手机音腔设计规范

合集下载

喇叭前音腔后设计参考【2024版】

喇叭前音腔后设计参考【2024版】
20
3/5以内
5%~15%
3~5
A、B
2.5±1
18
3/5以内
5%~15%
3~4.5
A、B
2.5±1
17
3/5以内
5%~15%
2.5~4.5
A、B
2.5±1
1420
3/5以内
5%~15%
2.5~4.5
A、B
2.5±1
16
3/5以内
5%~15%
2~5
A、B
2.5±1
15
3/5以内
5%~15%
2~3
A、B
后腔的设计很重要,它直接影响了一个手机音质的好环和大小。 后腔要求:大、并且密封性好。(无泄露后腔)
后腔设计
单独的密封后腔,现品牌机常采用的形式。 优点:后腔完全密封,并且容积足够大,低频效果好。 缺点:成本高
后腔结构1
优点:成本较低,可操作性强,密封性一般。但是可以通过多次后腔声耦合,加长了声音传播路径,加大了后了腔。
后腔不良设计2
声音会显得较小,低频效果差。
后腔不良设计3
机壳不能密封,使声音小,音质差。
后腔不良设计4
泄露后腔设计结构图 优点:可以提高低频段灵敏度,低频段有加强。 缺点:计算、设计复杂。
手机泄露后腔实例设计
灰色的是泄露性后音腔曲线、红色是密封性后音腔的曲线 可以看出泄露性后音腔3K以下比密封性后音腔要高3dB
声音与音腔设计关系
八字性、指数性
整个扬声器旁边、正面
5%-15%
3ml以上
1.5mm-3.5mm
音量大
指数性、垂直性八字性
正面 或侧出音
10%-30%
3ml以上

音腔设计说明摘要

音腔设计说明摘要

(1)手机传声孔手机传声孔((SPEAKER) 的大小a. 传声孔的面积大约为SPEAKER 音腔面积的15%~30%.b.传声孔的直径尽量避免在2.0以上,超过2.0以上的传声孔应分成几个小孔来做。

小孔的总面积等于一个大孔的面积。

超过2.0以上的传声孔容易进入异物,还有尖锐的物体对震动膜会产生损坏。

c. 传声孔的最少面积为3.6% -手机扬声器直径为15,需要直径为1.0传声孔最少8个. (2) 手机传声孔手机传声孔((RECEIVER)的大小a. 孔的面积为约2.37% ~ 4.73%比较适中。

例如手机扬声器直径为13,应做直径为1的传声孔为4-8个,4个孔的面积为扬声器面积的2.37%,8个孔的面积为扬声器面积的4.73%。

b. 直径为12~20的扬声器,传声孔最好作4个直径为1的小孔。

c. 直径为12~20的扬声器,传声孔最少要作2个直径为1的小孔。

JH -TECHTELECOM CO., LTD19-MAR-2003 15:10:18Mode: TSR5060708090100dBJH -TECHTELECOM CO., LTD(1)手机中SPEAKER GRILL SPEAKER GRILL--SCREEN (毛毡厚度厚度))a. 手机中GRILL-SCREEN 的厚度大约为1.0T 比较合适,但空间的制约0.5T~1.0T 都可以用。

b.毛毡最少厚度为0.3T ,但和0.5T 比较时,平均音压会下降2dB 左右。

-〉毛毡变薄,音压会降低。

(2) 手机中RECEIVER GRILL RECEIVER GRILL--SCREEN(毛毡厚度毛毡厚度))a. RECEIVER 中GRILL-SCREEN 的厚度大约为1.0T 比较合适,但空间的制约0.5T~1.0T 都可以用。

b. GRILL SCREEN 的最少厚度为0.25T 。

(3) 毛毡厚度对声音的传输起关键作用毛毡厚度对声音的传输起关键作用,,毛毡太薄影响声音向外顺畅传输导致声音变小[그림그림3] 3] GRILL GRILL GRILL--SCREEN SCREEN의의두께JH -TECHTELECOM CO., LTDJH-TECH TELECOM CO., LTD(1)手机壳(单面Speaker)的RIB 高度和厚度a. 手机壳RIB 的高度要低于安装后扬声器Terminal 面0.5mm.b. 手机壳RIB 的厚度为0.4mm 比较合适。

音腔设计规范

音腔设计规范

手机音腔设计规范1.目的手机音腔对于铃声和听筒音质的优劣影响很大。

同一个音源、同一个SPEAKER/REC 在不同音腔中播放效果的音色可能相差较大,有些比较悦耳,有些则比较单调。

合理的音腔设计可以使铃声和听筒更加悦耳。

为了提高音腔设计水平,详细说明了音腔各个参数对声音的影响程度以及它们的设计流程,同时还介绍了音腔测试流程。

手机的音腔设计主要包括前音腔、后音腔、出声孔、密闭性、防尘网五个方面,如下图:2.后音腔设计的影响及规范 后音腔主要影响铃声和听筒的低频部分,对高频部分影响则较小。

