声表面波器件工艺原理-1清洗工艺原理

合集下载

声表面波滤波器原理和应用

声表面波滤波器原理和应用

声表面波滤波器原理及应用1.声表面波滤波器(SAWF)的结构和工作原理声表面波滤波器(SAWF)是利用压电材料的压电效应和声特性来工作的。

具有压电效应的材料能起到换能器的作用,它可以将电能转换成机械能,反之亦然。

压电效应包括正压电效应和反压电效应。

所谓正压电效应是指压电材料受力变形产生电荷,因而产生电场的效应,即由机械能转换为电能,反压电效应是指压电材料在外加电场的作用下,产生机械形变的效应,也即由电能转换为机械能。

声表面波滤波器(SAWF)的结构如图2—12所示。

这种滤波器的基片是由压电材料(如铌酸锂或石英晶体)制成,在基片上蒸镀两组“叉指电极”,一般由金属薄膜用光刻工艺刻成。

左侧接信号源的一组称为发送换能器,右侧接负载的一组称为接收换能器,图中a、b分别为电极宽度和极间距离,W为相邻叉指对的重叠长度,称为“叉指孔径”。

当交变的电信号u s 加到发送换能器的两个电极上时,通过反压电效应,基片材料就会产生弹性形变,这个随信号变化的弹性波,即“声表面波”,它将沿着垂直于电极轴向(图中x方向)向两个方向传播,一个方向的声表面波被左侧的吸声材料吸收,另一方向的声表面波则传送到接收换能器,由正压电效应产生了电信号,再送到负载R L。

但叉指换能器的形状不同时,滤波器对不同频率信号的传送与衰减能力就会不一样。

图2—12 声表面波滤波器结构示意图为了简便起见,仅分析“均匀”型叉指换能器的频率特性。

所谓“均匀”型就是指图2—12中各叉指对的参数a、b、W 都相同,设换能器有n+1个电极,并把换能器分为n节或N个周期(N=n/2),各电极将激发出相同数量的声表面波,声表面波的波长由指装点基的宽度a和间隔b决定,声表面波的频率与传播速度有关,其自然谐振频率(或机械谐振频率)为v是声表面波的传播速度,约为3×103m/s,比光速小很多,比声速高9倍多。

在f0一定,速度v低时(a+b)就可以小,所以声表面波器件的尺寸可以做得很小,但f0很低,则(a+b)就增大,SAWF的尺寸就增大,因此它适合工作在高频或超高频段。

声表面波简介

声表面波简介

声表面波简介声表面波技术是六十年代末期才发展起来的一门新兴科学技术,它是声学和电子学相结合的一门边缘学科。

由于声表面波的传播速度比电磁波慢十万倍,而且在它的传播路径上容易取样和进行处理,因此,用声表面波去模拟电子学的各种功能,能使电子器件实现超小型化和多功能化。

同时,由于声表面波器件在甚高频和超高频波段内以十分简单的方式提供了其它方法不易得到的信号处理功能,因此,声表面波技术在雷达、通信和电子对抗中得到了广泛的应用。

声表面波是沿物体表面传播的一种弹性波。

早在九十多年前,人们就对这种波进行了研究。

1885 年,瑞利根据对地震波的研究,从理论上阐明了在各向同性固体表面上弹性波的特性。

但由于当时的科学技术水平所限,这种弹性表面波一直没有得到实际上的应用。

直到六十年代,由于半导体平面工艺以及激光技术的发展,出现了大量人造压电材料为声表面波技术的发展提供了必要的物质和技术基础。

1949 年,美国贝尔电话实验室发现了LiNbO3单晶。

1964 年产发表了激发弹性表面波平面结构换邹器的专利。

特别应该指出的是,1965 年,怀特(R . M.white)和沃尔特默(F.W.voltmer )在应用物理杂志上发表了题为“一种新型表面波声-电换能器― 叉指换能器”的论文,从而取得了声表面波技术的关键性突破。

声表面波器件的基本结构和工作原理声表面波器件是在压电基片上制作两个声一电换能器―叉指换能器。

所谓叉指换能器,就是在压电基片表面上形成形状像两只手的手指交叉状的金属图案,它的作用是实现声一电换能。

声表面波器件的工作原理是,基片左端的换能器(输入换能器)通过逆压电效应将愉入的电信号转变成声信号,此声信号沿基片表面传播,最终由基片右边的换能器(输出换能器)将声信号转变成电信号输出。

整个声表面波器件的功能是通过对在压电基片上传播的声信号进行各种处理,并利用声一电换能器的待性来完成的。

声表面波技术有如下的特点:第一,声表面波具有极低的传播速度和极短的波长,它们各自比相应的电磁波的传播速度的波长小十万倍。

SAW声表面波技术知识简介(新手篇)

SAW声表面波技术知识简介(新手篇)

SAW声表面波技术知识简介(新手篇)声表面波技术是六十年代末期才发展起来的一门新兴科学技术,它是声学和电子学相结合的一门边缘学科。

由于声表面波的传播速度比电磁波慢十万倍,而且在它的传播路径上容易取样和进行处理,因此,用声表面波去模拟电子学的各种功能,能使电子器件实现超小型化和多功能化。

同时,由于声表面波器件在甚高频和超高频波段内以十分简单的方式提供了其它方法不易得到的信号处理功能,因此,声表面波技术在雷达、通信和电子对抗中得到了广泛的应用。

声表面波是沿物体表面传播的一种弹性波。

早在九十多年前,人们就对这种波进行了研究。

1885年,瑞利根据对地震波的研究,从理论上阐明了在各向同性固体表面上弹性波的特性。

但由于当时的科学技术水平所限,这种弹性表面波一直没有得到实际上的应用。

直到六十年代,由于半导体平面工艺以及激光技术的发展,出现了大量人造压电材料为声表面波技术的发展提供了必要的物质和技术基础。

1949 年,美国贝尔电话实验室发现了LiNbO3单晶。

1964 年产发表了激发弹性表面波平面结构换邹器的专利。

特别应该指出的是,1965年,怀特(R .M.white)和沃尔特默(F.W.voltmer)在应用物理杂志上发表了题为“一种新型表面波声-电换能器―叉指换能器”的论文,从而取得了声表面波技术的关键性突破。

