第六章 溴化锂吸收式冷热水机组.

合集下载

溴化锂吸收式制冷机工作原理PPT课件

溴化锂吸收式制冷机工作原理PPT课件
第16页/共55页
3:吸收器
★★★特点:①浓溶液通过滴淋装置均匀的分散在铜管上,形成膜,吸收面积增大。 ②吸收液吸收了冷剂蒸 气的蒸发潜热(这部分热量有冷媒水带给冷剂水)。 ③由于吸收是一个放热过程,冷却水把吸收的热量带 走(热量包含两部分;一部分有冷媒受传递给冷剂蒸气,再有冷剂蒸气传递给吸收液;另一部分从低温热 交换器来的浓溶液带来的热量)。 ④溶液泵使溶液有低压提升到高压。⑤低压发生器与吸收器之间设有溢 流管,当溶液发生结晶时,浓溶液通过溢流管流入吸收器,起自动熔晶作用,同时防止低发液位过高而使 浓溶液流入冷凝器的作用。(熔晶时这个管子温度非常热,使吸收器温度升高,起溶晶的作用。)
3.按驱动热源的利用方式分:1)单效 2)双效 3)多效
第10页/共55页
溴化锂吸收式制冷机的分类
4.按溶液循环流程分类
1)串联流程,分为两种, 一种是溶液先进入高压发生器,后进入低压发生器,最后流回吸收器; 另一种是溶液先进入低压发生器,后进入高压发生器,最后流回吸收器。
2)并联流程,溶液分别同时进入高、低压发生器,然后分别流回吸收器 3)串并联流程,溶液分别同时进入高、低发生器,高压发生器流出的溶液先进入低
潜热>显热,常压(760毫米汞柱)下水100 ℃蒸发, ▲当压力只有1/00大气压时(绝对压力6mmHg)水能在4 ℃蒸发,我们的制冷机组就是用水蒸发来制去冷媒水
第2页/共55页
冷媒水的产生 蒸发器的原理
• 把冷剂水放在一个密封容器内,使容器中接近真空状态( 6mmHg) 这时水在4 ℃蒸发。我们让冷水经过容器后被吸热,就可制出7℃冷 水(冷媒水)--容器叫蒸发器
第37页/共55页
LS空调安全操作规程和保养维护
Ⅱ 开机(自动操作) 一.按压空调机控制面板上的操作开关3秒,系统就会进入开机状态,

第六章 溴化锂吸收式冷热水机组PPT课件

第六章 溴化锂吸收式冷热水机组PPT课件
(2)溶液循环
发生器中流出的浓溶液降压后进入吸收器,吸收 由蒸发器产生的冷剂蒸气,形成稀溶液,用泵将稀 溶液输送至发生器,重新加热,形成浓溶液。这些 过程的作用相当于蒸气压缩式制冷循环中压缩机所 起的作用。
LOGO
思考:压缩式与吸收式制冷的异同?
共同点:高压制冷剂蒸气在冷凝器中冷凝
后,经节流元件节流,温度和压力降低,低温、 低压液体在蒸发器内汽化,实现制冷。
氨-水
吸收剂 制冷剂
高沸点组分
低沸点组分
LOGO
总结:
(1)可以利用各种热能(蒸气、废热、余 热、燃油、燃气等)驱动; (2)可以大量节约用电; (3)结构简单,运动部件少,安全可靠; (4)对环境和大气臭氧层无害。
LOGO
评价指标:吸收式制冷机所消耗的能量主要是热能,制
冷剂的性能系数(热力系数 )作为其经济性评价指标。
T2 T2
T2 T s T 2 是Ts、T2间逆卡诺
循环制冷系数COPc;
T1 Ts
T

是T1、Ts间卡诺循环 的热效率ηc。
COPth CO·Pηcc
· C O P Q e ≤
Qg
T2 T1 Ts
Ts T2
T1
· COPth
T2 Ts T2
T1 Ts T1
理想吸收式制冷机,等号成立
流程
LOGO
C-冷凝器、G-发生器 E-蒸发器、A-吸收器
结构形式
LOGO
溴化锂吸收式制冷机的主要附加措施
1. 防腐蚀问题
溴化锂水溶液对一般金属有腐蚀作用,尤其在有空气存 在的情况下腐蚀更为严重。
2. 抽气设备
定期抽气系统
自动抽气装置
冷凝器 发生器

溴化锂吸收式制冷教程课件PPT

溴化锂吸收式制冷教程课件PPT
2. 浓度
单效溴化锂吸收式制冷机的工艺流程
在1020℃ 双时效,溴溴化化锂锂吸的收在溶式解制溴度冷为机化的111理锂. 论循吸环收式制冷机中,溴化锂水溶液浓度一般采
5 溴化锂吸收式制冷机的工作原理
5 溴化锂用吸收质式制量冷机百的工分作原比理 浓度,即溴化锂在溴化锂水溶液中所占的百
5 溶液质量。 (2)在冷冻水管道上安装一个压力继电器或压差继电器,当冷冻水泵发生故障停机时,冷冻水管道上的压力下降,压力继电器动作,
制冷机停止运行。
系统中的冷剂水泵、发生器泵、吸收x器泵均s采用屏蔽泵,以满足溴化锂制冷机高真空度的要求。
单元19 溴化锂吸收式制冷
19.2 溴化锂吸收式制冷机的工作原 理
吸收式制冷机中所用的二元溶液主要有两种,即氨水 溶液和溴化锂水溶液。氨水溶液中氨为制冷剂,水为吸收 剂。溴化锂水溶液中水为制冷剂,溴化锂为吸收剂。在空 调工程中采用溴化锂水溶液,即溴化锂吸收式制冷机。
单元19 溴化锂吸收式制冷
19.1 吸收式制冷机的工作原理
图19.1 吸收式和蒸气压缩式制冷机工作原理 (a)吸收式制冷机;(b)蒸气压缩式制冷机
从图中可以看出,吸收式制冷系统必须具备四个热交 换装置:发生器、吸收器、冷凝器、蒸发器。这四个热交 换装置,辅以其他辅助设备,组成吸收式制冷机。
单元19 溴化锂吸收式制冷
19.1 吸收式制冷机的工作原理
制冷剂循环:由发生器G中出来的制冷剂蒸气(可能 含有少量制冷剂蒸气)在冷凝器C中向冷却剂释放热量, 凝结成液态高压制冷剂。高压液体经膨胀阀EV节流到蒸发 压力后进入蒸发器E,在蒸发器中液态制冷剂又被气化为 低压制冷剂蒸气,同时吸收载冷剂热量产生制冷效应。低 压制冷剂蒸气进入吸收器A中,而后吸收器/发生器组合将 低压制冷剂蒸气转变成高压蒸气,从而完成制冷剂循环。