铃声的低频部分对音质影响很大,低频波峰越靠左,低音就越突出,主观上会觉得铃声和听筒比较悦耳。

一般情况下,随着后音腔容积不断增大,其频响曲线的低频波峰会不断向左移动,使低频特性能够得到改善。

但是两者之间关系是非线性的,当后音腔容积大于一定阈值时,它对低频的改善程度会急剧下降,如图2示。

图2横坐标是后音腔的容积(cm 3),纵坐标是SPEAKER/REC 单体的低频谐振点与从音腔中发出声音的低频谐振点之差,单位Hz 。

从上图可知,当后音腔容积小于一定的阈值后音腔前音腔防尘网出声孔图1音腔结构示意图图2 后音腔容积对低频性能影响时,其变化对低频性能影响很大。

需要强调的是,SPEAKER单体品质对铃声低频性能的影响很大。

在一般情况下,装配在音腔中的SPEAKER,即便能在理想状况下改善音腔的设计,其低频性能也只能接近,而无法超过单体的低频性能。

一般情况下,后音腔的形状变化对频响曲线影响不大。

但是如果后音腔中某一部分又扁、又细、又长,那么该部分可能会在某个频率段产生驻波,使音质急剧变差,因此,在音腔设计中,必须避免出现这种情况。

对于不同直径的SPEAKER,音腔设计要求不太一样,同一直径则差异不太大。

具体推荐值如下:φ13mm SPEAKER:它的低频谐振点f0一般在800Hz~1200Hz之间。

当后音腔为0.5cm3时,其低频谐振点f0大约衰减600Hz~650Hz。

手机音腔设计规范

手机音腔设计规范

电声部品选型及音腔结构设计1. 声音的主观评价声音的评价分为主观和客观两个方面,客观评价主要依赖于频响曲线﹑SPL值等声学物理参数,主观则因人而异。

一般来说,高频是色彩,高中频是亮度,中低频是力度,低频是基础。

音质评价术语和其声学特性的关系如下表示:从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。

对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。

而高于8KHz略有提升,可使高频段的音色显得生动活泼些。

一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。

声音失真对听觉会产生一定的影响,其程度取决于失真的大小。

对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下:THD<1%时,不论什么节目信号都可以认为是满意的;THD>3%时,人耳已可感知;THD>5%时,会有轻微的噪声感;THD>10%时,噪声已基本不可忍受。

对于手机而言,由于受到外形和Speaker尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。

2. 手机铃声的影响因素铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。

对手机而言,Speaker、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。

Speaker单体的品质对于铃声的各个方面影响都很大。

其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。

手机声腔则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变铃声的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。

手机音腔结构设计知识

手机音腔结构设计知识

------完-----欢 迎 指 正
2.前音腔深度一般为0.3MM--1.0MM,它对频 响曲线无明显影响,在实际产品设计中,由于 射频外观或结构的限制,前音腔可能会过深或 过浅,前音腔过深会导致声音效果比较空旷混浊 前音腔过浅前会导致声音效果比较单调无共鸣感。



理论上来说,出音孔的面积是越大越好, 但由于外观方面的要求,出音孔往往是不够大; 一般要求出音孔总面积要大于6MM^2,每个出音孔 的窄边最好大于0.8MM,喇叭越大要求出音孔面积 越大;如果出音孔过小,会导致声压减小,高频 截止频率Fh变小,声音单调尖锐;另外,一般都 会在出音孔处加防尘网,为避免声压再次减小, 一般要求防尘网网格密度要小于200目(每平方英寸 筛孔数)。
侧出音音腔结构设计的注意事项和正出音音腔 基本相同,不同之处有如下两点: 1.前音腔高度最好要有3MM以上,因为侧出音孔 与喇叭振膜振动的方向垂直,声波不容易从侧出音 孔里传播出来,声压会降低,高频声波会消减,导 致声音会变得细小混浊;另外,最好在出音孔正对 的方向加一斜面,以利于声波反射到处音孔; 2.侧出音孔的高度最好大于2MM,宽度最好大于 15MM;侧处音孔如果太小,声波不容易从前音腔转 向90度传播出来,会导致声压降低,高频声波消减, 导致声音细小混浊。



后音腔的体积要求在3CC以上,同时要求密封 严实,以保证良好的共鸣效果和低音品质,但往往 由于空间的限制,后音腔的体积会很小,如果后音 腔的体积小于3CC,最好不要密封,否则会导致低频 谐振频率F0上升,低频效果表现不出来。
侧出音音腔结构示意图
前音腔密封泡棉 前音腔 喇叭 出音孔 出音孔密封泡棉
手机音腔结构设计参考点
宇龙通信结构部