声表面波器件的结构和原理声表面波器件是在压电基片上制作两个声一电换能器——叉指换能器。

所谓叉指换能器,就是在压电基片表面上形成形状像两只手的手指交叉状的金属图案,它的作用是实现声一电换能。

声表面波器件的工作原理是,基片左端的换能器(输入换能器)通过逆压电效应将愉入的电信号转变成声信号,此声信号沿基片表面传播,最终由基片右边的换能器(输出换能器)将声信号转变成电信号输出。

整个声表面波器件的功能是通过对在压电基片上传播的声信号进行各种处理,并利用声一电换能器的待性来完成的。

声表面波技术的特点第一,声表面波具有极低的传播速度和极短的波长,它们各自比相应的电磁波的传播速度的波长小十万倍。

声表产品生产制作工艺介绍

声表产品生产制作工艺介绍

M2000涂胶显影机
主要工艺-探针测试
半自动探针测试
2.后工序
工艺流程
前工序
丝网涂胶
储能封帽 点焊检验 平行封帽 筛选试验 预焊 标记 终测 编带 入库 初测 点焊
划片
光刻检验
粘片
主要工艺-丝网涂胶(吸声胶)
丝网涂胶
SAW滤波器凃胶的重要性
主要工艺-丝网涂胶
将吸声胶涂到器件两端,以消除反射回来的声波对 器件性能的干扰
0.5
0.5 1.0
0.5-0.7
水晶: 0.5-1.0 其他 0.8-1.5
0.150.3
DQ备 注
晶片背面粗糙度数值为LN晶片实测典型值。晶片材料不同其 加工粗糙度值略有差别。
四.声表面波器件制作工艺流程
1.前工序
镀金属膜 基 片 清 洗 涂胶 曝光
涂胶
曝光
显影
腐蚀
探针测试
镀保护膜
显影
镀金属膜
膜厚测试: FRT表面轮廓仪
ALPHA-STEP 台阶仪
主要工艺-光刻
分布重复式投影曝光 主要技术指标: 最小分辨率:0.5um 最大视场:15×19mm 掩膜版尺寸:5英寸 晶片尺寸:3英寸 光源波长:I线(365nm) 缩影倍率:5:1 曝光工作台定位精度:100nm
适用工艺:剥离工艺和湿法工艺
主要工艺-清洗
全自动清洗机
主要工艺-清洗
STANGL精清洗系统
系统精清洗部分由以下构成:RBS1槽、RBS2槽、溢 流清洗槽、QDR1槽、QDR2槽、兆声清洗槽、甩干机。 STANGL精清洗采用的是湿法批量式清洗,所用的工 艺为RBS洗液超声清洗结合SC1洗液兆声清洗的方式,因 该清洗系统设计时未考虑酸洗槽,有些晶片在清洗前得 预先经过一次酸浸泡处理工艺。 该系统专用于Φ3″和Φ4″标准晶圆片的清洗,日 产量为300-400片/班(8小时)。

超声波清洗工艺

超声波清洗工艺

超声波清洗工艺超声波清洗技术以其清洗洁净、清洗快速,并节省大量人力、物力而得到广泛应用。

现从超声波的清洗原理、超声波清洗工艺、清洗剂的配制等几个方面提供意见,以供参考。

一、超声波清洗原理超声波清洗机理极为复杂,到目前为止,还有许多问题有待研究人员论证,目前,相关人员对以下提法形成了共识,利用超声场所产生强大的作用力,以促使物质发生一系列物理、化学变化而达到清洗目的。

具体来说:当超声波的高频(20-50KHZ)机械振动传给清洗液介质以后,液体介质在这种高频波振动下将会产生近真空的“空腔泡”,“空腔泡”对清洗对象的强烈的作用称为“空化作用”。

“空化作用”的有关理论如下:1.主腔泡在液体介质中不断碰撞、消失、合并时,可使用周围局部产生极大的压力,这种极其强大的压力足以能使物质分子发生变化,引起各种化学变化(断裂、裂解、氧化、还原、分解、化合)和物理变化(溶解、吸附、乳化、分散等)。

2.共振作用,当空泡胞的本征变化频率与超声波的振动频率相等时,便可产生共振,共振的空腔泡内因聚集了大量的热能,这种热能足以能使周围物质的化学键断裂而引起一系列的化学、物理变化。

