光纤光学重要知识点

合集下载

光纤光学基础知识

光纤光学基础知识
光纤材料色散不会在空间展开,表现为不同波长的光 程不同,到达光纤另一端的时间也不相同。 光纤波导色散 对于同一阶次的模式,不同波长的传播常数β不同,光 程不同,称为波导色散。 光纤模间色散 对于同一波长的光,不同模式的传播常数β不同,光程 不同,称为模间色散。 模间色散只存在于多模光纤中,渐变折射率多模光 纤的模间色散参数优于阶跃折射率多模光纤。 单模光纤中不存在模间色散,为了工艺简单,不需设 计成渐变折射率。
第二窗口
0.1 0.6
0.8
1.0
1.2 波长(um)
1.52Βιβλιοθήκη 0图4.石英光纤损耗谱典型曲线
光纤的传输特性
目前光通信的三个窗口: 0.85um-第一窗口,短距离多模光通信; 1.31um-第二窗口,长距离单模和短距离多模光通信; 1.55um-第三窗口,长距离单模光通信。 我们看到,在1.31um和1.55um之间的1.385um处有 一个吸收峰,这是由于OH-离子的吸收造成的,通常 称之为水峰。 Lucent公司率先推出AllWave光纤,Corning公司相 继推出LEAF光纤,消除了水峰,将光纤的第二和第三 窗口连接起来,可以在1280nm-1625nm之间345nm 的带宽内进行通信,这对CWDM系统的应用大为有利。
光纤中的传播模式
单模与多模 我们已经知道,光纤中传输的光必须同时满足全反 射条件和驻波条件。前者与纤芯和包层折射率差有关 (折射率差越大则孔径角越大),后者与纤芯尺寸有关 (纤芯越大则允许的模式数量越多),因此我们可以用 一个参数来描述光纤的结构特性-归一化频率V。
V a
2
0
n n
2 1
光纤的传输特性
色散对光纤通信系统的影响 光源总是有一定的谱线宽度,当一个光脉冲通过光 纤,由于材料色散和波导色散,其中不同波长成分到 达的时间将不同,即脉冲被展宽了。如果脉冲展宽达 到脉冲间隔宽度,将会造成码间串扰,如图9所示。 材料色散在1.3um附近为零,且零色散波长与光纤 掺杂种类和浓度无关;而波导色散随折射率分布(即光 纤掺杂情况)而变,因此可设计在某一特定波长色散为 零的光纤,在此波长上材料色散和波导色散相互抵消。 t t 图9.材料色散造成的码间串扰

光纤光学-文档资料

光纤光学-文档资料

22
折射光线
条件:
0< n(r0) cosθz(r0)<√n22-(r02/a2)n2(r0)sin2θz(r0)cos2θφ(r0)
内散焦面半径: r = rr1
02.07.2020
23
GIOF中的最佳折射率分布
近轴子午光线: P2/ A
02.07.2020
P2/n(r0)nc0 oA sz(r0) 24
02.07.2020
21
隧道光线
条件:
n2> n(r0) cosθz(r0)>√n22-(r02/a2)n2(r0)sin2θz(r0)cos2θφ(r0)
光线存在区域: rl1 < r < rl2 r > rl3
内散焦面半径:rl1 外散焦面半径:rl2 辐射散焦面半径: rl3
02.07.2020
(dz/dS)|r0 = cosθz(r0)
r r r ˆ z z ˆ x
z r
er
r0
r0 d
z dz
ds
r0
dr
y
e
er
02.07.2020
11
轴向运动
分析轴向分量方程:
d n dz 0 dS dS
有: n(dz/dS)=const., 令其为 n , 则有
n =n(r)dz/dS=n(r)cosθz(r)=n(r0)cosθz(r0)
=r0n(r0)sinθz(r0)cosθφ(r0)
I ---- 第二射线不变量
02.07.2020
15
角向运动特点
• 光线的角动量:
r2ω=r2dφ/dt=
Ic/
2n 恒为常数

光纤光学重要知识点共43页

光纤光学重要知识点共43页

31的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
光纤光学重要知识点
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克

