,由相互独立事件概率公式、对立事件的概率公式即可得解.由题意,开关1、2在某段时间内均正常工作的概率P 1=0.9×0.9=0.81,开关3正常工作的概率P 2=0.9,故该系统正常工作的概率P =1−(1−P 1)(1−P 2)=1−(1−0.81)×(1−0.9)=0.981,所以该系统的可靠性为0.981.故选:B.2、答案:D每一次出现正面朝上的概率相等都是12,故选D.3、答案:D分析:根据f (A )的定义,利用分类讨论思想进行分析判定.∵任意x ∈Ω恒成立,任意x ∈∅恒不成立,∴f(Ω)=1,f(∅)=0,故①正确;对任意事件A ,f (A )={0,x ∉A 1,x ∈A,∴f (A )∈{0,1},∴0≤f(A)≤1成立,故②正确; 如果A ∩B =∅,当x ∈A ∪B 时,f (A ∪B )=1,此时x ∈A 或x ∈B .若x ∈A ,则x ∉B ,f (A )=1,f (B )=0,f (A )+f (B )=1,f(A ∪B)=f(A)+f(B)成立;x ∈B 时,x ∉A ,f (A )=0,f (B )=1,f (A )+f (B )=1,f(A ∪B)=f(A)+f(B)成立;当x ∉A ∪B 时,x ∉A ,x ∉B ,∴f (A ∪B )=0,f (A )=0,f (B )=0,那么f(A ∪B)=f(A)+f(B)成立,∴③正确;当x ∈A 时,x ∉A ,此时f (A )=1,f (A )=0, f(A)+f(A )=1成立;当x ∉A 时,x ∈A ,此时f (A )=0,f (A )=1, f(A)+f(A )=1成立,故④正确.综上,正确的结论有4个,故选:D4、答案:D分析:根据事件的关系、和事件、积事件的定义逐一判断四个选项的正误,即可得出正确选项对于A :事件A =“向上的点数为3”发生,事件B =“向上的点数为6”一定不发生,故选项A 不正确;对于B :事件C =“向上的点数为3或6”发生,事件B =“向上的点数为6”不一定发生,但事件B =“向上的点数为6”发生,事件C =“向上的点数为3或6” 一定发生,所以B ⊆C ,故选项B 不正确;对于C :事件A 和事件B 不能同时发生,A ∩B =∅,故选项C 不正确;对于D :事件A =“向上的点数为3”或事件B =“向上的点数为6”发生,则事件C =“向上的点数为3或6”发生,故选项D 正确;故选:D5、答案:C分析:写出5人取2人的所有事件,找出一男同学一女同学的取法,利用古典概型求解.5人小组中,设2男生分别为a ,b ,3名女生分别为A,B,C ,则任意选出2名同学,共有:(a,b),(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),(A,B),(A,C),(B,C)10个基本事件, 其中选出的同学中既有男生又有女生共有(a,A),(a,B),(a,C),(b,A),(b,B),(b,C)6个基本事件,所以P =610=35,故选:C6、答案:A解析:将两个条件相互推导,根据能否推导的情况选出正确答案.①若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1;②投掷一枚硬币3次,满足P (A )+P (B )=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件. 所以甲是乙的充分不必要条件.故选:A小提示:本小题主要考查充分、必要条件的判断,考查对立事件的理解,属于基础题.7、答案:D分析:该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率p 甲;该棋手在第二盘与乙比赛且连胜两盘的概率p乙;该棋手在第二盘与丙比赛且连胜两盘的概率p丙.并对三者进行比较即可解决该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,比赛顺序为乙甲丙及丙甲乙的概率均为12,则此时连胜两盘的概率为p甲则p甲=12[(1−p2)p1p3+p2p1(1−p3)]+12[(1−p3)p1p2+p3p1(1−p2)]=p1(p2+p3)−2p1p2p3;记该棋手在第二盘与乙比赛,且连胜两盘的概率为p乙,则p乙=(1−p1)p2p3+p1p2(1−p3)=p2(p1+p3)−2p1p2p3记该棋手在第二盘与丙比赛,且连胜两盘的概率为p丙则p丙=(1−p1)p3p2+p1p3(1−p2)=p3(p1+p2)−2p1p2p3则p甲−p乙=p1(p2+p3)−2p1p2p3−[p2(p1+p3)−2p1p2p3]=(p1−p2)p3<0p乙−p丙=p2(p1+p3)−2p1p2p3−[p3(p1+p2)−2p1p2p3]=(p2−p3)p1<0即p甲<p乙,p乙<p丙,则该棋手在第二盘与丙比赛,p最大.