新能源汽车电池包和BMS、VCU、 MCU

合集下载

纯电动汽车整车控制器(vcu)研究

纯电动汽车整车控制器(vcu)研究

车辆工程技术 2 车辆技术纯电动汽车整车控制器(VCU)研究宋述铨(天津优控智行科技有限公司,天津 300000)摘 要:电动汽车主要由电池管理系统(BMS),整车控制系统(VCS),以及电机控制器(MCU)等构成。

整车控制器(VCU)是电动汽车的重要控制结构,对汽车的各种信息进行检测、对车内通信网络和异常信息进行监控等,能够提高整车驾驶性能,进行制动能量回馈完善能源管理。

提升整车舒适性,使用户获得完美体验。

关键词:纯电动汽车;整车控制器;完美体验 随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。

传统的内燃机汽车消耗石油,排出大量废气,使得城市的空气质量不断下降。

纯电动汽车由于不使用传统化石能源,对环境不造成污染,受到人们的青睐。

随着科技的进步,电动汽车的核心技术不断地革新与突破,逐渐完善的城市基础设施提供了有利的帮助,电动汽车已经成为潜力股,逐步取代传统汽车变为可能。

本文从汽车结构出发,结合整车信息传输过程,设计了整车控制器的软硬件结构。

1 整车电控系统组成 整车电控系统主要由整车控制器VCU为核心,通过硬线信号指挥各控制器使能,通过CAN总线信号控制储能系统、电机系统等关键总成执行相应的上下电动作以及扭矩指令。

最终完成整车的驾驶运行以及高压充电。

其中,低压部分完成车辆控制器供电和信号采集通讯。

高压部分通过高压线束将动力电池的电能传输到空调压缩机、电动机等高压供电设备,实现动力电能的传输。

其中电机、电池、电控系统被称为“三电”系统,主要包括:1.1 整车控制器 整车控制器系统为整车的运行大脑,具有高可靠性、高运行效率、逻辑缤密性。

整车控制系统上电后首先运行初始化程序并且自检,在自身没有问题后驱动端口使能储能系统、电机系统上电。

储能系统和电机系统完成上电后同样分别进行上电自检。

所有系统自检无故障且驾驶员有上高压指令时,整车控制系统通过总线驱动储能系统、电机系统完成上高压动作。

1.2 储能系统 储能系统包括动力电池组和BMS管理单元。

电动汽车VCU和BMS集成控制器硬件设计

电动汽车VCU和BMS集成控制器硬件设计

一、概述
整车控制器是纯电动汽车控制系统的核心,它负责接收驾驶员的控制指令,根 据车辆的运行状态和电池的电量等信息,控制车辆的加速、减速、制动等动作, 同时还要监控电池的状态和充电情况,保证车辆的安全性和续航能力。
二、硬件设计
1、中央控制单元
中央控制单元是整车控制器的核心部件,它负责处理各种传感器和开关量信号, 根据车辆的运行状态和驾驶员的意图,控制车辆的加速、减速、制动等动作。 同时,中央控制单元还要与电池管理系统、充电控制系统等其他部件进行通信, 实现整车信息的实时监控和控制。
5、通信接口:BMS需要与VCU、充电桩等其他设备进行数据交换。因此,需要 配置相应的通信接口,如CAN、LIN等。考虑到电池管理系统的通信需求和数 据安全性,应选择具有高速、稳定、安全的通信接口。
6、故障诊断和处理单元:BMS应具备故障诊断和处理能力,能够对电池组进行 实时监测和故障预警。因此,需要配置相应的故障诊断和处理单元,包括故障 检测、故障处理、故障记录等功能。
电动汽车VCU和BMS集成控 制器硬件设计
目录
01 一、VCU硬件设计
03
三、VCU和BMS的集成 设计
02 二、BMS硬件设计 04 参考内容
随着环保意识的不断提高和电动汽车技术的不断发展,电动汽车在交通领域的 应用越来越广泛。作为电动汽车的关键部分,车辆控制单元(VCU)和电池管 理系统(BMS)的集成控制对于整车的性能和安全性具有至关重要的意义。本 次演示将探讨电动汽车VCU和BMS集成控制器的硬件设计。
(4)安全保护措施:采用防电击、防泄漏等安全保护措施确保人员的安全。
3、可维护性设计
可维护性是指控制系统出现故障时容易维修和恢复的程度。在硬件设计过程中, 应考虑以下几点:

新能源电池包组成 -回复

新能源电池包组成 -回复

新能源电池包组成-回复新能源电池包是由多个电池单体组成的,其设计构成了电动汽车和可再生能源系统的核心部分。

本文将逐步解释新能源电池包的组成部分和各组件的功能,以帮助读者更好地了解电池包的工作原理。

第一部分:电池单体新能源电池包的核心是电池单体,这是电力储存的基本单位。

电池单体通常是锂离子电池,其能量密度高、充放电效率高,因此被广泛应用于电动汽车和可再生能源领域。

电池单体的具体化学成分可以根据不同的厂商和应用需求而有所不同。

第二部分:电池管理系统(BMS)电池管理系统是一个关键组成部分,它负责监控、控制和保护整个电池包。

BMS可以管理电池的温度、电流、电压和状态等参数,以确保电池的安全和性能。

它还能够实时监测电池的健康状态,并在需要时进行自动调节或报警。

BMS还可以提供电池剩余容量的估计和预测,以帮助用户合理规划电池的使用。

第三部分:电池冷却系统新能源电池包在工作过程中会产生大量的热量,为了保持电池单体的最佳工作温度,需要一个有效的冷却系统。

这个系统通常由冷却板、冷却剂和冷却风扇等组件组成。

冷却系统可以帮助电池包快速散热,确保电池温度在合理的范围内。

过高的温度会降低电池性能和寿命,甚至引发安全问题。

第四部分:电池包壳体电池包壳体是用于保护电池单体和其他组件的外壳,起到防护和支撑作用。

这个壳体通常由金属材料或高强度塑料制成,以确保电池组件在正常使用和意外情况下的安全性。

第五部分:连接电缆和插头电池包内部各组件之间需要通过电缆进行连接。

连接电缆的材料需要具备良好的导电性和绝缘性能,以确保电流传输的稳定性和安全性。

同样重要的是插头,它是连接电池包与车辆或能源系统的接口,必须具备可靠的接触和防护功能。

第六部分:功率电子器件新能源电池包中还需要一些功率电子器件,用于实现电池与车辆或能源系统之间的能量转换和控制。

这些器件包括直流-直流(DC-DC)变换器和直流-交流(DC-AC)变换器等。

DC-DC变换器用于调节电池单体输出的电压和电流,以适应特定负载的需求。

27174063_纯电动汽车学习入门(九)——整车控制系统(上)

27174063_纯电动汽车学习入门(九)——整车控制系统(上)

◆文/北京 李玉茂纯电动汽车学习入门(九)——整车控制系统(上)(接上期)一、概述1.整车控制系统整车控制系统(VMS)是电动汽车的神经中枢,承担了各系统的数据交换、信息传递、动力电池能量管理、驾驶人意图解析、安全监控、故障诊断等作用,对电动汽车动力性、经济性、安全性和舒适性等有很大的影响。

整车控制系统分成三大子系统,如图1所示,包括低压电气系统、高压电气系统、网络控制系统。

图中弱电控制部件称作ECU(ECM),强电控制部件称作控制器。

(1)低压电气系统主要由12V电池、低压线路、点火开关、继电器、电动水泵、电动制动真空泵、电动助力转向器、ICM(组合仪表)等组成。

作用是为各电子控制单元、各高压部件控制器、各12V电动辅助设备供电。

(2)高压电气系统主要由动力电池、驱动电机、MCU(驱动电机控制器)、OBC(车载充电机)、DC/DC变换器、空调压缩机、压缩机控制器、PTC、PTC控制器等组成。

作用是将电能转换成机械能,或者整流、逆变、直流电压变换。

(3)网络控制系统主要由V C U (整车控制单元)、B M S (电池管理系统)、RMS(远程通信终端)、网关、CAN总线等组成。

作用是控制低压电气系统和高压电气系统。

2.整车控制单元(1)VCU基本作用整车控制单元英文缩写VCU,英文全称Vehicle Controller Unit,如图2所示。

VCU是整车控制系统的核心部件,VCU接收加速踏板、制动踏板、车速和剩余电量等信息,通过网络综合控制驱动车所需要的工作部件,属于整个车辆的管理协调型控制部件。

图2 VCU(2)VCU分层管理VCU的组成包括微处理器、电源及保护电路模块、I/O接口图1 整车控制系统和调试模块、A/D模数转换模块、CAN总线通讯模块等,根据信号重要程度和实现次序,运算分为四层,如图3所示。

图3 VCU分为四层运算①数据交换管理层,接收CAN总线信息,对馈入VCU的物理量进行采集处理,并通过CAN总线发送控制指令,通过I/O接口提供对显示单元和继电器等的驱动信号,该层的功能是实现其他功能的基础和前提。