光纤光学基础知识

光纤光学基础知识

光纤光学基础知识嘿,朋友们!今天咱们来唠唠光纤光学,这可是个超级有趣又神秘的玩意儿呢。

你可以把光纤想象成超级高速的光滑梯。

光就像一个个调皮的小小孩,哧溜一下就沿着这个滑梯跑下去了,速度那叫一个快啊,比火箭还火箭。

光纤呢,就负责把这些小光孩安全地送到目的地,而且这个滑梯特别细,细得就像一根超级超级瘦的面条,感觉一阵微风就能把它吹断,但实际上它可坚韧着呢。

光纤里面的全反射现象就更有趣了。

这就好比光在光纤里玩反弹球游戏。

光碰到光纤的壁,就像球碰到墙壁一样,弹回来继续跑,而且每次都弹得特别精准,一点都不跑偏。

要是人能有这么厉害的反射能力,那打篮球都不用愁投篮不准啦,光靠反弹就能把球弄进篮筐。

光纤的传输带宽啊,大得就像宇宙一样。

可以想象它是一个超级大的货车,能拉好多好多数据这个“货物”。

不管是视频、音频还是各种复杂的信息,在它眼里都像小蚂蚁一样轻松就能运输。

而那些传统的传输方式呢,就像小三轮,拉不了多少东西,还跑得慢。

说到光纤的材料,那也是相当讲究的。

就像给光做一个豪华的住宅,既要透明又要坚韧。

这材料就像超级英雄的铠甲,保护着里面的光,让光可以在里面无忧无虑地奔跑,不会受到外界的干扰。

要是这个材料有一点点瑕疵,就像房子漏了个洞,光可能就跑丢了,那可就麻烦大了。

光纤的弯曲也很神奇。

你以为它弯了光就过不去了?错!光纤就像一个柔软的小蛇,不管怎么弯曲,光都能顺着它的身体走。

这就好比你在一个弯弯曲曲的迷宫里,有个超级厉害的导航(光),不管迷宫怎么拐,导航都能准确带你找到出口(目的地)。

光纤光学在通信领域的地位那可是相当高啊。

它就像通信界的国王,统治着整个数据传输的王国。

没有它,我们现在的网络世界就会变得乱糟糟的,就像一群没头的苍蝇到处乱撞。

光纤还有一个厉害的地方就是保密性好。

这就像给数据穿上了一层隐身衣,别人想偷看都看不到。

光在光纤里就像一个神秘的特工,悄悄地传递着重要信息,外面那些想搞破坏的“坏蛋”根本找不到它的踪迹。

光纤光学重要知识点

光纤光学重要知识点
大?为什么? 6. 简述光纤中三种色散的机理。在什么条件下光纤的色散为零? 7. 什么叫模场的“稳态分布”? 8. 简述OTDR的工作原理。 9. 简述折射近场法的工作原理。 10. P120-121课后习题5.2,5.4,5.9,5.22,5.23(1)
14
孙琪真:光纤光学 华中科技大学·光电子工程系
程?写出该波导场方程式。
8
孙琪真:光纤光学 华中科技大学·光电子工程系
3
1. 说明从波动方程到波导场方程两次分离变量的依据。 2. 波导场方程具有什么样的数学特征? 3. 说明光线在SIOF和GIOF中的轨迹曲线是什么样的。 4. 传播常数的的物理意义是什么。 5. 说明V、U、W参数的物理意义及其相互关系。 6. 说明光波导数值孔径的物理意义 7. 子午光线的主要特征是什么? 8. 光线时延差影响光通信的什么性能? 9. 在什么条件下才可以唯一确定光波导中的模式? 10. 在纤芯和包层中选取的贝赛尔函数分别具有什么数学
13
孙琪真:光纤光学 华中科技大学·光电子工程系
5
1. 哪些因素限制光通信传输距离? 2. 一光纤长220公里,已知光纤损耗为0.3dB/km,当输出光功
率为2.5 mW时,输入光功率为多少? 3. 为什么光纤在1.55mm的波长损耗比1.3mm波长小? 4. 光纤的损耗能否降为零?为什么? 5. 三角形折射率分布光纤与平方率折射率分布光纤哪种波导色散
图1
15
孙琪真:光纤光学 华中科技大学·光电子工程系
色散值计算
标准单模光纤,普通激光二极管光谱宽度 6 nm,传输10 公里距离,色散脉冲展宽值为 :
D = 17ps/nm/km × 6 nm × 10 km = 1020 ps
对于 1 Gbps速率的光脉冲,脉宽约为 1 ns. 如果脉冲展宽 达到脉宽的20%,则系统将不能工作。上述情形显然不适 合于1 Gbps速率,因为脉冲展宽已经达到100%;但是对 于展宽为1300ps。

光纤光学重点

光纤光学重点

一、名词解释1.光纤光栅(P144):通过一定方法使光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅2.数值孔径:入射媒质折射率与最大入射角的正弦之积3.基模模场半径(P101):基模场在光纤的横截面分布曲线中心最大值e-1处所对应的半径。

4.子午光线:子午面上传播的光线5.光隔离器(P140):是一种基于法拉第旋转的非互易性的传输器件,只允许光波沿着一个方向传输(光信号沿着指定正方向传输时损耗低,光路被接通),而另一个方向的传输是禁止的。

6.平均能流密度(P20):在足够长的观测时间内平均单位时间内通过单位面积的能量。

能流密度(百度):在一定的空间范围内,单位面积所取得的或单位重量能源所能产生的某种能源的能量或功率。

7.相速度(P19):场的等相位面沿Z轴的传播速度。

群速度(P19):光脉冲或波包的中心或光能量沿Z轴的传播速度,也即场的等幅面沿z 轴的传播速度。

8.群速度色散:在高速大容量的光纤通信中,由于光纤介质表现出非线性,光脉冲包络的形状会发生变化,这种影响光信号的接收的变化成为群速度色散9.光无源器件(P122):有光纤式和光纤耦合分立元件两种,前者利用自身特性直接实现功能,后者利用光学元件对光的传播特性进行交换,并用透镜奖器件和光纤耦合。

10.自聚焦透镜(P122):芯径大,长度短,数值孔径大,光线在其中的传播轨迹为正弦曲线。

由一点发出的不同角度的光线经过一周期的传播后又汇聚到另一点的类似平方律折射率分布光纤。

11.模式色散:在多模光纤中,传输的模式很多,不同的模式,其传输路径不同,所经过的路程就不同,到达终点的时间也就不同,这就引起了脉冲的展宽12.传播常数(P17具体看书):纵向传播常数β:导模的相位在Z轴单位长度上的变化量,波矢在Z轴上的投影β=K·e z=nk0cosθz;横向传播常数:波矢k的横向分量,U和W分别反映了导模在芯区中的驻波场的横向振荡频率,W值则反映了导模在包层中的消逝场的衰减速度二、简答题1.光纤导光的基本原理全反射原理2.什么是光纤的色散?光纤的色散主要有几种?其对光纤通信有何影响?在光纤中传输的光信号(脉冲)的不同频率成分或不同的模式分量以不同的速度传播到达一定距离后必然产生信号失真(脉冲展宽),这种现象叫做光纤的色散。