3.当空腔泡形成时,两泡壁间因产生较大的电位差而引起放电,致使腔内的气体活化,这种活化了的气体进而引发了周围物质活化,从而使物质发生一系列化学、物理变化。

可见,“空化作用”提供了物质在发生物理、化学变化时所需的能量,但是理想的清洗速度和效果还要取决于清洗介质,即清洗液的性质。

这种性质体现在清洗液与污物间所发生的各种物理、化学变化,要能够削弱和去除污物与玻璃零件表面间的附着力和结合力,并伎清洗保持原有的表面外观。

二、清洗剂的配制在讨论清洗剂的配制时,首先要想到清洗剂对污物的清洗原理及清洗过程。

洗涤历史虽然已久,但因洗涤过程及体系的高度复杂,至今理论界对之仍只具备理论上研究而对洗涤过程难以达到数据控制。

这是因为溶液体系是多相分散体系。

分散介质又是含有各式各样组分的复杂溶液:体系中涉及的表面和界面,以及污垢的性质都极为复杂。

超声波清洗原理及工艺

超声波清洗原理及工艺

超声波清洗原理及工艺超声波清洗技术以其清洗洁净、清洗快速,并节省大量人力、物力而得到广泛应用。

现从超声波的清洗原理、超声波清洗机构成、超声波清洗工艺等几个方面提供意见,以供参考。

标签:超声波;清洗;清洗剂就目前来看,制动阀零件清洁一直都是一个难点问题,制动阀零件内部结构复杂,在运行过程中,容易沾上大量的铁碎与粘砂,清洁起来难度较高。

要从本质上解决这一问题,需要创新传统的清洁技术,目前,超声波清洗设备已经开始在制动阀零件清洁中得到了广泛应用,并取得了良好的成效。

1 超声波清洗原理分析超声波与声波类似,均为机械振动在介质中的传播,只是两者的频率有所差异。

利用超声波清洗设备,可以借助于超声波的作用产生振动,通过该种疏密相间的振动来拉伸、压缩液体,在“疏”的位置,形成空穴,“密”的位置则会产生压缩。

在超声波的振动下,清洗液内部会频繁拉伸、压缩,促使微气泡产生、破裂,在破裂时,周围清洗液会进入气泡中心,以巨大的速度产生水击。

在具体运行过程中,通过肉眼是可以直接观察到整个作用过程的,此时,如果将手指放置在清洗液中,会产生针刺的感觉。

这就是超声波的超声空化现象。

经过一段时间的清洗之后,外表的污垢会慢慢脱落,达到清洁的目的。

2 超声波清洗机的构成分析超声波清洗机由如下几个部分构成:(1)超声波系统。

超声波系统包括換能器、超声波发生器两个部分组成。

其中,换能器是清洗设备中的核心部件,能够将电功率转化为机械振动,并借助于不锈钢槽体辐射来促使清洗工作的顺利完成。

超声波发生器的主要元件为超音频IGBT电力电子器件,在系统的运行过程中,起着重要的辅助作用。

(2)加热与温度控制系统。

加热与温度控制系统也是超声波清洗系统中不可或缺的重要组成,加热清洗剂,可以获取满意的洗涤效果,系统在运行过程中可以自动控制温度,根据清洗设备的差异自动来调节温度。

(3)清洗槽。

现行的清洗槽多由不锈钢氩弧焊接制作而成,硬度高。

(4)槽液循环过滤系统。

超声波清洗的原理和工艺流程

超声波清洗的原理和工艺流程

超声波清洗的原理和工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!超声波清洗的原理。

超声波清洗利用高频声波(通常在 20-40 kHz 之间)在液体中产生空化效应。

声表面波器件原理及其应用1

声表面波器件原理及其应用1
北京中讯四方科技股份有限公司
声表面波器件原理及应用简介
声表面波器件原理
发现:1885年瑞利,也称瑞利波 表面波:在任何材料或切向上普遍 存在 应用:地震、勘探、探伤
压电效应
受到压力产生电荷
F
++++++++++++
------------
逆压电效应
加入电荷(电压)产生形变
V
声表面波的产业的开端
如何计算指条线宽?
所用的晶体材料→查得声速
判断换能器类型→单指还是分裂指
单指结构
波长=声速/频率
指宽=波长/4
波长
分裂指结构
波长=声速/频率
指宽=波长/8 波长
条带耦合器结构
波长=声速/频率
条带耦合器指宽≈分裂指宽×1.5 ≈波长×3/16
条带耦合器
膜厚影响频率的原因?
质量负载效应:金属膜的存在使声速
叉指的编码
1
0
1
1
0
信号的相关
1 0 1 1 0
抽头延迟线相关指标
中心频率 码速率 伪码长度:M序列,m序列,BARK序列 M m BARK 信号调制类型:BPSK,DPSK,MSK, QPSK
抽头延迟线应用
扩频信号的中频解扩 抗干扰、保密通信
色散延迟线
色散 频散
色散结构换能器
线性调频信号
地震勘探探伤声表面波器件原理声表面波器件原理压电效应压电效应逆压电效应逆压电效应声表面波的产业的开端声表面波的产业的开端1965年white和voltmer发明叉指换能器60年代半导体平面工艺的成熟声表面波学科理论技术产业声表面波的有效激发声表面波的有效激发压电晶体基片输入叉指换能器输出叉指换能器吸声材料吸声材料表面波传播区域声表器件的基本结构声表器件的基本结构晶体抛光面汇流条屏蔽条叉指换能器晶体背面打毛或刻沟槽常用压电晶体的参数声速常用压电晶体的参数声速348839923295315820002500300035004000yz铌酸锂128铌酸锂112钽酸锂st石英声速常用压电晶体的参数机电耦合系数常用压电晶体的参数机电耦合系数480540075011000100200300400500600yz铌酸锂128铌酸锂112钽酸锂st石英机电耦合系数常用压电晶体的参数温度系数常用压电晶体的参数温度系数915718102030405060708090100yz铌酸锂128铌酸锂112钽酸锂st石英温度系数不常用的压电晶体材料不常用的压电晶体材料锗酸铋

声表面波器件工艺原理-2镀膜工艺原理

声表面波器件工艺原理-2镀膜工艺原理

二,声表器件真空镀膜工艺原理:真空镀膜是声表面波器件制作的一个关键工序。

由于激发压电体表面波需要一个金属叉指电极换能器,因此必须在基片表面生长一层金属膜,对这层薄膜的要求是薄、均匀、与基片粘附性好且不会与基片生成有害化合物、便于超声或热压键合、薄膜淀积和光刻成型简单。

纯铝是目前常用的金属材料,电子束镀膜和磁控溅射是目前常用的成膜方法。

(一)电子束镀膜:1,电子束镀膜原理:电子束镀膜属真空蒸发技术,必须在高真空条件下进行。

如果在真空室残留大量气体分子,则会:a)残留的水气、油气、空气分子会附着在片子表面,影响膜与片子的粘附。

b)蒸发粒子受气体分子碰撞几率增多,会改变其直线运动方向,使蒸发粒子与基片表面结合的能量减小,影响蒸发速率,影响平整均匀金属薄膜的形成。

c)残余气体分子会与蒸发源、蒸发粒子反应生成化合物,影响蒸发速率,影响薄膜质量。

为了获得良好薄膜,通常要求真空度应大于1.3×10-3Pa,蒸发源与衬底间的距离应保持在分子平均自由程的1/10以下。

(有经验数据,电子束镀膜的源衬距离小于35cm,溅射镀膜的源衬距离小于10cm。

仅供参考。

)电子束镀膜是利用高能聚焦电子束打到铝源表面,使之熔化分解为原子或原子的集合体,蒸发到基片表面,形成薄膜。

目前使用的主要是e型枪(即270°偏转电子枪)电子束蒸发装置,它主要由发射电子的电子枪体和使电子作圆周运动的均匀磁场两部分组成。

电子束在磁场作用下,穿过加速极阳极孔飞入磁场空间。

调节磁场强度,制控电子束偏转半径,准确打到坩埚内的铝源上,将电子的动能转变为热能,使铝熔化并蒸发;而一部分从铝源表面反射出来的电子受磁场作用偏转,被接地阳极吸收,避免了高能电子对基片表面的损伤。

同时,铝原子被高能电子撞击会使其外层电子发生跃迁变成正离子,在磁场作用下,正离子流发生偏转;为避免铝正离子流粘污绝缘子,使高压短路;一般采用240°-270°电子束偏转角。

