木材的力学性能
木材的力学性质
木材的力学性质主要介绍了木材力学性质的基本概念、木材的应力—应变关系;木材的正交异向弹性、木材的黏弹性、木材的塑性;木材的强度与破坏、单轴应力下木材的变形与破坏特点;基本的木材力学性能指标;影响木材力学性质的主要因素等。
木材力学是涉及木材在外力作用下的机械性质或力学性质的科学,它是木材学的一个重要组成部分。
木材力学性质是度量木材抵抗外力的能力,研究木材应力与变形有关的性质及影响因素。
木材作为一种非均质的、各向异性的天然高分子材料,许多性质都有别于其它材料,而其力学性质和更是与其它均质材料有着明显的差异。
例如,木材所有力学性质指标参数因其含水率(纤维饱和点以下)的变化而产生很大程度的改变;木材会表现出介于弹性体和非弹性体之间的黏弹性,会发生蠕变现象,并且其力学性质还会受荷载时间和环境条件的影响。
总的来说,木材的力学性质涉及面广,影响因素多,学习时需结合力学、木材构造、木材化学性质的有关知识。
木材力学性质包括应力与应变、弹性、黏弹性(塑性、蠕变)、强度(抗拉强度、抗压强度、抗弯强度、抗剪强度、扭曲强度、冲击韧性等)、硬度、抗劈力以及耐磨耗性等。
8.1 应力与应变8.1.1 应力与应变的概念8.1.1.1 应力 物体在受到外力时具有形变的趋势,其内部会产生相应的抵抗外力所致变形作用的力,成为内力,当物体处于平衡状态时,内力与外力大小相等,方向相反。
应力就是指物体在外力作用下单位面积上的内力。
当外力均匀地作用于顺纹方向的短柱状木材端面上,柱材全长的各个断面上都将受到应力,此时,单位断面面积上的木材就会产生顺纹理方向的正应力(图8-1a )。
把短柱材受压或受拉状态下产生的正应力分别称为压缩应力和拉伸应力。
当作用于物体的一对力或作用力与反作用力不在同一条作用线上,而使物体产生平行于应力作用面方向被剪切的应力,这种应力被称为剪应力(图8-1b )。
应力单位曾一度使用dyn/cm 2、kgf/cm 2等,近年来开始采用国际单位中的N/mm 2(=MPa )。
不同树种的木材物理力学性能汇编
不同树种的木材物理力学性能不同树种的木材物理力学性能包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗弯强度、抗剪强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。
树木是木材的原体,是由它本身生命生存与繁衍的整个生长过程,积累了成为不同木材的物质,直到生命自然终结,或被认为终结生命,而成为被利用的材料。
树木是木质多年生植物,通常把它分为乔木和灌木两种。
乔木是l.3米以上,只有一个直立主干的树木;灌木是直立的、具有丛生茎的树木。
我国现有木本植物约7000多种,属乔木者约占1/3以上,但是作为工业用材而供应市场的只不过1000种,常见的约300种。
树木是人类繁衍延续到今天的必要条件。
它靠空气、水和阳光存活,通过一系列化学反应,形成树木肢体的物理变化,为人类营造出了天然的乐园。
“碳”是形成木材物理力基础。
树木在生长发育过程中,形成了高度发达的营养体。
水分及营养液等流体的输运现象始终伴随着树木营养生长的生理过程。
树木由树梢沿主轴向上生长(高生长),也在土壤深处向下生长(根生长),中间的树干部分沿着径向生长。
前一年形成的树干部分到了次年不会再进行高生长。
树木从天上接受阳光的沐浴,到地下去寻觅水分,把原料从树根输送到叶片。
由叶子制造养分,将养分向下输送,供给树木生长需要。
这样,树木生长过程中,形成了非常协调完备的水分及养分的输送系统。
一株红杉(美)树高达112米,一株杏仁桉(奥)树竟高达156米,一株银杏(中)树龄达3000年,一株世界爷(美)树龄竟达7800年。
那么对于如此高大、如此年久的树木,体内各种物质(水、矿物质、可溶性碳水化合物和激素等等)是它的最外层是树皮(外皮),树皮里边一层是韧皮部(也叫内皮),经它将营养液由叶部输送到树木的其他部分(包括根在内)。
再向内一层是形成层,它的细胞不断分裂,使树木沿径向生长而不断加粗。
再往里是边材和心材,即木质部,木质部中被叫做导管的细胞组织,它将树液输送到茎和叶部。
木材力学性能的检测与分析研究
木材力学性能的检测与分析研究木材在建筑、家具制造等方面有着广泛的应用。
然而,不同种类的木材具有不同的力学性能,这直接关系到其使用寿命和使用效果。
因此,对木材的力学性能进行检测与分析研究具有重要的意义。
一、木材力学性能检测方法1. 弯曲强度测试弯曲测试常用于表征木材的强度和坚固度,可以通过测定弯曲载荷和弯曲位移获得相应的参数。
2. 抗压强度测试抗压测试可以测量木材在受压力作用下的强度。
压缩试验中,木样通常被置于试验机之下,沿木材长度方向卸载,以测量材料在受压状态下的强度。
压缩测试还可以测量木材的纵向变形率。
3. 抗拉强度测试拉伸试验可以测量木材的抗拉强度和弹性模量。
在该测试中,材料被拉伸,并通过暴露样品的两端来应用外部力。
4. 剪切强度测试剪切测试会测量材料沿剪切面抵抗踩踏和分裂的能力。
剪切测试让木材在机器之下部分剪断,通过测量所需的切割力来测定木材剪切强度。