《光纤光学教学课件》第十九讲

《光纤光学教学课件》第十九讲

光纤传感器的原理与分类
原理
光纤传感器利用光在光纤中的传输特性变化来检测各种物理量(如温度、压力、 位移、速度等)的变化。当外界参数作用于光纤时,光纤中光的强度、相位、波 长等会发生改变,从而检测出外界参数的变化。
分类
根据不同的分类标准,光纤传感器可以分为多种类型。按工作原理可分为功能型 和非功能型;按被测物理量可分为强度型、干涉型、偏振型和分布式光纤传感器 等;按应用领域可分为工业、环境、医疗和军事等领域的光纤传感器。
04 新型光纤技术及发展趋势
CHAPTER
光子晶体光纤
光子晶体光纤是一种新型光纤,其结构由石英、聚合物或复合材料制成,具有光子 带隙特性。
光子晶体光纤具有高非线性、低损耗、低色散等优点,在光通信、光传感、激光等 领域具有广泛的应用前景。
光子晶体光纤的制造工艺主要包括微纳加工、化学气相沉积等,其应用场景包括光 子晶体激光器、光子晶体光纤传感器等。
光纤的传输损耗
光纤的传输损耗
光纤在传输过程中会因为吸收、散射和弯曲等原因产生能量损耗,这些损耗限 制了光信号的传输距离和信号质量。
减小传输损耗的方法
通过采用低损耗光纤、优化光纤制造工艺、减小光纤弯曲半径等方法可以减小 光纤的传输损耗。
02 光纤通信系统概述
CHAPTER
光纤通信系统的组成
光纤
传输光信号的介质,由石英等 材料制成。
在成本方面,多模光纤制造成本较低,而单模光纤制 造成本较高。
光纤技术的发展趋势
未来光纤技术的发展将更加注重高带宽、高速率、低损耗、低色散等方 面。新型光纤材料和制造工艺的不断涌现,将推动光纤技术的进一步发 展。
新型光纤技术还包括光子晶体光纤、光子带隙光纤等,这些光纤具有优 异的光学性能和潜在的应用前景。

光纤光学重要知识点 PPT

光纤光学重要知识点 PPT
《 光纤光学》复习提纲
光线理论 模式理论 光纤性能 光纤器件 光纤连接
光线理论
重要概念
– 光波导、光纤分类、子午光线、数值孔径、传输 容量、传光传像特性、散焦面、广义折射率定理、 光线轨迹及特点、光线分类
重要公式
– 射线方程、散焦面半径、折射率分布、数值孔径
模Байду номын сангаас理论
重要概念
– 模式定义及性质、模式分类及场分布特点、模 式简并、线偏振模、主模、分离变量法、传播 常数、导模截止与远离截止、基模场分布函数、 基模偏振特性、色散曲线分析、模式确定及数 目分析、导模光斑分布图、模式输出特性、 WKB近似方法思路
写出SIOF中模式数目与V值的关系式。 弱导光纤中组成线偏振模式的理论依据是什么?
为什么LP0m模式只有两重简并? 实际光纤中传播的模式是线偏振模式吗?为什么?
画出LP6,8模式场分布示意图。 高阶模式与低阶模式哪个输出角度大?
4
GIOF的数值孔径有何不同? 分别说明内散焦面、外散焦面、辐射散焦 面的物理意义。 为什么GIOF又称为“折射型”光纤? GIOF中光线角向运动有何特点? 分别说明约束光线、隧道光线和折射光线 的特点。
2
设计一种光波导结构,其传光波导层为平板形 状,标出折射率结构。 从数学上证明,在均匀折射率介质中,光纤轨 迹为直线传播。 如果已经知道光纤中只允许1个模式存在,能否 通过外界激励获得2个模式传播? “纵横关系式”有何作用? 光场分量的哪一个分量总是独立满足波导场方 程?写出该波导场方程式。
大家有疑问的,可以询问和交流
光纤器件
重要概念
– 自聚焦透镜的成像特性、光纤耦合器/WDM器 件的工作原理及设计、光隔离器/环行器的工作 原理及设计、光纤光栅的工作原理及设计、光 纤激光器与放大器的工作原理及设计。

光纤光学知识共26页文档

光纤光学知识共26页文档

光纤光学知识
第十一章 光纤光学系统
11-1 概 述
• 光纤一般是指由透明介质构 成的,直径与长度之比小于 1:1000的细丝。光线由光 纤的一端入射,沿着光纤传
播,最后由另一端出射。单
条光纤只能起传光的使用, 不能成像,如图11-1所示, 如果把许多光纤固定在一起,
构成光纤束,就可以把具有
一定面积的像面,通过每根
$11-2 全反射光纤的光学性质

