生活中的一次函数

合集下载

一次函数在实际生活中的应用

一次函数在实际生活中的应用

一次函数在实际生活中的应用例1某房地产开发公司计划建A B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:分析:设AA型住房的总成本是__________ 万元;B型住房的总成本是______________ 万元;80套住房的总成本是 ______________万丿元。

A型住房的总售价是___________ 万元;B型住房的总售价是___________ 万元;80套住房的总售价是_______________ 万元。

A型住房的总利润是___________ 万元;B型住房的总利润是___________ 万元;80套住房的总利润是_______________ 万元。

依据所筹资金情况可列不等式组彳-----------不等式组的解集是____________ ,故有_________ 种建房方案。

依据总利润的解析式,当x= _________ 套时总利润最大,最大利润为__________ 万元•终上所述,共有 _____ 种建房方案;当建A型房________ 套,B型住房____ 套时,总利润最大,最大利润是_________ 万元。

例2塑料厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:(1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为y i元和y2元,分别求y i和屮关于x的函数解析式(注: 利润=总收入-总支出);(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多少?例3某商场欲购进A、B两种品牌的饮料500箱,此两种饮料每箱的进价和售价如下表所示。

设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.⑴求y关于x的函数关系式?⑵如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用1. 引言1.1 一次函数的定义一次函数是指形式为y=ax+b的函数,其中a和b为常数,且a不等于0。

简单来说,一次函数就是一个斜率不为零的直线函数。

在数学中,一次函数是最简单的函数之一,但却有着广泛的应用。

在一次函数中,变量之间是线性关系,可以用来描述很多现实生活中的问题。

一次函数的斜率代表了变量之间的变化率,而常数项则代表了起始值。

通过一次函数,我们可以快速地了解变量之间的关系,并进行预测和分析。

一次函数还有很多重要性质,比如通过两点确定一条直线、平行直线具有相同的斜率等。

这些性质使一次函数成为解决实际问题的有效工具。

在接下来的内容中,我们将探讨一次函数在各个领域的具体应用,包括经济学、市场营销、工程、金融学和医学。

通过这些具体案例,我们可以更好地理解一次函数在生活中的重要性和广泛应用性。

1.2 一次函数在生活中的重要性在经济学中,一次函数常常被用来描述供需关系和价格变化的规律。

通过分析一次函数的图像和方程,经济学家可以更好地预测市场走势和制定合理的政策措施,从而促进经济的稳定发展。

在市场营销领域,一次函数可以帮助企业分析销售数据、制定定价策略和评估市场需求。

借助一次函数的模型,市场营销人员可以更加准确地了解消费者的行为和喜好,从而提高产品的市场竞争力。

在工程领域,一次函数常被用来描述物体的运动轨迹和能量转化过程。

工程师利用一次函数的性质来设计各种设备和结构,确保其在实际应用中具有良好的性能和稳定性。

在金融学领域,一次函数被广泛应用于风险分析、投资组合管理和资产定价等方面。

通过构建一次函数的模型,金融学家可以更好地评估资产的价值和波动性,从而降低投资风险并获取更高的收益。

在医学领域,一次函数可以用来描述人体各个器官的生理变化和疾病进程。

医生通过对一次函数的分析和建模,可以更好地诊断疾病、制定治疗方案和预测患者的康复情况。

一次函数在生活中的重要性不可忽视,它为各个领域提供了重要的数学工具和理论基础,促进了社会的进步和发展。

一次函数生活中的实际应用题目

一次函数生活中的实际应用题目

一次函数生活中的实际应用题目一次函数是数学中的一种函数类型,表示为 y = kx + b 的形式,其中 k 是函数的增减速度,b 是函数的零点。

一次函数在生活中有许多实际应用,以下是一些实际问题的例子:1. 温度计:一次函数可以用来描述温度的变化情况。

当温度上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示温度变化的水平方向。

例如,在摄氏 0 度和 100 度之间,温度每增加 1 度,温度计上的指针会上升多少格,就可以用一次函数来描述。

2. 流量控制:一次函数在流量控制中被广泛应用,特别是在水管和发动机的设计之中。

当水流量为恒定值时,一次函数可以用来描述水流量和水压之间的关系。

例如,如果想控制水流量为一定值,可以通过调节水管中的阀门大小来控制水压,从而实现流量的控制。

3. 存款利率:一次函数可以用来描述存款利率的变化情况。

当利率上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示利率变化的水平方向。

例如,如果利率上升 1%,银行的存款利率会相应上涨多少元,就可以用一次函数来描述。

4. 股票价格:一次函数可以用来描述股票价格的变化情况。

当股票价格上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示股票价格变化的水平方向。

例如,如果股票价格上升 1%,投资者获得的回报率会相应上涨多少个百分点,就可以用一次函数来描述。

5. 植物生长:一次函数可以用来描述植物的生长情况。

当植物的生长速度加快或减缓时,一次函数的斜率会发生变化,而常数 b 则表示植物的生长速度保持不变的水平方向。

例如,如果想预测植物在未来几天内的生长速度,可以使用一次函数来计算。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用1. 引言1.1 什么是一次函数一次函数是指数学中的一种特殊函数形式,通常表示为f(x) = ax + b的形式。

