倒易点阵与衍射(西安交通大学)

合集下载

倒易点阵介绍

倒易点阵介绍

n O
光程差 On Am OA S OA S0 OA ( S S0 )

相应的位向差为
2

2
( S S0 )

OA
其中p、q、r是整数 因为S0是入射线方向单位矢量, S是衍射线方向为单 位矢量,因此S- S0是矢量,则:(S S0 ) * *
2
1/
A
O
S0 /
5 、以S0端点O点为原点,作
倒易空间,某倒易点(代表
某倒易矢量与hkl面网)的 端点如果在反射球面上, 说明该g*=S, 满足Bragg’s Law。某倒易点的端点如果
P
S/
S S0 g
2
不在反射球面上, 说明不
满足Bragg’s Law,可以直
1/
A
O
S0 /
25
概念回顾
以A为圆心,1/λ 为半径所做的球称为反 射球,这是因为只有在这个球面上的倒 易点所对应的晶面才能产生衍射。有时 也称此球为干涉球, Ewald球。 围绕O点转动倒易晶格,使每个倒易点 形成的球称为倒易球 以O为圆心,2/λ 为半径的球称为极限球。

26
大倒易球半径为
g=1/d≤ 2/:
hkl
即 d hkl

2
S/的晶面不Fra bibliotek1/
2 C S0/
g
O
Direction of direct beam
可能发生衍射
Sphere of reflection
极限球
Limiting sphere
关于点阵、倒易点阵及Ewald球的思考
(1) 晶体结构是客观存在,点阵是一个数学抽象。 晶体点阵是将晶体内部结构在三维空间周期平移这 一客观事实的抽象,有严格的物理意义。 (2) 倒易点阵是晶体点阵的倒易,不是客观实在, 没有特定的物理意义,纯粹为数学模型和工具。 (3) Ewald球本身无实在物理意义,仅为数学工具。 但由于倒易点阵和反射球的相互关系非常完善地描 述了X射线和电子在晶体中的衍射,故成为研究晶 体衍射有力手段。

倒易点阵

倒易点阵

倒易点阵的应用—解释X射线及电子衍射
• 劳厄方程
当相邻原子的散射X射线光程差等于 入射X射线波长整数倍时发生衍射。
a(cosα-cosα0) = Hλ
一维原子列的衍射示意图
倒易点阵的应用—解释X射线及电子衍射
• 劳厄方程
设空间点阵的三个平移向量为a ,b和c,入射的X射线与它们的交角分别为α0,β0和γ0。 衍射方向与它们的交角分别为α,β和γ 。根据上述讨论可知,衍射角α,β和γ在x, y, z三个轴上应满足以下条件:
单晶体电子衍射花样标定
• 确定零层倒易截面上各ghkl矢量端点(倒易阵点)的指数,定出零层倒易截面的 法向(即晶带轴[uvw]),并确定样品的点阵类型、物相及位向。 (1)测量靠近中心斑点的几个衍射斑点至中心斑点距离R1、R2、R3、R4…及 R1与R2、R1与R3等衍射斑点之间的夹角。 (2) 计算R12∶R22∶R32∶…=N1∶N2∶N3∶… 其中N = h2 + k2 + l2

于是,它们的点乘 根据倒易基矢定义式,显然有

都为0。
倒易点阵的应用—解释X射线及电子衍射
• „ 劳厄的一个科学假设
1911年埃瓦尔德在索末菲的指导下在慕尼黑大学从事博士论文研究,劳厄在 与他的讨论中了解到晶格的平移周期与X射线的波长属于同一量级,因此想到 在二维光栅的两个衍射方程组中再加一个类似的方程,就可以描述X射线在三 维晶体中的衍射。 在此假设的指导下,Knipping和Friedrich在1912年4月开始用CuSO4 后来 用闪锌矿(立方ZnS)进行实验,很快就得到X射线衍射的证据。这不但证明 了X射线的波动性,还确定了晶体的三维周期性。
a*、b*、c*
即倒易基矢