图11-2
• 大多数光纤的直径比光的波长大得多,对这类光纤可以用几何光学的方法 研究它的光学性质,本节研究全反射光纤的光学性质。
• 最简单的光纤是由均匀透明介质构成的圆柱形细丝,称为单质光纤,如 图11-2所示。
• 光线在光纤内表面发生多次全反射,使光线由一端沿着光纤传播至另一 端。这种光纤的缺点是光纤表面的很小的缺陷,尘埃,污物都将使光发生 散射而射出光纤,引起光能损失。在一般光学系统中的全反射棱镜的反射 面上,虽然也存在这些缺陷,但是在一个棱镜系统中只有若干次反射,因 而影响不大。而在光纤中,光线可能要经过上千次上万次全反射,如果每 次全反射都损失一部分光能,总的损失就十分可观了。这种单质光纤特别 不适用于传像的光纤束,因为在光纤束中,光纤之间是紧密接蚀的,光线 有可能从一根光纤透人另一根光纤,这将影响传像的清晰度。
此光纤的数值孔径代表了光纤的传光能力,它是光纤的重要性能指标。
• 欲增大光纤的数值孔径,必须增加内外两种玻璃的折射率差。由 于高折射率光学玻璃的发展,目前玻璃光纤的最大放值孔径可以 达到1.4。当然对NA大于1的情形,光纤的两端必须位在浸液中, 好象显微物镜的数值孔径大于l肘,必须采用浸液物镜一样。
• 超出光纤数值孔径的光线,就会漏出光纤,并进入相邻的光纤, 这种光线,对传像光纤束就会降低像的清晰度,形成噪声。为了 防止漏光,在光纤的外包层外边,再用一层由高吸收玻璃构成的 包层。它可以把漏光吸收,防止嗓声的产生。

光纤光学基础

光纤光学基础

光线在光纤内单位长度传输的路程仅取决于纤端入射角以及
相对折射率n0/n1,与光纤的直径无关。
tg 1 2a 2atg
2a
1
n02
n12 sin
2
1
光线在光纤内单位长度内全反射的次数不仅取决于纤端入射
角以及相对折射率n0/n1,且与光纤的成直径反比。
12
2.斜光线的传播
斜光线:不在子午面内的光线,它与光纤的轴线
既不平行也不相交,其空间轨迹为空间螺旋折线
。它可以是左旋,也可以是右旋,但它与光纤的
中心轴是等距的。
斜光线在光纤内传输的条件:
o
0
P K
由折射定律有:
sin
0
n2 n1
Q
o
T
13
MH
由:sin cos sin
可得:
cos sin 0
1
n2 n1
2
同样在纤端由折射定律有: n0 sin n1 sin
之下降。实验表明,当R/a<50, 透光量开始下降;
R/a20,明显下降。
18
4.光纤端面的倾斜效应
19
光纤光学特性
光纤色散 光纤偏振与双折射 光纤损耗
光纤损耗
10 lg( Pi ) dB / km
L Po
21
由于:sin 1;
a 1 R
故有:S0 S子
光纤弯曲时,光线在光纤内单位长度的传输的路程小于 子午线时的情形。
17
单位光纤长度的反射点数:
0
1
1 a

光纤弯曲时,光线在光纤内单位长度的反射点数小 于子午线时的情形。
结论:光线弯曲时,比起不弯曲时其数值孔径、

光纤重要基础知识点

光纤重要基础知识点

光纤重要基础知识点
光纤是一种用于传输光信号的细长柔韧的光学纤维。

光纤作为一种高效、高速、大带宽的通信传输介质,在现代通信领域中发挥着重要的
作用。

下面我们将介绍一些光纤的重要基础知识点。

1. 光纤的结构:光纤由一个或多个玻璃或塑料制成的芯线和包裹在外
面的护套组成。

光纤的芯线是光信号传输的核心部分,护套则起到保
护和绝缘的作用。

2. 光纤的工作原理:光信号通过光纤内的多次全反射来进行传输。


光信号从光纤的一端进入时,在芯线内部不断发生全反射,从而使光
信号沿着光纤的长度传播。

光信号会在光纤两端的光接口处进行转换,从光纤中释放出或接收光信号。

3. 光纤的优势:相比传统的电缆传输方式,光纤具有许多优势。

光纤
传输速度快,能够支持大容量的数据传输;光纤抗干扰能力强,不受
电磁干扰和辐射影响;光纤传输距离远,信号衰减较小;光纤重量轻、体积小,便于安装和布线等。

4. 光纤的应用领域:光纤广泛应用于通信、互联网、计算机网络、医疗、军事、航天等领域。

在通信领域中,光纤网络被广泛应用于长途
电话、宽带接入、数据中心连接等。

5. 光纤的分类:根据光纤的制作材料和结构不同,可以将光纤分为多
种类型,如单模光纤和多模光纤、塑料光纤和玻璃光纤等。

每种类型
的光纤在不同的应用场景中有着各自的特点和适用性。

总的来说,了解光纤的基础知识对于我们理解现代通信技术的发展和
使用具有重要意义。

光纤作为一种高效可靠的通信传输介质,不断推动着信息技术的进步和创新。

光纤光学 学习指南

光纤光学  学习指南

第一部分.光纤光学需要掌握的基本概念与重要结论第一章.绪论(4学时)1.光纤的优缺点优点:大容量;低损耗;抗干扰能力强;保密性好;体积小重量轻;材料取之不竭;抗腐蚀耐高温。

缺点:易折断;连接分路困难;怕水;怕弯曲。

2.光纤的分类重点掌握(1)光纤的结构,纤芯、包层、涂覆层的特点与作用(2)阶跃折射率分布光纤(SIOF)与渐变折射率分布光(GIOF)的特点与区别,折射率分布形式。

一些基本参数的意义与其表达式:相对折射差∆的意义与表达式;折射率分布参数g的意义(当g=∞时为SIOF,当g=2时为平方率分布光纤,当g=1时为三角分布光纤)。

(3)单模光纤与多模光纤的特点与区别(传输的模式数,芯径的大小,归一化频率);归一化频率的意义与表达式(阶跃单模光纤的判据:V<2.405,渐变单模光纤的判据:V<3.508。