选项D判断正确;选项BC判断错误;p与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:D8、答案:B分析:由古典概率模型的计算公式求解.样本点总数为10,“抽出一本是故事书”包含3个样本点,所以其概率为310.故选:B.9、答案:AC分析:通过计算得出每次取到1号球的概率判断A;通过计算得出每次取到黑球的概率判断B;根据独立事件的定义判断C;通过计算得出次取到3,4号球的概率及对立事件的定义判断D.解:对于A ,每次取到1号球的概率为C 11C 51=15,故正确;对于B ,每次取到黑球的概率为C 31C 51=35,故错误;对于C ,“第一次取到黑球”和“第二次取到白球”相互之间没有影响,所以“第一次取到黑球”和“第二次取到白球”是相互独立事件,故正确;对于D ,每次取到3号球的概率为C 11C 51=15,每次取到4号球的概率为C 11C 51=15,它们互斥事件,而不是对立事件,故错误.故选:AC.10、答案:ACD分析:根据古典概型的定义逐项判断即可.由古典概型概念可知:试验的样本空间的样本点总数有限;每个样本点出现的可能性相等.故AC 正确;每个事件不一定是样本点,可能包含若干个样本点,所以B 不正确;根据古典概型的概率计算公式可知D 正确.故选:ACD11、答案:ABC分析:由频率和为1求参数a ,判断A ;由直方图求60分以下的人数、求[60,80)的频率判断B 、C ;由中位数的性质求中位数即可判断D.因为(a +0.01+0.02+0.03+0.035)×10=1,所以a =0.005,所以A 正确;因为不及格的人数为100×(0.005+0.035)×10=40,所以B 正确;因为得分在[60,80)的频率为(0.03+0.02)×10=0.5,所以从这100名参赛者中随机选取1人,其得分在[60,80)的概率为0.5,所以C 正确;这100名参赛者得分的中位数为60+0.10.03≠65,所以D 错误.故选:ABC.12、答案:9解析:根据对立事件的性质可知1y +4x =1,再利用基本不等式求x +y 的最小值.由事件A,B互为对立事件,其概率分别P(A)=1y,P(B)=4x ,且x>0,y>0,所以P(A)+P(B)=1y+4x=1,所以x+y=(x+y)(1y +4x)=5+4yx+xy≥5+2√4yx ⋅xy=9,当且仅当x=6,y=3时取等号,所以x+y的最小值为9.所以答案是:9小提示:方法点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方。
高中数学必修二第十章概率重点归纳笔记(带答案)

高中数学必修二第十章概率重点归纳笔记单选题1、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A .62%B .56% C .46%D .42% 答案:C分析:记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A +B ,“该中学学生既喜欢足球又喜欢游泳”为事件A ⋅B ,然后根据积事件的概率公式P(A ⋅B)= P(A)+P(B)−P(A +B)可得结果.记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A +B ,“该中学学生既喜欢足球又喜欢游泳”为事件A ⋅B , 则P(A)=0.6,P(B)=0.82,P (A +B )=0.96,所以P(A ⋅B)= P(A)+P(B)−P(A +B) =0.6+0.82−0.96=0.46 所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%. 故选:C.小提示:本题考查了积事件的概率公式,属于基础题.2、如图,开关K 1,K 2被称为双联开关,K 1可以与a ,b 点相连,概率分别为12,K 2可以与c ,d 点相连,概率分别为12,普通开关K 3要么与e 点相连(闭合),要么悬空(断开),概率也分别为12.若各开关之间的连接情况相互独立,则电灯L 1不亮的概率是( )A .18B .14C .34D .78 答案:C分析:利用对立事件,结合相互独立事件概率计算公式,计算出所求概率.先考虑对立事件“电灯L1亮”:首先需要“K3与e点相连”,同时满足“K1与a点相连且K2与c点相连”或“K1与b点相连且K2与d点相连”,因此电灯L1亮的概率P=12×(12×12+12×12)=14,故电灯L1不亮的概率为34.故选:C3、有一个人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是().A.