新能源电池包结构

新能源电池包结构

新能源电池包结构
新能源电池包的结构主要由以下几个部分组成:
1.电池单体(Battery Cells):这是电池的基本组成单元,通常采用锂离子电池技
术。

它们是负责储存和释放电能的主要组件。

2.电池模块(Battery Modules):电池模块由多个电池单体组成,通过连接器和电
池管理系统(BMS)进行电气连接和控制。

电池模块可以根据需要进行组合和配置,以满足电池容量和电压要求。

3.电池包(Battery Pack):电池包是由多个电池模块组成的整体结构,通常位于车
辆底盘或车辆座椅下方。

它提供了电池的物理支撑和保护,同时还包含与车辆其他系统的连接和接口。

电池包内部还有热管理系统,用于维持电池的合适工作温度范围。

4.电池管理系统(Battery Management System,BMS):BMS是负责监测、控制和管
理电池的系统。

它可以监控电池的状态,如电压、电流、温度等,并控制电池的充放电过程,确保电池的安全和性能。

此外,电池包还可能包括高压断电系统(BDU),用于控制电流流向,给到不同的负载,实现能量分配。

同时,电池包还需要有低压线束,用于采集电池模组电芯信号,监控电芯状态,并将数据传输给BMS。

总的来说,新能源电池包的结构复杂,但各个部分都起着至关重要的作用,共同确保电池的安全、性能和效率。

电池管理系统BMS

电池管理系统BMS
• 由VCU 控制低压继电器供电,当VCU 有蓄电池直接供电电压后, 内部部分电路工作,从而控制空调AC 继电器、电机控制器MCU 继 电器和倒车灯继电器接通供电(由绿色线所连接)的控制器。
一、整车上下电过程 1.低压供电及唤醒原理 2 )非充电模式下各控制器唤醒原理 非充电模式下控制器唤醒主要有ON 档继电器唤醒和VCU 唤醒 a. 由ON 档(IG1 )继电器唤醒的控制器有:整车控制器 VCU 、组合仪表ICM和数据采集终端(由黄色线所连 接);
一、整车上下电过程 1. 低压供电及唤醒原理
1 )整车低压供电原理 • 由蓄电池直接供电,主要有整车控制器VCU 、组合仪表ICM 、数 据采集终端RMS 、DC/DC 和电池管理系统BMS (P51由红色线所 连接);
•由ON 档(IG1 )继电器供电,当点火钥匙转到ON 档后,ON 档 继电器线圈被接通,从而将12V 蓄电池电压送到档位控制器和电动 助力EPS 控制器,给其供电(由黄色线所连接);
【任务描述】 客户委托: 检修车辆无法正常上电 车主小郑已使用6 个月的北汽EV200 ,车辆在启动时仪表 显示动力电池断开故障,整车故障灯点亮同时仪表报通讯 故障,隔一会儿再启动时仍报同样的故障,故联系北汽新 能源售后报修。
一、整车上下电过程 Ø 整车上下电包括低压供电与断电、唤醒与取消唤醒;高 压上电与下电,其控制功能涉及到整车所有控制单元,包 括整车控制器VCU 、电机控制器INV/MCU 、动力电池内 的高压板BCU 、空调AC 、DC/DC 、仪表ICM、远程终 端控制器RMS 、充电机CHG 等。
一、整车上下电过程: 2. 高压供电原理 1 )高压检测点的作用 ①高压检测点1 (V1) ) 位于高压总正、总负继电器内侧,测量动力电池包总电压,用于判 定MSD是否断路。