a和b是常数,且a不等于0。

一次函数也被称为一次多项式函数,因为它的最高次数为1。

在一次函数中,变量x的最高次数为1,这使得函数的图像呈现为一条直线。

一次函数的特点是其图像是一条直线,具有线性的特性。

这种简单的函数形式在数学建模和实际问题求解中具有重要意义。

一次函数可以描述很多实际生活中的问题,比如描述两个变量之间的线性关系,预测未来的变化趋势,进行经济预测和规划等。

在实际应用中,一次函数可以帮助我们分析经济学、物理学、工程学、社会科学和医学领域中的各种现象和问题。

通过一次函数的建模和分析,我们可以更好地理解和解决复杂的实际问题,为社会发展和个人发展提供有力的支持和指导。

了解一次函数的基本概念和应用是非常重要的。

1.2 为什么一次函数在生活中具有重要意义一次函数在生活中的重要意义在于其简单性和直观性。

一次函数是最基本的一种函数形式,具有线性关系的特点,易于理解和应用。

通过一次函数,我们可以轻松地描述许多实际问题的规律和模式,比如物体的运动轨迹、经济的增长趋势、工程中的力学关系等,为我们理解和解决问题提供了重要的工具和方法。

一次函数在生活中的重要意义还体现在其广泛应用的范围。

一次函数几乎涉及到生活的各个领域,包括经济学、物理学、工程学、社会科学、医学等,可以用来分析和描述各种不同的现象和问题。

掌握一次函数的知识和技能对我们了解世界、改善生活具有重要的意义。

一次函数在生活中的重要意义在于其简单性、直观性和广泛应用性。

通过学习和应用一次函数,我们可以更好地理解世界、解决问题,促进社会的发展和进步。

深入理解和掌握一次函数的知识对我们每个人来说都是非常重要的。

2. 正文2.1 一次函数在经济学中的应用一次函数在经济学中的应用非常广泛,经济学家们经常使用一次函数来描述和分析各种经济现象和关系。

中考数学复习指导:一次函数在实际生产生活中的应用举例

中考数学复习指导:一次函数在实际生产生活中的应用举例

一次函数在实际生产生活中的应用举例运用函数知识解决简单的实际问题,体会函数是解决实际问题的数学模型和方法,既是新课程标准的要求,也是中考命题的热点,近几年的中考试题对一次函数的考查力度呈加大趋势,热点问题集中在一次函数的实际应用上,应该引起同学们的关注.现就应用一次函数知识在生活、生产实际中解决实际问题举几例说明.1在日常生活中的应用一次函数在我们的日常生活中应用十分广泛.例如,当我们购物、租车、住宿、缴水电费时,会为我们提供两种或多种优惠方案,这些问题往往可利用一元一次函数解决.例1为加强公民的节水意识,某市制定如下的用水标准:每月每户用水未超过7 m3时,每立方米收 1.0元并加收0.2元污水处理费;超过7 m3时,超过部分每立方米收 1.5元并加收0.4元污水费,设某户每月的用水为x m3,应交水费y元.(1)写出y与x之间的函数关系式.(2)若某单元所在小区共有50户,某月共交水费541.6元,且每户用水均未超过10 m3,这个月用水未超过7 m3的用户最多可能有多少户?解(1)由题意可知,当0≤x≤7时,y=1.2x.当x>7时,y=1.9(x-7)+7×1.2=1.9(x-7)+8.4.所以y与x之间的函数关系式为(2)设月用水量未超过7 m3共有x户.因为月用水7 m3的应交水费8.4元,用水10 m3的应交水费(5.7+8.4)元,根据题意,得(50-x)(5.7+8.4)+8.4x=541.6.解得x≈28. 67.若x=29时,交费的最大额数为29×8.4+21×14.1=539.7<541.6.所以x=28(户).即月用水量未超过7 m3的用户最多有28户.2在市场经济中的应用随着市场经济体制的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,存款与保险,股票与债券,,都已进入我们的生活.同时与这一系列经济活动相关的数学,利息与利率,统计与概率,运筹与优化等,都将在数学课程中呈现出来.例2某镇组织20辆汽车装运完A、B、C三种脐橙共100 t到外地销售.按计划20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运A种脐橙的车辆数为x,装运B,种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.解(1)根据题意,装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,那么装运C种脐橙的车辆数为(20-x-y),则有6x+5 y+4(20-x-y)=100.整理,得y=-2x+20.(2)由(1)知,装运A 、B 、C 三种脐橙的车辆数分别为x 、-2x +20、x ,根据题意,得42204x x,解得4≤x ≤8.因为x 为整数,所以x 的值为4、5、6、7、8,所以安排方案共有5种,方案一:装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车;方案二:装运A 种脐橙5车,B 种脐橙10车,C 种脐橙5车;方案三:装运A 种脐橙6车,B 种脐橙8车,C 种脐橙6车;方案四:装运A 种脐橙7车,B 种脐橙6车,C 种脐橙7车;方案五:装运A 种脐橙8车,B 种脐橙4车,C 种脐橙8车.(3)设利润为W(百元),根据题意,得W =6x ×12+5(-2x +20)×16+4x ×10=-48x +1 600.因为k =-48<0,所以W 的值随x 的增大而减小,要使利润W 最大,x 取最小值4,故选方案一.W 最大=-48×4+1 600=1 408(百元)=14.08(万元).3在工程问题中的应用下面这道题看似平常却是别有新意的好题,本题突破了传统的工程问题的模式,将工程问题与一次函数图像相联系,进一步加强了传统经典习题与现实生活的联系,在新的时代背景中更好地学习和掌握数学知识.例3某县在实施“村村通”工程中,决定在P 、Q 两村之间修筑一条公路,甲、乙两个工程队分别从P 、Q 两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.如图1是甲、乙两个工程队所修道路的长度y(m)与修筑时间x (天)之间的函数图像,请根据图像所提供的信息,求该公路的总长.解由乙图像可知,A(12,840).设y乙=kx(0≤x ≤12),因为840=12k ,所以k =70.解得y乙=70x .当x =8时,y 乙=560,所以C(8,560).设y 甲=mx +n(4≤x ≤16),将B(4,360)、C(8,560)代入,得43608560m n m n,解得50160m n.所以y 甲=50x +160.当x =16时,y甲=50×16+160=960.由此可得乙修筑公路长840 m ,甲修筑公路长960 m .故该公路全长为1800 m .4在行程问题中的应用行程问题是一个常规的问题,而新课程下的行程问题,往往与图像、图形、表格等结合在一起,不仅考查了我们对知识的理解,而且考查了识图能力和数形结合的数学思想.例4甲、乙两人骑自行车前往A 地,他们距A 地的路程 5 (km)与行驶时间t(h)之间的关系如图2所示,请根据图像所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个).(3)在什么时间段内乙比甲离A 地更近?解(1)由图像知,甲2.5 h 行驶50 km ,所以V甲=502.5=20(km/h).乙2h行驶60 km,所以V乙=602=30(km/h).(2)s甲=50-20t或s乙=60-30t.(3)当1<t<2.5时,s乙的图像在s甲的图像的下面,说明在同一时刻,s乙<s甲,即乙离A 地距离小于甲离A地距离,乙比甲离A地更近,以上四例说明,一次函数在我们的日常生活中应用十分广泛,内容十分丰富,上述题目联系实际和时代的热点,较为自然地考查了一次函数模型的实际问题,同时也考查了同学们利用函数思想和方程、不等式、最值等知识解决问题的能力,希望同学们能从中得到启示,善于运用数学去分析身边周围的现象,学会用数学知识分析和解决生产、生活中的一些实际问题.。