二、影响木材力学性能的因素1. 木材年轮木材年轮认为是一种显著的木材力学性能因素。
纵向拉伸试验等工业测试表明,木材的年轮会影响它的拉伸强度和其底杆点。
2. 木材物种不同种类的木材由不同的树种遗传,以及生长环境变因,因此,不同种类的木材具有着不同的性能。
松木是一种轻质木材具高硬度、高强度、高韧性,是建筑和工业用材的优选。
激素树、榉树等是高雅的家居木材,其触感具有细腻、光滑、挺拔等特点。
3. 湿度木材不锈柿将会随着环境湿度发生变化,湿度过高或过低都会导致木材吸收或释放水份,会影响它的大小和形状以及相对的力学性能。
4. 微观结构微观结构也是一种影响木材力学性能的因素,如木材横向壁厚比例及孔隙率等,都会影响它的强度和韧性等综合性能。
三、木材力学性能分析通过上述方法检测不同种类、不同生长环境和不同干燥要求的木材力学性能,我们也可以对其进行分析。
分析的方式有很多种,从简单的屈服点分析,到详细的材料模拟和流场仿真分析。
1. 屈服点分析在材料力学中,材料屈服点有着重要的意义。
木材材料力学特性测试与分析
木材材料力学特性测试与分析一、引言木材是一种常见的建筑材料,其在建筑、制造、家具工业和造船业中有广泛应用。
为了确保木材的质量和性能,需要对其力学特性进行测试和分析。
本文将简要介绍木材的力学特性,以及常用的测试方法和分析技术。
二、木材力学特性木材在力学方面的特性指的是其承载力、刚度和变形等方面的性能。
木材的强度和刚度受到许多因素的影响,包括木材的物种、年轮方向、含水率和温度等因素。
通常情况下,木材的强度和刚度主要通过抗弯强度、抗压强度、抗拉强度、剪切强度和应变等指标来衡量。
三、木材力学特性测试方法1. 木材弯曲测试弯曲测试是一种常用的测试方法,可用于测量木材抗弯强度和弯曲刚度。
该测试方法需要将木材放置在两个支撑点之间,并施加一个断面恒定直线负载。
此时,可以通过记录木材的挠度和应力来计算其抗弯强度和弯曲刚度。
2. 木材压缩测试压缩测试可用于测量木材抗压强度。
该测试方法需要将木材的端面放置在两个支撑点之间,并施加一个垂直于端面的直线负载。
在测试过程中,需要记录木材的应力和变形数据以计算其抗压强度。
3. 木材拉伸测试拉伸测试可用于测量木材的抗拉强度。
该测试方法需要将两个木材棒头拉伸并施加一个直线负载。
在测试过程中,需要记录木材的应力和变形数据以计算其抗拉强度。
4. 木材剪切测试剪切测试可用于测量木材剪切强度。
该测试方法需要将木材的断面放置在两个支撑点之间,并施加一个剪切负载。
在测试过程中,需要记录木材的应力和变形数据以计算其剪切强度。
四、木材力学特性分析技术1. 应力-应变关系分析应力-应变关系是描述木材力学性能的一种基本方法。
该方法可以通过实验数据计算得到,并可用于评估木材的强度和刚度。
此外,通过应力-应变关系还可以确定木材的断裂点和屈服点等关键特征点。
2. 弹性模量计算弹性模量是表征木材刚度的重要参数。
它可以通过测量木材的应变和应力来计算。
由于弹性模量受到多个因素的影响,包括木材物种、含水率和年轮方向等因素,因此需要根据不同的情况进行调整和修正。
木材的力学性能
1.化学性质化学组成--纤维素、木质素和半纤维素是构成细胞壁的主要成分,此外还有脂肪、树脂、蛋白质、挥发油以及无机化合物等。
木材对酸碱有―定的抵抗力,对氧化性能强的酸,则抵抗力差;对强碱,会产生变色、膨胀、软化而导致强度下降。
―般液体的浸透对木材的影响较小.2.物理性质1)含水量木材中的含水量以含水率表示,指所含水的质量占干燥木材质量的百分比。
木材内部所含水分,可分为以下三种。
(1)自由水。
存在于细胞腔和细胞间隙中的水分。
自由水的得失影响木材的表观密度、保存性、燃烧性、抗腐蚀性、干燥性、渗透性.(2)吸附水.被吸附在细胞壁内细纤维间的水分。
吸附水的得失影响木材的强度和胀缩。
(3)化合水。
木材化学成分中的结合水。
对木材性能无大影响.纤维饱和点——指当木材中无自由水,仅细胞壁内充满了吸附水时的木材含水率。
树种不同,纤维饱和点随之不同,―般介于25%~35%,平均值约为30%。
纤维饱和点是木材物理力学性质发生变化的转折点.平衡含水率--木材长期处于―定温、湿度的空气中,达到相对稳定(即水分的蒸发和吸收趋于平衡)的含水率。
平衡含水率是随大气的温度和相对湿度的变化而变化的。
木材的含水率:新伐木材常在35%以上;风干木材在15%~25%;室内干燥木材在8%~15%.2)湿胀、干缩的特点当木材从潮湿状态干燥至纤维饱和点时,自由水蒸发,其尺寸不变,继续干燥时吸附水蒸发,则发生体积收缩。
反之,干燥木材吸湿时,发生体积膨胀,直至含水量达纤维饱和点为止。
继续吸湿,则不再膨胀,见图10.7.1.―般地,表观密度大的,夏材含量多的,胀缩就较大。
因木材构造不均匀,其胀缩具有方向性,同―木材,其胀缩沿弦向最大,径向次之,纤维方向最小,见图10.7.1。
这主要是受髓线的影响,其次是边材的含水量高于心材含水量。
图10.7.1含水量对松木胀缩变形的影响木材长期湿胀干缩交替,会产生翘曲开裂.因而潮湿的木材在加工或使用前应进行干燥处理,使木材的含水率达到平衡含水率,与将来使用的环境湿度相适应。