新能源汽车的各种常用术语解读

新能源汽车的各种常用术语解读

新能源汽车的各种常用术语解读新能源汽车,是指采用了先进的动力技术和节能环保的能源,以减少对传统能源的依赖和减少对环境的污染。

在新能源汽车领域,有许多专业术语常常让人感到头疼。

下面将为大家详细解读新能源汽车领域中的一些常用术语。

1. 锂电池锂电池是新能源汽车中常用的电池之一,具有轻便、高能量密度、长寿命等优点。

它是通过锂离子的在正极和负极之间来进行电荷和放电。

2. 电动车电池包电动车电池包指的是新能源汽车中用来储存电能的一种设备,由多节锂电池串联而成。

它是电动车的重要组成部分,决定了电动车的续航里程和性能。

3. 充电桩充电桩是新能源汽车的充电设备,用来给电动车电池充电。

充电桩分为普通充电桩和快速充电桩两种,能够满足不同用户的充电需求。

4. 光伏发电光伏发电是一种通过太阳能将光能转换为电能的技术,可以为新能源汽车提供清洁能源。

光伏发电被广泛应用于新能源汽车充电设备中。

5. 节能减排节能减排是新能源汽车的重要理念,指的是通过采用先进技术和节约能源的方式减少能源消耗、降低排放物的排放。

这是新能源汽车发展的关键所在。

6. 超级电容超级电容是一种高能量密度的储电器件,常用于新能源汽车中。

它可以存储大量电能并迅速释放,为电动车提供强劲动力。

7. 氢燃料电池车氢燃料电池车是指通过氢气和空气的反应产生电能,驱动电动机运行的车辆。

氢燃料电池车零排放,是环保的代表。

8. 报废电池回收利用报废电池回收利用是对新能源汽车中电池的再生利用过程,通过回收报废电池中的有价值的材料,减少资源浪费并保护环境。

9. 公共充电站公共充电站是新能源汽车的重要充电设施,分布于城市街道、停车场等公共场所,方便用户随时充电,推动新能源汽车的普及和发展。

10. 智能网联智能网联是指新能源汽车具备物联网技术,可以实现车辆之间以及与互联网的互联互通,提高驾驶安全性和行车效率。

以上是关于新能源汽车领域中的一些常用术语的解读,相信通过了解这些术语,对新能源汽车有了更深入的了解。

乘用车电池包组成结构

乘用车电池包组成结构

乘用车电池包是电动汽车的核心组成部分,它主要由以下几个主要部分组成:
1. 电池单体:这是电池包的基本构成单元,可以是锂离子电池、镍氢电池、铅酸电池等。

电池单体通过串并联的方式组合成电池模块,以满足车辆对电压和容量的要求。

2. 电池管理系统(BMS):它是电池包的大脑,负责监控和控制电池的充放电状态、温度、电压等,确保电池安全、高效地工作。

BMS还负责平衡电池单体之间的电量,防止因电量不一致而引起的问题。

3. 热管理系统:电动汽车电池在充放电过程中会产生大量热量,热管理系统通过冷却液、风冷或者热管等技术,确保电池工作在合适的温度范围内,以提高性能和延长寿命。

4. 结构件:包括电池包的外壳、框架等,它们为电池包提供机械保护,并确保电池包的稳定性。

这些结构件通常由高强度材料制成,以承受车辆在行驶过程中的各种力学冲击。

5. 电气连接组件:包括高压连接器、低压连接器等,它们确保电池与车辆其他电气系统(如电机、逆变器、车载充电器等)之间的可靠连接。

6. 安全装置:如熔断器、气体释放装置等,它们在电池发生异常时切断电路,防止事故扩大。

7. 控制单元:除了BMS之外,电池包可能还包括其他控制单元,如充电控制单元,它们协同工作,确保电池包的优化运行。

8. 传感器:如温度传感器、电压传感器等,它们提供电池工作状态的实时数据,供BMS 和其他控制单元使用。

新能源汽车动力系统集成技术探讨

新能源汽车动力系统集成技术探讨

新能源汽车动力系统集成技术探讨在当今社会,随着环保意识的不断提高和能源危机的日益严峻,新能源汽车作为一种可持续发展的交通工具,正逐渐成为汽车行业的主流趋势。

新能源汽车的核心在于其动力系统,而动力系统集成技术则是决定新能源汽车性能、可靠性和成本的关键因素。

新能源汽车的动力系统主要由电池、电机、电控等核心部件组成。

与传统燃油汽车的动力系统相比,新能源汽车动力系统具有更高的效率、更低的排放和更灵活的控制方式。

然而,要实现这些优势,需要对各个部件进行有效的集成和优化。

电池是新能源汽车动力系统的重要组成部分,其性能直接影响着车辆的续航里程和充电时间。

目前,主流的电池技术包括锂离子电池、镍氢电池和固态电池等。

锂离子电池由于其高能量密度、长寿命和相对较低的成本,成为了新能源汽车中应用最广泛的电池类型。

在动力系统集成中,电池的管理系统(BMS)至关重要。

BMS 负责监测电池的电压、电流、温度等参数,确保电池在安全范围内工作,并实现电池的均衡充电和放电,以延长电池的使用寿命。

电机是将电能转化为机械能的关键部件,其性能决定了车辆的动力输出和行驶性能。

新能源汽车中常用的电机类型有永磁同步电机、交流异步电机和开关磁阻电机等。

永磁同步电机具有高效率、高功率密度和良好的调速性能,是目前新能源汽车中应用最多的电机类型。

在动力系统集成中,电机的控制策略对于提高电机的效率和性能至关重要。

通过精确的控制算法,可以实现电机的高效运行和能量回收,提高车辆的续航里程。

电控系统则是新能源汽车动力系统的大脑,负责协调电池和电机的工作,实现车辆的各种行驶模式和功能。

电控系统包括整车控制器(VCU)、电机控制器(MCU)和电池管理系统(BMS)等。

整车控制器根据驾驶员的操作指令和车辆的运行状态,制定合理的控制策略,协调电机和电池的工作,实现车辆的加速、减速、巡航等功能。

电机控制器负责控制电机的转速和转矩,实现电机的高效运行。

电池管理系统则负责监测和管理电池的状态,确保电池的安全和性能。

新能源汽车动力电池包的组成

新能源汽车动力电池包的组成

新能源汽车动力电池包的组成
新能源汽车动力电池包一般由以下几个主要组成部分构成:
1. 电池单体:电池单体是动力电池包的基本组成单元,是多个电池模块串联组成电池包的基础。

电池单体一般由正负极材料、电解质和隔膜等组成。

2. 电池管理系统(BMS):电池管理系统是电池包的主控制
系统,负责监控电池单体的电压、温度、电流等状态,并进行数据采集、处理和控制。

BMS还能对电池包进行故障检测和
故障管理,从而确保电池包的安全性和性能。

3. 散热系统:新能源汽车动力电池包工作过程中会产生大量的热量,如果不能及时散热,会影响电池的寿命和性能。

因此,电池包通常还配备有散热系统,包括散热片、散热管路、冷却液等,以保持电池温度的稳定。

4. 结构支持和保护:电池包需要具备一定的结构强度和稳定性,以保护电池单体免受外界环境的影响和机械振动的冲击。

常见的结构支持和保护装置包括外壳、挡板、防护板等。

5. 充电和放电接口:电池包需要通过充电接口与外部电源相连接,以进行电池充电。

同时,电池包内部还需要提供放电接口,连接到动力系统,以将电能输出给电动机供动力使用。

总而言之,新能源汽车动力电池包的组成包括电池单体、电池管理系统、散热系统、结构支持和保护以及充放电接口等多个
组成部分。

这些部分相互配合,形成一个功能完整的电池系统,为电动汽车提供动力供应。

新能源电动汽车之电池管理系统基础知识培训

新能源电动汽车之电池管理系统基础知识培训
新能源电动汽车
电池管理系统基础知识培训
前言/PREFACE
在电动汽车中,电池管理系统是其中不可或缺的重要组成部分,它对 电动汽车的续航里程、加速能力、和最大爬坡度都会产生直接的影响,由 于蓄电池特性高度的非线性、结构的特殊性,故容易导致电池寿命的缩短 以致损坏。所以电池管理系统是电动汽车的必备重要组成部分,所以电池 管理系统是电动汽车必要的组成部件,与电池系统、整车控制系统共同构 成电动汽车的三大核心技术。它能保护电动汽车电池的安全可靠使用,发 挥电池的能力和影响其使用寿命,通过一系列的管理和控制,从而保证了 电动汽车的整车运行
低压件上电完毕后,VCU发出高压上电命令给BMS,BMS执行高压上电命令,BMS控制器上电后检测交流CC信号为不使能状态发送给整车CAN, VCU进入驱动模式。BMS执行高压上电顺序为主负继电器→ 预充继电器→ 主正继电器→ 断开预充继电器;然后BMS发送上电完成指令给VCU, 然后VCU吸合DCDC、MCU使能信号驱动上电完成。
管理由电池模组组成的电池包,负责采集电池包的单体电压、温度、热管理、均衡管理、报警、及信息的通 讯上传至BCU;
LDM:漏电模块检测
检测电池组的总正、总负及所有的电池极柱对电池箱体的绝缘电阻,并判断电池组是否漏电,并发送信息至 BCU对电池组进行保护;
HALL:霍尔电流传感器
负责采集电池组的充电、放电、回馈、巡航的电流; 线束:负责连接整个管理系统各组件,内部连接BMU和电池,BMU和BCU,外部BCU和整车和充电设备,完成 BMS具有的检测、控制、供电、通讯功能;
PDU:强电控制单元、高压箱
高压在汽车上我们定义超过直流电压60V的为高压的范畴,针对绝缘和耐压都会有相应的设计要求。一般的电 动大巴车高压箱通常将充电继电器、放电继电器、保险丝、MSD、油泵、气泵、转向助力、空调等的保险回路置 于高压箱内,大部分高压箱集成了BMS的BCU模块,并在高压箱外壳上安装高压及通讯连接器,以方便安装及维护, 而乘用车的高压箱存在形式一般在电池PACK箱体内;