有关喇叭的音腔的设计规范

有关喇叭的音腔的设计规范

电压(V)
声压级(dB)
F1 F2
频率(Hz)
F1 F2
频率(Hz)
Speaker的关键参数
❖ 频率响应曲线 ❖ 谐波失真 ❖ 额定功率/最大功率
Speaker频率响应曲线
频响曲线主要从三个方面进行评价:SPL值、低频谐振点f0、平坦度
Speaker频率响应曲线关键参数
SPL(灵敏度):指输入扬声器单元1W的电功率,在扬声器轴线方向离开1米远的 地方测得的声压级大小。它实质上是一种(转换效率)的体现。
SPL=20log(P/P0)dB
低音共振频率f0的值和 共振锐度Q0(平坦度)的值共同决定了低音域的特性。
低频谐振点f0反映了SPEAKER的低频特性,是频响曲线次重要的指标。平坦度 反映了SPEAKER还原音乐的保真能力,作为参考指标
SPEAKER常用种类
❖ 圆形的:13mm,14mm,15mm,16mm,17mm,18mm,20mm. ❖ 椭圆或跑道的: 10*15mm,,10*20mm,12*14mm
泄漏尽量小,离SPK尽量远。
音腔设计参数建议
Thank you for your support !
谐波失真(THD)
<0.15% 0.5W
<5% 300~3400Hz 179mV
谐振频率Fo
900+/-20%Hz
600+/-20%Hz
额定阻抗
8+/-15%ohm
32+/-15%ohm
额定功率/最大功率
0.5W/1W
10mW/30mW
音腔设计
音腔作用: ❖ 腔体的目的是为了隔开前后声波,避免二者干涉 ❖ 腔体的大小左右着SPK/RVR的低频重放

手机音腔设计

手机音腔设计

关于手机音腔设计先说单speaker,现在用的最多的了!不过从发展趋势来看为追求好的音效双speaker将成为以后大主题。

不管是双还是单重视后音腔的设计,这对音质有很大的影响:尽量做大些,还要密封好些!现在的趋势是要求音量越来越大,特别是国产手机,有的做到100分贝以上,但是音量不是唯一指标,和谐悦耳的铃声才是设计目标!音源对铃声的影响非常重要,选择合适的音源可以很好的体现设计效果!选择音源1.尽量选用口径大的speaker。

2.对speaker的特性曲线要求低频时也能有高的音压,并且在曲线在1K~10K的区间要曲线平稳,当然能在1K以下做到很好水准就体现speaker研发生产实力了。

结构上的设计受到手机空间的限制,多设计都是用到二合一单边发声的,产品最终的音效都不是很好,扬声器与受话器的设计要领不一样,共用一个音腔确实会有一定问题,有这么些建议:1.Φ13mm Speaker 前容积高度:0.3~1.0mm 出音孔高度: Φ1.0,4~8孔(3mm2~6mm2 ) 后容积高度:3~5Cm3 洩漏孔高度:4~6mm22.Φ15mm Speaker 前容积高度:0.3~1.0mm 出音孔高度: Φ1.0,4~8孔(3mm2~6mm2 ) 后容积高度:3~5Cm3 洩漏孔高度:4~6mm23. Φ16~20m/m Speaker 前容积高度:0.3~1.0mm 出音孔高度: Φ1.0,4~8孔(3mm2~6mm2 ) 后容积高度:5~7Cm3 洩漏孔高度:5mm2对于单面发声的后音腔设计,我们一般把整个前端作为后音腔,通过LCD PCB上密封整个前端,较大的后音腔能够能够弥补前期不足!现在的流行趋势是分开,特别是双speaker强烈要求speaker与Receiver分开,这样才能到达要求的立体效果!对于双speaker最好使出声孔的位置避免在一个面上,现在市面上看到最多就是放在翻盖的头部两侧,或者放在转轴两侧(三星x619),这跟声音波形原理有关的,同在一个面上消减幅度很快,效果不会太好的!双speaker的设计关键是要体现立体效果,在设计上有以下要点:1.出声孔的位置,如上所述;2.两个speaker的后音腔要求分开,独立密封;3.两个speaker之间的切线(切线指的是两个水平放置,两个园之间的切线距离)最小距离要求在10mm以上;4.要求大些的后音腔;5.注意音源的选择,其实说道音腔,主要的一个原则就是,前音腔要密闭,后音腔要尽可能大,泻露孔尽可能距离speaker远一点。

有关喇叭的音腔的设计规范标准[详]

有关喇叭的音腔的设计规范标准[详]

SPEAKER常用种类
圆形的:13mm,14mm,15mm,16mm,17mm,18mm,20mm. 椭圆或跑道的: 10*15mm,,10*20mm,12*14mm 12*18mm,13*18,14*20
Speaker与Receiver对比
性能参数 频率响应曲线 有效频率范围 特性灵敏度(SPL) 谐波失真(THD) 谐振频率Fo 额定阻抗 Speaker 0.5W/5cm 600~20KHz 98+/-3dB 1KHz 0.5W/5cm <0.15% 0.5W 900+/-20%Hz 8+/-15%ohm Receiver 179mV 300~3400Hz 110+/-3dB 1KHz 179mV <5% 300~3400Hz 179mV 600+/-20%Hz 32+/-15%ohm
电压(V)
声压级(dB)
F1
F2
频率(Hz)
F1F2频率(Hz) NhomakorabeaSpeaker的关键参数
频率响应曲线 谐波失真 额定功率/最大功率
Speaker频率响应曲线
频响曲线主要从三个方面进行评价:SPL值、低频谐振点f0、平坦度
Speaker频率响应曲线关键参数
SPL(灵敏度):指输入扬声器单元1W的电功率,在扬声器轴线方向离开1米远的 地方测得的声压级大小。它实质上是一种(转换效率)的体现。 SPL=20log(P/P0)dB 低音共振频率f0的值和 共振锐度Q0(平坦度)的值共同决定了低音域的特性。 低频谐振点f0反映了SPEAKER的低频特性,是频响曲线次重要的指标。平坦度 反映了SPEAKER还原音乐的保真能力,作为参考指标
泄漏孔面积越大,低频衰减越厉害 泄漏孔 应远离SPK。 同时,设计前声腔时,需考虑出声孔的面积,一般情况下,前声腔越大,则 出声孔面积也应该越大。