京教八下第十五章一次函数 生活中的一次函数问题举例 辅导文章

京教八下第十五章一次函数   生活中的一次函数问题举例   辅导文章

生活中的一次函数问题举例江苏许彩琴同学们知道,一次函数关系式的一般形式是y=kx+b(k≠0),利用这一关系式我们可以解决一些生活中的实际问题,举例说明如下.1.银行储蓄问题例1 某种储蓄的月利率是0.36%,今存入本金100元,求本息和(本金与利息的和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和。

解:∵利息=本金×月利率×月数,∴y=100+100×0.36%×x=100+0.36x.当x=5时,y=100+0.36×5=101.8,即5个月后的本息和为101.8元.2.托运行李费问题例2 托运行李P千克(P为整数)的费用为C,已知托运第一个1千克需付2元,以后每增加1千克(不足1千克按1千克计)需增加费用5角,则计算托运行李费用C的公式是______,托运重量为28.4千克的行李需付______元.分析由题意知C=2+0.5(P-1).(P为自然数)根据题意,28.4千克应按29千克计算,则当P=29时,C=2+0.5(29-1)=16(元).3.调运方案问题例3 A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台,已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元.(1)设B市运往C村机器x台,求总运费W关于x的函数关系式;(2)若要求总运费不超过9000元,共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?分析由已知条件填出下表:(1)依题意得函数式:W=300x+500(6-x)+400(10-x)+800[8-(6-x)]=200x+8600.(2)由W=200x+8600≤9000,得x≤2,∴x=0,1,2,共有3种调运方案.(3)当x=0时,总运费最低,即从A市调10台给C村,调2台给D村,从B市调6台给D村,为总运费最低的调运方案,最低运费为8600元.4.旅游费用问题例4 某校校长暑假将带领该校市级“三好学生”去北京旅游.甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待”.乙旅行社说:“包括校长在内全部按全票价的6折优惠”(即按全票价的60%收费),若全票价为240元.(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式).(2)当学生数是多少时,两家旅行社的收费一样?(3)就学生数x讨论哪家旅行社更优惠.分析(1)由题意,得y甲=240+120x,y乙=(240+240x)×60%=144+144x.(2)由y甲=y乙得:240+120x=144+144x 解得:x=4.∴当学生数为4时,两家旅行社收费一样.(3)设y甲<y乙,则120x+240<144x+144 解之得:x>4.∴当学生数少于4时,乙旅行社更优惠.当学生数大于4时,甲旅行社更优惠.。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用【摘要】一次函数在生活中具有广泛的应用,在经济学领域,需求函数可以用一次函数来描述商品需求的变化规律;而在物理学中,运动学问题中的速度、位移等参数也可以用一次函数表示;工程学中常常使用一次函数描述线性关系,如电阻、弹簧等的特性;市场营销中的定价策略也可以通过一次函数来制定;在数据分析领域,一次函数被广泛用于趋势预测。

一次函数的应用不仅局限于特定领域,其在各个领域都有着重要作用。

未来,随着科学技术的不断发展,一次函数在生活中的应用将得到更广泛的拓展,为解决实际问题提供更多可能性。

我们应该充分认识一次函数在生活中的价值,并积极探索其未来的发展前景。

【关键词】一次函数、生活中的具体应用、经济学、需求函数、物理学、运动学问题、工程学、线性关系、市场营销、定价策略、数据分析、趋势预测、广泛应用、发展前景1. 引言1.1 一次函数在生活中的具体应用一次函数是数学中的一个基本概念,它在生活中有着广泛的应用。

一次函数的图像是一条直线,具有简单的线性关系,因此在各个领域中都有着实际的应用价值。

本文将探讨一次函数在经济学、物理学、工程学、市场营销和数据分析中的具体应用,展示一次函数在生活中的重要作用。

在经济学中,需求函数是描述产品需求与价格之间关系的一次函数。

需求量随着价格的变化而变化,通过需求函数可以分析市场的需求趋势,帮助企业制定合理的定价策略。

物理学中的运动学问题也常常涉及到一次函数,如描述物体的位置随时间变化的关系。

工程学中的线性关系则可以通过一次函数来描述,例如材料的强度与温度之间的关系。

市场营销中的定价策略和数据分析中的趋势预测也离不开一次函数的应用,通过对数据进行分析和建模,可以帮助企业做出更加准确的决策。

一次函数在生活中有着广泛的应用,不仅可以帮助我们更好地理解各个领域中的问题,还可以指导我们做出更加科学合理的决策。

未来随着科技的发展,一次函数在生活中的应用还将继续扩大,为我们带来更多的便利和可能性。

一次函数在生活中的应用研究

一次函数在生活中的应用研究

一次函数在生活中的应用研究一次函数作为数学中的重要概念,不仅在课堂上有着重要的地位,更是在生活中有着广泛的应用。

本文将就一次函数在生活中的应用进行研究,探讨其在各个领域的具体应用,并分析其对生活的影响和意义。

一、交通运输领域在交通运输领域,一次函数被广泛应用于交通流量的预测和管理中。

通过对交通流量的收集和分析,可以建立一次函数模型,预测不同时间段和不同路段的交通流量,从而制定合理的交通管理措施,减少交通拥堵,提高交通效率。

一次函数还可以用于公交车、地铁等公共交通工具的班次安排和运行时间的预测,确保公共交通系统的正常运行和高效服务。

二、经济领域在经济领域,一次函数被广泛应用于市场需求分析和销售预测中。

通过对市场需求的调查和数据分析,可以建立一次函数模型,预测不同产品的需求量随着价格的变化而变化的关系,进而制定合理的价格策略,促进产品的销售和市场份额的提升。

一次函数还可以用于企业生产成本的控制和利润的最大化,为企业经营决策提供重要的参考依据。

三、物理学领域在物理学领域,一次函数被广泛应用于运动学和动力学的研究中。

通过对物体的运动轨迹和速度的测量和分析,可以建立一次函数模型,描述物体在空间中的运动规律,从而预测物体的位置和速度随时间的变化规律,为物体的运动和运动参数的计算提供依据。