注意我们经常见到的2.405 是对阶跃光纤而言的)。

简单了解其它种类的光纤,例如保偏光纤与有源光纤(后面的课程会学到)。

3.光纤的制备工艺简单的了解一下。

第二章.光纤光学的基本方程(2学时)1.分析光纤波导的两种理论“几何光学方法”与“波动光学理论”的应用条件(几何光学方法:芯径远大于光波长;波动光学理论:芯径与波长可比例)与特点。

2.由麦克斯韦方程组出发推导波导场方程(1)“三次分离”,基本过程以及能够这样分离的依据“电磁”分离:由麦克斯韦方程组到波动方程“时空”分离:由波动方程到亥姆霍兹方程“横纵”分离:由亥姆霍兹方程到波到场方程(2)SIOF与GIOF中光线方程的意义,即SIOF与GIOF中光线的传播形式3.模式及其基本性质(1)模式的基本概念与定义(2)TEM、TE、TM、HE、EH模式的特点(3)纵向传播常数β横向传播常数W、U的意义(重点了解W的意义),以及W、U、V之间的关系(4)截止与远离截止的概念与基本条件(W=0截止,W=∞远离截止)(5)相速度、群速度、群延时的基本概念(6)线偏振模的概念第三章.阶跃折射率分布光纤(6学时)1.几何光学分析方法主要掌握一些基本的概念,“子午光线”与“偏斜光线”的定义;数值孔径的表达式,以及其物理意义(标志着光纤收光能力以及与光源耦合时偶和效率的大小),数值孔径与传输带宽的关系(成反比)。

光纤光学知识总结

光纤光学知识总结

光纤光学知识总结1. 引言光纤光学是一门研究光传输和操控的学科,它是现代通信、医学和工业等领域中不可或缺的关键技术。

光纤光学利用光纤作为传输介质,通过光的折射和全反射实现信号传输。

本文将对光纤光学的基本原理、传输性能和应用领域进行总结和介绍。

2. 光纤的基本原理光纤是一种通过内部光的全反射实现光信号传输的介质。

它由一个中心芯和一个外包层组成。

中心芯是光信号传输的主要部分,通常由高折射率的玻璃或塑料材料构成。

外包层则是低折射率的材料,用于包裹和保护中心芯。

光纤通过光的折射和全反射,实现将光信号沿着光纤传输的目的。

3. 光纤的传输性能3.1 传输带宽光纤的传输带宽是指光纤能够传输的最大频率信号的能力。

它受到光纤的材料特性、设计和制造工艺等因素的影响。

高质量的光纤能够支持更高的传输带宽,从而实现更高速率、更大容量的数据传输。

3.2 传输损耗传输损耗是光信号在光纤中传输过程中的能量损失。

它由散射、吸收和弯曲等因素引起。

传输损耗通常以每单位长度的衰减值(dB/km)来表示。

光纤的传输损耗越低,传输距离就越长,信号质量就越好。

3.3 色散色散是指光信号在光纤中传输过程中,不同频率的光信号由于折射率的差异而传播速度不同的现象。

色散会导致光脉冲的展宽和失真,限制了光信号的传输距离和速率。

4. 光纤光学的应用领域4.1 光通信光通信是光纤光学的主要应用之一。

光纤光学的高带宽和低损耗特性使得光纤成为主流的长距离通信传输介质。

光纤通信系统通过调制光信号来传输数据,实现了高速率、大容量的信息传输。

4.2 医学影像光纤光学在医学影像领域有广泛的应用。

通过光纤的灵活性和小尺寸,可以将光信号传输到人体内部,实现光学成像和激光手术等应用。

例如,内窥镜和激光手术器械中都使用了光纤。

4.3 工业检测光纤光学在工业检测领域也具有重要的应用价值。

光纤传感器可以通过测量光的强度、相位和波长等参数,实现对温度、压力、液位等物理量的测量。

光纤传感器具有高精度、抗干扰和耐腐蚀等特点,被广泛应用于工业自动化和安全监测等领域。

光纤光学知识点总结

光纤光学知识点总结

光纤光学知识点总结第一部分:光的基本特性1. 光的波动特性光是一种电磁波,具有波动和粒子性质。

其中,波动特性表现为光波具有波长、频率、振幅和相位等特性,而粒子性质表现为光子是光的基本粒子,具有动量和能量。

2. 光的传播方式光的传播方式主要有直线传播和曲线传播两种。

直线传播是指光在均匀介质中以直线传播的方式进行传播,而曲线传播是指光在非均匀介质中因受到折射、反射等影响而沿曲线传播。

3. 光的衍射和干涉光的衍射是指光波在遇到缝隙或障碍物时产生偏折现象,而干涉是指两束光波相遇时产生互相干涉的现象。

衍射和干涉是光波的特有现象,是光学研究中重要的现象之一。

第二部分:光纤的基本结构和工作原理1. 光纤的基本结构光纤由芯、包层和外被组成。

其中,芯是光信号传输的核心部分,包层是为了保护芯而设置的,而外被则是为了保护整根光纤而设置的。

2. 光纤的传输特性光纤的传输特性主要包括色散、衰减和非线性失真等。

其中,色散是指不同波长的光波由于折射率的不同而产生的传输延迟差异,衰减是指光在传输过程中能量的损失,而非线性失真是指光波在非线性介质中传输时产生的波形失真现象。

3. 光纤的工作原理光纤的工作原理主要包括全内反射、多模传输和单模传输等。

其中,全内反射是指光在光纤中由于折射率不同而产生的全内反射现象,多模传输是指光纤中可以传输多个模式的光信号,而单模传输是指光纤中只能传输一个模式的光信号。

第三部分:光纤的应用领域1. 通信领域光纤在通信领域有着广泛的应用,主要包括长途通信、城域通信、局域通信和家庭通信等。

其中,长途通信是指利用光纤进行跨国、跨洲的通信传输,城域通信是指利用光纤进行城市范围内的通信传输,局域通信是指利用光纤进行企业或园区内的通信传输,而家庭通信是指利用光纤进行家庭内部的通信传输。