1.倒易格子理论2.倒易格子与X射线衍射3.倒易点阵与电子衍射4.典型0层倒易面举例

1.倒易格子理论2.倒易格子与X射线衍射3.倒易点阵与电子衍射4.典型0层倒易面举例

倒易格子与衍射—1.倒易格子理论2.倒易格子与X射线衍射3.倒易点阵与电子衍射4.典型0层倒易面举例一、倒易格子概念及性质1. 倒易点阵的定义设有一正点阵,用三个基矢(a,b,c)描述,记为S=S(a,b,c)。

引入三个新基矢(a*,b*,c*)描述,记为S*=S(a*,b*,c*)。

二者之间的关系:a*•a=1a*•b=0 a*•c=0b*•a=0b*•b=1b*•c=0c*•a=0c*•b=0c*•c=1则S*称作S的倒易点阵(Reciprocal lattice)。

2. 正倒格子的关系:a*=(b×c)/V b*=(c×a)/V c*=(a×b)/V其中V= a•(b×c)正格子的体积或为:a=(b*×c*)/V*b=(c*×a*)/V* c=(a*×b*)/V*其中V*=a*•(b*×c*)倒格子的体积亦有:V* = 1/V正倒格子的角度换算:|a*| = bcsinα/V|b*| = casinβ/V |c*|= absinγ/V或:|a| = b*c*sinα*/V* |b| = c*a*sinβ*/V* |c|= a*b*sinγ*/V*上式中:cosα* = (cosβcosγ-cosα)/sinβsinγcosβ* = (cosγcosα -cosβ)/sinγsinαcosγ* = (cosαcosβ -cosγ)/sinαsinβ当晶体的对称中,α=β=γ=90°时|a*| = 1/a|b*| =1/b|c*| = 1/c单斜晶系时,α=γ=90°,β≠90°,即:α*=γ*=90°,β*=180°-β则:|a*| =1/asinβ |b*| = 1/b |c*| =1/csinβ图1-1.三斜晶系的倒易点阵如图1-1所示为三斜晶系的倒易点阵,其中a*在与bc平面垂直的方向,b*与ac平面垂直,长度为1/b,c*与ab平面垂直,长度为1/c。

第四章--倒易点阵及晶体衍射方向

第四章--倒易点阵及晶体衍射方向

第四章 倒易点阵及晶体衍射方向1. 布拉格定律一定波长的 X 射线或入射电子与晶体试样相互作用 , 可以用布拉格定律来表征产生衍射的条件。

图 4.1 布拉格定律的几何说明如图 4.1, 设平行电子束σ0入射到晶体中面间距为 d hkl 的晶体面网组 (hkl), 在人射波前 SS' 处 , 两电子波位相相同, 如果左边一支波经历波程 PA+AD = n λ,n 为包括零的整数 , 则两支波离开晶体后达到新波前 TT' 时 , 将具有相同的位相 , 相干结果可以达到衍射极大; 反之, 若 PA+AD ≠ n λ, 则达到TT' 时, 它们位相不同 , 不能相干得到衍射极大。

由图 4.1 可知,PA+AD =2d hkl sin θ=n λ (4.1)此即布拉格方程,n 称为衍射级数。

式(4.1)也可以写成:λθ=⎪⎭⎫⎝⎛sin 2n d hkl (4.1a)因为 d hkl /n=d nh, nk, hl ,故可把n 级 (hkl) 反射看成是与 (hkl) 平行 但面网间距缩小 n 倍的、 (nh, nk, nl) 的一级反射。

这样 , 布拉格方程可以写成一般形式 :λθ=sin 2hkl d (4.1a) 还可以写成下述形式:λθ/2/1sin hkld =(4.1b) 只要满足布拉格方程 , 就获得了产生衍射极大的条件。

式 (4.1a) 中 d hkl 为晶体中晶面组 (hkl) 的晶面间距;λ为入射电子束的波长;θ为人射电子束方向相对于晶面 (hkl) 的掠射角。

2. 倒易点阵2.1 倒易点阵定义 (1)倒易点阵:若已知晶体点阵的单位矢量 a 、b 、c, 可以定义倒易点阵的单位矢量a *、b *、c *,该点阵的方向矢量垂直于同名指数的晶体平面, 它的大小等于同名指数晶面间距的倒数,该点阵称为倒易点阵。