手机音腔设计指南.

手机音腔设计指南.

出声孔分布设计实例2
单个扬声器:出声孔开在扬声器正 中,谷峰较小,声音显得不够大 (相对出声孔开在旁边),扬声 器振膜正中发出的为高频。
出声孔分布设计实例
出声孔位置图比较
出声孔面积为扬声器振动面积的20%
出声孔面积设计实例
出声孔:不能分布在整个面上, 会使出声孔面积过大,高音显 得比较尖,燥。
2、对声音进行修正,防止噪音。
3、正确的音腔设计可提高扬声器利用率。
4、让声音真实的还原。
5、后腔是对手机低频进行修正
6、前腔对中高频进行修正。
7、出声孔面积能对中高频进行修正。
声波干涉1
当喇叭振膜震动时, 振膜前后都会有声波产 生,当声波扩散时,前 后声波会相遇(如图示 ),由于前后声波相位 相反,故此时声波会互 相抵消,使扬声器的输 出声音变小,此为声波 的干涉。 避免声波干涉之方法 , 在扬声器前面装置一 档板,如此即可阻挡前 后声波,使其不会因相 遇而抵消。
出声孔面积曲线对比
出声孔径要求
在出声孔不能小于0.5mm,太小对出声不利,声音浑浊尖燥,出 声孔过多会使声音不耐听,尖锐,让人感觉是燥音。
出声孔设计实例
注意孔径不 得小于1.0mm。 这样对发声 有利
此图会出声孔高音尖锐,高音破音。 这样的出声孔会中频 明干涉2
扬声器为何需要在振摸后端设计出音孔的结构, 致使前后端都有声音而造成声波干涉?设计一种声音 只会向前传送而不会往后扩散的扬声器,不就不会有 干涉现象吗?
手机机壳(相当于档板)形成的音响空间,或 SPEAKER附带小音箱设计,用来解决声音干涉问题。
音腔结构的作用及组成
音腔的作用: 音腔可以在一定程度上调整SPEAKER的输出频响曲线,通过音腔参数的调 整改变音乐声的高、低音效果对于音乐声音质的优劣影响很大。同一个音源、 同一个SPEAKER在不同音腔中播放效果的音色可能相差较大,有些比较悦耳, 有些则比较单调。合理的音腔设计可以使音乐声更加悦耳。 为了提高音腔设计水平,下面着重介绍音腔各个参数对声音的影响程度以 及它们的设计推荐值。 音腔设计包括以下五个方面: 1.后音腔 2.前音腔 3.出声孔 4.密闭性 5.防尘网

手机音腔结构设计

手机音腔结构设计
声波的性质:声辐射(点声源)
反射(构成对声音的感受) 折射(需要介质)
衍射(也称绕射,穿过介质空间,与孔、波长 相关联)
点声源
辐射
θ
θ1
θ2
折射
物体面积小于波长
物体面积大于波长
反射
孔径小于波长
孔径大于波长
衍射
音腔的设计会影响音乐的最终听觉感受,只考虑结构的设计绝对无法设计出最佳效果的声音产品,应考虑整体腔体的设计原则,常用 方法如下: 将扬声器装入 机壳内,把 零部件全部装入,测试整体效果。 声波
从扬声器的技术指标、结构、工作原理和选材及工艺等方面 进行探讨。
扬声器是“能将电信号转换成声信号,并辐射到空气中去的 换能器”。
受话器是“语言通信中将电信号转换成声信号且紧贴于 人耳的器件”
能 俗称喇叭。
应用扬声器的领域很多。在通信、广播、 教育、日常生活等方面都有广泛的应用。
扬声器是一个大家族,种类较多,用途 较广。按换能方式分有:
响度-----振幅;音调-----频率;音色-----相位 X=Asin (2∏ft+θ) 听觉的主要基本特性 等响度曲线掩蔽效应多普勒效应
声波
当扬声器振膜振动时,振膜前后都会有声波产 生,当声波扩散时,前后声波会相遇,由于前 后的波长相同,相位相反,故此时声波会互相 抵消,而使输出声音变小。避免声波干涉的办 法为在扬声器的前方装一档板,如此就可阻止 前后声波相干涉。
◆10、取膜
◆11、胶线头
◆ 制造 ▲ 检验 ■ 贮存
◆22、封槽口胶 ◆23、封黄胶 ▲24、测纯音 ▲25、复测性能 ◆26、贴前胶垫 ◆27、贴后胶垫 ◆28、装盒 ▲29、出厂检验 ◆30、包装入库
移动
扬声器之功率