新能源汽车动力电池管理系统构成

新能源汽车动力电池管理系统构成

新能源汽车动力电池管理系统构成BMS主要包括硬件、底层软件和应用层软件三部分。

1.硬件构成(1)架构。

BMS硬件的拓扑结构分为集中式和分布式两种类型:①集中式是将所有的电气部件集中到一块大的板子中,采样芯片通道利用最高且采样芯片与主芯片之间可以采用菊花链通信,电路设计相对简单,产品成本大为降低,只是所有的采集线束都会连接到主板上,对BMS的安全性提出更大挑战,并且菊花链通信稳定性方面也可能存在问题。

比较合适电池包容量比较小、模组及电池包形式比较固定的场合。

②分布式包括主板和从板,可能一个电池模组配备一个从板,这样的设计缺点是如果电池模组的单体数量少于12个会造成采样通道浪费(一般采样芯片有12个通道),或者2~3个从板采集所有电池模组,这种结构一块从板中具有多个采样芯片,优点是通道利用率较高,节省成本,系统配置的灵活性,适应不同容量、不同规格形式的模组和电池包。

(2)硬件功能硬件的设计和具体选型要结合整车及电池系统的功能需求,通用的功能主要包括采集功能(如电压、电流、温度采集)、充电口检测(CC和CC2)和充电唤醒(CP和A+)、继电器控制及状态诊断、绝缘检测、高压互锁、碰撞检测、CAN通信及数据存储等要求。

①主控制器。

处理从控制器和高压控制器上报的信息,同时根据上报信息判断和控制动力电池运行状态,实现BMS相关控制策略,并做出相应故障诊断及处理。

②高压控制器。

实时采集并上报动力电池总电压、电流信息,通过其硬件电路实现按时积分,为主板计算荷电状态(State of Charge,SOC)、健康状态(State of Health,SOH)提供准确数据,同时可实现预充电检测和绝缘检测功能。

③从控制器。

实时采集并上报动力电池单体电压、温度信息,反馈每一串电芯的SOH和SOC,同时具备被动均衡功能,有效保证了动力使用过程中电芯的一致性。

④采样控制线束。

为动力电池各种信息采集和控制器间信息交互提供硬件支持,同时在每一根电压采样线上增加冗余保险功能,有效避免因线束或管理系统导致的电池外短路。

新能源汽车关键技术及其难点分析

新能源汽车关键技术及其难点分析

NEW ENERGY AUTOMOBILE | 新能源汽车新能源汽车关键技术及其难点分析周蓉甘肃能源化工职业学院 甘肃省兰州市 730207摘 要: 面临能源短缺问题和环境污染问题的日益严重,为了满足居民绿色出行的需求,新能源汽车应运而生并且得到了业界人士,同时,也逐渐取得了购车者的认可。

经过近些年研发人员的不懈努力和研究,新能源汽车技术不断成熟,新能源汽车也已经投入了大批量生产。

关键词:新能源汽车 关键技术新能源汽车是汽车行业长久发展的必然选择,政府部门也出台了一系列的政策,如购车补贴、生产补贴等来支持新能源汽车行业的发展。

虽然我国在新能源汽车领域已经取得了很大的进展,但是仍然存在着一些关核心技术问题没有解决。

本文将对新能源汽车的种类进行简要的介绍,分析新能源汽车的技术难点,加深相关研究人员对新能源汽车的了解。

1 新能源汽车概述新能源具有零污染、可循环的特点,将其作为新能源汽车的动力,可以改善我国的生态环境污染问题,降低尾气的排放量。

新能源汽车是我国大力贯彻落实可持续发展战略所取得的成果之一,是对传统汽车行业的创新与超越。

最新的新能源汽车是纯电汽车或纯氢气汽车,是将电力或者氢动力转化为动能来驱动汽车行驶的汽车。

目前我国新能源汽车的产量大幅增加,已经开启了量产的模式。

2 新能源汽车的分类新能源汽车的出现是人们环保意识增强的表现,是对传统汽车行业的创新。

新能源汽车的驱动能源是电力或氢动力等新型能源。

目前,我国最常见的新能源汽车包括混合动力电动汽车HEV、纯电动汽车BEV、燃料电池电动汽车FCEV三种,除此之外,纯氢气汽车也逐渐进入大众视野,未来将有可能成为最受欢迎的新能源汽车。

2.1 混合动力电动汽车HEV混合动力电动汽车是一种过渡性产品,它的驱动能源不是唯一的,而是包括常规燃料和电力两种,配备了传统燃油发动机和电动机。

燃油发动机主要在高速行驶和长距离行驶时提供动力,利用燃油高速持续行驶时的高性价比,均衡燃油经济性和动力性之间的配比,在提高汽车行驶效率的同时也降低了行驶成本,在实现发动机最佳工作状态的同时为蓄电池充电。

新能源汽车电气实训实习报告

新能源汽车电气实训实习报告

新能源汽车电气实训实习报告一、实习目的和意义新能源汽车作为我国战略性新兴产业的重要组成部分,其电气系统的设计和维护对整个汽车性能有着至关重要的作用。

本次实习旨在通过理论与实践相结合的方式,使我对新能源汽车的电气系统有更深入的了解和掌握,提高我在实际工作中分析和解决问题的能力。

二、实习内容和过程在实习过程中,我主要参与了新能源汽车电气系统的认知、故障排查和维修等工作。

具体内容包括:1. 对新能源汽车电气系统的组成、工作原理和功能进行了系统学习,了解了电池管理 systems (BMS)、电机控制 unit (MCU) 和 vehicle control unit (VCU) 等核心部件的作用和相互关系。