(2)正点阵与倒易点阵和基矢量的相互关系:图4.2 正点阵与倒易点阵和基矢量的相互关系取一晶体单胞 , 如图 4.2, 晶体点阵的单位矢量为 a 、b 和 c , 相应点阵的 6 个参数是a 、 b 、 c 、α、β和 γ。

倒易点阵介绍

倒易点阵介绍
倒易点阵
1
倒易点阵
❖ 倒易点阵概念及定义 ❖ 倒易点阵的物理意义 ❖ 倒易点阵的应用是一个假想的点阵.
❖ 将空间点阵(真点阵或实点阵)经过倒易变换,就 得到倒易点阵,倒易点阵的外形也是点阵,但其 结点对应真点阵的晶面,倒易点阵的空间称为倒 易空间。
❖ 1860年法国结晶学家布拉菲提出并作为空间点 阵理论的一部分,但缺乏实际应用。
24
25
点阵中单胞的体积:V=a·(b×c)=b·(a×c) =c·(a×b)
5
倒易点阵基矢与正点阵基矢的关系
(仅当正交晶系)
6
倒易点阵的性质
1. 正倒点阵异名基矢点乘为0;
a*·b= a*·c=b*·a=b*·c=c*·b=0
同名基矢点乘为1。
a*·a=b*·b=c*·c=1.
2. 在倒易点阵中,由原点O*指向任意坐标为hkl的阵点
的。即倒易矢量ghkl是与相应指数的晶向[hkl] 平行的。
7
ghkl=h a*+k b*+lc* 表明:
❖ 1平.倒行易于矢它量的法gh向kl垂N直hkl于正点阵中相应的 [hkl]晶面,或 ❖ 2.倒易点阵中的一个点代表的是正点阵中的一组晶面
8
晶带定理
❖ 在正点阵中,同时平行于某一晶 向[uvw]的一组晶面构成一个晶带, 而这一晶向称为这一晶带的晶带 轴。
向平行于(hkl)晶面的法线,则有K‘ –K= G,即为布拉格方程 14
的矢量形式。
倒易点阵的应用
倒易点阵使许多晶体几何学问题的解决变得简易。例如单胞体 积,晶面间距、晶面夹角的计算以及晶带定理的推导等等。以 下是倒易点阵的应用。 1°由倒易点阵的基本性质可得: a*=1/d100,b*=1/d010,c*=1/d100 (a*=G100=1/d100) 在晶体点阵S 中,点之间或点阵平面之间的距离用Å 作单位, 因此,a*、b*、c*的单位为Å-1。在用图解法解决实际问题时, 用相对标度值表示相对大小即可。

倒易点阵

倒易点阵

由满足这些条件的初基矢量a*, b*, c*决 定的点阵----倒易点阵
倒易点阵与正点阵的基本对应关系为
a * b a * c b * a b * c c * a c * b 0 a * a b * b c * c 1
*
: a 与a的夹角
*
: b*与b 的夹角 : c 与c 的夹角
*

根据定义, a 与(b c )同方向 * 即: a 1 (b c )
*
倒易点阵的另一种表达方式
a a 1
*
* a a 1 (b c ) a 1 正点阵体积 V (b c ) a
bc a V
*
1 V 1
1 1 / V
a 1 (b c )
*
V a bc bc a c ab
bc bc a V a b c
*
ca ca b V bca
*
ab ab c V cab
*
给出了倒易点阵与正点阵之间的方向 关系和数值关系。
a ,b ,c
* * *
2.3.1 倒易点阵的定义及倒易点阵参数 定义
c* b* 引入倒易点阵初基矢量 c b
令a * a 1, b * b 1; c * c 1
* 令a b , c * b a, c * c b, a
a
a*
*
V abc
bc sin sin a abc a sin 90 1 a a
*
1 b b
*
1 c c
*
1 a b c a

倒易点阵与衍射(西安交通大学)