木材结构材料的力学性能评估
木材结构材料的力学性能评估木材是一种常见的建筑材料,由于其天然、环保、易加工等优点,广泛应用于各个领域。
然而,不同种类、不同等级的木材在力学性能方面存在着很大的差异,因此需要对其进行力学性能评估,以确定其适用范围和强度等级。
第一部分:木材结构及其力学性能木材是由纤维素、半纤维素和木质素等成分组成的生物高分子材料,通过细胞壁的纤维素和木质素组成的复合材料结构使得其具有较好的力学性能。
木材具有纵向、横向和剪切三个方向的力学性能,其总体强度主要由纵向成分决定。
纵向强度是指木材在纵向载荷下的承受能力,也是最主要的一种力学性能。
其决定因素包括材料的密度、结构和水分含量等。
横向强度是指木材在侧向载荷下的承受能力,主要取决于木材的质量和结构。
剪切强度是指木材在剪切载荷下的承受能力,主要由木材的密度和纤维方向决定。
第二部分:木材力学性能评估方法确定木材的力学性能主要有两种方法:实验方法和计算方法。
实验方法是通过对各种木材材料进行实验测试得出其力学性能的方法。
包括拉伸、压缩、弯曲、剪切等多种试验,通过得出力学性能指标如弹性模量、抗压强度、抗弯强度、剪切强度等数据来评估木材的性能。
该方法精度高、可靠性强,但需考虑实验设备和材料的成本等因素。
计算方法是根据木材的结构、密度和水分含量等因素进行理论计算,并得出其力学性能指标的方法。
其中比较重要的是弹性模量及其常数,其反映了材料在受力后弹性变形的程度和能力,常数决定了其强度等级。
这种方法在教育和科研方面有实际应用,但需要考虑计算精度及其实用性等问题。
第三部分:木材力学性能表征木材的力学性能指标是评估其质量和强度的重要标志。
常见的指标包括弹性模量、抗压强度、抗弯强度和剪切强度等。
弹性模量是指材料在受到载荷作用后,产生弹性变形的抵抗力。
抗压强度是指材料在受到压缩载荷作用后,能够承受的最大应力。
抗弯强度是指材料在受到弯曲载荷作用后,材料最大的承载能力。
剪切强度是指材料在受到剪切载荷作用后,能够抵抗的最大剪切应力。
木材的力学性能
第14页,本讲稿共47页
8.3.1.3 蠕变规律 (1)对木材施载产生瞬时变形后,变形有一随时间推移而增大的蠕变过程; (2)卸载后有一瞬时弹性恢复变形,在数值上等于施载时的瞬时变形; (3)卸载后有一随时间推移而变形减小的蠕变恢复,在此过程中的是可恢复蠕变部分; (4)在完成上述蠕变恢复后,变形不再回复,而残留的变形为永久变形,即蠕变的不可恢复部分; (5)蠕变变形值等于可恢复蠕变变形值和不可恢复蠕变变形值之和。
第23页,本讲稿共47页
8.4.2 木材的韧性 韧性是指材料在不致破坏的情况下所能抵御的瞬时最大冲击能量值。 韧性材料往往是强度大的材料,但也有不符合这个关系的。
第24页,本讲稿共47页
8.4.3 木材的破坏 8.4.3.1 破坏 木材结构破坏是指其组织结构在外力或外部环境作用下发生断裂、扭曲、错位,而使木材宏观整体完全丧失或部分丧失原有物理力学性能的现象。
山毛榉
0.750
11
13700
2240
1140
1060
1610
460
0.75
0.45
0.51
几种木材的弹性常数
第12页,本讲稿共47页
8.3 木材的粘弹性
流变学:讨论材料荷载后的弹性和黏性的科学。(讨论材料荷载后应力---应变之间关系随时间变化的规律) 蠕变和松弛是黏弹性的主要内容。木材的黏弹性同样依赖于温度、负荷时间、加荷速率和应变幅值等条件,其中温度和时间的影响尤为明显。 8.3.1 木材的蠕变 8.3.1.1 蠕变 蠕变:在恒定应力下,木材应变随时间的延长而逐渐增大的现象。 瞬时弹性变形:与加荷速度相适应的变形,它服从于虎克定律; 黏弹性变形:加荷过程终止,木材立即产生随时间递减的弹性变形; 塑性变形:最后残留的永久变形。 差异: 黏弹性变形是纤维素分子链的卷曲或伸展造成的,变形是可逆的,但较弹性变形它具有时间滞后性。 塑性变形是纤维素分子链因荷载而彼此滑动,变形是不可逆转的。
木材的力学性能参数分析整理
木材的力学性能参数分析整理木材作为一种常见的建筑材料,其力学性能参数对于工程设计和产品应用十分重要。
本文将对木材的力学性能参数进行分析整理,以帮助读者更好地了解木材的力学特性和应用。
1.弹性模量(E):弹性模量是描述材料在受力后恢复原状的能力。
对于木材而言,弹性模量可以衡量其在受到拉伸或压缩力时的变形程度。
一般来说,木材的弹性模量随着纤维方向的不同而有所变化。
纵向弹性模量较高,而横向弹性模量较低。
2.抗压强度(Fc):抗压强度是指木材在受到压力时所能承受的最大力量。
它是衡量木材抗压能力的重要指标。
抗压强度通常比抗拉强度低,且与木材的纤维方向有关。
3.抗拉强度(Ft):抗拉强度是指木材在受到拉伸力时所能承受的最大力量。
它也是评价木材力学性能的关键参数之一、抗拉强度通常比抗压强度高,并且与木材的纤维方向有关。
4.抗剪强度(Fv):抗剪强度是指木材在受到剪切力时所能承受的最大力量。
与抗压强度和抗拉强度不同,抗剪强度是以相对较小的截面积来计算的。