2. 学习了新能源汽车电气系统的故障排查方法,包括视觉检查、数据诊断和实地测试等,掌握了使用专业工具诊断电气系统故障的基本技能。

3. 参与了电气系统维修的实际操作,通过对故障车辆进行检修,了解了维修过程中的注意事项和技巧,提高了实际操作能力。

4. 学习了新能源汽车电气系统的调试和优化方法,通过调整系统参数和控制策略,提高了汽车的性能和经济性。

三、实习收获和反思通过本次实习,我对新能源汽车电气系统有了更深入的了解,掌握了一定的故障排查和维修技能。

同时,我也认识到理论知识在实际工作中的重要性,只有扎实的理论基础,才能在实际工作中游刃有余。

然而,我也发现自己在实际操作中还存在一些不足,例如:诊断故障的速度和准确性还有待提高,对某些特殊故障的处理方法还不够熟悉。

在今后的工作中,我将继续努力学习,提高自己的业务能力。

四、总结本次实习让我对新能源汽车电气系统有了更深入的了解和掌握,提高了我在实际工作中分析和解决问题的能力。

我将继续努力学习,为我国新能源汽车产业的发展贡献自己的一份力量。

整车控制实训报告

整车控制实训报告

一、前言随着科技的不断发展,新能源汽车已经成为汽车行业的发展趋势。

为了更好地培养我们学生对新能源汽车技术的理解和掌握,本次实训课程将学生分成小组进行实践操作和理论学习。

通过整车控制实训,使学生了解整车控制系统的基本原理和组成,掌握整车控制系统的调试和故障诊断方法,提高学生的动手能力和综合素质。

二、实训目的1. 熟悉新能源汽车整车控制系统的组成及工作原理;2. 掌握整车控制系统的调试方法;3. 学会整车控制系统的故障诊断与处理;4. 提高学生的动手能力和团队协作能力。

三、实训内容1. 整车控制系统概述(1)新能源汽车整车控制系统简介新能源汽车整车控制系统是指对新能源汽车的动力系统、能源系统、制动系统、车身控制系统等进行实时监控和控制的系统。

整车控制系统主要包括动力系统控制单元(VCU)、电池管理系统(BMS)、电机控制器(MCU)、车载网络系统等。

(2)整车控制系统组成整车控制系统主要由以下部分组成:1)动力系统控制单元(VCU):负责整车动力系统的控制,包括电机驱动、能量回收、电池管理等;2)电池管理系统(BMS):负责电池的监控、保护、充电、放电等;3)电机控制器(MCU):负责电机的控制,包括转速、扭矩、电流等;4)车载网络系统:负责整车各控制单元之间的数据传输和通信;5)传感器:负责采集整车各系统的运行数据,如车速、电池电量、电机温度等;6)执行器:负责执行整车控制指令,如电机驱动、制动等。

2. 整车控制系统调试(1)整车控制系统调试流程1)检查整车控制系统硬件连接;2)检查整车控制系统软件配置;3)进行整车控制系统基本功能测试;4)进行整车控制系统性能测试;5)进行整车控制系统故障诊断。

(2)整车控制系统调试方法1)使用诊断工具读取整车控制系统故障码;2)根据故障码分析故障原因;3)进行整车控制系统参数调整;4)进行整车控制系统性能优化。

3. 整车控制系统故障诊断与处理(1)整车控制系统故障诊断方法1)使用诊断工具读取整车控制系统故障码;2)分析故障码对应的故障现象;3)根据故障现象查找故障原因;4)进行整车控制系统故障排除。

整车控制器实验报告(3篇)

整车控制器实验报告(3篇)

第1篇一、实验目的本次实验旨在了解和掌握整车控制器的结构、原理和工作流程,通过实际操作和数据分析,验证整车控制器在新能源汽车中的关键作用,并加深对整车控制器核心功能模块(VCU、MCU、BMS)的理解。

二、实验原理整车控制器(Vehicle Control Unit,VCU)是新能源汽车的核心电子控制单元,主要负责对动力系统、电机控制器和电池管理系统进行实时监控和控制,确保车辆的安全、稳定和高效运行。

1. VCU(整车控制器):实现整车控制决策的核心电子控制单元,通过采集油门踏板、挡位、刹车踏板等信号来判断驾驶员的驾驶意图,监测车辆状态(车速、温度等)信息,向动力系统、动力电池系统发送车辆的运行状态控制指令,控制车载附件电力系统的工作模式,具有整车系统故障诊断保护与存储功能。

2. MCU(电机控制器):负责控制电机的启动、停止、加速、减速等功能,通过接收VCU的控制指令,实现电机的精确控制。

3. BMS(电池管理系统):负责电池的充放电管理、状态监测、安全保护等功能,确保电池在安全、可靠的前提下运行。

三、实验内容1. 整车控制器硬件结构分析:观察整车控制器的外观结构,分析其内部主要部件和连接方式。

2. 整车控制器软件功能测试:通过编程或使用现有软件工具,对整车控制器的各项功能进行测试,包括油门响应、制动控制、故障诊断等。

3. 整车控制器与电机控制器、电池管理系统交互测试:验证整车控制器与电机控制器、电池管理系统之间的数据交互,确保各个模块协同工作。

4. 整车控制器故障诊断与处理:模拟整车控制器故障,观察其故障诊断和保护功能,分析故障原因和解决方法。

四、实验步骤1. 整车控制器硬件结构分析:- 观察整车控制器的外观结构,记录其主要部件和连接方式;- 分析VCU、MCU、BMS等模块之间的连接关系。

2. 整车控制器软件功能测试:- 编写测试程序,模拟驾驶员操作,测试油门响应、制动控制等功能;- 观察整车控制器的工作状态,记录数据变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导读:为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,北汽福田新能源系统开发部部长杨伟斌结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。