浅谈直燃型溴化锂吸收式冷热水机组燃油、燃气系统和排气系统的设计与施工

浅谈直燃型溴化锂吸收式冷热水机组燃油、燃气系统和排气系统的设计与施工
5 消防 . 7#
中国新技术新产品
一 3一

Ci w e no snP ̄ t ha eT hli a ol nN c og d rLs e e
高 新 技 术
基于 S P - P的空问通信加密策略优势分析 C S S
张 德 慧
李海霞 z
(、 1 沈阳理工大学信 息科 学与工程学院, 辽宁 沈 阳 10 5 2 沈 阳理工大学通信与 网络工程 中心, 1 19 、 辽宁 沈 阳 10 5) 1 19

在安 全性 方面 ,非 法 的第三 方在 截 获加 趋 势 如图 1 示 所 密后 的数据 后 ,需首先破 解 D S密钥 , E 将 f —一 Ps l DS E 密钥恢 复之后 才能进 一步破译原文信 | ’守 S P -pl C 8S 息 。故混合 加密 具有 与 R A算 法相 同 的破解 S 难度 ,避免 了 5 位的 D S短密钥可能遭遇 6 E 攻 击 的危险[ 3 1 。 在运算速度方面 ,S R A算法涉及大数的 运 算 , 解密 的速 度非 常慢 , 适用 于对 大数 加 不 据量的信息加密, 在实际使用时 R A加密的 S 只是 5 位 的 D S密钥 ,而混 合加 密 处 理 的 6 E 总数 据 是原 文 数 据 和 D S密钥 的 总体 , E E DS 密钥在 加密 的总数 据量 中仅仅 占很 小 的一 部 分, 如果通信数据很长 , 利用 R A算法处理 S 密 钥 的时 间甚至 可 以忽 略不计 ,对 系统 的性 图 1数 据 包大 小为 6 4时 的传 输 速率 能影 响非常 小 。 由图 1 以看 出 ,两种 协议 下数 据 的 传 可 混合加密算法具有的良好性能 ,可以同 输 速率 随数 据包个 数 的增 长变 化趋 势 都非 常 时满足数据量大、 通信资源少、 实时陛要求较 平 稳 ,但 是采 用 S P — P 议 较 Isc 现 C SS 协 Pe 表 高H 的空间通信环境。 因此, D S R A混 出明显 的优 势 , 系 统 的传输 效率 要 远远 高 将 E 与 S 其 合应用于空间通信系统在理论上是可行的。 于 Isc P e。 4 性能 比较 因此 ,C S S 议 与 混 合 加 密 算 法 的 S P —P协

溴化锂机组说明书

溴化锂机组说明书

一、工作条件冷水出口温度:≥5℃。

冷却水进口温度:18℃~34℃。

冷水、冷却水系统压力:≤0.8MPa。

(特殊订货除外)冷却水:清洁淡水,水质符合表8-1要求。

冷、热水流量允许调节范围:70~120%冷却水流量允许调节范围:50~120%电源:3φ—380V/50Hz。

机房温度:5℃~40℃;机房相对湿度:≤85%。

机房应无粉尘污染。

警告:1.本机组为真空设备,出厂前对设备的各阀门进行了严格的密封措施,严禁对其进行任何形式的改变,否则会对机组造成不可修复的破坏,甚至报废。

2.本机组的存放不得被雨淋,同时相对湿度不得大于85%。

否则会造成电器元器件的损坏。

3.本机组的出厂包装不得擅自打开,必须由我公司的专业调试人员拆封。

4.严禁在采暖及卫生热水工况下进行抽真空操作。

5.请务必在水管路过滤器滤网不小于10目。

二、工作原理及工作流程直燃型溴化锂吸收式冷热水机组(简称直燃机或机组)以燃料的燃烧热为驱动热源,利用冷剂水的蒸发吸热制取冷水,直接利用冷剂蒸汽冷凝放热制取热水。

在日常生活中,我们都有这样的常识,把酒精滴在皮肤上会有凉爽的感觉,这是因为酒精蒸发时吸取皮肤热量。

不仅酒精,任何一种液体在蒸发时,都要吸取周围的热量。

同样,我们知道,液体沸腾温度随其压力改变。

压力愈低,其沸腾温度也愈低。

例如:在一个大气压下,水的沸腾温度为100℃,而在0.00891个大气压时,水的沸腾温度就降到5℃了。

水的沸腾温度随压力的降低而降低。

如果我们能创造一个压力很低,或者说真空度很高的环境,让水在其中沸腾蒸发,就能获得制冷效果了。

直燃机就是利用上述原理,让水在压力很低的蒸发器传热管上沸腾蒸发吸热,制取低温冷水的。

显然,为使蒸发器的蒸发、吸热过程连续进行,就必须不断地补充冷剂水,并不断带走蒸发后的冷剂蒸汽。

这一功能是依靠溴化锂溶液的吸收特性来实现的。

1、制冷工作流程直燃型溴化锂吸收式冷热水机组工作原理如图2-1所示。

冷暖切换阀F1、F2处于关闭状态。

直燃型溴化锂吸收式制冷温水机组操作规程

直燃型溴化锂吸收式制冷温水机组操作规程

直燃型溴化锂吸收式制冷温水机组操作规程1.机组的日常起动1)开机前准备A.机组控制柜、操作屏顺序通电,直接进入主画面。

B.水泵选择:确认水系统配电柜上冷温水泵、冷却水泵和冷却塔风机已置为联动状态。

C.在主画面按[专业],输入密码,进入作业员画面,按[冷热]进入“冷热”画面,根据需要选择机组功能。

2)开机操作顺序A.开机在主画面按[ON开机],机组依顺序启动冷温水泵,冷却水泵,经检测确认冷水和冷却水流量均满足要求后,机组开始运行,实现制冷负荷自动调节和自动安全保护。