至多有1次中靶B.2次都中靶C.2次都不中靶D.只有1次中靶答案:C分析:根据对立事件的定义判断即可.对立事件的定义是:A,B两件事A,B不能同时发生,但必须有一件发生,则A,B是对立事件,事件:至少有一次中靶包括恰有一次中靶和二次都中靶,所以对立事件是二次都不中靶.故选:C.4、以下现象中不是随机现象的是().A.在相同的条件下投掷一枚均匀的硬币两次,正反两面都出现B.明天下雨C.连续两次抛掷同一骰子,两次都出现2点D.平面四边形的内角和是360°答案:D分析:根据随机现象的定义进行判断即可.因为平面四边形的内角和是360°是一个确定的事实,而其他三个现象都是随机出现的,所以选项D不符合题意,故选:D5、生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35C .25D .15答案:B分析:本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.设其中做过测试的3只兔子为a,b,c ,剩余的2只为A,B ,则从这5只中任取3只的所有取法有{a,b,c},{a,b,A},{a,b,B},{a,c,A},{a,c,B},{a,A,B},{b,c,A},{b,c,B},{b,A,B},{c,A,B}共10种.其中恰有2只做过测试的取法有{a,b,A},{a,b,B},{a,c,A},{a,c,B}, {b,c,A},{b,c,B}共6种, 所以恰有2只做过测试的概率为610=35,选B .小提示:本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错. 6、下列事件:(1)在标准大气压下,水加热到100℃沸腾;(2)平面三角形的内角和是180°;(3)骑车到十字路口遇到红灯;(4)某人购买福利彩票5注,均未中奖;(5)没有水分,种子发芽了.其中随机事件的个数是( ). A .1B .2C .3D .4 答案:B分析:根据随机事件的定义进行判断即可.事件(1)是基本事实,因此是确定事件;事件(2)是基本事实,因此它是确定事件; 事件(3、(4)是随机出现,是随机事件;事件(5)是不可能事件, 故选:B7、若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P(A)=2−a ,P(B)=4a −5,则实数a 的取值范围是A .(1,2)B .(54,32)C .(54,43)D .(54,43] 答案:D分析:由随机事件A 、B 互斥,A 、B 发生的概率均不等于0,知{0<P(A)<10<P(B)<1P(A)+P(B)⩽1 ,由此能求出实数a 的取值范围.∵随机事件A 、B 互斥,A 、B 发生的概率均不等于0, 且P (A )=2−a ,P (B )=4a −5,∴ {0<P(A)<10<P(B)<1P(A)+P(B)⩽1 ,即{0<2−a <10<4a −5<13a −3⩽1 ,解得54<a ⩽43,即a ∈(54,43]. 故选:D .小提示:本题考查互斥事件的概率的应用,属于基础题.解题时要认真审题,仔细解答.8、某同学从家到学校要经过三个十字路口,设各路口信号灯工作相互独立,该同学在各路口遇到红灯的概率分别为12,13,14,则该同学从家到学校至少遇到一次红灯的概率为( ) A .124B .1124C .23D .34 答案:D分析:利用相互独立事件的概率乘法公式及对立事件的概率公式即可求解.解:由题意,该同学从家到学校至少遇到一次红灯的概率为P =1−(1−12)×(1−13)×(1−14)=34,故选:D. 多选题9、下列说法中正确的有( )A .若事件A 与事件B 是互斥事件,则P(AB)=0 B .若事件A 与事件B 是对立事件,则P(A +B)=1C .某人打靶时连续射击三次,则事件“至少有两次中靶”与事件“至多有一次中靶”是对立事件D .把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得的不是红牌”与事件“乙分得的不是红牌”是互斥事件 答案:ABC分析:根据互斥事件、对立事件的概念判断即可.解:事件A与事件B互斥,则不可能同时发生,所以P(AB)=0,故A正确;事件A与事件B是对立事件,则事件B即为事件A,所以P(A+B)=1,故B正确;事件“至少两次中靶”与“至多一次中靶”不可能同时发生,且二者必发生其一,所以为对立事件,故C正确;“甲分得的不是红牌”与事件“乙分得的不是红牌”可能同时发生,即“丙分得的是红牌”,所以不是互斥事件,故D错误.故选:ABC10、根据《环境空气质量标准》(GB3095﹣2012)和各项污染物的生态环境效应及其对人体健康的影响,空气质量指数(AQI)的数值被划分为六档(见表1).