2. 医疗领域光纤在医疗领域有着广泛的应用,主要包括内窥镜、激光治疗和医学影像等。

其中,内窥镜是指利用光纤传输光源,使医生可以在体内进行观察和手术,激光治疗是指利用光纤传输激光能量进行疾病治疗,而医学影像是指利用光纤传输光源,进行医学图像的采集和传输。

光纤光学总结

光纤光学总结

说明:重点放在了二三四章以及第五章前面部分,别的则比较缩略。

第一章1.光纤通信优点宽带宽,低损耗,保密性好,易铺设2.光纤介质圆柱光波导,充分约束光波的横向传输(横向没有辐射泄漏),纵向实现长距离传输。

基本结构:纤芯、包层、套塑层光波导:约束光波传输的媒介导波光:受到约束的光波光波导三要素:"芯 / 包”结构凸形折射率分布,n1>n2低传输损耗3.光纤分类通信用和非通信用4. 单模光纤:只允许一个模式传输的光纤;多模光纤:光纤中允许两个或更多的模式传播。

5. 如何改善光纤的传输特性:减少OH- ,降低损耗;改变芯经和结构参数,色散位移;改变折射率分布,降低非线性6.光纤制备工艺预制棒:MCVD OVD VAD PCVD之后为光纤拉丝,套塑,成缆工艺。

第二章1.理论根基2.2. 光纤是一种介质光波导,具有如下特点:①无传导电流;②无自由电荷;③线性各向同性3. 边界条件:在两种介质交界面上电磁场矢量的E(*,y)和H(*,y)切向分量要连续,D与B 的法向分量连续:4.由程函方程推得射线方程,再推得光线总是向折射率高的区域弯曲。

5. 光纤波导光波传输特征:在纵向(轴向)以"行波”形式存在,横向以"驻波”形式存在。

场分布沿轴向只有相位变化,没有幅度变化。

6.模式求解波导场方程可得本征解及相应的本征值。

通常将本征解定义为"模式”. 每一个模式对应于沿光波导轴向传播的一种电磁波;每一个模式对应于*一本征值并满足全部边界条件; 模式具有确定的相速群速和横场分布.模式是波导结构的固有电磁共振属性的表征。

给定的波导中能够存在的模式及其性质是已确定了的,外界激励源只能激励起光波导中允许存在的模式而不会改变模式的固有性质。

(χ和β及边界条件均由光纤本身决定,与外界激励源无关)横模光波在传输过程中,在光束横截面上将形成具有各种不同形式的稳定分布,这种具有稳定光强分布的电磁波,称为横模。

光纤光学第二章

光纤光学第二章
第22页,本讲稿共39页
d ds
n
r
dr ds
n
r
1. 在均匀折射率介质中,光线轨迹为直线传播。
2. 设R是光线弯曲的曲率半径,N为光线法向单位
矢量,则:
1 R
1
nr
N
n r
3. 球面对称媒质中的光线都是平面曲线,位于通过原
点的某一平面上
第23页,本讲稿共39页
5. 波导场方程与模式
亥姆霍兹方程: 2 x, y, z k 2 x, y, z 0
优点:具有理论上的严谨性,未做任何前提近似,因此 适用于各种折射率分布的单模及多模光纤
缺点:分析过程较为复杂
第4页,本讲稿共39页
光纤光学的研究方法
适用条件 研究对象 基本方程 研究方法 研究内容
几何光学方法
d 光线 射线方程 折射/反射定理 光线轨迹
波动光学方法
d 模式 波导场方程 边值问题 模式分布
n2k0 n1k0
•β实际上是等相位面沿z轴的变化率;
•β数值分立,对应一组导模;
•不同的导模对应于同一个β数值,则称这些导模简并
2
r
n12n22为实数 包层 : 为纯虚数
第28页,本讲稿共39页
3. 归一化频率(V)
对于给定的光纤,其传输的导模由其结构参数限定。 光纤的结构参数可由其归一化频率V表征:
E0, H0是振幅, k0Q是相位,Q是光程
E E0 ik0Q E0 expik0Q
当0 0或k0 时
k0Q很大, 上式右方的第一项可略去(几何近似),可得:
第14页,本讲稿共39页
E ik0Q E0 expik0Q
同理:
H ik0Q H0 expik0Q