B.运行机组按照设定的参数或节能模式自动运行。

在运行过程中仍可进行温度设置、节能运行选择、定时设置等操作,还可以进行其他操作和查看运行参数。

3)运行管理A.机组刚启动时,注意调节送往发生器的稀溶液,把溶液循环量调好,保证启动时运转稳定。

B.运转中要严格注意,避免冷剂水混入溴化锂溶液,可用比重计测量冷剂水确定是否被溶液污染,如污染必须再生处理。

C.机器运转初期,需要测定溶液浓度,以便调整溶液浓度达到工况的要求。

当机组运转稳定后,一般不需测定溶液浓度。

D.燃烧机、排风机、气源、真空泵与屏蔽泵的运转管理。

E.每小时巡视检查运行情况一次,发现问题及时处理,确保机组正常运行;每两小时记录一次运行日志。

F.根据用户负荷随时调整运行工况,以满足用户需求。

G.随时注意机组故障,并严格按《溴化锂吸收式冷水机组故障分析与处理》及时排除故障,确保机组正常安全运行。

H.随时保持机器设备、机房环境卫生;保持工具、记录等用品齐全。

(2)日常停机1)标准稀释停机按[OFF稀释停机],燃烧机停火,机组进入稀释停机状态。

当达到以下两种情况之一时,稀释停机结束。

A.高发温度低于制冷停机高发温度,稀释时间长于5分钟,且冷水出口温度≥15℃,B.稀释时间达到最大稀释停机时间。

2)快速稀释停机按[OFF稀释停机],燃烧机停火,机组进入稀释停机状态。

当达到以下三种情况之一时,稀释停机结束。

(完整版)直燃型溴化锂吸收式冷热水机组

(完整版)直燃型溴化锂吸收式冷热水机组

直燃型溴化锂吸收式冷热水机组(l)直燃型溴化锂吸收式冷热水机组的组成。

直燃型溴化锂吸收式冷热水机组和蒸气型溴冷机一样,也是由各种换热器组成,包括:高压发生器,低压发生器,冷凝器.蒸发器,吸收器.高、低温热交换器和热水器。

(2)直燃型溴化锂吸收式冷热水机组的工作原理。

直燃型机组依靠燃油和燃气直接燃烧发热作为热源,省去了锅炉等设备,能够提供冷水和热水,是溴化锂吸收式制冷机的一种新型产品,近几年来发展很快,广泛地用于宾馆、会堂、商场、体育场馆、办公大楼、影剧院等无余热、废热可利用的中央空调系统。

如图2一9所示为直燃型溴化锂吸收式冷热水机组的流程图。

其内部结构和双效溴化锂吸收式制冷机有相似之处。

主要区别是高压发生器是单独设置,内部装有燃烧器,直接用火焰加热稀溶液。

其机组是冷热水机组,其上有切换阀门,用来改变机组的工作状态,实现提供冷热水的目的。

其主体为双筒型,上部为冷凝器和低压发生器组合筒体.下部为蒸发器和吸收器组合筒体,另外设有高温热交换器、低温热交换器和预热器,同样也设有发生器泵、吸收器泵和蒸发器泵。

图2一9中(a)为夏季空调提供冷媒水的制冷循环。

SA、B、C阀门关闭,吸收器底部的稀溶液经发生器泵加压后经低温、高温热交换器进放高压发生器,在高压发生器5中,燃烧器燃烧燃料加热稀溶液,产生冷剂水蒸气;蒸气进人低压发生器4。

加热来自低温热交换器8中的稀溶液,蒸气凝结成冷剂水进入冷凝器,同时,发生的冷剂水蒸气经挡水板进人冷凝器3;冷凝器中,蒸气凝结成液体冷剂水积聚在水盘中。

高压的冷剂水经U形管降压后进入蒸发器l的液囊中,由蒸发器泵加压后在蒸发器中喷淋,在汽化过程中吸收冷媒水的热量而使之降温.冷媒水被冷却。

蒸发产生的低温冷剂蒸气在吸收器2中被浓溶液吸收,浓溶液稀释成稀溶液。

吸收器底部的稀溶液被发生器泵加压再被送人高压发生器。

上述过程循环不断。

冷却水先进入吸收器带走吸收热,再进人冷凝器带走高温冷剂水蒸气的冷凝热。

溴化锂吸收式制冷机工作原理课件 ppt课件

溴化锂吸收式制冷机工作原理课件 ppt课件
重要参数 压力:50-60mmHg 温度:100-120℃左右。
冷凝器
由传热管及前后端盖组成。来自冷却塔的冷却水(约32℃) 从端盖流进导热管内,使传热管外侧的来自发生器的冷剂蒸 汽冷凝,产生的冷剂水由U形管流入蒸发器水盘。冷凝器与 发生器处在一个筒体(上筒体)内,中间由隔热层和挡液板 隔开,压力相当。
溴化锂吸收式制冷机原理及特点
工作原理说明
如前图所示,溶液泵将吸收剂中的稀溶液抽出,经热交换器升温后 进入发生器,在发生器中被热水加热,产生冷剂蒸汽,溶液浓缩成 浓溶液。浓溶液经热交换器传热管间,加热管内流向发生器的稀溶 液后,温度降低,回到吸收器。发生器产生的冷剂蒸汽流入冷凝器 内,被流经冷凝器传热管内的冷却水冷凝成冷剂水,热量被带入大 气中。产生的冷剂水则经U型管节流后进入蒸发器,因蒸发器中压 力较低,一部分冷剂水闪发成冷剂蒸汽,而另一部分冷剂水则因热 量被闪发的那一部分带走而的冷剂蒸汽和闪发产生的冷剂降温成饱 和冷剂水后流入蒸发器的水盘,被冷剂泵抽出喷淋在蒸发器传热管 表面,吸收流经传热管内冷水的热量而沸腾蒸发,成为冷剂蒸汽。 产生蒸汽一起进入吸收器,被回到吸收器中的浓溶液吸收。冷水则 在热量被冷剂水带走后温度降低,流出机组,返回用户系统作为冷 冻水。浓溶液在吸收了冷剂蒸汽后,浓度降低,成为稀溶液,被溶 液泵在此送往发生器加热浓缩。这个过程不断循环进行,蒸发器就 连续不断地制取所需温度的冷水。
冷却水在吸收了冷剂蒸汽冷凝放出的热量后流出冷凝器,进 入冷却塔。
溴化锂吸收式制冷机原理及特点
蒸发器 由传热管、前后端盖、喷淋管、冷水水盘、液囊、冷剂泵组成。从用户系统来的 冷水从端盖进入传热管,使由冷剂泵从冷剂水液囊中抽出,喷淋在传热管外的冷 剂水获得热量蒸发,成为冷剂蒸汽,部分未蒸发的冷剂水落到水盘后被冷剂泵再 次送入喷淋管喷淋。冷水在热量被冷剂水吸收后温度降低,流出蒸发器,进入客 户系统。产生的冷剂蒸汽流入吸收器。蒸发器内压力约为0.8kPa(6~7mmHg)。 蒸发器材质:低温部分采用低磷脱氧紫铜管,高温部分采用铜镍合金管,铜管臂 厚0.6-0.8mm。 蒸发器液面正常控制在1/3处,蒸发器内压力正常为6-7mmHg,水4℃蒸发,利用水 的蒸发潜热制冷。(100℃的水变成100℃水蒸汽需要吸收539千卡的热量) 蒸发器铜管冻裂的原因 冷水泵停后,联锁失效,溴冷机仍运行(异常停机,应急时,应检查冷水泵, 并立刻关闭蒸汽总阀防结晶); 里面管道脏堵,尤其是新投入使用的机组 (可以从压损中看出管子是否堵); 管里面有空气(在总的回水管上,安装膨胀水箱,补水、排气) 机组的四重保护 冷水泵与溴冷机联锁 冷水出口流量低于50%(开关) 冷水出口温度低保护 冷水温度低