2014年国内新能源汽车产销突破8万辆,发展态势喜人。

为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,笔者结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。

1 新能源汽车分类在新能源汽车分类中,“弱混、强混”与“串联、并联”不同分类方法令非业内人士感到困惑,其实这些名称是从不同角度给出的解释、并不矛盾。

1.1消费者角度消费者角度通常按照混合度进行划分,可分为起停、弱混、中混、强混、插电和纯电动,节油效果和成本增等指标加如表1所示。

表中“-”表示无此功能或较弱、“+”个数越多表示效果越好,从表中可以看出随着节油效果改善、成本增加也较多。

表1 消费者角度分类1.2技术角度图1 技术角度分类技术角度由简到繁分为纯电动、串联混合动力、并联混合动力及混联混合动力,具体如图1所示。

其中P0表示BSG(Belt starter generator,带传动启停装置)系统,P1代表ISG(Integrated starter generator,启动机和发电机一体化装置)系统、电机处于发动机和离合器之间,P2中电机处于离合器和变速器输入端之间,P3表示电机处于变速器输出端或布置于后轴,P03表示P0和P3的组合。

从统计表中可以看出,各种结构在国内外乘用或商用车中均得到广泛应用,相对来说P2在欧洲比较流行,行星排结构在日系和美系车辆中占主导地位,P03等组合结构在四驱车辆中应用较为普遍、欧蓝德和标致3008均已实现量产。

新能源车型选择应综合考虑结构复杂性、节油效果和成本增加,例如由通用、克莱斯勒和宝马联合开发的三行星排双模系统,尽管节油效果较好,但由于结构复杂且成本较高,近十年间的市场表现不尽如人意。

2 新能源汽车模块规划尽管新能源汽车分类复杂,但其中共用的模块较多,在开发过程中可采用模块化方法,共享平台、提高开发速度。

总体上讲,整个新能源汽车可分为三级模块体系、如图2所示,一级模块主要是指执行系统,包括充电设备、电动附件、储能系统、发动机、发电机、离合器、驱动电机和齿轮箱。

二级模块分为执行系统和控制系统两部分,执行部分包括充电设备的地面充电机、集电器和车载充电机,储能系统的单体、电箱和PACK,发动机部分的气体机、汽油机和柴油机,发电机的永磁同步和交流异步,离合器中的干式和湿式,驱动电机的永磁同步和交流异步,齿轮箱部分的有级式自动变速器(包括AMT、AT和DCT等)、行星排和减速齿轮;二级模块的控制系统包括BMS、ECU、GCU、CCU、MCU、TCU和VCU,分别表示电池管理系统、发动机电子控制单元、发电机控制器、离合器控制单元、电机控制器、变速器控制系统和整车控制器。

三级模块体系中,包括电池单体的功率型和能量型,永磁和异步电机的水冷和风冷形式,控制系统的三级模块主要包括硬件、底层和应用层软件。

图2三级模块体系根据功能和控制的相似性,三级模块体系的部分模块可组成纯电动(含增程式)、插电并联混动和插电混联混动三种平台架构,例如纯电动(含增程式)由充电设备、电动附件、储能系统、驱动电机和齿轮箱组成。

各平台模块的通用性较强,采用平台和模块的开发方法,可共享核心部件资源,提升新能源系统的安全性和可靠性,缩短周期、降低研发及采购成本3 新能源三大核心技术在三级模块体系和平台架构中,整车控制器(VCU)、电机控制器(MCU)和电池管理系统(BMS)是最重要的核心技术,对整车的动力性、经济性、可靠性和安全性等有着重要影响。

3.1 VCUVCU是实现整车控制决策的核心电子控制单元,一般仅新能源汽车配备、传统燃油车无需该装置。

VCU通过采集油门踏板、挡位、刹车踏板等信号来判断驾驶员的驾驶意图;通过监测车辆状态(车速、温度等)信息,由VCU判断处理后,向动力系统、动力电池系统发送车辆的运行状态控制指令,同时控制车载附件电力系统的工作模式;VCU具有整车系统故障诊断保护与存储功能。

图3为VCU的结构组成,共包括外壳、硬件电路、底层软件和应用层软件,硬件电路、底层软件和应用层软件是VCU的关键核心技术。

图3 VCU组成VCU硬件采用标准化核心模块电路( 32位主处理器、电源、存储器、CAN )和VCU专用电路(传感器采集等)设计;其中标准化核心模块电路可移植应用在MCU和BMS,平台化硬件将具有非常好的可移植性和扩展性。

随着汽车级处理器技术的发展,VCU从基于16位向32位处理器芯片逐步过渡,32位已成为业界的主流产品。

底层软件以AUTOSAR汽车软件开放式系统架构为标准,达到电子控制单元(ECU)开发共平台的发展目标,支持新能源汽车不同的控制系统;模块化软件组件以软件复用为目标,以有效提高软件质量、缩短软件开发周期。

应用层软件按照V型开发流程、基于模型开发完成,有利于团队协作和平台拓展;采用快速原型工具和模型在环(MIL)工具对软件模型进行验证,加快开发速度;策略文档和软件模型均采用专用版本工具进行管理,增强可追溯性;驾驶员转矩解析、换挡规律、模式切换、转矩分配和故障诊断策略等是应用层的关键技术,对车辆动力性、经济性和可靠性有着重要影响。