手机音腔结构设计知识

手机音腔结构设计知识

------完-----欢 迎 指 正
手机音腔结构设计参考点
宇龙通结构部
Sep.22.2007
正出音音腔结构示意图
手机壳 前音腔 出音孔 前音腔密封泡棉
后音腔
后音腔密封泡棉
喇叭
主板



1.前音腔和后音腔之间要用密封泡棉隔开, 因为喇叭振膜前后面声波相位相差180度,如果 密封不好,会产生消音,低频信号会更明显;为 了密封良好,泡棉两面都要加双面胶,并有足够 的压缩量,同时喇叭要用扣位扣紧,或在背面用 硬质胶体压紧。
2.前音腔深度一般为0.3MM--1.0MM,它对频 响曲线无明显影响,在实际产品设计中,由于 射频外观或结构的限制,前音腔可能会过深或 过浅,前音腔过深会导致声音效果比较空旷混浊 前音腔过浅前会导致声音效果比较单调无共鸣感。



理论上来说,出音孔的面积是越大越好, 但由于外观方面的要求,出音孔往往是不够大; 一般要求出音孔总面积要大于6MM^2,每个出音孔 的窄边最好大于0.8MM,喇叭越大要求出音孔面积 越大;如果出音孔过小,会导致声压减小,高频 截止频率Fh变小,声音单调尖锐;另外,一般都 会在出音孔处加防尘网,为避免声压再次减小, 一般要求防尘网网格密度要小于200目(每平方英寸 筛孔数)。
侧出音音腔结构设计的注意事项和正出音音腔 基本相同,不同之处有如下两点: 1.前音腔高度最好要有3MM以上,因为侧出音孔 与喇叭振膜振动的方向垂直,声波不容易从侧出音 孔里传播出来,声压会降低,高频声波会消减,导 致声音会变得细小混浊;另外,最好在出音孔正对 的方向加一斜面,以利于声波反射到处音孔; 2.侧出音孔的高度最好大于2MM,宽度最好大于 15MM;侧处音孔如果太小,声波不容易从前音腔转 向90度传播出来,会导致声压降低,高频声波消减, 导致声音细小混浊。

有关喇叭的音腔的设计规范标准[详]

有关喇叭的音腔的设计规范标准[详]
SPK&音腔 原理
List
1
SPK基本原理
2
SPK关键参数
3
4
音腔设计
Application
Speaker结构(mobile phone SP)
扬声器(Speaker)是一种用来将电的信号转换成声音信号的换能器 (Transducer)
Speaker基本原理
整个过程为: 电-----力-----声 的转换 电:音圈有引线直接连接到端子。音频电流由端子输入,流进音圈,使得音圈中的电流带有 音频信号(电压)一样的波形。设电流 I=E/Rv (Rv是音频阻抗,为一常数) 力:F=BIL,B和L都是常数,则F随音频电流I线性变化,所以F将带有声音的波形 声:带有声音频率波形的力F带动振动膜振动,振动膜也将随着频率和波形振动,从而带动 空气振动,形成差不多频率和波形的疏密波
额定功率/最大功率
0.5W/1W
10mW/30mW
音腔设计
音腔作用: 腔体的目的是为了隔开前后声波,避免二者干涉 腔体的大小左右着SPK/RVR的低频重放
手机的声腔设计主要包括前声腔、后声腔、出声孔、后音腔、防尘网五 个方面,如下图:
音腔设计
后音腔&前音腔
后声腔主要影响铃声的低频部分,对高频部分影响则较小。铃声的低频部分 对音质影响很大,低频波峰越靠左,低音就越突出,主观上会觉得铃声比较 悦耳。 一般情况下,后声腔的形状变化对频响曲线影响不大。但是如果后声腔中某 一部分又扁、又细、又长,那么该部分可能会在某个频率段产生驻波,使音 质急剧变差,因此,在声腔设计中,必须避免出现这种情况。
电压(V)
声压级(dB)
F1
F2
频率(Hz)
F1
F2

手机音腔设计规范

手机音腔设计规范

电声部品选型及音腔结构设计1.声音的主观评价声音的评价分为主观和客观两个方面,客观评价主要依赖于频响曲线﹑SPL值等声学物理参数,主观则因人而异。

一般来说,高频是色彩,高中频是亮度,中低频是力度,低频是基础。

音质评价术语和其声学特性的关系如下表示:从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。

对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。

而高于8KHz略有提升,可使高频段的音色显得生动活泼些。

一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。

ﻩ声音失真对听觉会产生一定的影响,其程度取决于失真的大小。

对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下:THD<1%时,不论什么节目信号都可以认为是满意的;THD>3%时,人耳已可感知;THD>5%时,会有轻微的噪声感;THD>10%时,噪声已基本不可忍受。