声表面波器件制作工艺介绍

声表面波器件制作工艺介绍

声表面波器件制作工艺介绍概述声表面波器件是一种用于声波传播与处理的微型化器件,它通常由压电材料与声表面波导构成。

制作声表面波器件需要经过一系列复杂的工艺步骤,包括材料准备、加工工艺、掩膜制备、电极沉积、腔体刻蚀等环节。

材料准备声表面波器件的制作一般使用压电材料作为基底材料,常见的材料包括石英、锂钽酸锂等。

在选用材料时需要考虑其压电性能、稳定性和加工性能等因素。

加工工艺1.基片清洗:使用去离子水和有机溶剂彻底清洗基片表面,确保基片表面干净。

2.切割基片:将大尺寸的基片切割成所需尺寸,常见的加工方式有机械切割和激光切割。

3.抛光处理:对基片表面进行抛光处理,以保证表面光滑度和平整度。

4.清洁处理:再次清洁基片表面,确保没有杂质影响后续工艺。

5.温度调节:控制加工环境的温度,以确保材料的稳定性和加工精度。

掩膜制备1.制备光刻胶:将光刻胶溶液涂覆在基片表面。

2.光刻:使用掩膜模板进行光刻曝光,形成所需的图案。

3.显影:使用显影液使未曝光区域的光刻胶溶解,形成光刻图案。

电极沉积1.金属蒸镀:在光刻图案的基础上,通过金属蒸镀的方式沉积电极材料。

2.电镀:对蒸镀的电极进行电镀处理,提高电极的导电性。

腔体刻蚀1.腔体制备:对沉积好电极的基片进行腔体制备,通常采用离子刻蚀技术。

2.刻蚀:使用腔体模板和刻蚀气体对基片进行刻蚀处理,形成声表面波导结构。

总结声表面波器件的制作工艺包括材料准备、加工工艺、掩膜制备、电极沉积和腔体刻蚀等多个环节,每个环节的精细操作都直接影响器件的性能和稳定性。

随着微纳加工技术的发展,声表面波器件的制作工艺不断优化,将为声波传播与处理领域带来更多创新和应用。

声表面波器件工艺原理-0序

声表面波器件工艺原理-0序

声表面波器件工艺原理序:本文是在收集相关资料的基础上整理编写而成,旨在从机理上对声表工艺进行阐述。

常言:‘要知其然,必知其所以然’。

在生产中,我们不仅要知道怎么作,还应知道为什么要这样作;只有这样,才能作的更好。

由于掌握资料有限,文中又有一些个人看法,谬误难免;敬请纠正。

编者:杜文玺目录:一,清洗工艺原理(一)对基片表面的清洗1,剥离工艺的特点1,对有机物的清洗2,剥离技术有关问题2,对微粒的清洗3,有关问题微细光刻工艺简介3,对金属杂质的清洗(五)微细光刻工艺简介四修频工艺原理4,对微粗糙度的改善四,修频工艺原理5,超纯水冲洗及甩干(一)修频技术6,基片清洗工艺的组合及选择1,等离子体频率修正技术(二)其它工序的清洗2,减薄金属膜修频技术(三)对试剂、水、气的要求3,紫外光修频(四)湿化学清洗设备介绍4,激活聚合物修频技术二,真空镀膜工艺原理(三)影响频率稳定性的原因及改善途径(一)电子束镀膜1,影响谐振器频率稳定性的主要因素1,电子束镀膜原理2,改善谐振器频率稳定性的途径2,电子束镀膜的质量控制五,修波形工艺原理(二)溅射(一)工艺目的1,溅射基本原理(二)吸声原理2,二极直流溅射(三)吸声材料3,高频溅射1,环氧树脂;2,有机硅橡胶;4,磁控溅射3,丙烯酸脂(三)讨论(四)丝网印刷简介1,剥离工艺对电子束镀膜的要求1,丝网印刷原理2,关于尖峰现象与电迁移2,丝网的种类及选择三,光刻工艺原理3,网印厚度(一)光刻胶4,印刷精度1,正性光刻胶5,与印刷质量有关的因素2,负性光刻胶6,有关注意事项3,光刻胶的性质六,划片工艺原理(二)光刻工艺原理(湿法)(一)目的、要求、方式1,匀胶;2,前烘;3,暴光;(二)简介各种划片方式4,显影;5坚膜;6,腐蚀;1,砂轮划片7,去胶;8,问题分析2,金刚刀划片9,小结(光刻需控制的工艺参数)3,激光划片(三)光刻工艺原理(干法)七,粘片工艺原理1,干法腐蚀原理(一)粘片机理2,干法工艺(二)粘片质量要求(四)金属剥离工艺简介(三)与粘片有关材料的介绍(四)操作注意事项5,对工艺条件的要求(五)问题分析6,问题讨论1,掉片(三)平行封焊2,裂片1,封焊机理及工作程序3,其它2,与封焊有关的因素八,引线键合工艺原理3,问题讨论(一)键合引线(四)钎焊1,金丝1,工艺原理2,铝丝2,工艺条件3,关于退火3,钎焊方法(二)超声键合4,问题讨论1,超声键合原理(五)塑封2,工艺质量要求1,与塑封质量有关的常用材料3,影响超声键合质量的因素2,声表塑封的几种方法(三)热压键合3,问题讨论1,热压键合原理(六)芯片级封装简介2,热压键合方法1,空腔法(四)热超声键合2,密封法(五)介绍铜丝键合(七)检漏(六)失效分析及筛选方案的选择1,氟油检漏1,虚焊原因分析2,氦质谱检漏2,断丝原因分析3,短路原因分析4,应对措施5,关于筛选方案的讨论九,倒装焊工艺原理(一)UBM的形成1,对UBM各层要求及材料选择2,UBM的制作(二)凸焊点的制作1,凸焊点常用材料2,凸焊点的制作方法(三)倒装焊接1,热超声焊接2,回流焊接3,热压焊接4,环氧树脂导电胶焊接十,封装工艺原理(一)列表简介各种封装工艺(二)突缘电阻焊1,工艺过程简介2,工艺参数的确定3,对焊件的要求4,对模具的要求。