直燃型溴化锂吸收式冷热水机组性能分析

直燃型溴化锂吸收式冷热水机组性能分析

直燃型溴化锂吸收式冷热水机组性能分析作者:曾金海上传:water 来源:网易行业 2005-03-28 00:00在制冷运行时,V1,V2关闭,溶液循环:吸收器出来的稀溶液经低温和高温溶液热交换预热后进入高压发生器,在其中被加热并发生冷剂水蒸气,溶液变浓,成为中间溶液;该溶液经高温溶液热交换冷却,进入低位发生器,被加热并发生冷剂水蒸气,溶液变为浓溶液;浓溶液经低温溶液热交换冷却后,返回吸收器中吸收冷剂水蒸气而变成稀溶液。

这里的溶液是串联式循环流程。

直燃机组用串联循环的流程比较多,这是由于高压发生器中燃烧温度较高,采用溶液串联循环有利于防止溶液浓度过高而结晶。

冷剂水循环:高压发生器出来的冷剂水蒸气在低位发生器中加热溶液而冷凝成水,经节流后进入冷凝其中;地位发生器产生的冷剂水蒸气在冷凝器中被冷凝成水,冷凝器中冷剂水经节流进入蒸发器吸热气化,冷却冷冻水。

冬季机组作采暖运行时,V1,V2 开启,溶液循环:吸收器的稀溶液有泵压送到高压发生器中,被加热并发生冷剂水蒸气,溶液成为浓溶液,返回吸收器。

其冷剂水循环:高压发生器产生的冷剂水蒸气经吸收器进入正气发生器,在蒸发器中冷凝成冷剂水,同时加热了采暖热水,这时蒸发器实际上起冷凝器作用,冷剂水由蒸汽流入吸收器中,与高压发生器来的浓溶液混合,从而使浓溶液变为稀溶液。

(一):前言直燃型溴化锂吸收式冷热水机组是直接利用初级能源热量的溴化锂吸收式机组。

早在本世纪三十年代初就已经有直燃型溴化锂吸收式制冷机组,到1968年在日本才开发出大型的以燃气作为热源的直燃型溴化锂吸收式冷热水机组。

这种机组发展迅速,目前已经是市场上重要的制冷机组之一。

近年来,我国的直燃型溴化锂吸收式冷热水机组发展迅速。

随着我国工业化的进程,燃料结构必将发生变化,将由固体燃料(煤)为主的燃料结构变为固体(煤)、液体(油)、气体(可燃气体)多样化的燃料结构,而我国的气体,液体燃料运输方便,燃烧效率高等优点,其更受青媚。

制冷技术模块六-溴化锂吸收式制冷循环系统的原理与课件

制冷技术模块六-溴化锂吸收式制冷循环系统的原理与课件
行时,溴化锂水溶液的质量分数不宜超过66%,否则,当溶液温
度降低时将有结晶析出,破坏循环的正常运行。
3)在常压下,水的沸点是100℃,而溴化锂的沸点为1265℃,两者
相差较大,因此,溶液沸腾时产生的蒸气成分几乎都是水,很少
带有溴化锂的成分,这样不必进分压很小,比同温度下纯水的饱和蒸气
溶液加热升温后,进入高压发生器;另一路经溶液泵升压后,又
分成两路,一路进入低温换热器,被从低压发生器流出的浓溶液
加热升温后,再经凝水换热器继续升温,然后进入低压发生器,
另一路作为引射器12的工作流体。
(2)冷剂水的循环 高、低压发生器分别产生的冷剂水和冷剂水蒸
气在冷凝器中被冷却水冷却和冷凝后,汇集起来经节流装置,淋
用液态制冷剂在低压低温下汽化以达到制冷的目的。
图6-1 吸收式制冷原理图
1—冷凝器 2—发生器 3—溶液泵 4—溶液节流阀 5—吸收器 6—蒸发器 7—制冷剂节
流阀
二、相关知识
(二)溴化锂水溶液的性质
1.吸收式制冷循环工质对的选择要求
(1)制冷剂的选择要求 吸收式制冷循环中制冷剂的选择要求与蒸
气压缩式制冷循环基本相同,应具有较大的单位容积制冷量,适
5)能在10%~100%范围内进行制冷量的自动、无级调节,而且在部
分负荷时,机组的热力系数并不明显下降。
6)溴化锂水溶液对金属,尤其是黑色金属有强烈的腐蚀性,特别
在有空气存在的情况下更为严重,因此,对金属的密封性要求非
常严格。
7)由于系统以热能作为补偿,加上溴化锂水溶液的吸收过程是放
热过程,故对外界的排热量大,通常比蒸气压缩式制冷机大一倍,
一般性质与食盐大体类似,是一种稳定的物质,在大气中不挥发,

直燃型溴化锂吸收式冷(热)水机组演示模板

直燃型溴化锂吸收式冷(热)水机组演示模板

直燃型溴化锂吸收式冷(热)水机组演示模板双良H型直燃型溴化锂吸收式冷(热)水机组演示模板1、演示模板功能⑴采用PLC顺序控制进行制冷制热演示。

⑵具有模拟安全故障和安全故障排除的演示功能。

2、双良H型直燃型溴化锂吸收式冷(热)水机组工作原理该机组是一种以燃油、燃气的燃烧热作驱动热源,以溴化锂水溶液作吸收液制取空气调节或工艺用冷水、热水的设备。

它由高压发生器、低压发生器、冷凝器、蒸发器、吸收器和高温热交换器、低温热交换器及屏蔽泵和真空泵等主要设备组成,是几个管壳式换热器构成的组合体,并由真空泵和自动抽真空装置保证机组处于真空状态。