抗剪强度与木材纤维方向的垂直性有关。
5.单剪胶合强度(Iv):单剪胶合强度是指胶合接头在受到单向剪切力时所能承受的最大力量。
对于胶合木材而言,胶合接头的强度对整个结构的稳定性和耐久性具有重要影响。
6.密度(ρ):密度是指单位体积的木材质量。
它不仅与木材的力学性能有关,还与木材的隔热性能、声学性能和阻燃性能等方面有关。
一般来说,密度较高的木材具有较高的强度。
7.弯曲强度(Fb):弯曲强度是指木材在受到弯曲力时所能承受的最大力量。
对于梁、桁架等结构,弯曲强度是评价其承载能力的关键指标之一除了上述参数外,还有一些其他的力学性能参数也需要在实际应用中进行考虑,例如冲击强度、抗冲击性、弹性系数等。
此外,木材的性能还受到湿度、温度、木材品种和处理方式等因素的影响。
综上所述,了解木材的力学性能参数对于正确应用木材、合理设计和评估结构的稳定性和可靠性至关重要。
通过分析和整理木材的力学性能参数,可以更好地理解木材的力学特性,选择适合的木材种类和处理方法,确保木材在工程和产品应用中能够发挥最佳效果。
木材力学性能参考
contents
目录
• 木材的基本性质 • 木材的力学性能 • 木材的力学性能测试 • 木材力学性能的影响因素 • 木材力学性能的应用 • 木材力学性能的未来研究和发展
01
木材的基本性质
木材的构造
01
02
03
木纤维
木材的主要组成部分,由 管状细胞构成,具有较高 的强度和弹性。
木射线
压缩测试
总结词
压缩测试是评估木材在压缩载荷下的性 能表现,主要考察木材的抗压强度和压 缩弹性模量等参数。
VS
详细描述
在压缩测试中,试样通常被放置在两个平 行的平板之间,并在两端施加逐渐增大的 压力。通过测量试样的变形和载荷,可以 计算出木材的抗压强度和压缩弹性模量等 参数。这些参数反映了木材在承受压缩载 荷时的力学性能和稳定性。
弯曲测试
总结词
弯曲测试是评估木材在弯曲载荷下的性能表 现,主要考察木材的抗弯强度、弯曲弹性模 量和剪切模量等参数。
详细描述
在弯曲测试中,试样通常被放置在一个曲梁 上,并在两端施加逐渐增大的压力。通过测 量试样的变形和载荷,可以计算出木材的抗 弯强度、弯曲弹性模量和剪切模量等参数。 这些参数反映了木材在承受弯曲载荷时的力 学性能和稳定性。
导热性
木材的热传导系数较低, 具有良好的保温性能。
02
木材的力学性能
弹性模量
总结词
弹性模量是木材抵抗弹性变形的能力,反映了木材刚度的指 标。
详细描述
木材的弹性模量通常用弹性模量E来表示,它反映了木材在受 力时抵抗弹性变形的能力。弹性模量越大,木材的刚度越大 ,不易发生变形。
强度
总结词
强度是指木材在受到外力作用时抵抗破坏的能力。
木材力学性质实验报告(3篇)
第1篇一、实验目的1. 了解木材的基本力学性质。
2. 掌握木材力学性质实验的基本方法和步骤。
3. 通过实验,分析影响木材力学性质的主要因素。
二、实验原理木材的力学性质主要包括强度、硬度、刚度和韧性等。
本实验通过测定木材的抗拉、抗压、抗弯和抗剪等力学性能,分析木材的力学性质及其影响因素。
三、实验材料与设备1. 实验材料:木材试件(硬木、软木、针叶木等)。
2. 实验设备:万能试验机、切割机、量具、砝码等。
四、实验步骤1. 样品准备:将木材试件切割成规定尺寸,如100mm×100mm×10mm。
2. 抗拉强度测试:a. 将试件固定在万能试验机上,确保试件平行于拉伸方向。
b. 拉伸速度设定为10mm/min。
c. 记录试件断裂时的最大拉力值。
3. 抗压强度测试:a. 将试件固定在万能试验机上,确保试件垂直于压缩方向。
b. 压缩速度设定为5mm/min。
c. 记录试件破坏时的最大压力值。
4. 抗弯强度测试:a. 将试件放置在万能试验机上,确保试件平行于弯矩方向。
b. 弯曲速度设定为10mm/min。
c. 记录试件破坏时的最大弯矩值。
5. 抗剪强度测试:a. 将试件放置在万能试验机上,确保试件平行于剪切方向。
b. 剪切速度设定为10mm/min。
c. 记录试件破坏时的最大剪切力值。
五、实验结果与分析1. 抗拉强度:硬木试件的抗拉强度最高,软木试件次之,针叶木试件最低。
2. 抗压强度:硬木试件的抗压强度最高,软木试件次之,针叶木试件最低。
3. 抗弯强度:硬木试件的抗弯强度最高,软木试件次之,针叶木试件最低。
4. 抗剪强度:硬木试件的抗剪强度最高,软木试件次之,针叶木试件最低。
六、实验结论1. 木材的力学性质与其种类、密度、含水率、木纹方向等因素密切相关。
2. 硬木试件的力学性能普遍优于软木和针叶木试件。
3. 实验结果与理论分析基本一致。
七、实验注意事项1. 实验过程中,确保试件表面平整、无损伤。
木材的力学性能参数分析
木材的力学性能参数分析力学性能参数是评价木材物理特性的重要指标,包括强度、刚度、韧性等。
对木材的力学性能参数进行分析,可以提升木材的应用价值,同时也为木材的合理选用和设计提供了科学依据。
首先,强度是评价木材力学性能的重要指标之一、强度指的是木材在外力作用下抵抗破坏的能力。
常见的强度参数包括抗弯强度、抗压强度、抗剪强度等。