声表面波原理

声表面波原理

声表面波原理声表面波是一种沿着固体表面传播的超声波,它具有很强的穿透力和灵敏度,因此在材料的缺陷检测和应力分析中得到了广泛的应用。

声表面波原理是指声表面波在固体表面传播的物理机制,了解声表面波原理对于深入理解声表面波的特性和应用具有重要意义。

声表面波是一种横波,它沿着固体表面传播,其传播速度远远高于体波。

声表面波的传播速度与材料的弹性常数和密度有关,因此可以通过测量声表面波的传播速度来确定材料的力学性质。

声表面波的频率范围通常在MHz级别,因此可以应用于微小缺陷的检测和材料的微观结构分析。

声表面波的产生和接收通常通过压电材料实现。

压电材料具有压电效应,当施加外加电压时,会产生机械振动,从而产生声波。

而当声波传播到压电材料上时,又会产生电信号,从而实现声表面波的接收。

通过合理设计和选择压电材料,可以实现高效的声表面波的产生和接收。

声表面波的传播受到表面结构和材料性质的影响。

表面的粗糙度和涂层等对声表面波的传播会产生影响,因此需要对表面进行适当的处理和准备。

此外,材料的吸收和散射也会对声表面波的传播产生影响,因此需要对材料的声学特性进行充分的了解。

声表面波的应用包括材料的缺陷检测、应力分析、涂层测厚等领域。

在材料的缺陷检测中,声表面波可以检测出微小的裂纹和气泡等缺陷,对于保证材料的质量具有重要意义。

在应力分析中,声表面波可以通过测量不同方向上的传播速度来确定材料的应力状态,为工程结构的设计和安全评估提供重要依据。

在涂层测厚中,声表面波可以通过测量涂层上的声波传播时间来确定涂层的厚度,为涂层工艺的控制提供重要参考。

总的来说,声表面波原理是声表面波传播的物理机制,了解声表面波原理对于深入理解声表面波的特性和应用具有重要意义。

声表面波具有很强的穿透力和灵敏度,因此在材料的缺陷检测和应力分析中得到了广泛的应用。

声表面波的产生和接收通常通过压电材料实现,而其传播受到表面结构和材料性质的影响。

声表面波的应用包括材料的缺陷检测、应力分析、涂层测厚等领域,为工程技术和材料科学的发展提供了重要支持。

每秒震动高达40000次,超声波是怎么把东西洗干净的

每秒震动高达40000次,超声波是怎么把东西洗干净的

每秒震动高达40000次,超声波是怎么把东西洗干净的在一些影视作品中经常会出现这样的情节,那就是利用声波当做武器的情节,声音是能够在固体,气体和液体这些介质中传播,所以也就能够穿过人体,那声波当武器威力有多大?声波有两个重要的参数,分别为强度(分贝)和频率(赫兹),一般日常对话声音在60分贝左右,燃放烟花爆竹产生的声音在150分贝左右,人类的听力频率在20~20000赫兹之间。

20赫兹以下的声音,虽然听不见但能感受到振动,还会对人造成不适,这是因为这段振动频率与人体某些器官的的振动频率是一样的,如果达到0.5~8赫兹,117分贝的声音就会对人体造成伤害,长时间还会威胁到生命,理论上声音超过240分贝就会造成头颅爆炸。

所以说在密闭的空间里声音是可以杀死人的,但在户外由于声波会分散传播,并快速衰减,很难达到致命的水准,所以说像经典的狮吼功是不足以让人致命的。

我们生活中充斥着各种声音,但这个世界上还有听不见的声音,声音能够被听见并不是因为声音的大小,而是声音的频率。

依照频率来划分声音可以得到三个区间,分别是次声波,可听声波和超声波,可听声波就是我们所能听到的范围,当频率逐渐升高超过所能听到的范围以后,我们就称它为超声波。

当频率降低到20Hz以下时我们就称它为次声波,又叫亚声,在一些自然灾害如地震,火山爆发等发生前都会发出次声波,次声波不但有很强的穿透力还能传播得非常远,所以这些自然灾害发生时全世界都能够检测得到,有些动物能听到次声波,有的动物能发出次声波,大象是既能发出次声波又能听到次声波的动物。

超声波清洗我们虽然听不到超声波,但超声波却在世界中常常扮演着重要的角色,在生活中流行用超声波清洗各种物品,不管是机械零件,珠宝首饰还是光学镜片等,都在使用超声波清洗。

超声波清洗是利用水和清洗剂作为介质,靠超声波在液体中产生的振荡,来使污物剥离,疏松或乳化,以达到清洗的目的,超声波清洗具有环保,效率高,清洗无死角等优点。

超声波清洗技术在零件表面处理中的研究

超声波清洗技术在零件表面处理中的研究

超声波清洗技术在零件表面处理中的研究引言:在制造业中,零件的表面处理是非常重要的一项工作。

无论是为了提升产品质量,还是为了保障零件的功能和寿命,都需要对其进行适当的表面处理。

而超声波清洗技术就是一种在零件表面处理中广泛应用的技术。

一、超声波清洗技术的原理超声波清洗技术利用声波振动在液体内产生的局部高压、低压区,对清洗液中的微小气泡进行加速和扩张,从而形成一系列湍流和微小水流,使污物从零件表面被有效地剥离。