制冷循环特征蒸发器从外部系统来的12℃冷水流经蒸发器换热管,被淋激在管外的低温冷剂水蒸发吸热,温度降低到7℃后返回外部系统。

冷剂水获得了外部系统的热量,汽化成水蒸汽,进入吸收器。

吸收器具有极强的吸收水蒸汽能力的溴化锂浓溶液淋激在吸收器换热管外,吸收蒸发器中产生的水蒸汽,浓度变稀。

从冷却塔来的冷却水流经吸收器换热管内,带走溶液吸收水蒸汽产生的热量(也就是外部系统的热量)。

变稀后的溶液汇集在吸收器底部,流入再吸收腔,吸收闪蒸箱中产生的闪蒸蒸汽后,温度升高,浓度更稀,被溶液泵抽出,经热交换器升温后进入高压发生器。

高压发生器(简称高发)高温火焰将溶液加热,产生大量水蒸汽,同时溶液浓缩成中间溶液。

中间溶液经高温热交换器换热降温后进入低压发生器,水蒸汽也进入低压发生器。

低压发生器(简称低发)温度降低后进入低压发生器的中间溶液被高发来的水蒸汽再次加热,产生水蒸汽,浓度进一步浓缩。

浓溶液经低温热交换器换热降温后流回吸收器,产生的水蒸汽则进入冷凝器。

高发来的水蒸汽在加热溶液后冷凝成水,经节流后也进入冷凝器。

冷凝器冷却水流经冷凝器换热管内,将管外的水蒸汽冷凝成水。

冷凝水经U形管进入闪发箱,一部分汽化成水蒸汽,进入吸收器底部的再吸收腔,另一部分则降温成低温冷剂水后进入蒸发器制冷。

低温热交换器将低发来的浓溶液与吸收器来的稀溶液进行热交换,使稀溶液升温,回收浓溶液热量。

地源热泵与其他空调系统的比较

地源热泵与其他空调系统的比较

水源热泵与其他空调系统的比较一、几种空调方式运行原理及特点1、溴化锂吸收式冷热水机组溴化锂吸收式冷热水机组是以溴化锂为吸收剂,以水为制冷剂,通过水在低压下蒸发吸热而进行制冷的。

常见的溴化锂吸收式制冷机有:单效、双效和直燃式三种。

单效溴化锂吸收式制冷机的主要部件有发生器、冷凝器、蒸发器和吸收器以及热交换器、屏蔽泵等。

双效吸收式制冷机有高压和低压两个发生器,其他则基本上和单效溴化锂吸收式制冷机组一样。

直燃式冷热水机组实际上是双效吸收式制冷机的另一种形式,其高压发生器的热源不是用高压蒸汽而是用燃气直接燃烧加热,高压发生器实际上是一个火管锅炉,用燃气直接加热溴化锂稀溶液,而产生的冷剂蒸汽作为低压发生器的热源用。

溴化锂吸收式冷热水机组特点:(1)制冷剂为水,而水是在高真空的情况下蒸发,其真空度是靠溴化锂溶液不断吸收蒸发的水分而保持的。

(2)冷水温度必须高于零度,为了运行的安全,冷水出口温度不宜低于3~5℃。

发生器通过加热溴化锂稀溶液,使该溶液得到浓缩后又回到吸收器使用,故溴化锂吸收式制冷必须具备热源。

一般宜用在有廉价的燃料、热源和废热的场合。

(3)冷却水用量比压缩式制冷机大。

(4)除冷剂和溶液循环泵外,基本上无运转部件,所以运行平稳,振动和噪声小。

(5)设备体积大,耗用金属多,故设备价格偏高,设备的工艺要求极严,维护保养要求较高。

(6)溴化锂溶液对于金属,特别是黑色金属,在接触空气的情况下具有强烈的腐蚀性,故一定要保证设备的良好密封性能,并对腐蚀问题给予特别的重视,一般在溴化锂溶液中添加铬酸锂和氢氧化锂作为缓蚀剂。

(7)溴化锂吸收式空调主机寿命较短,约为10年。

(8)溴化锂吸收式空调系统需设空调机房,且其面积较大;冷却塔占用屋面面积,油罐占地。

(9)有水资源消耗,约为冷却水循环水量的2%~5%。

(10)驱动能源为油或气,有燃烧污染,有一定噪音。

2、空气源热泵(风冷热泵)机组空气源热泵也就是利用空气作冷热源的热泵,在供热工况下将室外空气作为低温热源,从室外空气中吸收热量,经热泵提高温度送入室内供暖。

直燃式溴化锂吸收式冷热机组知识

直燃式溴化锂吸收式冷热机组知识

直燃式溴化锂吸收式冷热机组知识直燃型溴化锂吸收式冷热水机组是暖通专业用于制冷采暖的一种两用设备。

这种设备是以油(轻油、重油)和气(石油气、煤气等)为能源直接燃烧经过换热来达到制冷和产热的目的。

近年来,一些厂家将该设备在空调制冷的基础上又附加了制备生活热水的功能。

即将空调的制冷、产热与提供生活热水三种功能集为一体,意在简化设备,节省机房占地面积。

溴化锂制冷机主要由发生器、冷凝器、蒸发器和吸收器四大部件组成。

它的基本原理是以热制冷。

热源可以是蒸汽、热水或者是燃气、油。

直燃式溴化锂吸收式制冷机其热源就是在制冷机的燃烧室中通过直接燃烧天然气或油而获取热量的。

温水型溴化锂吸收式制冷机通常都是采用直燃式进行供暖的。

这种制冷机的制冷剂为水。

循环溶液为溴化锂的水溶液。

稀溶液在发生器中被加热(由天然气、油、蒸汽和热水提供的热源),溶液中的水(沸点远低于溴化锂)蒸发为蒸汽,稀溶液变为浓溶液。

在发生器中生成的蒸汽制冷剂在冷凝器中被冷凝为凝结水,经过节流减压,在蒸发器中吸热重新变为蒸汽。

在蒸发器另一侧,因被吸热降温生成冷冻水,即为制冷过程。

蒸发器中产生的蒸汽制冷剂,进入吸收器,被浓溶液吸收,重新成为稀溶液,再进入发生器。

通过上述周而复始的循环,完成制冷的全过程。

在冬季,制冷循环停止运行。

在直燃式制冷机中,天然气或油通过燃烧室燃烧,其热量加热发生器中的稀溶液,产生的蒸汽制冷剂,进入热交换器,将二次水分别加热成采暖热水或生活热水,借以实现供热和生活用水的目的。