一次函数还可以用于描述力和位移之间的关系,分析物体的受力情况和运动状态,为工程和技术领域的设计和改进提供理论支持。

四、生态环境领域在生态环境领域,一次函数被广泛应用于环境污染的监测和治理中。

通过对环境污染物的排放和扩散情况的监测和分析,可以建立一次函数模型,预测不同区域和不同时段的污染物浓度随时间和空间的变化规律,从而制定合理的环境保护和治理方案,减少环境污染,改善生态环境质量。

一次函数还可以用于描述环境因子之间的相互影响和关系,分析生态系统的稳定性和变化趋势,为生态环境保护和资源管理提供科学依据。

一次函数在生活中的应用是多方面的,涉及各个领域,具有重要的意义和价值。

一次函数在生活中的应用

一次函数在生活中的应用

一次函数在生活中的应用咱们聊聊啊,这数学里头的一次函数,听起来挺高深莫测的,其实啊,它就在咱们日常生活里头溜达呢,跟咱们老百姓的日子那是息息相关,紧密得跟亲兄弟似的。

你想啊,早上起床,得琢磨着吃点啥吧?比如说,你去楼下包子铺,那价格表上写着呢,肉包子两块五一个,素包子两块一个。

这不就是一次函数嘛!你买的包子数量是X,总价是Y,Y就是X乘以单价。

肉包子的话,Y=2.5X;素包子,Y=2X。

简单吧,一口一个,吃出学问来了。

吃完早饭,该上班了。

开车去?那油费也得算算。

油价一升多少钱,咱们心里得有个数。

车子油耗多少,也得心里有谱。

这一路上,油门一踩,那就是钱在烧啊。

不过别担心,这也是一次函数在作祟。

油耗是X,油费是Y,Y=油价乘以油耗X。

省油就是省钱,这个道理大家都懂。

到了公司,得干活了。

老板说了,这个月业绩得上去,不然奖金泡汤。

这业绩和奖金的关系,嘿,又是一次函数。

业绩是X,奖金是Y,Y=奖金系数乘以业绩X。

当然啦,这个系数老板说了算,咱们只能努力提升X值,争取多拿点Y。

下了班,回家路上经过超市,得买点菜。

蔬菜水果,价格都不一样。

你挑挑拣拣,放进购物车,心里还得盘算着这得花多少钱。

挑的东西越多,钱花得越多,这也是一次函数在默默工作。

购物车里的东西重量是X,总价是Y,Y=单价乘以重量X。

勤俭持家,就得这么精打细算。

晚上,一家人围坐在一起看电视。

孩子说:“爸爸,我想学钢琴。

”你一听,心里那个激动啊,得支持孩子啊!不过,学钢琴得花钱啊。

学费按课时算,这也是一次函数。

课时是X,学费是Y,Y=课时费乘以课时X。

为了孩子的未来,这钱花得值!你看啊,这一天到晚的,咱们的生活里到处都是一次函数。

它就像个隐形的朋友,默默地陪伴着我们,帮助我们更好地规划生活、管理财务。

所以啊,别觉得数学枯燥无味、高不可攀了。

其实啊,它就在我们身边,跟咱们的生活紧密相连、息息相关。

学好数学吧朋友们!让我们的生活因数学而更加精彩、更加有序!。

生活中的一次函数

生活中的一次函数
分析(1)可以从乘车人数的角度考虑租多少辆汽车。即要注意到 以下要求: ①要保证240名师生有车坐; ②要使每辆汽车上至少要有1名教师。
根据①可知,汽车总数不能小于______ 6 ;根据②可知,汽车 总数不能大于_____ 6 。
6 综合起来可知汽车总数为______ 。
(2)租车费用与所租车的种类有关,可以看出,汽车总数a确 定后,在满足各项要求的前提下,尽可能少地租用甲种客车 可以节省费用。 设租用x辆甲种客车,则租车费用y(单位:元)是x 的函数, 即:y = 400x + 280 ( a-x ) 将(1)中确定的a值代入上式,化简这个函数,
总计 14 14 28
A
B 总计
解 设从A库往甲地调水X吨,总调运量为y. 则从A库往乙地调水(14-X)吨,从B库往甲地 调水(15-X)吨, 从B库往乙地调水[13-(14-X)]吨。
问题3 怎样调水
从A、B两水库向甲、乙两地调水,其中甲地需水15 万吨,乙地需水13万吨,A、B两水库各可调出水14万 吨.从A地到甲地50千米,到乙地30千米;从B地到甲 地60千米,到乙地45千米.设计一个调运方案使水的 调运量最小.
用白炽灯的总费用为:y2 =_____________ 0.5×0.06x + 3


例1、一种节能灯的功率为10瓦(即0.01千瓦),
售价为60元;一种白炽灯的功率为60瓦(即0.06
千瓦),售价为3元。两种灯的照明效果一样,使 用寿命也相同(3000小时以上)。如果电费价格为 0.5元/(千瓦时)消费者选用哪种灯可以节省费用? 解:设照明时间为x小时, 则用节能灯的总费用为:y1 =_____________ 0.5×0.01x+60 用白炽灯的总费用为:y2 =_____________ 0.5×0.06x + 3 根据两个函数,考虑下列问题:

一次函数在生活中的应用

一次函数在生活中的应用

一次函数在生活中的应用一问题背景:一元一次函数在我们的日常生活中应用十分广泛。

当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。

例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。

这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。

俗话说:“从南京到北京,买的没有卖的精。

”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。

二问题再现:冬季快到了,大润发商场的保暖内衣开始搞促销活动了.每套保暖内衣原价是60元,优惠方式1:每套内衣打九折。

优惠方式2:当购买套数多于10套,购买总价减去两套的价钱.采用哪种优惠方式可以达到省钱的目的?三解决方案:在教学过程中,根据学生在前面已经学习了函数的定义,函数的表示方法,及函数的性质等知识后,学生可以根据以上知识,解决一次函数的应用问题.我采用”自组织教学法”提出以下几个问题:1分别写出付款总额的函数的表达式2比较两种付款总额的大小3通过分析数据得出结论4归纳本题的函数模型5进一步探讨,有没有更简洁明了的分析方法.6能否再举一个类似的生活实际应用例子..四解决过程:学生1:写出优惠方式一的付款总额的函数表达式:设顾客买的套数为X(X为正整数),则付款总额为Y1=60*0.9*X=54X学生2:写出优惠方式二的付款总额的函数表达式Y2=(X-2)*60.共同比较:(1)当两种方式付款总额相等时:54X=(X-2)*60,得出X=20(2)Y1>Y2,X<20,学生答第二种方法省钱.(3) Y1<Y2,X>20,学生答第一种方法省钱。

我提示看第二种优惠方法的条件:购买的套数必须多于10套.学生恍然大悟:当购买套数在10<X<20时,第二种方式省钱.结论:(1)当购买套数在0<X<10或X>20时,第一种优惠方式省钱.(2)当X=20时,两种方法都可以。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用
一次函数,在数学上也叫线性函数,其表示形式为 f(x) = ax + b,其中 a 和 b 是实数,且a ≠ 0。

一次函数在生活中有很多具体应用,下面将介绍一些常见的应用场景。

1. 速度与时间的关系:一次函数可以用来描述速度与时间的关系。

假设某辆汽车匀速行驶,其速度为 v,经过时间 t 后,汽车行驶的距离可以表示为 d = vt,其中 d 是距离。

这个关系可以用一次函数来表示。

2. 成本与产量的关系:在生产过程中,通常会涉及到成本与产量之间的关系。

假设某工厂生产一种商品,其生产成本为 c,产量为 x,成本与产量之间的关系可以用一次函数来表示。

7. 重量与身高的关系:一次函数可以用来描述人的重量与身高的关系。

假设某人的身高为 h,体重为 w,则体重与身高之间的关系可以用一次函数来表示。

一次函数在生活中有很多具体应用,可以描述各种物理量的关系,帮助我们理解和分析一些实际问题。

函数在生活中的应用

函数在生活中的应用

函数在生活中的应用一.一次函数在生活中的应用一次函数在我们日常的生活中应用十分广泛。

在人们进行各种社会活动时,尤其是消费活动,如果涉及到线性变量时,一次函数就派上用场了。

如:我们常常打的电话,不同时间收费不同,是按照:时间×价位;还有在购物时商品的总价钱:单价×数量。

例子:现在许多商家都推出了选择性优惠的购物方案,如:买一送一和到一定数量减价之类。

小明去某家商场买茶壶,商场有这两种优惠方案。

(1)卖一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90% 付款。

)。

其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。

小明想到:这两种优惠办法有区别吗?到底哪种更便宜呢?小明在纸上写道:设某顾客买茶杯x 只,付款y 元,(x>3且x ∈N),则用第一种方法付款y1=4×20+(x-4)×5=5x+60;用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.接着比较y1y2的相对大小.设d=y1-y2=5x+60-(4.5x+72)=0.5x-12.然后便要进行讨论:当d>0时,0.5x-12>0,即x>24;当d=0时,x=24;当d<0时,x<24.综上所述,当所购茶杯多于24只时,法(2)省钱;恰好购买24只时,两种方法价格相等;购买只数在4—23之间时,法(1)便宜. 。

可见,有了一次函数使我们的购物甚至社会活动都变得更加简便了。

二.二次函数在生活中的应用我们在生活中所看见的投篮,飞机飞行轨迹都和二次函数息息相关。

二次函数在建筑学上也有相当大的作用,如:造桥的时候要考虑到桥拱的弧度。

有一抛物线拱桥,已知水位线在AB 位置时,水面的宽为4 6 米,水位上升4米,就达到警戒线CD ,这时水面宽为4 3 米.(如下图)(1)求B 、D 点的坐标 (2)求抛物线的解析式(3)若洪水来时,水位以每小时0.5m 的速度上升,则水过警戒线后几小时淹没到拱桥顶端M 处?解:(1)由64=AB ,34=CD ,4=ON 得坐标:)0,62(B ,)4,32(D(2)设抛物线的解析式为c ax y +=2把B 、D 点坐标代入得:⎩⎨⎧+=+=c a c a 22)32(4)62(0 解得:31-=a ,8=c ,所以解析式为:8312+-=x y(3)由抛物线解析式8312+-=x y 得)8,0(M ,所以448=-=MN 所以:85.04===v MN t (小时) 答:水过警戒线后8小时淹没到拱桥顶端M 处。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用【摘要】一次函数是数学中的基本概念,其在生活中有着广泛的应用。

在经济学中,一次函数被用来分析市场供求关系,帮助决策者制定价格策略。

在物理学中,一次函数可以描述物体的运动状态,如速度与时间的关系。

在工程学中,一次函数被用来设计桥梁和建筑物的结构,保证其稳定性。

在社会学中,一次函数可以分析人口增长和社会趋势,帮助政府调整政策。

在医学中,一次函数被用来研究药物的代谢过程,优化治疗方案。

结合以上应用领域,可以看出一次函数在生活中扮演着重要的角色,拥有广泛的应用价值。

通过深入理解和应用一次函数,我们可以更好地解决实际问题,提高生活质量和工作效率。

【关键词】一次函数,生活应用,经济学,物理学,工程学,社会学,医学,广泛应用1. 引言1.1 一次函数的定义一次函数,也称为线性函数,是数学中最简单的一种函数类型之一。