其基本原理是利用声波的高频振动作用于液体中,在水中形成大气泡和微小气泡,并在声波的作用下迅速破裂和收缩,通过冲击力和微小水流的涡动效应将污物从零件表面清洗掉。

二、超声波清洗技术的优势1. 清洗效果好:超声波清洗技术能够有效地清除零件表面的各类杂质和污垢,包括油脂、焊渣、氧化物、灰尘等,使零件恢复到原有的光洁度。

2. 清洗速度快:超声波清洗技术能够形成密集的微小水流和湍流,清洗液能够充分接触到零件表面各个细小的部位,加速清洗的速度。

3. 清洗无死角:超声波在液体中以波状传播,能够在零件表面的每个角落都形成微小水流和湍流,从而使清洗液能够充分覆盖整个表面,避免死角。

三、超声波清洗技术的应用领域超声波清洗技术在零件表面处理中有着广泛的应用。

以下是几个常见的应用领域:1. 电子零件清洗:超声波清洗技术可以对电子零件表面进行高效的清洗,去除残留的焊渣和油污,保证电子零件的质量和性能。

2. 光学镀膜前处理:在进行光学镀膜之前,需要对光学零件进行彻底的清洗,以确保光学镀膜的质量。

超声波清洗技术可以在不损坏光学零件的情况下去除上面的杂质和污垢。

3. 汽车零件清洗:超声波清洗技术可以对各类汽车零件进行清洗,包括发动机零件、制动系统零件等。

它可以快速而彻底地清除零件表面的污垢和油脂,提升零件的性能和寿命。

四、超声波清洗技术的发展趋势近年来,随着科学技术的不断发展,超声波清洗技术在零件表面处理中也得到了不断的改进和突破。

微电子工艺原理第讲清洗工艺

微电子工艺原理第讲清洗工艺

微电子工艺原理第讲清洗工艺清洗工艺是微电子制造过程中至关重要的一环,它对于器件性能和可靠性有着直接关系。

本文将从微电子工艺的角度介绍清洗工艺的原理、流程及影响因素。

清洗工艺的原理微电子器件的制造过程中,为了保证器件的品质,需要在每个制造步骤结束后进行清洗。

清洗的目的是除去沉积在表面的杂质、有机物及其他污染物,以便下一个制造步骤的顺利进行。

同时,清洗的质量还直接影响着器件性能和可靠性。

附着在表面的杂质可以降低器件的电学特性,影响其性能。

比如,杂质可能会影响制作金属电极的粘附性和导电性;有机物可以在高温和高压下分解并释放有害气体,导致器件失效。

通过对器件表面进行清洗,可以去除这些潜在的污染物,保证下一步的制造步骤可以在清洁的表面上进行,从而获得更好的器件性能。

清洗工艺的原理主要来源于化学和物理两方面。

化学清洗是通过合适的化学试剂去除表面的污染物,主要依靠化学反应来促进污染物的溶解和分离。

物理清洗则主要通过物理力学的方法,如振动、压缩和吸附等,去除表面的污染物。

清洗工艺的流程清洗工艺的流程主要包括前处理、主处理和后处理。

1.前处理在进行清洗之前,需要先将器件表面的半导体材料、金属材料或其他材料,进行表面预处理。

通常的处理方法包括:•去胶:使用某些有机物或者无机酸腐蚀去除器件表面的胶与封装材料,其中无机酸常见的有HF、KOH等。

•消毒:使用高温下的气体流去除器件表面的细菌以及器件内部的空气,以保证器件内外的干净。

•研磨:使用硅砂等磨料对器件表面进行研磨,以去除表面的氧化或锈蚀层。

在研磨过程中,还可以控制磨料的大小和硬度,以使磨料对表面不会产生附着物。

•水/氧化学气相清洗:使用去离子水或化学气相清洗器件表面,去除表面残留的杂质,以减少清洗过程中对器件的损伤。

2.主处理主处理是清洗工艺的核心步骤。

根据清洗方法的不同,主处理可以分为以下三个步骤:•预清洗:使用去离子水或去离子水混合有机溶剂对器件表面进行清洗,以去除表面的污染物,为下一步的清洗做准备。

声表面波器件的用途、生产制作和工艺介绍

声表面波器件的用途、生产制作和工艺介绍
从上面可以看出LN、LT是一种多功能晶 体,我们在实践中注意各种性能对使用和 生产相互影响。比如热释电产生静电吸尘、 静电击裂晶片影响.
常用表面波切型
简称
主面及传播方向
128 °Y-X 128 ° 旋转Y切X向传播
LN
铌酸锂
64 °Y-X LN
Y-Z LN
64° 旋转Y切X向传播 铌酸锂
Y切Z向传播 铌酸锂
碳化硅 100 120 180 240# W28 W1 1000# 2000 W3.
规格号 # # #
4
#
5
粒度尺 160 125 80 63
28- 14- 15.5
8.5
3.5-
寸范围
20 10
2.5
晶片粗 >7 ≥5 ≥3 1-3 糙度
0.5 0.5-0.7 0.150.3
金胜
3--
1.5— 0.8- 0.5 水晶:
5
2.2 1.5 - 0.5-1.0
1.0 其他
0.8-1.5
DQ备 晶片背面粗糙度数值为LN晶片实测典型值。晶片材料不同其

加工粗糙度值略有差别。
四.声表面波器件制作工艺流程
1.前工序
镀金属膜
涂胶
曝光
显影
腐蚀


探针测试


涂胶
曝光
显影
镀金属膜
剥离
镀保护膜
后工序
Hale Waihona Puke 湿法工艺①.镀膜铝 晶片
②.涂光刻胶
光刻胶 铝
晶片
③.曝光
光刻胶 铝
UV 光
晶片
④.显影
光刻 胶

晶片
⑤.刻蚀

声波清洗机的工作原理

声波清洗机的工作原理

声波清洗机的工作原理声波清洗机是一种利用声波的震动作用原理来进行清洗的设备。

它具有高效、环保、易操作等特点,被广泛应用于各行业的清洗工作中。

下面将详细介绍声波清洗机的工作原理。

1. 声波产生:声波清洗机通过电子装置将电能转化为机械能,产生声波。

一般来说,声波的频率范围在20Hz至20kHz之间。

这些声波会通过传感器或传导装置传导到清洗槽中。

2. 清洗液介质:声波清洗机内的清洗槽通常会充满专门配制的清洗液介质。

清洗液介质的选择取决于被清洗物体的特性和清洗要求。

常用的清洗液介质有水、溶剂、酸碱溶液等。

3. 声波传导:声波清洗机内的传感器或传导装置会将产生的声波传导到清洗槽中的清洗液介质中。

声波的传导会引起清洗液中的液体分子振动,形成微小气泡。

4. 液体振动及气泡形成:当声波通过清洗液介质中的液体分子时,液体分子会产生振动。

振动的频率与声波的频率一致,这种现象称为谐振现象。

液体振动会在一定条件下形成微小气泡。

5. 气泡扩散:随着液体振动的加剧,液体内的气体分子会被气泡吸附和吞吐,气泡会不断扩大。

6. 气泡破裂:当气泡膨胀到一定程度时,由于外界的压力变化或其他外力的作用,气泡会破裂。

7. 冲击力产生:气泡的破裂会引起一系列的冲击力,这种冲击力能够有效地清洗被清洗物体表面的污垢。

同时,冲击力还可以破坏液体与被清洗物体表面的界面张力,使污垢更容易被清洗。

8. 污垢去除:冲击力的作用下,清洗液中的气泡会对被清洗物体表面的污垢进行去除。

这是因为冲击力能够将污垢从物体表面冲击掉,并使其悬浮在清洗液中。

9. 微流动形成:声波清洗机内的液体分子和气泡的运动形成了微流动的环境。

这种微流动能够使清洗液更加均匀地覆盖在被清洗物体的表面,提高清洗效果。

总结起来,声波清洗机的工作原理主要包括声波的产生,清洗液介质的选择,声波传导,液体振动及气泡形成,气泡扩散,气泡破裂,冲击力产生,污垢去除以及微流动形成等环节。

通过这些环节的运作,声波清洗机能够高效、环保地清洗各类物体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一,声表器件清洗工艺原理序:声表器件制作工艺中的清洗技术及洁净度是影响器件合格率、器件性能和可靠性的重要因素。