某市2021年6月1日到6月14日AQI的折线图如图2所示,夏彤同学随机选择6月1日到6月12日中的某一天到达该市,并停留3天,则下列说法正确的是()量A.该市14天的空气质量指数的极差为170B.夏彤同学到达当日空气质量良的概率为27C.夏彤同学在该市停留期间只有一天空气质量重度污染的概率为12D.每连续三天计算一次空气质量指数的方差,其中第5天到第7天的方差最大答案:CD分析:根据古典概型来计算概率,结合极差、方差概念即可求解.A选项,空气质量指数的最大值为218,最小值为34,所以极差为218−34=184,说法错误.B选项,1日至12日中,空气质量为良的日期为1日,3日,12日,故概率为312=14,说法错误.C选项,停留期间空气质量指数分别为:(79,34,59),(34,59,142),(59,142,218),(142,218,149),(218,149,38),(149,38,215),(38,215,150),(215,150,123),(150,123,159),(123,159,84),(123,159,84),(159,84,77),(84,77,42)共12种,其中只有一天空气质量重度污染为:(59,142,218),(142,218,149),(218,149,38),(149,38,215),(38,215,150),(215,150,123)共6种,概率为612=12,说法正确.D选项,方差反映数据的波动情况,5日—7日波动最大,故方差最大,说法正确.故选:CD.11、甲、乙两人在5次体育测试中的成绩(成绩为整数,满分为100分)如下表,其中乙的第5次成绩的个位数被污损,用x代替,则B.从甲的5次成绩中任取2次成绩,均大于甲的平均成绩的概率是310C.当x=3时,甲、乙两人的平均成绩相等D.乙的平均成绩低于甲的平均成绩的概率是310答案:BCD分析:直接求出甲的平均成绩,可判断A选项;列举出从甲的5次成绩中任取2次成绩样本空间,从而得出均大于甲的平均成绩的样本点,再根据古典概型求出概率,即可判断B选项;当x=3时,求出乙的平均成绩,即可判断C选项;列举出乙的第5次成绩的所有可能情况,从而得出低于甲的平均成绩的情况,从而求出概率,即可判断D选项.解:对于A,甲的平均成绩为91+86+88+92+935=90分,故A错误;对于B,从甲的5次成绩中任取2次成绩样本空间有Ω={(91,86),(91,88),(91,92),(91,93),(86,88),(86,92),(86,93),(88,92),(88,93),(92,93)},共10个样本点,其中均大于甲的平均成绩的样本点有3个,为(91,92),(91,93),(92,93),故所求概率为310,故B正确;对于C ,由于甲的平均成绩为91+86+88+92+935=90分, 当x =3时,则乙的平均成绩为87+85+86+99+935=90分,此时甲、乙两人的平均成绩相等,故C 正确;对于D ,乙的第5次成绩可能是90,91,92,93,94,95,96,97,98,99,共10种可能, 可知当x =3时,甲、乙两人的平均成绩相等,所以当乙的第5次成绩为90,91,92时,乙的平均成绩低于甲的平均成绩, 所以乙的平均成绩低于甲的平均成绩的概率是310,故D 正确.故选:BCD. 填空题12、一次期中考试,小金同学数学超过90分的概率是0.5,物理超过90分的概率是0.7,两门课都超过90分的概率是0.3,则他的数学和物理至少有一门超过90的概率为___________. 答案:0.9## 910分析:利用概率加法公式直接求解.一次期中考试,小金同学数学超过90分的概率是0.5,物理超过90分的概率是0.7,两门课都超过90分的概率是0.3,∴他的数学和物理至少有一门超过90的概率为:P =0.5+0.7−0.3=0.9. 所以答案是:0.9.13、某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45,35,25,且各轮问题能否正确回答互不影响,则该选手被淘汰的概率为_________. 答案:101125分析:设事件A i (i =1,2,3)表示“该选手能正确回答第i 轮的问题”,选手被淘汰,考虑对立事件,代入P(A 1),P(A 2),P(A 3)的值,可得结果;记“该选手能正确回答第i 轮的问题”为事件A i (i =1,2,3),则P(A 1)=45,P(A 2)=35,P(A 3)=25.