倒易点阵与衍射(西安交通大学)

d P a B θ 1 2θ A t Hhkl O b
图6.在倒易空间中反射的几何条件 a—入射线;b—反射球; C—反射线;d—反射线方向。
c θ θ
R t
磁学与磁性材料
Xi’an Jiaotong University
三、厄瓦尔(Ewald)图解
z
z
将倒易点阵置于反射球中, 就可将衍射和倒易点阵联系 起来。 如图6,以O点作为倒易点阵 原点,而入射线的方向BO与 倒易点阵的基本平移矢量一 致。在这种情况下,所有落 到球面上的结点均处于射线 束的反射位置。例如有一个 倒易结点落到球面的P点 处,则反射线的方向将与反 射球的中心A到P点的连线相 平行。
(hkl)
O
X
图1.晶体点阵中的晶面与倒易点 阵中倒易矢量的关系
磁学与磁性材料
Xi’an Jiaotong University
一、倒易点阵基础
z
从原点到Phkl点的 矢量称为倒易矢 量,其大小为: Hhkl=k/dhkl
式中k位比例系数,在多 数场合下取作1,但很多 时候亦可令之等于X射线 的波长。
d P Hhk θ t 2 θ l A θ O t b
图6.在倒易空间中反射的几何条件 a—入射线;b—反射球; C—反射线;d—反射线方向。
c
R
a B
θ 1
磁学与磁性材料
Xi’an Jiaotong University
几点讨论
(1)反射球是立体 的,所以真实图像 时不同的倒易点阵 与不同的球面相 交,空间衍射点分 布在不同半径的圆 上。但实际记录往 往是二维的。 如图反射球与 倒易点阵结点相交 的投影。
4埃
0.25埃-1
b
(010)

3倒易点阵与电子衍射

3倒易点阵与电子衍射

3 倒易点阵与电子衍射1.电子波的波长电子束的波长很短,因此根据布拉格方程,其衍射角度2θ也特别小。

波长C射线衍射仪0.1--100电子显微分析0.0251(200kV)2.晶体形状与倒易点形状的关系3.倒易格子与倒易球因为电子束的波长很短,只有一半X射线波长的1%,因此倒易球的半径很大,能与倒易球直接相交的一般只能是0层倒易面(即在垂直入射光束的方向倒易原点所在的平面)。

另外,由于电子衍射时,样品制作成为很薄的片状,因此,倒易点阵中的各倒易点体现为棒状,可以有更多的0层倒易点与倒易球相交。

图4-1.倒易点阵图4-2倒易点阵与倒易球图4-3.0层的棒状倒易点与倒易球相交产生点阵衍射4.电子衍射方程如图所示,倒易点G与倒易球相交,产生的衍射效果记录在胶片的G'点。

图4-4电子衍射方程的推导因为电子波长很短,倒易球的半径很大,在倒易原点附近,倒易球面非常接近平面,因此,O1O/O1O'=OG/OG'1/λ/L=1/d/RRd=Lλ在恒定的实验条件下,Lλ是一个常数,即衍射常数(单位:mm.nm)。

此即电子衍射的衍射方程。

由以上分析可知,单晶电子衍射花样可视为某个(uvw)*方向的0零层倒易平面的放大像[(uvw)*的0层平面法线方向[uvw]近似平行于入射束方向(但反向)]。

因而,单晶电子衍射花样与二维(uvw)*的0层平面相似,具有周期性排列的特征。

5.单晶电子衍射花样的标定标定是指确定衍射花样中各斑点的指数(hkl)及其晶带轴方向[UVW],并确定样品的点阵类型和位向。

(1)对斑点进行指标化如图所示,晶带轴方向[uvw],指向与入射电子束方向相反,属于该晶带的0层倒易面为[uvw]*0,记录的衍射花样相当于0层倒易面面的放大象。