抗弯强度是指木材在外力作用下抵抗弯曲破坏的能力,通常通过三点弯曲试验来进行测试。
抗压强度是指木材在轴向压缩力下的抵抗破坏能力,可通过轴向压缩试验来测定。
抗剪强度是指木材在剪切力作用下的抵抗破坏能力,常通过直剪试验测定。
分析这些强度参数有助于了解木材在不同外力作用下的变形和破坏特点,从而选择合适的木材用于特定的工程设计。
其次,刚度是指材料对外力作用下的变形抵抗能力。
常见的刚度参数包括弹性模量和切变模量。
弹性模量指的是木材在弹性阶段,单位应力下的应变能力,常用来评价木材的刚性。
切变模量是指木材在横向剪切应力下的应变能力。
分析这些刚度参数有助于了解木材在承受外力时的变形性能,为木材的设计和使用提供依据。
此外,韧性是评价木材受外力作用时的能量吸收和变形能力。
韧性通常用木材的冲击韧性来表示,即木材在冲击荷载下的能量吸收能力。
冲击韧性的高低关系到木材的抗震性和防护能力,对于一些特定的工程应用,如建筑结构、交通运输工具的制造等,较高的韧性能够提高木材的安全性。
综上所述,对木材的力学性能参数进行分析能够全面了解木材的性能特点,提升木材的应用价值。
因此,在木材选用和工程设计过程中,应结合具体需求和外力特点,综合考虑强度、刚度和韧性等力学性能参数,以选择合适的木材材料。
同时,在木材设计和加工过程中,需要合理利用木材的力学性能参数,以保证工程的安全性和可靠性。
木材地力学性能全参数分析报告整理
木材地力学性能全参数分析报告整理木材是一种常见的建筑材料,具有良好的地力学性能。
本文将对木材的地力学性能进行全参数分析,包括材料的力学性能、物理性能和耐久性能等方面。
首先,木材的力学性能是评估其地力学性能的重要指标之一、力学性能包括强度、刚度和韧性等方面。
强度是指材料抵抗外部力破坏的能力,通常用抗弯强度、抗压强度和抗拉强度来表示。
刚度是指材料抵抗变形的能力,常用的指标是弹性模量和剪切模量。
韧性是指材料在破坏前能够吸收的能量,通常用冲击韧性来表示。
通过对木材的力学性能进行全面分析,可以评估其在不同载荷下的承载能力和变形性能。
其次,木材的物理性能也是影响地力学性能的重要因素。
物理性能包括密度、湿度、热传导性和声传导性等方面。
密度是指单位体积的木材质量,与木材的强度和刚度密切相关。
湿度是指木材中水分的含量,对木材的力学性能和稳定性有着重要影响。
热传导性是指木材导热的能力,影响其在高温环境下的稳定性。
声传导性是指木材传递声波的能力,影响其在声学环境中的应用。
最后,木材的耐久性能也是评估其地力学性能的关键指标之一、耐久性能是指木材在长期水分、气候和生物侵蚀等环境下的性能表现。
常见的指标包括抗腐蚀性、抗紫外线性能和抗虫性等。
通过对木材的耐久性能进行分析,可以评估其在户外和潮湿环境中的应用潜力。
综上所述,木材的地力学性能是一个综合性的指标,涵盖了力学性能、物理性能和耐久性能等方面。
通过全参数分析,可以全面评估木材的性能,为其在工程中的应用提供科学依据。
在实际应用中,需要根据具体的使用环境和要求,选择具有合适地力学性能的木材材料,以确保工程的安全可靠性。
木材的力学性能参数分析
木材的力学性能参数目录1.1木材的力学性质………………………………………………P32.1木材力学基础理论……………………………………………P3~ P82.1.2弹性和塑性2.1.3柔量和模量2.1.4极限荷载和破坏荷载3.1木材力学性质的特点…………………………………………P8~ P203.1.1木材的各向异性3.1.2木材的正交对称性与正交异向弹性3.1.3木材的粘弹性3.1.5木材塑性3.1.6木材的强度、韧性和破坏4.1木材的各种力学强度及其试验方法………………………P20~ P285.1木材力学性质的影响因素…………………………………P28~ P316.1木材的允许应力…………………………………………P31~ P336.1.6木材容许应力应考虑的因素7.1常用木材物理力学性能……………………………………P34~ P361.1木材的力学性质主要介绍:木材力学性质的基本概念、木材的应力—应变关系;木材的正交异向弹性、木材的黏弹性、木材的塑性;木材的强度与破坏、单轴应力下木材的变形与破坏特点;基本的木材力学性能指标;影响木材力学性质的主要因素等。
1.1.1木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。
1.1.2木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。
1.1.3木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属生物材料,其构造的各向异性导致其力学性质的各向异性。
因此,木材力学性质指标有顺纹、横纹、径向、弦向之分。
1.1.4了解木材力学性质的意义:掌握木材的特性,合理选才、用材。
2.1木材力学基础理论(stress and strain)应力定义:材料在外力作用下,单位面积上产生的内力,包括压应力、拉应力、剪应力、弯应力等。