该选手被淘汰的概率:P=P(A1̅̅̅+A1A2̅̅̅+A1A2A3̅̅̅)=P(A1̅̅̅)+P(A1)(A2̅̅̅)+P(A1)(A2)(A3̅̅̅)=15+45×25+45×35×35=101125所以答案是:101125小提示:求复杂互斥事件概率的两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和;(2)间接法:先求该事件的对立事件的概率,再由P(A)=1-P(A)求解.当题目涉及“至多”“至少”型问题时,多考虑间接法.14、“田忌赛马”的故事千古流传,故事大意是:在古代齐国,马匹按奔跑的速度分为上、中、下三等.一天,齐王找田忌赛马,两人都从上、中、下三等马中各派出一匹马,每匹马都各赛一局,采取三局两胜制.已知田忌每个等次的马,比齐王同等次的马慢,但比齐王较低等次的马快.若田忌事先打探到齐王第一场比赛会派出上等马,田忌为使自己获胜的概率最大,采取了相应的策略,则其获胜的概率最大为_________.答案:12##0.5分析:设齐王有上、中、下三等的三匹马A、B、C,田忌有上、中、下三等的三匹马a、b、c,列举出所有比赛的情况,以及齐王第一场比赛会派出上等马的比赛情况和田忌使自己获胜时比赛的情况,结合古典概型的概率公式可求得所求事件的概率.设齐王有上、中、下三等的三匹马A、B、C,田忌有上、中、下三等的三匹马a、b、c,所有比赛的方式有:Aa、Bb、Cc;Aa、Bc、Cb;Ab、Ba、Cc;Ab、Bc、Ca;Ac、Ba、Cb;Ac、Bb、Ca,一共6种.若齐王第一场比赛派上等马,则第一场比赛田忌必输,此时他应先派下等马c参加.就会出现两种比赛方式:Ac、Ba、Cb和Ac、Bb、Ca,其中田忌能获胜的为Ac、Ba、Cb,故此时田忌获胜的概率最大为12.所以答案是:12.解答题15、已知f(x)=x2+2x,x∈[-2,1],给出事件A:f(x)≥a.(1)当A为必然事件时,求a的取值范围;(2)当A为不可能事件时,求a的取值范围.答案:(1)(-∞,-1];(2)(3,+∞).分析:根据函数的解析式求得函数的最大值是3,最小值是−1,(1)当A为必然事件时,即不等式f(x)⩾a在[−2,−1]上恒成立,故有−1⩾a,由此求得实数a的取值范围.(2)当A为不可能事件时,即不等式f(x)⩾a在[−2,−1]上无解,故有3<a,由此求得实数a的取值范围.∵f(x)=x2+2x=(x+1)2-1,x∈[-2,1]∴f(x)min=-1,此时x=-1.又f(-2)=0<f(1)=3∴f(x)max=3.∴f(x)∈[-1,3](1)当A为必然事件时,即f(x)≥a恒成立,故有a≤f(x)min=-1,即a的取值范围是(-∞,-1].(2)当A为不可能事件时,即f(x)≥a一定不成立,故有a>f(x)max=3,则a的取值范围为(3,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10第十章重积分答案729973.利用二重积分的性质估计下列积分的值。
«Skip Record If...»«Skip Record If...»解:«Skip Record If...»«Skip Record If...»«Skip Record If...»从而«Skip Record If...»即«Skip Record If...»«Skip Record If...»«Skip Record If...»解:«Skip Record If...»则f(x,y)在D上的最大值«Skip Record If...»最小值«Skip Record If...»区域D的面积«Skip Record If...»从而«Skip Record If...»4.设f(x,y) 为一连续函数,试证:«Skip Record If...»证:由于f(x,y)连续,由二重积分中值定理知,存在点«Skip Record If...»,使得«Skip Record If...»所以«Skip Record If...»«Skip Record If...»第二节二重积分的计算1.计算下列二重积分(1) «Skip Record If...»解:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»。
(2)«Skip Record If...»解:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»。
«Skip Record If...»解:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»。
(4) «Skip Record If...»解:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»。