表2为世界主流VCU供应商的技术参数,代表着VCU的发展动态。

3.2 MCUMCU是新能源汽车特有的核心功率电子单元,通过接收VCU的车辆行驶控制指令,控制电动机输出指定的扭矩和转速,驱动车辆行驶。

实现把动力电池的直流电能转换为所需的高压交流电、并驱动电机本体输出机械能。

同时,MCU具有电机系统故障诊断保护和存储功能。

MCU由外壳及冷却系统、功率电子单元、控制电路、底层软件和控制算法软件组成,具体结构如图4所示。

图4 MCU组成MCU硬件电路采用模块化、平台化设计理念(核心模块与VCU同平台),功率驱动部分采用多重诊断保护功能电路设计,功率回路部分采用汽车级IGBT模块并联技术、定制母线电容和集成母排设计;结构部分采用高防护等级、集成一体化液冷设计。

与VCU类似,MCU底层软件以AUTOSAR开放式系统架构为标准,达到ECU开发共同平台的发展目标,模块化软件组件以软件复用为目标。

应用层软件按照功能设计一般可分为四个模块:状态控制、矢量算法、需求转矩计算和诊断模块。

其中,矢量算法模块分为MTPA控制和弱磁控制。

MCU关键技术方案包括:基于32位高性能双核主处理器;汽车级并联IGBT技术,定制薄膜母线电容及集成化功率回路设计,基于AutoSAR架构平台软件及先进SVPWM PMSM控制算法;高防护等级壳体及集成一体化水冷散热设计。

表3为世界主流MCU硬件供应商的技术参数,代表着MCU的发展动态。

表3 MCU技术参数3.3 电池包和BMS电池包是新能源汽车核心能量源,为整车提供驱动电能,它主要通过金属材质的壳体包络构成电池包主体。

模块化的结构设计实现了电芯的集成,通过热管理设计与仿真优化电池包热管理性能,电器部件及线束实现了控制系统对电池的安全保护及连接路径;通过BMS实现对电芯的管理,以及与整车的通讯及信息交换。

电池包组成如图5所示,包括电芯、模块、电气系统、热管理系统、箱体和BMS。

BMS能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。

图5 电池包组成BMS是电池包最关键的零部件,与VCU类似,核心部分由硬件电路、底层软件和应用层软件组成。

但BMS硬件由主板(BCU)和从板(BMU)两部分组成,从版安装于模组内部,用于检测单体电压、电流和均衡控制;主板安装位置比较灵活,用于继电器控制、荷电状态值(SOC)估计和电气伤害保护等。

BMU硬件部分完成电池单体电压和温度测量,并通过高可靠性的数据传输通道与BCU 模块进行指令及数据的双向传输。

BCU 可选用基于汽车功能安全架构的32 位微处理器完成总电压采集、绝缘检测、继电器驱动及状态监测等功能。

底层软件架构符合AUTOSAR标准,模块化开发容易实现扩展和移植,提高开发效率。

应用层软件是BMS的控制核心,包括电池保护、电气伤害保护、故障诊断管理、热管理、继电器控制、从板控制、均衡控制、SOC估计和通讯管理等模块,应用层软件架构如图6所示。

图6 应用层软件架构表4为国内外主流BMS供应商的技术参数,代表着BMS的发展动态。

表4 BMS技术参数4 充电设施充电设施不完善是阻碍新能源汽车市场推广的重要因素,对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案、剖析充电系统组成。

4.1 特斯拉充电方案分析特斯拉超级充电器代表了当今世界最先进的充电技术,它为MODEL S充电的速度远高于大多数充电站,表5为特斯拉电池和充电参数。

表5电池和充电参数特斯拉具有5种充电方式,采用普通110/220V市电插座充电,30小时充满;集成的10kW充电器,10小时充满;集成的20kW充电器,5小时充满;一种快速充电器可以装在家庭墙壁或者停车场,充电时间可缩短为5小时;45分钟能充80%的电量、且电费全免,这种快充装置仅在北美市场比较普遍。

特斯拉使用太阳能电池板遮阳棚的充电站,既可以抵消能源消耗又能够遮阳。

与在加油站加油需要付费不同,经过适当配置的MODEL S 可以在任何开放充电站免费充电。

特斯拉充电技术特点可总结如下两点:1)特斯拉充电站加入了太阳能充电技术,这一技术使充电站尽可能使用清洁能源,减少对电网的依赖,同时也减少了对电网的干扰,国内这一技术也能实现。

2)特斯拉充电时间短也不足为奇,特斯拉的充电机容量大90~120kWh,充电倍率0.8C,跟普通快充一样,并没有采用更大的充电倍率,所以不会影响电池寿命;20分钟充到40%,就能满足续航要求,主要原因是电池容量大。

4.2 充电解决方案图7充电系统组成图7为一种可参考的新能源汽车充电解决方案,充电系统组成:配电系统(高压配电柜、变压器、无功补偿装置和低压开关柜)、充电系统(充电柜和充电机终端)以及储能系统(储能电池与逆变器柜)。

无功补偿装置解决充电系统对电网功率因数影响,充电柜内充电机一般都具备有源滤波功能、解决谐波电流和功率因数问题。

储能电池和逆变器柜解决老旧配电系统无法满足充电站容量要求、并起到削峰填谷作用,在不充电时候进行储能,大容量充电且配电系统容量不足时释放所储能量进行充电。

如果新建配电系统容量足够,储能电池和逆变器柜可以不选用。

风力发电和光伏发电为充电系统提供清洁能源,尽量减少从电网取电。

5 总结从消费者和技术角度分别对新能源汽车结构进行归纳分类,分析各种结构的优势,以及国内外各主机厂的应用情况。

相关文档
最新文档