一次函数的一般形式可以表示为f(x) = ax + b,其中a和b为常数,且a不等于0。

在这个函数中,变量x的最高次数为1,因此称为一次函数。

一次函数的特点包括斜率和截距。

斜率a表示函数图像的倾斜程度,正斜率表示函数图像向上倾斜,负斜率表示函数图像向下倾斜,斜率的绝对值表示倾斜的程度。

截距b表示函数图像与y轴的交点,即当x 等于0时,函数值为b。

一次函数在生活中有着广泛的应用,可以用来描述各种实际情况和问题。

在经济学中,一次函数常常用来描述成本、收入、利润等与数量的关系。

在物理学中,一次函数可以用来描述速度、加速度等物理量随时间的变化。

在工程学中,一次函数可以用来建立模型、优化设计等。

在社会学中,一次函数可以用来分析人口增长、社会变化等。

在医学中,一次函数可以用来研究疾病传播、药物代谢等。

一次函数在生活中具有非常重要的作用,深刻影响着我们的生活和工作。

1.2 一次函数的特点一次函数是一种最简单的线性函数,其特点主要有以下几点:1. 一次函数的图像是一条直线。

这是因为一次函数的图像是以常数速率变化的,因此在坐标系中表现为一条倾斜的直线。

一次函数生活中的实际应用题目

一次函数生活中的实际应用题目

一次函数生活中的实际应用题目一次函数是数学中的一种函数类型,表示为 $y=ax+b$ 的形式,其中 $a$ 和 $b$ 是常数,$x$ 和 $y$ 是自变量和因变量。

一次函数在数学中主要用于求解线性方程组和描绘线性函数图像。

在生活中,一次函数也有许多实际应用。

以下是一些实际问题的例子:1. 设计一个最好的方法来清洁房间。

如果我们想要清洁一个房间,我们可以使用一次函数来规划清洁时间。

我们可以将房间分为若干个部分,然后分别清洁每个部分。

这样,我们可以将清洁时间最小化,从而达到最有效的清洁效果。

2. 确定股票价格的趋势。

股票价格的走向是投资者关注的重要问题。

一次函数可以用来描述股票价格的变化趋势。

如果我们能够捕捉到一次函数的图像,就可以预测股票价格的未来走向。

这对于投资者具有重要的参考价值。

3. 设计一个最好的方法来种植植物。

如果我们想要种植一棵植物,我们可以使用一次函数来决定种植的位置。

我们可以将植物盆栽放在一个网格上,然后根据一次函数的图像来确定每个位置应该种植什么植物,从而最大限度地利用空间,并保证植物得到充分的阳光和水分。

4. 确定一个问题的解决方式。

有时候,我们会遇到一些复杂的问题,很难找到解决方法。

如果我们能够将问题转化为一次函数的形式,然后求解该函数的方程,就可以找到问题的解。

例如,如果我们想要解决交通拥堵问题,我们可以使用一次函数来描述交通流量,然后求解该函数的方程,以找到最佳的交通管理措施。

这些只是一次函数在生活中实际应用的一小部分,实际上,一次函数在许多领域都有广泛的应用,例如工程、物理、化学、经济等等。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用【摘要】一次函数是数学中的基础概念之一,在生活中具有广泛的应用价值。

本文探讨了一次函数在经济学、物理学、工程学、管理学和生物学等不同学科领域的具体应用。

在经济学中,一次函数常用于描述价格与供求关系,帮助分析市场走势和决策制定。

物理学中的直线运动问题可以通过一次函数来描述物体的位置随时间的变化规律。

在工程学中,线性电路中的电压和电流关系也可以用一次函数来表示。

管理学中的线性规划问题可以通过一次函数优化资源分配和成本控制。

生物学中的物种增长模型也常用一次函数来描述种群数量随时间的变化。

一次函数在各个学科领域都发挥着重要的作用,展示出其在现实生活中的广泛适用性和重要性。

【关键词】一次函数、生活应用、经济学、价格、供求关系、物理学、直线运动、工程学、线性电路、管理学、线性规划、生物学、物种增长模型、重要应用价值1. 引言1.1 一次函数在生活中的具体应用一次函数在生活中的具体应用广泛存在,它在经济学、物理学、工程学、管理学和生物学等各个领域都有着重要的应用价值。

