地质雷达波相识别

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七讲地质雷达波相识别

地质雷达反射记录的波形比地震波复杂的多,一方面是由于地质雷达分辨率高记录的信号丰富,另一方面是由于电磁波的干扰因素多,此外还由于雷达发射的子波比较复杂,并非简单的脉冲。因而雷达资料的处理与解释是一项复杂细致的工作。特别是各种地层、目标体、干扰波的识别需要坚实的理论基础和丰富的实践经验。

7.1 地质雷达的波组特征

雷达天线发射的是子波而不是单脉冲,子波由几个震荡波形组成,占有一定的时间宽度,反射与折射波依然保持有原来子波的特点,只是幅值上有所变化。这里将雷达子波的周期、持续时间长度和衰减比三个参量作为子波的波阻特征。子波的频率成分与天线的主频相近,持续一个半到两个周期,后续振相略有衰减。例如对于100MHz天线的子波,持续时间可到15-20ns,对于1GHz的天线,持续时间约2ns。子波的波形的确定对于后期处理是非常重要的,它是小波处理的基础。有很多方法可以获得各种频率天线的子波,最简单的方法是利用金属板反射。将一块较大的金属板放置于地面上,发射与接受天线与金属板平行,相距为3个周期的时程,进行数据采集,即可获得子波记录。不同类型的雷达、不同型号的天线,雷达子波的形状是不同的。天线与介质的距离、介质的电导特性对子波的形态和特点也有一定的影响,应根据现场工作条件从记录中分离子波。从下边的记录中也可以辨认出子波的特征。表面反射波、内界面反射波都是近联各州其的衰减波形。对其进行分析可以得到子波的波组特征

7.2 地质与工程介质结构及反射特征

雷达的探测对象通常是多界面结构,如各类地层、岩性,松散层、风化层等都是多层结构。隧道中的围岩、初衬、二衬等,也是多界面结构。雷达波向介质内传播时,被称为下行波,经反射回表面的波称为上形波。下行波每遇到一个界面就发生一次反射和折射,入射波能量即被分成两部分,一部分经折射继续向下传播,另一部分经反射掉头向上,变成上行波。反射与折射能量的分配与反射、折射系数的平方成正比。上一界面的折射波就是下一界面的入射波,因而下行波的能量不断减少,同时每一界面都在产生

反射的上行波。同理,每一界面反射形成的上行波,也会遇到介质的界面,形成二次的反射与折射。介质中每一上行波和下行波都是独立运行的,当遇到界面时都会按照Snell定律,进行折射和反射。因而多层介质中,多次反射与折射波是无尽的,只是反射、折射的经历越多能量越

小。

上行波与下行波传播时,独立震相的能量逐渐减少,除由于界面反射与折射造成能量的分散、使每一独立波相的振幅减小之外,还由于介质的吸收,也就是传导电流引起的损耗。这种介吸收引起的振幅变化是指数形式的,呈e-αx形式,其中x代表传播路径的累计长度,α为衰

减系数,在前文中已有交待。上图是雷达波传播的示意。

在雷达记录中记录的都是不同路径上行到表面的反射波,内容十分丰富,但实际上并非所有的反射震相都能识别出来,主要识别的是个层面的一次反射真相。一方面是由于能量比太小,超出了仪器的动态范围,另一方面多次反射干扰大、层面连续性差。在一些特殊的观测条件下,界面反差大,浅部结构简单时,二次波有时也非常清楚,处理中还要采取特殊措施进行压制。

接收到的反射信号f(t)是发射的雷达子波与介质折射系数、反射系数和介质损耗的褶积,即各层反射信号的叠加。每层反射信号到达时间不同,其幅值是路径介质损耗、下行折射系数、上行折射系数、折返层的反射系数和几何衰减的乘积。其数学表达式为:

F(t)=ΣA O·e-Σ2αh·R i ·e-iω(t-∑2h/v)·Πixгj·Πisгk/∑2h

式中:A O 子波初始幅值;e-Σ2αh传播路径衰减; R i折返层反射系数;e-iω(t-∑2h/v)反射波对应相位;Πixгj下行折射系数联乘;Πisгk上行折射系数联乘。

雷达下行上行波传播示意图

雷达多层反射记录

7.3 雷达记录中波组与结构反射特征的叠加

在多层结构探查中,雷达探测记录中包含多层反射波。由于雷达子波有一定的宽度和衰减震相,这样当地层厚度较小时,反射波与子波互相叠加,变得难于识别。这就限制了雷达的垂相分辨能力。假如雷达子波的持续时间为τ,那末,雷达垂向所能分辨的最小尺度为h,有如下关系:

h≧vτ/2

式中v为电磁波速。该式的含义是层厚中的双程走时应大于子波的持续时间。当时用小波变换时可以最大限度的压制子波,在反射信号起点形成一个窄脉冲,因而可以大大地提高垂向分辨率。目前小波变换技术在资料处理中已逐渐被采用,可以有效地解决多层反射与子波干扰的问题。

多层反射波与子波相叠加

7.4 雷达目标波相识别的三项基本要点

为获得雷达探测的结果,需要对雷达记录进行处理与判读,判读是理论与实践相结合的综合分析,需要坚实的理论基础和丰富的实践经验。雷达记录的判读也叫雷达记录的波相识别或波相分析,它是资料解释的基础。在此首先介绍波相分析的基本要点。

要点1:反射波的振幅与方向

从反射系数的菲涅耳(Fresnel)公式中可以看出两点,第一点,界面两侧介质的电磁学性质差异越大,反射波越强。从反射振幅上可以判定两侧介质的性质、属性;第二点,波从介电常数小进入介电常数大的介质时,即从高速介质进入低速介质,从光疏进入光密介质时,反射系数为负,即反射波振幅反向。反之,从低速进入高速介质,反射波振幅与入射波同向。这是判定界面两侧介质性质与属性的又一条依据;如从空气中进入土层、混凝土反射振幅反向,折射波不反向。从混凝土后边的脱空区再反射回来时,反射波不反向,结果脱空区的反射与混凝土表面的反射方向正好相反。如果混凝土后边充满水,波从该界面反射也发生反向,与表面反射波同向,而且反射振幅较大。混凝土中的钢筋,波速近乎为零,反射自然反向,而且反射振幅特别强。因而,反射波的振幅和方向特征是雷达波判别最重要依据。

钢筋反射波的振幅与方向

要点2:反射波的频谱特性

不同介质有不同的结构特征,内部反射波的高、低频率特征明显不同,这可以作为区分不同物质界面的依据。如混凝土与岩层相比,比较均质,没有岩石内部结构复杂,因而围岩中内反射波明显,特别是高频波丰富。而混凝土内部反射波较少,只是有缺陷的地方有反射。又如,表面松散土电磁性质比较均匀,反射波较弱;强风化层中矿物按深度分化布,垂向电磁参数差异较大,呈现低频大振幅连续反射;其下的新鲜

相关文档
最新文档