单位:N/mm2(=MPa)压缩应力:短柱材受压或受拉状态下产生的正应力称为压缩应力;压应力:σ=-P/A拉伸应:短柱材受压或受拉状态下产生的正应力称为拉伸应力;拉应力:σ=P/A剪应力:当作用于物体的一对力或作用力与反作用力不在同一条作用线上,而使物体产生平行于应力作用面方向被剪切的应力;τ=P/A Q应变定义:外力作用下,物体单位长度上的尺寸或形状的变化;应变:ε=±⊿L / L应力与应变的关系应力—应变曲线:曲线的终点M表示物体的破坏点。
木材力学性能参考
(4)木材蠕变特性研究简介
➢ 木材的蠕变特性曲线是一 粘弹性曲线。
J (t )
(t ) 0
➢ 木材的蠕变变形由三个部 分组成:
第一部分 是由木材内部高度结晶的微纤丝构架而引起的 弹性变形,这种变形是瞬间完成;
(4)木材蠕变特性研究简介
第二部分是链段的伸展而 引起的延迟弹性 变形,这种变形 是随时间而变化 的;
值约为0.7,针叶树材该比值约为0.78,软阔叶树材为0.70,硬阔 叶树材为0.66。针叶树材具有较高比例极限的原因是,它的构造较 单纯且有规律;硬阔叶树环孔材因构造不均一,使这一比值最低。
(2)顺纹抗压强度试样破坏的形状
根据试样破坏面的状态,顺纹抗压试样的破坏 可分为以下六种形状:压缩、楔形劈裂、剪切、 劈裂、压缩与顺纹剪切和压披,
学习木材力学性质的意义
—— 掌握木材的特性,合理选才、用材。
学习难点
—— 木材力学性质基本概念的理解、木材力学性
质特点及其影响因素。 本章重点
—— 掌握木材主要力学性质的种类、受力方式及 其测定方法。
—— 木材允许应力的确定。
6.1 木材力学基础理论与特点 6.1.1 应力与应变 6.1.1.1 应力
6.1. 3 刚度、脆性、韧性和塑性
(1)刚度——材料抵抗变形的能力 木材具有较高的刚度-密度比,故
可用于建筑材料。
(2)脆性——材料在破坏之前无明显变形的 性质。
➢ 木材的脆性与树种、生长环境、遗传、生长 应力、缺陷和腐朽有关。
➢ 脆性大的木材,一 般质量较轻,纤维 素的含量低。
➢ 生长轮特别宽的针叶树材及生长轮特别窄的 阔叶树材易形成脆性木材。
5.1.5.2 多孔性
木材主要是细胞组成,微观构造上横切面所观 察到细胞断面为孔眼;径切面、弦切面上为中 空管状,及细胞壁上纹孔等;宏观构造上,导 管分子孔状结构等。
木材力学性质
力学模型
,
数学模型
根据流变学理论,其任一瞬时的蠕变柔量J(t)为:
J (t ) J 0
t
0
,
J i (1 e
i 1
n
t / zi
)
5.1.5 木材力学性质的特点
5.1.5.1 木材性质的层次性 针叶材阔叶树层次状明显,木材横切面上可以 见到致密的晚材与组织疏松的早材构成年轮而 成同心园状。径切面上早晚材交替为平行的条 纹;弦切面上则交替为“V”形花纹;木材力学 性能各轮多少有点差异。
木材顺纹抗拉力学试样及其受力方向 试验时采用附有自动对直和拉紧夹具的试验机进行,试验以均匀速度加荷,在 1.5-2.0分钟内使试样破坏。顺纹抗拉强度按下式计算。 σw=P/a.b 式中:P——最大荷载,N; a,b一试样工作部位横断面(cm2); W一试验时的木材含水率(%)。
5.2.1.2 横纹抗拉强度
5.2.1 木材的抗拉强度
木材顺纹抗拉强度,是指木材沿纹理方向承受拉力荷载 的最大能力。木材的顺纹抗拉强度较大,各种木材平均 约为117.7-147.1MPa,为顺纹抗压强度的2-3倍。 木材在使用中很少出现因被拉断而破坏。
木材顺纹拉伸破坏主要是纵向撕裂粗微纤丝和微纤丝间 的剪切。微纤丝纵向的C-C、C-O键结合非常牢固,所 以顺拉破坏时的变形很小,通常应变值小于1%~3%, 而强度值却很高。
应力:分布内力的集度(N/m2) 应力的基本类型:拉应力、压应力、剪应力
拉应力
P
P
σ=P/A
压应力
P P
σ=-P/A
剪应力
P P P
P
τ=P/AQ
6.1.1.2
P
应变
L ⊿L
木材的力学性能_建筑材料_[共3页]
285 学习情境十一 木材及其制品 二、木材的物理性质木材的物理性质对木材的选用和加工有很重要的现实意义。
(一)含水率含水率指木材中水重占烘干木材重的百分数。
木材中的水分可分两部分,一部分存在于木材细胞壁内,称为吸附水;另一部分存在于细胞腔和细胞间隙,称为自由水(游离水)。
当吸附水达到饱和而尚无自由水时,称为纤维饱和点。
木材的纤维饱和点因树种而有差异,为23%~33%。
当含水率大于纤维饱和点时,水分对木材性质的影响很小。
当含水率自纤维饱和点降低时,木材的物理和力学性质随之变化。
木材在大气中能吸收或蒸发水分,与周围空气的相对湿度和温度相适应而达到恒定的含水率,称为平衡含水率。
木材平衡含水率随地区、季节及气候等因素而变化,为10%~18%。
☼小提示新伐木材含水率常在35%以上,风干木材含水率为15%~25%,室内干燥的木材含水率常为8%~15%。
(二)湿胀干缩木材具有显著的湿胀干缩特征。
当木材的含水率在纤维饱和点以上时,含水率的变化并不改变木材的体积和尺寸,因为只是自由水在发生变化。
当木材的含水率在纤维饱和点以内时,含水率的变化会由于吸附水而发生变化。