在经济学中,一次函数常常用于描述价格与供求关系,帮助分析市场运行规律。

物理学中,一次函数被用来描述物体的直线运动,预测位置随时间的变化。

工程学中的线性电路中,一次函数被用来描述电流和电压的关系,设计出各种电子设备。

在管理学领域,一次函数被应用于线性规划,帮助企业优化资源分配和决策制定。

生物学中,一次函数被用来建立物种增长模型,分析生态系统中的物种数量变化趋势。

通过对这些具体应用的研究和应用,可以更好地理解和利用一次函数在各个学科领域中的重要性,促进学科间的交叉和发展。

2. 正文2.1 经济学中的价格与供求关系经济学中的价格与供求关系是一次函数在生活中的具体应用之一。

在经济学中,价格与供求关系是一个非常重要的概念,也是经济学家研究市场和决策的基础之一。

一次函数可以很好地描述价格与数量之间的关系,帮助我们更好地理解市场的运作。

生活生产中有关的一次函数

生活生产中有关的一次函数

生活、生产中有关的一次函数运用函数知识解决简单的实际问题,体会函数是解决实际问题的数学模型和方法,既是新课程标准的要求,也是中考命题的热点,近几年的中考试题对一次函数的考查力度呈加大趋势,热点问题集中在一次函数的实际应用上,应该引起同学们的关注.现就应用一次函数知识在生活、生产实际中解决实际问题举几例说明.1在日常生活中的应用一次函数在我们的日常生活中应用十分广泛.例如,当我们购物、租车、住宿、缴水电费时,会为我们提供两种或多种优惠方案,这些问题往往可利用一元一次函数解决.例1为加强公民的节水意识,某市制定如下的用水标准:每月每户用水未超过7 m3时,每立方米收1.0元并加收0.2元污水处理费;超过7 m3时,超过部分每立方米收1.5元并加收0.4元污水费,设某户每月的用水为x m3,应交水费y元.(1)写出y与x之间的函数关系式.(2)若某单元所在小区共有50户,某月共交水费541.6元,且每户用水均未超过10 m3,这个月用水未超过7 m3的用户最多可能有多少户?解(1)由题意可知,当0≤x≤7时,y=1.2x.当x>7时,y=1.9(x-7)+7×1.2=1.9(x-7)+8.4.所以y与x之间的函数关系式为(2)设月用水量未超过7 m3共有x户.因为月用水7 m3的应交水费8.4元,用水10 m3的应交水费(5.7+8.4)元,根据题意,得(50-x)(5.7+8.4)+8.4x=541.6.解得x≈28. 67.若x=29时,交费的最大额数为29×8.4+21×14.1=539.7<541.6.所以x=28(户).即月用水量未超过7 m3的用户最多有28户.2在市场经济中的应用随着市场经济体制的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,存款与保险,股票与债券……都已进入我们的生活.同时与这一系列经济活动相关的数学,利息与利率,统计与概率,运筹与优化等,都将在数学课程中呈现出来.例2某镇组织20辆汽车装运完A、B、C三种脐橙共100 t到外地销售.按计划20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运A种脐橙的车辆数为x,装运B,种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.解 (1)根据题意,装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,那么装运C 种脐橙的车辆数为(20-x -y ),则有6x +5 y +4(20-x -y )=100.整理,得y =-2x +20.(2)由(1)知,装运A 、B 、C 三种脐橙的车辆数分别为x 、-2x +20、x ,根据题意,得42204x x ≥⎧⎨-+≥⎩,解得4≤x ≤8.因为x 为整数,所以x 的值为4、5、6、7、8,所以安排方案共有5种,方案一:装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车;方案二:装运A 种脐橙5车,B 种脐橙10车,C 种脐橙5车;方案三:装运A 种脐橙6车,B 种脐橙8车,C 种脐橙6车;方案四:装运A 种脐橙7车,B 种脐橙6车,C 种脐橙7车;方案五:装运A 种脐橙8车,B 种脐橙4车,C 种脐橙8车.(3)设利润为W(百元),根据题意,得W =6x ×12+5(-2x +20)×16+4x ×10=-48x +1 600.因为k =-48<0,所以W 的值随x 的增大而减小,要使利润W 最大,x 取最小值4,故选方案一.W 最大=-48×4+1 600=1 408(百元)=14.08(万元).3 在工程问题中的应用下面这道题看似平常却是别有新意的好题,本题突破了传统的工程问题的模式,将工程问题与一次函数图像相联系,进一步加强了传统经典习题与现实生活的联系,以利于同学们在新的时代背景中更好地学习和掌握数学知识.例3 某县在实施“村村通”工程中,决定在P 、Q 两村之间修筑一条公路,甲、乙两个工程队分别从P 、Q 两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.如图1是甲、乙两个工程队所修道路的长度y (m)与修筑时间x (天)之间的函数图像,请根据图像所提供的信息,求该公路的总长.解 由乙图像可知,A(12,840).设y 乙=k x (0≤x ≤12),因为840=12k ,所以k =70.解得y 乙=70x .当x =8时,y 乙=560,所以C(8,560).设y 甲=m x +n(4≤x ≤16),将B(4,360)、C(8, 560)代入,得43608560m n m n +=⎧⎨+=⎩,解得50160m n =⎧⎨=⎩. 所以y 甲=50x +160.当x =16时,y 甲=50×16+160=960.由此可得乙修筑公路长840 m ,甲修筑公路长960 m .故该公路全长为1800 m .4在行程问题中的应用行程问题是一个常规的问题,而新课程下的行程问题,往往与图像、图形、表格等结合在一起,不仅考查了我们对知识的理解,而且考查了识图能力和数形结合的数学思想.例4甲、乙两人骑自行车前往A地,他们距A地的路程5 (km)与行驶时间t(h)之间的关系如图2所示,请根据图像所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A地的路程s与行驶时间t之间的函数关系式(任写一个).(3)在什么时间段内乙比甲离A地更近?解(1)由图像知,甲2.5 h行驶50 km,所以V甲=502.5=20(km/h).乙2h行驶60 km,所以V乙=602=30(km/h).(2)s甲=50-20t或s乙=60-30t.(3)当1<t<2.5时,s乙的图像在s甲的图像的下面,说明在同一时刻,s乙<s甲,即乙离A 地距离小于甲离A地距离,乙比甲离A地更近,以上四例说明,一次函数在我们的日常生活中应用十分广泛,内容十分丰富,上述题目联系实际和时代的热点,较为自然地考查了一次函数模型的实际问题,同时也考查了同学们利用函数思想和方程、不等式、最值等知识解决问题的能力,希望同学们能从中得到启示,善于运用数学去分析身边周围的现象,学会用数学知识分析和解决生产、生活中的一些实际问题.。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用1. 引言1.1 一次函数的定义一次函数,又称为线性函数,是指形式为y=ax+b的函数,其中a 和b为常数,且a不为零。

在一次函数中,x的最高次数为1,因此表现为直线的图像。

一次函数具有简单的特征:斜率为a,截距为b。

一次函数在数学中的地位十分重要,它是初等数学中最基本的函数之一。

通过一次函数,我们可以描述简单的线性关系,例如时间和距离之间的关系、价格和数量之间的关系等。

一次函数在解决实际问题中具有广泛的应用。

除了在数学中应用广泛之外,一次函数在生活中也有着重要的作用。

它被广泛运用在经济学、物理学、工程学等领域中,帮助人们分析问题、预测趋势、优化方案等。

通过一次函数的建模方法,人们可以更好地理解现实世界中的复杂现象,并做出科学的决策。

一次函数在生活中扮演着重要的角色,是现代社会中不可或缺的数学工具之一。

通过深入研究一次函数的应用,我们可以更好地理解世界,解决问题,推动社会的发展和进步。

1.2 一次函数在生活中的重要性一次函数在生活中的重要性体现在许多方面。

一次函数在生活中的具体应用非常广泛,涉及到经济学、物理学、工程学等多个领域。

通过一次函数的应用,可以更好地解决实际问题,提高生活质量和工作效率。

一次函数能够帮助我们更好地理解和分析各种现象,为决策和规划提供重要参考。

一次函数在生活中的重要性不可忽视,它为我们提供了丰富的思维工具和解决问题的方法。

在日常生活中,无论是计算开支、预测销量,还是设计建筑、分析运动,都离不开一次函数的运用。

了解和掌握一次函数的知识,对我们发展个人能力和解决各种实际问题都有着重要的意义。

通过对一次函数的深入研究和应用,我们可以更好地理解世界的运行规律,提高自身的分析能力和解决问题的能力,从而更好地适应社会的发展需求。

2. 正文2.1 经济学中的应用在经济学中,一次函数也被广泛运用于各种实际问题的建模和分析中。

经济学家常常使用一次函数来描述市场需求、供给和成本等关键概念,从而帮助他们预测市场走势、制定政策和做出决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生活中的一次函数
一、学习目标
1、掌握一次函数解析式的特点及意义,知道一次函数与正比例函数关系。