光纤基础知识-光学知识

光纤基础知识-光学知识

光纤基础知识50 光的本质是什么?答 如果问光是什么?那么从物理学角度来说,光是一种电磁波。

在电视,广播和无线通信中所使用的点波,以及用于X光摄影中的x射线,用于放射线治疗的Y射线,这些也都是一种电磁波。

因此,可以说光就是这些电磁波的同类。

电磁波谱中的各种频率(或波长)的波,如固1.3—l所示。

其中光波波长范围是从数纳米(1nm:10—9m)到数百微米(1pm=10-6m)。

通常所说的电波是指远比光波波长长的电磁波,而X射线和Y射线是指比光波波长更短的电磁波。

在光谱范围内,如按波长进一步分类,可得到如图1,3-2所示的各种波长的光。

但各类光谱之间没有明确的界线。

作用于人眼井可以引起视觉的光,其波长是从380—400nm附近到76O~800nm附近之间,这区域的光通常称之为可见光.波长不同意味着额色的不同。

可见光中波长长的光呈红色,波长短的光呈蓝色(参照图1,3-3)。

(图见下页)图1.3-1电磁波的种类和名称图1.3-2 各种波长的光图1.3-3 可见光的波长和颜色51 光具有什么性质答:光有如下三大性质:1.直线传播性在同一种介质中,光总是沿着直线前进。

2.反射性在不同介质的交界面上,一部分入射光要产生反射。

3.折射性在不同介质的交界面上,没有产生反射的入射光继续前进而产生折射,行进方向发生了改变。

日常生活中的影子以及人们不能直接看见障碍物后的物体等现象都可说明光的直线传播性。

自然界中湖水倒映着对岸的景色的现是就是反射的一个例子。

光的反射遵循反射定律。

由反射定律可知,入射光线和反射光线在同一个平面内并位于反射界面法线的两侧,光线的入射角i θ和反射角r θ相等。

作为光的折射现象的一个例子,譬如把筷子放入注满水的玻璃杯中,看上去筷子似乎折弯了一样。

在折射现象中,光线的入射角i θ和折射角t θ的关系遵循欺涅尔定律。

如图 1.4-1所示,光线从折射率为的介质以1n i θ入射角射到介质交界面,并以折射角t θ进入折射率为的介质之中,则2n i θ、t θ、n 、有如下关系式12n12sin sin n n t i =θθ 这就是欺涅尔(Snell )定律。