溴化锂吸收式制冷原理(1)溴化锂吸收式制冷原理和蒸汽压缩制冷原理有相同之处,都是利用液态制冷剂在低温、低压条件下,蒸发、汽化吸收载冷剂的热负荷,产生制冷效应。

所不同的是,溴化锂吸收式制冷是在利用“溴化锂-水”组成的二元溶液为工质对,完成制冷循环的。

在溴化锂吸收式制冷机内循环的二元工质中,水是制冷剂。

水在真空状态下蒸发,具有较低的蒸发温度(6℃),从而吸收载冷剂热负荷,使之温度降低。

溴化锂吸收式制冷机ppt课件

溴化锂吸收式制冷机ppt课件

(3)节流过程
饱和液体水3→节流器降压3 (饱和蒸气1与饱和液体1混 合的湿蒸气)→蒸发器
(Pk,t 0) →(P0,t1,0)
3→3水蒸气在节流装置中的节流过程。
(4)蒸发过程
冷剂水(饱和液体)点1→蒸 发器1 (饱和水蒸气)
(P0,t 1 0) → (Pk,t3,0)
1→ 1冷剂水在蒸发器中的蒸发过程。
0.75;双效ζ=1 热力完善度:β=ζ/ζmax
max T3T3T2T2T1T1
(5)加热蒸气的消耗量和各类泵的流量计算
①加热蒸气的消耗量: qmv=A Qg/(h//-h/) ②吸收器泵的流量:qvs= qma×3600/ρ0×103 ③发生器泵的流量:qvg= qmf×3600/ρa×103 ④冷媒水泵的流量: qv0= Q0×3600/1000(tx// -tx/)cp ⑤冷却水泵的流量
溴化锂-水溶液性质
溴化锂-水溶液性质
7.1.3 溴化锂水溶液
4.密度大于水。 5.比热容小,热力系数大。 6.粘度大,表面张力大。 7.导热系数随浓度增大而降低;随温度升高而增加。 对黑色金属和紫铜等材料腐蚀性强烈。
7.1.4 计算公式
溶液的饱和温度,定压比热,密度,质量浓度,导 热率,动力粘度,表面张力。
③吸收器:
Fa=Qa/Ka(Δ-aΔta-bΔtb) = Qa/[Ka(t9- tw)-0.5(tW1- tW)- 0.65(t9- t2)] ④蒸发器:
F0=Q0/K0(Δ-bΔtb) =Q0/[K0(tx// -t0)-0.65(tx// -tx/)]
⑤溶液热交换器:
Fex=Qex/Kex(Δ-aΔta-bΔtb) =Qex/[Kex(t4-t2)-0.35(t7- t2)- 0.65(t4- t8)]

溴化锂吸收式热泵PPT课件

溴化锂吸收式热泵PPT课件
一类吸收式热泵,是以消耗高温热源作为代价,通过向系 统高温热能 蒸汽、燃料 ,将低位热源 废热 的热能,提高其温 度以中温形式供给用户,
二类吸收式热泵,是在不供给其它高温热源的条件下靠 的中温热能 废热 驱动系统运行,将其中一部分热能品位提高, 成为高温热水或蒸汽送至用户,另一部份则排放至环境,
溴化锂吸收式热泵原理基础知识
解得 Twao=Twci=37.3 ℃ 冷凝器的平均传热温差△Tcm;被加热水家口温度37.3℃,出 口温度为41.5℃,工质的冷凝温度44.5℃,可得平均传热温差 △Tcm=4.8℃. 根据经验数据取冷凝器基于内表面的传热系数:Kc=4800 W/ ㎡.℃ 则冷凝器的传热面积为
溴化锂吸收式热泵原理基结构
设计
性能
溴化锂吸收式热泵原理基础知识
概述 原理
结构 设计
性能
设计步骤:
1 根据用户要求、能源条件,确定机组的工作参数 2 根据确定的参数,划出机组的简图、工质与溶液循环以 及循环在P-T图和h -ξ图上表示 3 根据热平衡、质平衡、溴化锂平衡,求得所需要制热量 相适应的工质循环量、溶液循环量和各设备的传热量 4 根据各设备的传热量,确定传热面积 5 根据工质、溶液的流量,确定配管的大小、对泵及阀的 流量要求等 6 根据用户的空间及安装条件,确定采用单筒或者双筒等 结构形式,则可绘制设计横截面图 7 根据设备布置,校核液滴分离是否有问题,连接各设备的 配管尺寸是否合理,介质通过管内的压力损失是否限制在 允许的范围内,可确定泵的扬程和必要的吸入性能,并对泵 和阀门选型,
溴化锂吸收式热泵
Add the author and the accompanying title
溴化锂吸收式热泵原理基础知识
概述 原理

第六章溴化锂吸收式冷热水机组

第六章溴化锂吸收式冷热水机组

M w ,sw M s,ss (M w ,s M r)s
a Mw,s s Mr s w
a称为循环倍率
(4)吸收器热负荷 Q a (kW)
Q aM s,sh 6M w ,sh 1M rh 14 qa M Qar a(h6h1)h14h6
(5)发生器热负荷 Q g (kW)
Q gM rh10M s,shsM w ,sh3 qg M Qgr a(h5h3)h10h5
为解决热交换器浓溶液侧的结晶问题,在发生器中设有 浓溶液溢流管,或称防晶管。
4. 制冷量的调节
吸收式制冷机的制冷量一般是根据蒸发器出口被冷却介质 的温度,用改变加热介质流量和稀溶液循环量的方法进行调节 的。用这种方法可以实现在10~100%范围内制冷量的无级调 节。
理论循环在h-ξ图上的表示
溶液循环过程:
性能系数COP是吸收式制冷机所制取的制冷量Qe与发生器
消耗的热量Qg与溶液泵消耗的功率Wp两者代数和之比: COP Qe Q Qg Wp Qg
吸收式热泵的制热性能系数COPh是吸收器和冷凝器释放
的总热量与发生器消耗的热量Qg与溶液泵消耗的功率Wp两者 代数和之比:
COPh
Qh Qg
Qa Qc Qg
不同点:
❖消耗的能量不同 蒸发压缩式制冷机消耗机械功,吸收式制冷机消耗的是热能。 ❖吸收制冷剂蒸气的方式不同 利用液体蒸发连续不断地制冷时,需不断地在蒸发器内产生蒸 气。蒸气压缩式用压缩机吸收此蒸气,吸收式制冷机用吸收剂 在吸收器内吸取制冷剂蒸气。
❖将低压制冷剂蒸气变为高压制冷剂蒸气时采取的方式不同
虽然工作蒸汽压力的提高对溴化锂吸收式制冷 机的制冷量和性能系数的提高都有利,但太高的 温度,浓溶液浓度太大,容易发生结晶现象。因 此,单效溴化锂吸收式制冷机的工作蒸汽压力一 般控制在0.02~0.1Mpa(表压);热水温度控制在 90~150℃范围内。