2、通过类比的方法学习一次函数,体会数学研究方法多样性,利用数形结合思想,进一步分析一次函数与正比例函数的联系。

教学重点、难点:
重点:一次函数解析式的特点,熟练作出一次函数的图象。

难点:正确理解一次函数的代数表达式与图象之间的对应关系。

二、学法指导
利用学生描点作图经历体验并发现问题,分析问题和进一步归纳总结,让学生在探索中体验知识的生活过程,培养学生独立思考能力,阅
读能力和自主探究的学习习惯
三、教学过程
(一)提出问题,创设情境
出示问题,由学生列出函数表达式,导入新课。

函数问题在我们日常生活中随处可见,如弹簧在弹性限度内,随着所挂物体的重量的增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,如:
1、某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米
(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:
x/千克012345
y/厘米
(2)你能写出x与y之间的关系式吗?
2、某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。

(1)完成下表:
5
汽车行驶路程x/千米0
100150200300
油箱剩余油量y/升
(2)你能写出x与y之间的关系吗?
3、把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,你能你能写出长方形的面积y与x之间的关系吗?
(二)尝试探索、体验新知:
从学生比较熟悉的情景(弹簧的长度、汽车油箱中的余油量)出发,便于学生从情境中直接列出相应的代数表达式,在情境中设计了一个填表
活动,一方面让学生感受到x的变化引起y的变化情况,另一方面通过对这个变化情况的观察,帮助学生获得关于变化规律的猜想,通过对一般规律的探索过程,从实际问题中抽象出一次函数:
上面所列的函数的形式都是自变量x的k (常数)倍与一个常数的和。

一般地,形如y=kx+b (k、b是常数,k*C?)的函数,?叫做一次函数。

当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数。

学生练习:写出下列各题中x与y之间的关系式,并判断,y是否为x的一次函数?是否为正比例函数?
①汽车以60千米/时的速度匀速行驶,行驶路程中y (千米)与行驶时间x (时)之间的关系式;
②圆的面积y (厘米2)与它的半径x (厘米)之间的关系;
③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y (厘米)
活动1:比一比,看谁画的又快又好(展示学生画图)
在同平面直角坐标系下画y=2x和y=2x+1的图象。

x-2-1012
4 y=2x-4
-202
y=2x+1-3
35
-11
作函数的图象步骤是:
1、列表:表中数据个数要适当,通常取具有代表性的5--7组数据。

2、描点:描点一定要准确,不要搞混横、纵坐标。

3、连线:要根据点的分布趋势依次连线。

学生都具有强烈的表现心理。

学生都希望在课上教师能展示自己所画的图象,这样能调动学生的学习积极性,作图会比平时更规范。

同时,
学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

学生在已经知道正比例函数的图象是一条直线的基础
上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系。

活动2 :观察探索:
教师在学生画完图后,根据画图结果提出问题:你画出的这两个函数图象与两坐标轴的交点坐标分别是什么?
学生容易求出:把x=0代入解析式,求出直线与x轴的交点坐标,把y=0代入解析式,求出直线与y轴的交点坐标。

在学生作出的两条平等直线中,教师先引导学生观察正比例函数图象的交点情况,引用两点法(两点确定线);在此基础上引导学生发现直线y=2x与坐标轴交点"并思考:一次函数y=2x+1又如何作出图象?
我们已经知道:一次函数y=kx+b的图象是一条直线。

问:一条直线由几个点可以确定呢?
我们今后作一次函数的图象只要确定两个点,再过这两个点作直线就可以了。

这样通过启发学生最容易求出的两点,即与坐标轴的交点{(0,b),和(-b/k, 0)两点};引导学生抓住这两点画图象。

学生体验一次函
数图象是由两点来确定的;同时也教会了学生用两点法画一次函数图象。

活动3 :知识再体验:在同一直角坐标系中画出y=x,y=x+2,y=x-3的一次函数图象,并观察分析,体会三个这三个函数的关系。

进一步巩固两点作图法,渗透y=x+2和y=x-3可以通过y=x上下平移而得到。

为下一节我们探索一次函数的性质作准备。

特别强调:当b=0时,y=kx+b即y=kx .所以说正比例函数是一种特殊的一次函数。

并强调心0和必要性。

活动4 :小组竞赛,拓展提高。

1、一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米。

(1)、求小球速度v随时间t变化的函数关系式,它是一次函数吗?
(2)、求第2.5秒时小球的速度。

2、汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y (单位:升)随行驶时间x (单位:时)变化的函数关系式,
并写出自变量的取值范围,y是x的一次函数吗?并画出这个函数的图象。

采用小组竞赛的形式,在必做题做完后,让不同学习小组互相出题,通过比赛增强了课堂气氛浓,每个学生都能参与到课堂当中来,为学
生创造一个好的学习氛围,来引导学生发现问题、分析问题从而解决问题,学生在一个生动有趣的课堂上,能愉快地接受知识。

(三)课堂小结
通过这节课的学习你得到什么启示和收获?谈谈你的感受!
1、函数图象的概念。

2、作一次函数图像的步骤,能熟练地作出一次函数的图象。

3、一次函数y=kx+b的图象是一条直线,因此在作一次函数的图象时,只要确定两点就可以了。

总结学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化(四)作业布置。

相关文档
最新文档