对于手机而言,由于受到外形和Speaker尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。

2. 手机铃声的影响因素铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。

对手机而言,Speaker、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。

Speaker单体的品质对于铃声的各个方面影响都很大。

其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。

手机声腔则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变铃声的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。

手机音腔设计规范

手机音腔设计规范

电声部品选型及音腔结构设计1. 声音的主观评价声音的评价分为主观和客观两个方面,客观评价主要依赖于频响曲线﹑SPL值等声学物理参数,主观则因人而异。

一般来说,高频是色彩,高中频是亮度,中低频是力度,低频是基础。

音质评价术语和其声学特性的关系如下表示:从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。

对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。

而高于8KHz略有提升,可使高频段的音色显得生动活泼些。

一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。

声音失真对听觉会产生一定的影响,其程度取决于失真的大小。

对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下:THD<1%时,不论什么节目信号都可以认为是满意的;THD>3%时,人耳已可感知;THD>5%时,会有轻微的噪声感;THD>10%时,噪声已基本不可忍受。

对于手机而言,由于受到外形和Speaker尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。

2. 手机铃声的影响因素铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。

对手机而言,Speaker、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。

Speaker单体的品质对于铃声的各个方面影响都很大。

其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。

手机声腔则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变铃声的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。

音腔设计规范

音腔设计规范

手机音腔设计规范1.目的手机音腔对于铃声和听筒音质的优劣影响很大。

同一个音源、同一个SPEAKER/REC 在不同音腔中播放效果的音色可能相差较大,有些比较悦耳,有些则比较单调。

合理的音腔设计可以使铃声和听筒更加悦耳。

为了提高音腔设计水平,详细说明了音腔各个参数对声音的影响程度以及它们的设计流程,同时还介绍了音腔测试流程。

手机的音腔设计主要包括前音腔、后音腔、出声孔、密闭性、防尘网五个方面,如下图:2.后音腔设计的影响及规范 后音腔主要影响铃声和听筒的低频部分,对高频部分影响则较小。

铃声的低频部分对音质影响很大,低频波峰越靠左,低音就越突出,主观上会觉得铃声和听筒比较悦耳。

一般情况下,随着后音腔容积不断增大,其频响曲线的低频波峰会不断向左移动,使低频特性能够得到改善。

但是两者之间关系是非线性的,当后音腔容积大于一定阈值时,它对低频的改善程度会急剧下降,如图2示。

图2横坐标是后音腔的容积(cm 3),纵坐标是SPEAKER/REC 单体的低频谐振点与从音腔中发出声音的低频谐振点之差,单位Hz 。

从上图可知,当后音腔容积小于一定的阈值后音腔前音腔防尘网出声孔图1音腔结构示意图图2 后音腔容积对低频性能影响时,其变化对低频性能影响很大。

需要强调的是,SPEAKER单体品质对铃声低频性能的影响很大。

在一般情况下,装配在音腔中的SPEAKER,即便能在理想状况下改善音腔的设计,其低频性能也只能接近,而无法超过单体的低频性能。

一般情况下,后音腔的形状变化对频响曲线影响不大。

但是如果后音腔中某一部分又扁、又细、又长,那么该部分可能会在某个频率段产生驻波,使音质急剧变差,因此,在音腔设计中,必须避免出现这种情况。

对于不同直径的SPEAKER,音腔设计要求不太一样,同一直径则差异不太大。

具体推荐值如下:φ13mm SPEAKER:它的低频谐振点f0一般在800Hz~1200Hz之间。

当后音腔为0.5cm3时,其低频谐振点f0大约衰减600Hz~650Hz。

手机音腔部品选型及音腔结构设计指导及规范

手机音腔部品选型及音腔结构设计指导及规范

手机音腔部品选型及音腔结构设计指导及规范手机音腔部品的选型以及音腔结构的设计是手机音质优化中十分重要的环节。

在整个设计过程中,需要考虑多种因素,如音腔材料的选择、音腔空间的优化、声学设计等。

以下是手机音腔部品选型及音腔结构设计的指导和规范。

首先,对于手机音腔的材料选型,需要考虑两个方面:声学性能与制造成本。

常见的音腔材料包括金属、塑料、玻璃等。

金属材料具有较好的声学性能,如铝合金可以增强音色的层次感和纯净度。

而塑料材料则相对便宜,易于加工,但声学性能稍逊一筹。

玻璃材料则可以同时满足较好的声学性能和触感体验。

在选型时,需要根据产品的定位和预算做出合适的选择。

其次,音腔结构的设计需要考虑声学优化的目标。

音腔的设计原则是尽量减少共振和混响,提升音质的纯净度和精度。

常见的设计方法包括:合理布局,减少共振;使用声学隔离技术,减少噪音的传递;增加声音的反射和散射;优化内部结构,以保证音频信号的传递和扩散效果。

此外,还需要考虑音腔与其他部件之间的相互影响,如扬声器、麦克风等。

总之,手机音腔部品选型以及音腔结构设计是手机音质优化中不可忽视的一环。

在设计过程中,需要综合考虑声学性能、制造成本和设计规范等因素,以保证手机音质的优秀表现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电声部品选型及音腔结构设计1. 声音的主观评价声音的评价分为主观和客观两个方面,客观评价主要依赖于频响曲线﹑SPL值等声学物理参数,主观则因人而异。