G型直燃溴化锂吸收式冷温水机

G型直燃溴化锂吸收式冷温水机

G型直燃溴化锂吸收式冷温水机(DG-11M~82M系列)二十一世纪您梦想“高效、环保、运行经济性强、无人化管理”的中央空调产品,大连三洋集日本三洋40余年的创新制造经验,创造性推出“世纪梦”G型溴化锂吸收式冷温水机,使您梦想成真。

本机主要为大型集中式中央空调和其它需要冷、温水的地方提供冷热源。

可广泛应用于办公楼、宾馆、酒店、百货商场、影剧院、体育馆、工厂、油田等国民经济各领域。

本公司生产的G型蒸汽溴化锂吸收式制冷机,由蒸发器、吸收器、冷凝器、低温再生器及高温再生器和热交换器、溶液泵等组成。

其工作原理是:冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变为稀溶液。

吸收器里的稀溶液,由溶液泵送往低温热交换器、高温热交换器后温度升高,最后进入高温再生器,在高温再生器中稀溶液被加热,浓缩成中间浓度溶液。

中间浓度溶液经高温热交换器,进入低温再生器,被来自高温再生器内产生的热剂蒸汽加热,成为在终浓溶液。

浓溶液流经低温热交换器,温度降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。

另一方面,在高温再生器内,经外部蒸汽加热溴化锂溶液后产生的水蒸气,进入低温再生器,加热中间浓度溶液,自身凝结成冷剂水后,和低温再生器产生的冷剂蒸汽一起进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。

以上循环如此反复进行,最终达到制取低温冷水的目的。

稀吸收液被高温再生器加热浓缩,产生冷剂蒸汽,该冷剂蒸汽被直接送蒸发器和吸收器。

在蒸发器中进行热交换,制取温水。

另外,被浓缩为中间浓度的吸收液进入吸收器,与冷剂水混合变稀,成为稀吸收液,然后通过低高温热交换器,回到高温再生器。

通过以上的循环,实现了制暖。

G型直燃溴化锂吸收式冷温水机(DG-11H~83H系列)二十一世纪您梦想“高效、环保、运行经济性强、无人化管理”的中央空调产品,大连三洋集日本三洋40余年的创新制造经验,创造性推出“世纪梦”G型溴化锂吸收式制冷机,使您梦想成真。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

qc h10 h11
(3)循环倍率与溶液流量
设稀溶液流量 M w,s(kg/s),浓度为 w 浓溶液流量 M s,s (kg/s),浓度为 s
M w,s Ms,s M r
M w,sw M s,ss (M w,s M r )s
a M w,s Mr
s s w
压缩式制冷 吸收式制冷 单组分或多组分工质 双组分工质对 溴化锂-水 氨-水
吸收剂
高沸点组分
制冷剂
低沸点组分

LOGO
总结:
(1)可以利用各种热能(蒸气、废热、余 热、燃油、燃气等)驱动; (2)可以大量节约用电;
(3)结构简单,运动部件少,安全可靠;
(4)对环境和大气臭氧层无害。
冷冻水温度下降,制冷量减小;性能系数降低。 冷冻水流量增加,制冷量变化不大。 LOGO
(4)其他因素的影响 冷却水、冷冻水水质 不凝性气体 冷剂水中溴化锂的含量 表面活性剂
调节
(1)工作蒸汽调节法
(2)凝结水流量调节法 (3)冷却水流量调节法
(4)稀溶液流量调节法

T2 Ts T2 是Ts、T2间逆卡诺
循环制冷系数COPc;
由于Qa+Qc=Qg+Qe
T1 Ts Qg ≥ T1
Q COP e ≤ Qg
T2 T1 Ts · T Ts T2 1
Ts T2 Qe T 2
COPth
T1 Ts T1 是T1、Ts间卡诺循环
1. 防腐蚀问题 溴化锂水溶液对一般金属有腐蚀作用,尤其在有空气存 在的情况下腐蚀更为严重。 2. 抽气设备
定期抽气系统
冷凝器 发生器
自动抽气装置
5
吸收器
9 4 2 3 8 6 7 5
蒸发器
3
2
吸收器
4
1
1
去发生器
图 7-15
抽气装置
图 7-16
自动抽气装置原理图
1-真空泵;2-阻油器;3-辅助吸收器; 4-吸收器泵;5-调节阀

LOGO
将低压制冷剂蒸气变为高压制冷剂蒸气时采取的方式不同 蒸气压缩式制冷机通过原动机驱动压缩机完成,吸收式制冷机 则是通过吸收器、溶液泵、发生器和节流阀完成。 提供的冷源温度不同 蒸气压缩式制冷可以提供0℃以下的低温冷源,应用范围广泛; 而吸收式制冷一般只能制取0℃以上的冷水,多用于空调系 统。 工质不同
冷剂水循环过程:
(1)冷凝过程10-11。 (2)节流和蒸发过程 11-12-12'-13-14。
冷剂水节流、加压、喷淋和蒸发过程。

LOGO
热力计算
Qe M r qe qe h14 h12 ( (1)制冷量 Q e kW)
(2)冷凝器热负荷Q ( c kW) Qc M r qc

LOGO
评价指标:吸收式制冷机所消耗的能量主要是热能,制
冷剂的性能系数(热力系数 )作为其经济性评价指标。
性能系数COP是吸收式制冷机所制取的制冷量Qe与发生器
消耗的热量Qg与溶液泵消耗的功率Wp两者代数和之比: Qe Q COP Qg Wp Qg
吸收式热泵的制热性能系数COPh是吸收器和冷凝器释放 的总热量与发生器消耗的热量Qg与溶液泵消耗的功率Wp两者 代数和之比: Qh Qa Qc COPh Qg Qg
LOGO
(7)制冷性能系数
COP Qe h14 h12 Qg a(h5 h3 ) h10 h5
Qh(kW)
(8)吸收式热泵供热量
Qh Qc Qa M r (qc qa ) qh a(h6 h1 ) h14 h10 h6 h11
吸收式热泵制热性能系数