当吸附水增加时,细胞壁纤维间距离增大,细胞壁厚度增加,则木材体积膨胀,尺寸增加,直到含水率达到纤维饱和点时为止。
此后,木材含水率继续提高,也不再膨胀。
当吸附水蒸发时,细胞壁厚度减小,则体积收缩,尺寸减小。
也就是说,只有吸附水的变化,才能引起木材的变形,即湿胀干缩。
木材的湿胀干缩随树种不同而有差异,一般来讲,表观密度大、夏材含量高者胀缩性较大。
由于木材构造不均匀,各方向的胀缩也不一致,同一木材弦向胀缩最大,径向其次,纤维方向最小。
木材干燥时,弦向收缩为6%~12%,径向收缩为3%~6%,顺纤维方向收缩仅为0.1%~0.35%。
弦向胀缩最大,主要是受髓线影响所致。
木材的湿胀干缩对其使用影响较大,湿胀会造成木材凸起,干缩会导致木结构连接处松动。
如长期湿胀干缩交替作用,会使木材产生翘曲开裂。
椴木原木的木材力学性能与应用价值分析
椴木原木的木材力学性能与应用价值分析椴木,学名Tilia amurensis,是一种常见的木材资源,广泛分布于东亚地区。
椴木原木具有很高的经济和生态价值,但其木材力学性能与应用价值的分析对于科学管理和合理利用椴木资源至关重要。
本文将对椴木原木的木材力学性能以及在各个领域中的应用价值进行详细的分析。
首先,我们来分析椴木原木的木材力学性能。
椴木的木材密度较低,一般在0.38-0.52 g/cm³之间,使得其重量轻、易加工。
然而,由于椴木的材质较为柔软,其硬度相对较低,容易受到机械划伤和压痕等损伤。
此外,椴木的耐久性较差,易受腐朽菌和昆虫侵蚀,因此需要经过适当的防腐处理以延长使用寿命。
然而,椴木具有较好的韧性和抗震性能,适用于一些对抗震要求较高的建筑结构。
其次,我们来探讨椴木原木在不同领域中的应用价值。
由于椴木原木的特性,椴木被广泛应用于家具制作和室内装修领域。
椴木具有轻质、均匀的质地和较好的加工性,使得其成为制作家具和木制品的理想原料。
椴木家具外观优美、色泽淡雅,深受消费者的喜爱。
此外,椴木还被广泛用于室内地板和墙板等装修材料的制作。
除了家具和室内装修,椴木原木还在建筑和造船领域有着重要的应用价值。
由于椴木具有抗震性能较好的特点,它在一些建筑结构中得到了应用。
椴木的韧性和抗张强度使其成为制作建筑桁架和横梁的理想材料。
此外,椴木还常用于制作船舶的龙骨和船板等结构件,因其轻巧和耐久性能能有效减少船舶的自重,提高船舶的载荷能力。
此外,在纸浆和纸张工业中,椴木原木也具有一定的应用价值。
椴木的纤维特性使其成为制作高品质纸浆的理想原料之一。
椴木纸浆制作的纸张具有较好的质地和光滑度,广泛用于制作书籍、杂志和包装材料等。
除了以上提到的领域,椴木原木还可以用于生态修复和环保产业中。
椴木树种具有较快的生长速度,可以帮助恢复退化的森林生态系统。
此外,椴木原木在纤维板和木质颗粒板等人造板材的制造中也有广泛应用,并且可以提高木材的利用率,减少大面积采伐的需求,符合可持续发展的要求。
常用木材物理力学性能
15.0
III
II,III
II,III
II,III
II,III
秋枫
15.0
III
II,III
II,III
II,III
IV
青冈
15.0
IV
III,IV
IV
V
IV,V
水青 冈
15.0
IV
III
III
IV
III
麻栎
15.0
IV
III,IV
III,IV
III-V
IV
白栎
15.0
IV
III
III,IV
IV
III
杯裂 香
15.0
IV,V
III,IV
IV
V
II,IV
IV
双翅 龙脑 香
15.0
III,IV
III,V
III,V
III,IV
III
IV,V
I,III
III,I V
龙脑 香
15.0
IV
III
II
IV
IV
V
III,V
IV
低垂 坡垒
15.0
V
II
II,III
III,IV
III
V
IV,V
渐尖 叶坡 垒
15.0
端面硬度/N
径向
弦 向
肉豆 蔻
15.0
II,III
II
II
II
II
II
III
III
羽叶 番龙 眼
15.0
III
IV
III
III
IV
IV
子京 木
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种木材的弹性常数
密度含水
材料 g/cm3 率 %
EL MPa
ER MPa
ET MPa
GLT
GLR
GTR
MPa MPa MPa
μRT
μLR
μLT
针叶树 材
云杉 0.390 12 11583 896 496 690 758 39 0.43 0.37 0.47
G 为剪切弹性模量,或刚性模量。
(3) 泊松比
物体的弹性应变在产生应力主轴方向收缩(拉伸)的同时还
伴随有垂直于主轴方向的横向应变,将横向应变与轴向应变之比
称为泊松比(
)。
'
分子表示横向应变,分母表示轴向应变。 (4) 弹性常数
弹性模量E、剪切弹性模量G、泊松比通常统称为弹性常数。
8.2.2 木材的正交对称性与正交异向弹性
(5)蠕变变形值等于可恢复蠕变变形值和不可恢复蠕变变 形值之和。
8.2.2.1 正交异向弹性
木材为正交异性体。弹性的正交异性为正交异向弹性。