(5) «Skip Record If...»解:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»。
2.画出积分区域,并计算下列二重积分。
(1) «Skip Record If...»解:«Skip Record If...»«Skip Record If...»«Skip Record If...»。
«Skip Record If...»解:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»。
仅供学习与交流,如有侵权请联系网站删除谢谢2(3)«Skip Record If...»解:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»。
3.将二重积分«Skip Record If...»化为二次积分(两种次序都要),其中积分区域D是(1) «Skip Record If...»解:«Skip Record If...»«Skip Record If...»。
(2) «Skip Record If...»解:«Skip Record If...»«Skip Record If...»。
4.画出积分区域,改变下列二次积分的积分次序。
(1) «Skip Record If...»解:«Skip Record If...» (2) «Skip Record If...»解:«Skip Record If...»«Skip Record If...»«Skip Record If...»(3) «Skip Record If...»解:«Skip Record If...»«Skip Record If...»。
6.求由坐标平面、平面«Skip Record If...»、«Skip Record If...»及抛物面«Skip Record If...»所围成的立体体积。
解:立体在xoy面投影区域为«Skip Record If...»«Skip Record If...»,«Skip Record If...»,所求立体体积为«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»。
7.计算二重积分«Skip Record If...»。
其中«Skip Record If...»}。
解:设«Skip Record If...»«Skip Record If...»则«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»8.把二重积分«Skip Record If...»化为极坐标下的二次积分,其中积分区域«Skip Record If...»是:(1) 由«Skip Record If...»所围成;(2) 圆«Skip Record If...»与圆«Skip Record If...»之间的区域。
解:(1) «Skip Record If...»«Skip Record If...»(2) «Skip Record If...»«Skip Record If...»9.将下列各题中的积分化为极坐标形式的二次积分。
仅供学习与交流,如有侵权请联系网站删除谢谢3(1) «Skip Record If...»;解:(1) 两个二次积分所对应的重积分的积分区域分别是«Skip Record If...»和«Skip Record If...»两者的并集是环形区域«Skip Record If...»在第一象限的部分,于是«Skip Record If...»«Skip Record If...»(2) «Skip Record If...»«Skip Record If...»(3) «Skip Record If...»。
«Skip Record If...»«Skip Record If...»10.利用极坐标计算下列各题。
(1) «Skip Record If...»,其中«Skip Record If...»为«Skip Record If...»的圆域;解:«Skip Record If...»«Skip Record If...»«Skip Record If...»(2) «Skip Record If...»,其中«Skip Record If...»;解:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»(3) «Skip Record If...»,其中«Skip Record If...»;解:«Skip Record If...»«Skip Record If...»(4) «Skip Record If...»,其中«Skip Record If...»。