杂质污染主要来源于晶片加工过程、环境污染、水(包括纯水)污染、试剂污染、工艺气体污染、生产用设备、器皿、工具及易耗品污染、人体污染和工艺过程造成的污染。

由于表面污染是通过污染物与表面间的作用力引起(主要是化学力和分子间力),清洗就是为破坏这种作用力,除去由上述污染源所带来的有机物、微粒、金属原子(离子)及微粗糙。

(一)对基片表面的清洗:由于有机物会遮盖部分基片表面,影响对微粒和金属的清洗,所以清洗的一般思路是:先除去表面的有机污染,然后再去除微粒和金属杂质。

1,对有机物的清洗:基片上的有机污染主要有油膜、残余的蜡膜胶膜、不纯有机溶剂挥发后的残膜,以及微生物的有机残渣、手油等。

这些杂质分子与基片表面的接触通常是依靠分子间力维持,多属物理吸附,吸引力较弱,且随分子间距的增加很快削弱,。

基片表面上的有机物除影响清洗效果外,工艺上主要影响金属膜的粘附和光刻质量。

清洗有机物常用方法主要有:a)擦洗:当基片表面有微粒、有机残渣或残膜时常用擦片办法,它是靠人工(或机械)作用及有机溶剂溶解作用去除表面大块污物,根据有机溶剂结构相似相溶原理,可依次用甲苯、丙酮、无水乙醇棉球在基片表面沿同一方向轻轻擦拭,然后用纯水超声5-10分钟,最后用纯水冲洗、甩干。

操作中注意,不可将溶剂顺序颠倒或打乱,擦片要无划伤、不留液渍。

b)等离子体清洗(干法清洗):等离子体是部分电离的气体,由电子、离子、自由基(以氧为例,指游离态氧原子)及其它中性粒子组成,是物质的第四态。

等离子体清洗机理主要是依靠等离子体中的活性粒子(电子、离子和自由基)的活化作用达到去除表面污渍的目的。

其反应过程包括:无机气体被激发为等离子态;气相物质被吸附在固体表面;被吸附基团与固体表面分子反应生成产物分子;产物分子解析形成气相;反应残余物脱离表面。

按反应类型分类:等离子体与固体表面反应可以分为物理反应(离子轰击)化学反应及物理化学反应。

物理反应机制是,活性离子轰击待清洗表面,使污染物脱离表面并最终被真空泵抽走;其优点是,自身无化学反应,表面不留氧化物,腐蚀作用各向异性;缺点是,使表面在分子级范围内变的粗糙,对被清洗表面的各种不同物质选择性差,热效应大,腐蚀速度低。

化学反应机制是,各种活性的粒子和污染物反应生成易挥发性物质,然后由真空泵吸走;其优点是,清洗速度高,选择性好,对清除有机污染比较有效,缺点是会在表面产生氧化物。

物理化学反应机制是,两种反应都起重要作用,并互相促进;离子轰击使被清洗表面产生损伤,削弱其化学键或者形成原子态,使其容易吸收反应剂,离子碰撞使被清洗物加热,使之更容易发生反应,其效果是既有好的选择性、清洗效率、均匀性,又有好的方向性。

按激发频率分类:等离子态密度n(cm-3)和激发频率v(Hz)有如下关系:n =1.2425×108v2 ,由上式见,频率越高,等离子态密度越大,列表说明其分类:频率 等离子体类型 自偏压 反应类型 应用40KHz 超声等离子体 1000V 物理反应 对表面影响大,易造成二次污染13.56MHz 射频等离子体 250V 物理化学反应 去除表面污染物、有机物、氧化物(氢)等 2.45GHz 微波等离子体 几十伏 化学反应 去除表面污染物、有机物、氧化物(氢)等 典型的等离子体化学清洗工艺是氧等离子体清洗。

在低压系统中通入少量氧,受高频电场作用,氧被激励成游离态氧原子,使有机物氧化成挥发性物质CO2 和H2O,达到清除目的(但不能去掉碳和其它非挥发性金属或金属氧化物)。

工艺要求的真空度、高频频率、通氧量、功率、时间可参照设备说明或由实验确定。

具体反应如下:O2—→O* + O* C x H y + O*—→C O2↑+ H2 O↑典型的等离子体物理清洗工艺是氩等离子体清洗。

在镀膜前,抽高真空到5×10-3Pa,充入氩气,保持真空度在5×10-2Pa,打开离子轰击机,利用离子枪产生的高能离子束轰击晶片表面残留的各种杂质及吸附气体,使其从表面清除,达到清洁目的。

在清洗中要适当调整氩离子能量,以免晶面受损。

c)紫外线/臭氧干法清洗(干法清洗):实质是等离子体清洗,只是等离子体产生方法不同。

通氧气到低真空反应室,利用紫外线能量激发使氧分子分解成具有强氧化能力的游离态氧原子及臭氧,将有机物氧化成挥发性化合物,抽气排除。

d)3号液(SPM)清洗(湿法清洗):3号液是浓硫酸和过氧化氢的混合液,浓硫酸有强氧化性、强酸性,过氧化氢又使其氧化性加强。

3号液既可去除有机物污染,又可去除金属污染。

其清洗原理是,浓硫酸和过氧化氢混合会生成卡罗酸H2SO5,通过卡罗酸分解生成的自由基与有机物反应会生成可溶性挥发物。

另外由于浓硫酸本身有很强的酸性、氧化性、脱水性,与金属反应生成的硫酸盐多数溶于水,若同时在加热的情况下,又可使有机物碳化后进一步氧化生成二氧化碳。

双氧水主要表现为强氧化剂作用,对有机物、无机物及大多数金属都具有氧化能力,尤其在酸碱溶液中,能使一些难溶物质氧化成可溶物质。

3号液清洗的典型工艺是: H2SO4:H2O2 = 3:1 90℃ 10′。

因压电基片的 热释电特性,我们可采用60℃溶液浸泡40′(工艺条件可实验确定,一般情况下,3号液配制时产生的热量即可使溶液接近使用温度),由于过氧化氢反应分解,需不断予以补充,经补充后的3号液可重复使用。

e)纯水(1-9℃)+ O3(电极放电产生)去除有机物(湿法清洗):由于硫酸污染环境,而有机物的去除主要是靠强氧化剂分解产生的游离态氧原子和有机物反应,所以在纯水中通入臭氧亦可达到清除有机物的目的(采用1-9℃纯水是为了让臭氧不会很快挥发,以提高反应效果)。