LOGO
理论循环在h-ξ 图上的表示
溶液循环过程:
(1)稀溶液的加压1-2和预热过程2-3。 (2)蒸汽发生过程3-4-5。 (3)浓溶液冷却5-6与节流 6-7。 (4)吸收过程
7 1
>8→ 8 →9→1。
浓与稀溶液的混合、加压喷淋和吸收过程

LOGO
LOGO
第六章 溴化锂吸收式 冷热水机组
6.1 吸收式制冷和热泵的基本概念
工作原理
制冷剂蒸发
吸收热量制冷
气体制冷剂回复到液体状态 (利用吸收方式)

LOGO
吸收式制冷利用溶液在一定条 件下能析出低沸点组分的蒸气,在 另一种条件下又能吸收低沸点组分 这一特性完成制冷循环。 目前吸收式制冷机多用二元溶 液,习惯上称低沸点组分为制冷剂, 高沸点组分为吸收剂。
Qh a(h6 h1 ) h14 h10 h6 h11 COPh a(h5 h3 ) h10 h5 Qg

LOGO
6.3 单效溴化锂吸收式制冷机的性能与调节
性能的影响因素
(1)工作蒸汽压力对性能的影响 当工作蒸汽压力升高,而其他条件不变,这时 将导致溶液的温度升高,蒸汽发生量增加,发生 器出口浓溶液浓度增加,冷凝器热负荷也增加; 但由于冷却水进入机组的流量、温度不变,必然 导致冷凝压力有所升高。在吸收器内,浓溶液吸 收蒸汽的能力增加,吸收器的热负荷增加,因冷 却水流量及进水温度不变,导致吸收器出口冷却 水温度升高,而使稀溶液的温度升高。 虽然工作蒸汽压力的提高对溴化锂吸收式制冷 机的制冷量和性能系数的提高都有利,但太高的 温度,浓溶液浓度太大,容易发生结晶现象。因 此,单效溴化锂吸收式制冷机的工作蒸汽压力一 般控制在0.02~0.1Mpa(表压);热水温度控制在 90~150℃范围内。
的热效率ηc。
· η COPth COP cc
T1 Ts T2 · T1 Ts T2
理想吸收式制冷机,等号成立

LOGO
溴化锂水溶液的热力性质图
溴化锂水溶液——水是制冷剂,溴化锂是吸收剂
(一)溴化锂水溶液的压力-饱和温度图
溴化锂溶液沸腾时,只有水被汽化,故溶液
的蒸气压为水蒸气的分压。由图可知:
LOGO
发生器和冷凝器(高 压侧)与蒸发器和吸 收器(低压侧)之间 的压差通过安装在相 应管道上的膨胀阀或 其它节流机构来保持。 在溴化锂吸收式制冷 机中,这一压差相当 小,一般只有6.5~ 8kPa,因而采用U型 管、节流短管或节流 小孔即可。

LOGO
发生器 generator 吸收式制冷机中,通 过加热析出制冷剂的 设备。
Qa Qc Qg Qe COPh 1 COP LOGO
理想吸收式制冷的性能系数
设高温热源温度为T1,低温热源温度为T2,环境温度为Ts。
吸收式制冷机的热力循环过程中分别与三个热源进行能量交换。
Qa Qc Qe Qg Sis ≥0 Ts T2 T · 1
1-溶液泵;2-引射器;3-抽气管;4-气液分离室;5-储 气室;6-排气阀;7-排气瓶;8-回流阀;9-压力传感器

LOGO
3. 防止结晶问题 结晶现象一般先发生在溶液热交换器的浓溶液侧,因为 此外溶液浓度最高,温度较低,通路窄小。发生结晶后,浓 溶液通路被阻塞,引起吸收器液位下降,发生器液位上升, 直到制冷机不能运行。 为解决热交换器浓溶液侧的结晶问题,在发生器中设有 浓溶液溢流管,或称防晶管。 4. 制冷量的调节 吸收式制冷机的制冷量一般是根据蒸发器出口被冷却介质 的温度,用改变加热介质流量和稀溶液循环量的方法进行调节 的。用这种方法可以实现在10~100%范围内制冷量的无级调 节。
吸收器 absorber 吸收式制冷机中,通 过浓溶液吸收剂在其 中喷雾以吸收来自蒸 发器的制冷剂蒸气的 设备。

LOGO
综上所述,溴化锂吸收式制冷机的工作过程可 分为两个部分:
(1)制冷剂循环
发生器中产生的冷剂蒸气在冷凝器中冷凝成冷 剂水,经U形管进入蒸发器,在低压下蒸发,产生制 冷效应。这些过程与蒸气压缩式制冷循环在冷凝器、 节流阀和蒸发器中所产生的过程完全相同;
纯水的压力-饱和温度关系
一定温度下,溶液的水蒸气饱和分压力
低于纯水的饱和分压力,并且浓度越高, 分压力越低。
结晶线表明在不同温度下
的饱和浓度。温度越低,饱
和浓度也越低。
溴化锂溶液的浓度过高或
溶液温度过低均易形成结 晶。(机组运行时应防止发生结晶)
结晶线
溴化锂水溶液的压力-饱和温度图 LOGO
qg a(h5 h3 ) h10 h5
Qh,e(kW)
(6)溶液热交换器负荷
Qh,e M w,s (h3 h2 ) M s,s (h5 h6 )
qh,e Qh,e Mr a(h3 h2 ) (a 1)(h5 h6 )

后,经节流元件节流,温度和压力降低,低温、 低压液体在蒸发器内汽化,实现制冷。
不同点:
消耗的能量不同 蒸发压缩式制冷机消耗机械功,吸收式制冷机消耗的是热能。 吸收制冷剂蒸气的方式不同 利用液体蒸发连续不断地制冷时,需不断地在蒸发器内产生蒸 气。蒸气压缩式用压缩机吸收此蒸气,吸收式制冷机用吸收剂 在吸收器内吸取制冷剂蒸气。
a称为循环倍率

LOGO
(4)吸收器热负荷
Qa (kW)
Qa M s,s h6 M w,s h1 M r h14
qa Qa a(h6 h1 ) h14 h6 Mr
(5)发生器热负荷
Qg Mr
Qg (kW)
Qg M r h10 M s,s hs M w,s h3
(二)溴化锂水溶液的比焓-浓度图
当压力较低时,压力对液体的比焓
和混合热的影响很小,可认为溶液的 比焓只是温度和浓度的函数。
等压饱和液液线 等温液线
饱和液态和过冷液态的比焓在h-
ξ 图上可根据等温线和等浓度线的交 点确定。
相关文档
最新文档