光纤光学第三版

光纤光学第三版

光纤光学第三版第一章光纤的基本原理光纤是一种能够传输光信号的特殊材料,它由纤维状的高纯度玻璃或塑料制成。

光纤的核心是一个非常细长的玻璃纤维,外部则包裹着一层称为包层的材料。

光纤的传输原理基于全反射的现象,当光线从光纤的一端入射时,由于光线与接触面的入射角大于临界角,光线会完全被内部反射,从而沿着光纤的长度传输到另一端。

在光纤光学中,我们经常会遇到一些重要的概念,比如光纤的数值孔径、单模光纤和多模光纤等。

数值孔径是用来描述光纤对光线的接受能力的参数,数值孔径越大,光纤的接收能力越强。

单模光纤是指只能传输一种特定模式的光信号,而多模光纤则可以传输多种模式的光信号。

第二章光纤通信系统光纤通信系统是一种利用光纤传输信息的通信方式。

它由光源、调制器、光纤、接收器等组成。

光源是产生高强度的光信号的装置,调制器则用来调制光信号的强度、频率或相位。

光纤作为信息的传输通道,能够将光信号高效、快速地传输到目的地。

接收器则用来接收传输过来的光信号,并将其转换成电信号,供后续处理。

光纤通信系统具有许多优点,比如传输速度快、带宽大、抗干扰能力强等。

它已经广泛应用于电话、互联网、有线电视和数据中心等领域。

光纤通信系统的发展也推动了信息技术的快速发展,使人们能够更加便捷地进行通信和信息交流。

第三章光纤传感技术光纤传感技术是利用光纤的特殊性质进行测量和监测的技术。

光纤传感器可以将环境中的物理量、化学量或生物量转化为光信号,通过光纤传输到检测仪器进行分析。

光纤传感技术在环境监测、工业生产和医学诊断等领域有着广泛的应用。

光纤传感技术具有高精度、实时性好、抗干扰能力强等优点。

它可以实现对温度、压力、湿度、浓度等多种物理量的测量,而且可以远距离传输信号,适用于复杂环境中的监测任务。

第四章光纤传输系统的性能优化光纤传输系统的性能优化是提高光信号传输质量和可靠性的关键。

在光纤传输过程中,会受到多种因素的影响,比如衰减、色散、非线性等。

为了降低这些影响,可以采取一些措施,比如使用低损耗的光纤材料、优化光纤的结构、增加光纤的数值孔径等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 重要公式
– 波导场方程、截止与远离截止条件、单模工作 条件、模式数目、归一化工作频率、模群精确 模式数目。
光纤性能
• 重要概念
– 损耗机理、光通信窗口、色散机理、色散补偿、 损耗测试的三种方法(后向散射法OTDR)、 不同型号的通信光纤性能。
• 重要公式
– 材料色散与波导色散的计算、脉冲展宽的计算、 模场半宽的计算、截止波长的计算
大?为什么? 6. 简述光纤中三种色散的机理。在什么条件下光纤的色散为零? 7. 什么叫模场的“稳态分布”? 8. 简述OTDR的工作原理。 9. 简述折射近场法的工作原理。 10. P120-121课后习题5.2,5.4,5.9,5.22,5.23(1)
6
1. 自聚焦透镜与球透镜成象的异同点?常用的自聚焦 透镜有哪几种?
特征?
1. SIOF波导场方程具有什么数学特征? 2. 写出SIOF中波导场方程的解。 3. 写出SIOF中导模场的切向分量。 4. 写出SIOF中推导本征值方程的主要数学
步骤。 5. 写止出和远SIO离F截中止TE时01的、本TE征02值、。TE03在临近截 6. 为什么Vc<2.405只适应于SIOF?
• 如果采用线宽为 300 MHz的DFB激光器,在1 Gbps 调制 速率下光谱被展宽 2 GHz,即光源谱宽为2,300 MHz 或 .02 nm (1500 nm波长). 则传输10 公里距离,色散脉冲 展宽值为 :
《 光纤光学》复习提纲
光线理论 模式理论 光纤性能 光纤器件 光纤连接
光线理论
• 重要概念
– 光波导、光纤分类、子午光线、数值孔径、传输 容量、传光传像特性、散焦面、广义折射率定理、 光线轨迹及特点、光线分类
• 重要公式
– 射线方程、散焦面半径、折射率分布、数值孔径
模式理论
• 重要概念
– 模式定义及性质、模式分类及场分布特点、模 式简并、线偏振模、主模、分离变量法、传播 常数、导模截止与远离截止、基模场分布函数、 基模偏振特性、色散曲线分析、模式确定及数 目分析、导模光斑分布图、模式输出特性、 WKB近似方法思路
2. 如图1所示的光纤耦合器 ,L为1/2耦合长度,计算① input 1=100mw, input 2=0mw求 output 1,output 2 各为多少? ②input1=50mw, input2= 50mw,且波长 相同,求output1 为多少?
图1
色散值计算
• 标准单模光纤,普通激光二极管光谱宽度 6 nm,传输10 公里距离,色散脉冲展宽值为 :
D = 17ps/nm/km × 6 nm × 10 km = 1020 ps
• 对于 1 Gbps速率的光脉冲,脉宽约为 1 ns. 如果脉冲展宽 达到脉宽的20%,则系统将不能工作。上述情形显然不适 合于1 Gbps速率,因为脉冲展宽已经达到100%;但是对 于 155 Mbps速率系统没有问题,因为 其脉冲宽度为 6.5 ns,20%的展宽为1300ps。
4
1. GIOF的数值孔径有何不同? 2. 分别说明内散焦面、外散焦面、辐射散焦
面的物理意义。 3. 为什么GIOF又称为“折射型”光纤? 4. GIOF中光线角向运动有何特点? 5. 分别说明约束光线、隧道光线和折射光线
的特点。
1. 画出阶跃分布光纤与平方率分布光纤基模场解 函数曲线示意图。
2. SIOF与GIOF中哪个导模数目更多? 3. 已知平方率分布光纤V=2,求基模模场半径。 4. 写出平方率分布光纤中LP10,15模式的本征值。 5. 说明高斯近似最大激发效率判据的物理意义。 6. 说明等效阶跃光纤近似的物理意义。
习题: pp.44: 3.7,3.22
1. 写出SIOF中模式数目与V值的关系式。 2. 弱导光纤中组成线偏振模式的理论依据是什么? 3. 为什么LP0m模式只有两重简并? 4. 实际光纤中传播的模式是线偏振模式吗?为什么? 5. 画出LP6,8模式场分布示意图。 6. 高阶模式与低阶模式哪个输出角度大?
5
1. 哪些因素限制光通信传输距离? 2. 一光纤长220公里,已知光纤损耗为0.3dB/km,当输出光功
率为2.5 mW时,输入光功率为多少? 3. 为什么光纤在1.55mm的波长损耗比1.3mm波长小? 4. 光纤的损耗能否降为零?为什么? 5. 三角形折射率分布光纤与平方率折射率分布光纤哪种波导色散
光纤器件
• 重要概念
– 自聚焦透镜的成像特性、光纤耦合器/WDM器 件的工作原理及设计、光隔离器/环行器的工作 原理及设计、光纤光栅的工作原理及设计、光 纤激光器与放大器的工作原理及设计。
• 重要公式
– 准直透镜输出光束半径和发散角、耦合器分支 功率计算、不同耦合比对应的最小耦合长度、 光纤光栅中心波长。
光纤连接与耦合
• 重要概念
– 光纤连接损耗来源、光纤连接损耗特点、透镜 耦合系统、光束变换特性、有源对准(局部损 耗法)。
• 重要公式
– 端面反射损耗计算、模场失配损耗计算、朗伯 光源耦合损耗计算、半导体激光器耦合效率计 算。
习题复习
1
1. 构成光纤波导的必要条件是什么? 2. 光纤的包层主要起什么作用?光纤去掉包层其导光特
3. 如果已经知道光纤中只允许1个模式存在,能否 通过外界激励获得2个模式传播?
4. “纵横关系式”有何作用? 5. 光场分量的哪一个分量总是独立满足波导场方
程?写出该波导场方程式。
3
1. 说明从波动方程到波导场方程两次分离变量的依据。 2. 波导场方程具有什么样的数学特征? 3. 说明光线在SIOF和GIOF中的轨迹曲线是什么样的。 4. 传播常数的的物理意义是什么。 5. 说明V、U、W参数的物理意义及其相互关系。 6. 说明光波导数值孔径的物理意义 7. 子午光线的主要特征是什么? 8. 光线时延差影响光通信的什么性能? 9. 在什么条件下才可以唯一确定光波导中的模式? 10. 在纤芯和包层中选取的贝赛尔函数分别具有什么数学
性有何改变? 3. PCVD工艺与MCVD工艺相比,主要优点是什么? 4. OVD与AVD工艺的主要特点是什么? 5. “单模光波导”中总模式数目是多少? 6. 举例说明“对称波导”基模不截止。
2
1. 设计一种光波导结构,其传光波导层为平轨 迹为直线传播。
相关文档
最新文档