2,对微粒的清洗:微粒指分散性的从0.1微米直径到可用镊子夹取的颗粒或近似颗粒的物质。

基片表面 上的微粒主要是切磨抛带来的微小残渣,环境中的尘粒,纤维、金属屑、人的头皮肤屑、微生物以及在工艺过程中随时发生的微粒粘污;它们主要是通过分子间力、静电引力、毛细吸力、表面平整度阻力等污染表面,属分子型吸附杂质。

基片表面上的微粒会造成光刻连条(剥离)、断条(干、湿法),严重影响生产合格率及产品可靠性。

对微粒的清洗主要有以下方法:1)水超声清洗:利用具有一定速度的水冲洗表面,可以克服粒子与表面的粘附力及粒 子自身重量,除去粒子;但当粒径<5微米时,水冲已难以去除,必须加超声才有较好效果。

a)超声清洗原理:在强烈的超声波震动下,液体介质内部产生疏部和密部,疏部产生近于真空的空腔泡,空腔泡消失的瞬间,其附近产生强大的局部压力(即空化作用),使基片表面的污垢剥离。

清洗效果与超声条件如频率、功率、温度及时间有关。

超声波频率越低,空化作用越强,但燥声越大,一般选取频率为20-40KHz;功率密度越高,清洗效果越好,但对光洁的表面会产生“空化”腐蚀,所以一般清洗槽输出功率密度选在0.3-0.6W/cm2范围比较合适;超声波在30-40℃时空化效果最好,但考虑到化学反应,常选40-60℃。

另外清洗目的不同,超声使用液体也不同;水是最好的超声洗涤剂,空化作用最强,常用水超声清除基片表面微粒(当微粒小于1微米时,超声清洗的效果逐渐下降,要清除更小微粒,需采用兆声清洗);一般情况,水在清洗槽中应高出振子面板100-150mm,当输出功率大时液面可适当高些。

清洗去除油、蜡等有机物时,常用三氯甲烷、三氯乙烯、甲苯、汽油、乙醇等(丙酮无空化作用);去除金属杂质时,常用各种洗液、酸、去离子水。

b)兆声清洗介绍:当超声波清洗的声波频率在1-3 GHz时,称为兆声波清洗。

由于工作频率很高,清洗液内已不再产生空化作用;研究认为,当兆声在溶液中传播时,会产生高速喷射的液体,以大于100m/s的速度冲击晶片表面,它与传统的湿法清洗工艺结合,可有效去除0.2微米以下的微粒。

它的特点是,穿透力强、清洗能力强,方向性强,注意清洗时要将清洗面置于声波波束平行方向。

2)1号洗液(APM)加超声清洗(湿法清洗):典型工艺是:NH4OH:H2O2:H2O=1:1:5 70℃ 10′清洗原理:1号洗液中的双氧水具有强氧化性,可把有机、无机物等杂质氧化成可溶性盐类而清除;1号洗液中的氨水不仅可以去除微粒及许多轻金属杂质,同时它又能与许多重金属离子发生络合作用,提供内配位体形成各种可溶性络合物,而后清除。

在这里是既利用了碱性溶液中双氧水的强氧化作用,又利用了氨水的络合作用,使吸附在基片表面的杂质氧化及络合成可溶性物质清洗去除。

另外由于APM对基片有极轻微腐蚀作用,可使附着在其表面的杂质脱落。

在清洗中加超声,效果更好。

3,对金属杂质的清洗:金属杂质与基片表面主要是依靠化学键力结合,属化学吸附,化学吸附既可是离子型吸附,又可是原子型吸附,以离子形式吸附在基片表面的多是一些轻金属离子,如钾、钠、钙、镁等,主要来自生产设备、用具,试剂、水、空气以及人的汗液、呼出的气体等;以原子形式吸附在基片表面的主要是一些重金属原子,如金、铂、铝、铜、铁、镍等,这些金属的离子多存在于酸性腐蚀液中,通过置换反应还原成原子吸附在基片表面。

由于化学吸附的离子(原子)和基片表面原子力所达到的平衡距离极小,所以吸附力较强,比分子型杂质难以消除。

工艺上,金属杂质的存在对声表器件的影响虽不象对IC那样严重,但同样会使器件性能变坏(如造成绝缘电阻下降、可靠性降低),必须认真对待。

清除金属杂质常用方法有:SPM(3号洗液): H2SO4: H2O2 = 3: 1 60℃ 40′HPM(2号洗液): HCL: H2O2: H2O = 1: 1: 6 70℃ 10′FPM: (0.5%)HF + (10%) H2O2 室温在2号洗液中,双氧水既可把有机、无机杂质氧化成可溶性物质去除,又能使有机、无机杂质被氧化成高价离子或氧化物;盐酸既能与许多金属、金属氧化物和硫化物反应生成可溶物,又能起络合剂作用,把双氧水氧化成的高价离子或氧化物络合成可溶性物质;然后用纯水清洗去除。

4,对微粗糙度的改善:基片在清洗过程中,由于化学试剂的作用会使表面微粗糙度加大,它将影响声波在基片表面的正常传播,对高频声表影响尤甚。

在不影响清洗效果的情况下,通过改变溶液混合比,降低溶液温度,缩短清洗时间,可减弱清洗对微粗糙度的影响。

有实验验证,2号洗液、3号洗液对表面微粗糙均无明显影响,1号洗液会造成表面大于10A的微粗糙;将其典型工艺作如下修改:NH4OH: H2O2: H2O = 0.05: 1: 5 70℃ 10´-15′更改后的1号洗液清洗效果不变,微粗糙 < 5A。

相关文档
最新文档