一般来说,高频是色彩,高中频是亮度,中低频是力度,低频是基础。

音质评价术语和其声学特性的关系如下表示:从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。

对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。

而高于8KHz略有提升,可使高频段的音色显得生动活泼些。

一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。

声音失真对听觉会产生一定的影响,其程度取决于失真的大小。

对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下:THD<1%时,不论什么节目信号都可以认为是满意的;THD>3%时,人耳已可感知;THD>5%时,会有轻微的噪声感;THD>10%时,噪声已基本不可忍受。

对于手机而言,由于受到外形和Speaker尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。

2. 手机铃声的影响因素铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。

对手机而言,Speaker、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。

Speaker单体的品质对于铃声的各个方面影响都很大。

其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。

手机声腔则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变铃声的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。

音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。

例如,当输出信号的失真度超过10%时,铃声就会出现比较明显的杂音。

此外,输出电压则必须与Speaker相匹配,否则,输出电压过大,导致Speaker在某一频段出现较大失真,同样会产生杂音。

MIDI选曲对铃声的音质也有一定的影响,表现在当铃声的主要频谱与声腔和Speaker的不相匹配时,会导致MIDI音乐出现较大的变音,影响听感。

总之,铃声音质的改善需要以上四个方面共同配合与提高,才能取得比较好的效果。

3. Speake r的选型原则3.1 扬声器(Speaker)简介3.1.1 Speaker工作原理扬声器又名喇叭。

喇叭的工作原理:是由磁铁构成的磁间隙内的音圈在电流流动时,产生上下方向的推动力使振动体(振动膜)振动,从而振动空气,使声音传播出去,完成了电-声转换。

喇叭实际上是一个电声换能器。

对手机来说,Speaker是为实现播放来电铃声﹑音乐等的一个元件。

手机Speaker音压频率使用范围在500Hz~10KHz。

3.1.2 手机用Speaker主要技术参数及要求a>. 功率Power。

功率分为额定功率Rated Power和最大功率Max Power。

额定功率是指在额定频率范围内馈给喇叭以规定的模拟信号(白噪声),96小时后,而不产生热和机械损坏的相应功率。

最大功率是指在额定频率范围内馈给喇叭以规定的模拟信号(白噪声),1分钟后,而不产生热和机械损坏的相应功率。

注:手机用喇叭一般要求的功率:额定功率≥0.5W,最大功率≥1W。

b>. 额定阻抗Rated Impedance。

喇叭的额定阻抗是一个纯电阻的阻值,它是被测扬声器单元在谐振频率后第一个阻抗最小值,它反映在扬声器阻抗曲线上是谐振峰后曲线平坦部分的最小阻值。

注:手机用喇叭的额定阻抗一般为8Ω。

c>. 灵敏度级又称声压级Sound Pressure Level(S.P.L)。

在喇叭的有效频率范围内,馈给喇叭以相当于在额定阻抗上消耗一定电功率的噪声电压时,在以参考轴上离参考点一定距离处所产生的声压。

注:手机用喇叭的灵敏度一般要求≥87dB(0.1W/0.1m)。

d>. 总谐波失真Total Harmonic Distortion(T.H.D)。

它是指各种失真的总和。

主要包括:谐波失真、互调失真、瞬态失真。

注:手机用喇叭的总谐波失真在额定功率1KHz时应小于5%。

e>. 共振频率Resonance Frequency (fo)由阻抗曲线可见,在低频某一频率其阻抗值最大,此时的频率称之为扬声器的共振频率,记为fo,即在阻抗曲线上扬声器阻抗模值随频率上升的第一个主峰对应的频率。