8.2.2.2 木材的正交对称性
木材具有圆柱对称性,使它成为 近似呈柱面对称的正交对称性物体。 符合正交对称性的材料,可以用虎克 定律来描述它的弹性。
木材正交对称性
方程中有3个弹性模量、3个剪切弹性模量和3个 泊松比。不同树种间的这9个常数值是存在差异。
破坏应力、极限强度:应力在M点达到最大值,物体 产生破坏(σM)。
破坏应变:M点对应的应变(ε M ) 。
a
b
应力-应变曲线(模式图)
8.1.2.4 屈服应力
当应力值超过弹性限度值并保持基本上一定, 而应变急剧增大,这种现象叫屈服,而应变突然转 为急剧增大的转变点处的应力叫屈服应力(σY)。
8.1.2.5 木材应力与应变的关系
8.3 木材的粘弹性
流变学:讨论材料荷载后的弹性和黏性的科学。(讨论材料荷载后应 力---应变之间关系随时间变化的规律)
蠕变和松弛是黏弹性的主要内容。木材的黏弹性同样依赖于温度、负 荷时间、加荷速率和应变幅值等条件,其中温度和时间的影响尤为 明显。
8.3.1 木材的蠕变
8.3.1.1 蠕变 蠕变:在恒定应力下,木材应变随时间的延长而逐渐增大的现象。 瞬时弹性变形:与加荷速度相适应的变形,它服从于虎克定律; 黏弹性变形:加荷过程终止,木材立即产生随时间递减的弹性变形; 塑性变形:最后残留的永久变形。 差异: 黏弹性变形是纤维素分子链的卷曲或伸展造成的,变形是可逆的, 但较弹性变形它具有时间滞后性。 塑性变形是纤维素分子链因荷载而彼此滑动,变形是不可逆转的。
目录
8.1 应力与应变 8.2 弹性与木材的正交异向弹性 8.3 木材的粘弹性 8.4 木材的强度、韧性与破坏 8.5 木材主要力学性能指标 8.6 影响木材力学性质的主要因素
8.7 木材的容许应力
8.1.1 应力与应变的概念
应力:指物体在外力作用下单 位面积上的内力。 应变:外力作用下,物体单位长
松木 0.550 10 16272 1103 573 676 1172 66 0.68 0.42 0.51
花旗
松
0.590 9 16400 1300 900 910 1180 79 0.63 0.43 0.37
阔叶树 材
轻木 0.200 9 6274 296 103 200 310 33 0.66 0.23 0.49
8.3.1.2 蠕变曲线
OA-----加载后的瞬间弹性变形 AB-----蠕变过程,(t0→t1)t↗→ε↗ BC1 ----卸载后的瞬间弹性回复,BC1==OA C1D----蠕变回复过程,t↗→ε缓慢回复 故蠕变AB包括两个组分: 弹性的组分C1C2——初次蠕变(弹性后效变形) 剩余永久变形C2C3=DE——二次蠕变(塑性变形) 木材蠕变曲线变化表现的正是木材的黏弹性质。
a
b
应力-应变曲线(模式图)
8.1.2.2 比例极限与永久变形
比例极限应力:直线部分的上端点P对应的应力。 比例极限应变:直线部分的上端点P对应的应变。 。 塑性应变(永久应变):应力超过弹性限度,这时如果除去应力,应变不
会完全回复,其中一部分会永久残留。
a
b
应力-应变曲线(模式图)
8.1.2.3 破坏应力与破坏应变
核桃
木
0.590 11 11239 1172 621 690 896 228 0.72 0.49 0.63
白蜡
木
0.670 9 15790 1516 827 896 1310 269 0.71 0.46 0.51
山毛榉 0.750 11 13700 2240 1140 1060 1610 460 0.75 0.45 0.51
弹性模量( E ):物体产生单位应变所需要的应力,它表征材料
抵抗变形能力的大小,E=应力/应变 物体的弹性模量值愈大,在外力作用下愈不易变形,材料的
强度也愈大。 柔量:弹性模量的倒数,表征材料在荷载状态下产生变形的难易 程度。
(2) 剪切弹性模量
剪切应力τ与剪切应变γ之间符合:
τ=Gγ 或 γ=τ/G
木材的蠕变曲线
8.3.1.3 蠕变规律 (1)对木材施载产生瞬时变形后,变形有一随时间推移而
增大的蠕变过程;
(2)卸载后有一瞬时弹性恢复变形,在数值上等于施载时 的瞬时变形;
(3)卸载后有一随时间推移而变形减小的蠕变恢复,在此 过程中的是可恢复蠕变部分;
(4)在完成上述蠕变恢复后,变形不再回复,而残留的变 形为永久变形,即蠕变的不可恢复部分;
木材的应力与应变的关系属于既有弹性又有塑 性的材料——黏弹性材料。在较小应力和较短时间 的条件下,木材的性能十分接近于弹性材料;反之, 则近似于黏弹性材料。
8.2 弹性与木材的正交异向弹性
8.2.1 弹性与弹性常数
8.2.1.1 弹性 弹性:应力解除后即产生应变完全回复的性质。 8.2.1.2 弹性常数 (1) 弹性模量和柔量
度上的尺寸或形状的变化。
顺纹理加压与顺纹理剪切
压缩应力和拉伸应力:把短柱材受压或受拉状态下产生 的正应力。 剪应力:当作用于物体的一对力或作用力与反作用力不 在同一条作用线上,而使物体产生平行于应力作用面方 向被剪切的应力。
8.1.2 应力与应变的关系
8.1.2.1 应力—应变曲线
应力—应变曲线:表示应力与应变的关系曲线。 曲线的终点M表示物体的破坏点。