注:手机用喇叭的共振频率一般在800Hz左右。

3.2 手机用扬声器(Speaker)的评价原则Speaker的品质特性对手机铃声优劣起着决定性作用。

在同一个声腔、同样的音源情况下,不同性能的Speaker在音质、音量上会有较大的差异。

因此选择一个合适的Speaker可较大程度地改善手机的音质。

Speaker的性能一般可以从频响曲线、失真度和寿命三个方面进行评价。

频响曲线反映了Speaker 在整个频域内的响应特性,是最重要的评价标准。

失真度曲线反映了在某一功率下,Speaker在不同频率点输出信号的失真程度,它是次重要指标,一般情况下,当失真度小于10%时,都认为在可接受的范围内。

寿命反映了Speaker的有效工作时间。

由于频响曲线是图形,包含信息很多,为了便于比较,主要从四个方面进行评价:SPL值、低频谐振点f0、平坦度和f0处响度值。

SPL值一般是在1K~4KHz之间取多个频点的声压值进行平均,反映了在同等输入功率的情况下,Speaker输出声音强度的大小,它是频响曲线最重要的指标。

低频谐振点f0反映了Speaker的低频特性,是频响曲线次重要的指标。

平坦度反映了Speaker还原音乐的保真能力,作为参考指标。

f0处响度值反映了低音的性能,作为参考指标。

听感评价是一种主观行为,一般只作为辅助性评价。

在客观数据评定难以取舍或没有相关测试条件时,应组织相关人员或音频工程师进行主观试听评价。

3.3立体声手机喇叭的选择a>. 二个(或多个)喇叭的电声性能应保持一致。

否则会发生因二个(或多个)扬声器相位特性和声压频率特性不同而产生的声像移位和干扰。

b>. 二个喇叭不能靠得太近,否则声场会变小,左右声道声音容易产生干扰。

c>. 音腔设计时,注意两个后音腔不能导通,要相互隔开且密封设计。

3.4 手机用扬声器(Speaker)的选型推荐详见标准部品库(制定中)。

4. 手机Speaker音腔性能设计手机音腔对于铃声音质的优劣影响很大。

同一个音源、同一个Speaker在不同声腔中播放效果的音色可能相差较大,有些比较悦耳,有些则比较单调。

合理的声腔设计可以使铃声更加悦耳。

为了提高手机音效品质,提升声腔设计水平是结构工程师的本职工作。

所以本设计规范主要讲述音腔结构设计,其他影响音效的主要因素Speaker选型﹑音频电路设计及MIDI音乐选型需硬件部﹑软件部﹑音频小组等各部门的大力配合,共同把手机的音效水平提升到新的高度。

4.1 音腔结构简介手机的声腔设计主要包括后声腔、前声腔、出声孔、密闭性、防尘网五个方面,如下图:出声孔防尘网后声腔图1 声腔结构示意图下面,就分别从以上五个部分详细介绍手机音腔设计必须或尽量遵循的准则。

4.2 后声腔对铃声的影响及推荐值后声腔主要影响铃声的低频部分,对高频部分影响则较小。

铃声的低频部分对音质影响很大,低频波峰越靠左,低音就越突出,主观上会觉得铃声比较悦耳。

一般情况下,随着后声腔容积不断增大,其频响曲线的低频波峰会不断向左移动,使低频特性能够得到改善。

但是两者之间关系是非线性的,当后声腔容积大于一定值时,它对低频的改善程度会急剧下降,如图2示。

图2横坐标是后声腔的容积(cm3),纵坐标是Speake r单体的低频谐振点与从声腔中发出声音的低频谐振点之差,单位Hz。

从上图可知,当后声腔容积小于一定值时,其变化对低频性能影响很大。

需要强调的是,Speake r单体品质对铃声低频性能的影响很大。

在一般情况下,装配在声腔中的Speake r,即便能在理想状况下改善声腔的设计,其低频性能也只能接近,而无法超过单体的低频性能。

一般情况下,后声腔的形状变化对频响曲线影响不大。

但是如果后声腔中某一部分又扁、又细、又长,那么该部分可能会在某个频率段产生驻波,使音质急剧变差,因此,在声腔设计中,必须避免出现这种异常空间情况,尽量设计形状规则的音腔。

对于不同直径的Speake r,声腔设计要求不太一样,同一直径则差异不太大。

根据不同直径Speake r 的低频谐振点f0与后声腔容积的关系测试数据,具体推荐值如下:φ13mm Speake r:它的低频谐振点f0一般在800Hz~1200Hz之间。

当后声腔为0.5cm3时,其低频谐振点f0大约衰减600Hz~650Hz。

当后声腔为0.8cm3时,f0大约衰减400Hz~450Hz。

当后声腔为1cm3时,f0大约衰减300Hz~350Hz。

当后声腔为1.4cm3时,f0大约衰减250Hz~300Hz。

当后声腔为3.5cm3时,f0大约衰减100Hz~150Hz。

因此对于φ13mm SPEAKER,当它低频性能较好(如f0在800Hz左右)时,后声腔要求可适当放宽,但有效容积也应大于0.8cm3。

当低频性能较差时(f0>1000Hz),其后声腔有效容积应大于1cm3。

后声腔推荐值为1.4cm3以上,当后声腔大于3.5cm3时,其容积变化对低频性能影响会比较小。

当然,对φ13mm Speake r,由于单体偏小,各厂商的产品品质也参差不齐,听感与更大的Speake r 相比会有一定差异,一般情况下不推荐使用。

φ15mm Speake r:它的低频谐振点f0一般在750~1000Hz之间。

当后声腔为0.5cm3时,低频谐振点f0大约衰减850Hz~1000Hz。

当后声腔为1cm3时,f0大约衰减600Hz~750Hz。

当后声腔为1.6cm3时,f0大约衰减400Hz~550Hz。

当后声腔为3.5cm3时,f0大约衰减200Hz~250Hz。

因此对于φ15mm SPEAKER,后声腔有效容积应大于1.6cm3。

当后声腔大于3.5cm3时,其容积变化对低频性能影响会比较小。

13×18mm Speake r:它的低频谐振点f0一般在780~1000Hz之间。

当后声腔为0.5cm3时,低频谐振点f0大约衰减850Hz~1000Hz。

相关文档
最新文档