中心为倒易点阵原点(000),图4-5记录的衍射花样与倒易点阵的关系图4-6一例典型的电子衍射花样图4-7衍射斑点的矢量关系如图4-7所示,表达衍射花样周期性的基本单元(可称特征平行四边形)的形状与大小可由花样中最短和次最短衍射斑点矢量R1与R2描述,平行四边形中3个衍射斑点连接矢量满足矢量运算法则:R3=R1+R2|R3|2=|R1|2+|R2|2+2|R1||R2|cosφ(φ为R1,R2夹角)同理:R4=R1+2R2|R4|2=|R1|2+|2R2|2+2|R1||2R2|cosφ=|R1|2+4|R2|2+4|R1||R2|cosφR5=R1-R2|R5|2=|R1|2+|R2|2-2|R1||R2|cosφ若5个向量终点的衍射斑点衍射指标分别为(h1k1l1),(h2k2l2),(h3k3l3),(h4k4l4),(h5k5l5),则斑点指标之间有如下关系:h3=h1+h2k3=k1+k2l3=l1+l2h4=h3+h2k4=k3+k2l4=l3+l2h5=h1-h2k5=k1-k2l5=l1-l2假定(h1k1l1),(h2k2l2)倒易指数为(100)和(010),则上图中各点的指标化结果如下:图4-8衍射斑点的指标化结果如果晶体是面心结构的,则其衍射效果要满足面心结构的衍射消光规律,即衍射指标要全奇或全偶(见图),体心结构的晶体,衍射指标要符合h+k+l=偶数(见图),因此,可根据电子衍射图的指标化结果确定空间格子类型。

倒易点阵

倒易点阵

倒易点阵:晶体点阵结构与其电子衍射斑点之间可以通过另外一个假想的点阵很好地联系起来,这就是~零层倒易截面:电子束沿晶带轴的反向入射时,通过原点的倒易平面只有一个,我们把这个二维平面叫做~消光距离:透射束或衍射束在动力学相互作用的结果,在晶体深度方向上发生周期性的振荡,这种振荡的深度周期叫做~明场像:通过衍射成像原理成像时,让透射束通过物镜光阑而把衍射束挡掉形成的图像称为明场像。

暗场像:通过衍射成像原理成像时,让衍射束通过物镜光阑而把透射束挡掉形成的图像称为暗场像。

衍射衬度:由于样品中不同位向的晶体的衍射条件不同而造成的衬度差别叫~质厚衬度:是建立在非晶体样品中原子对入射电子的散射和透射电子显微镜小孔径角成像基础上的成像原理,是解释非晶态样品电子显微图像衬度的理论依据。

二次电子:在入射电子束作用下被轰击出来并离开样品表面的样品的核外电子叫~吸收电子:入射电子进入样品后,经多次非弹性散射能量损失殆尽,然后被样品吸收的电子。

透射电子:如果被分析的样品很薄,那么就会有一部分入射电子穿过薄样品而成为透射电子。

结构消光:当Fhkl=0时,即使满足布拉格定律,也没有衍射束产生,因为每个晶胞内原子散射波的合成振幅为零。

这叫做~分辨率:是指成像物体(试样)上能分辨出来的两个物点间的最小距离。

焦点:一束平行于主轴的入射电子束通过电磁透镜时将被聚焦在轴线上一点。

焦长:透镜像平面允许的轴向偏差.景深:透镜物平面允许的轴向偏差.磁转角:电子束在镜筒中是按螺旋线轨迹前进的,衍射斑点到物镜的而一次像之间有一段距离,电子通过这段距离时会转过一定的角度.电磁透镜:透射电子显微镜中用磁场来使电子波聚焦成像的装置。

透射电子显微镜:是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨率,高放大倍数的电子光学仪器。

弹性散射:当一个电子穿透非晶体薄样品时,将与样品发生相互作用,或与原子核相互作用,或与核外电子相互作用,由于电子的质量比原子核小得多,所以原子核入射电子的散射作用,一般只引来电子改变运动方向,而能量没有变化,这种散射叫做弹性散射。

倒易点阵

倒易点阵

材料现代研究方法X射线衍射方法 综合热分析 紫外光谱 红外光谱 XPS光电子能谱2倒易点阵1. 倒易点阵的定义; 2. 倒易点阵与正点阵的倒易关系; 3. 倒易点阵参数;倒易点阵Questions: 1. 什么是倒易点阵?天下本无事,庸人自扰之? ☺ 非常有用!2. 倒易点阵有用吗? 3. 为什么要引入倒易点阵概念?能简化(1)晶面与晶面指数表达;(2)衍射原理的表 达;(3)与实验测量结果直接关联,尤其是电子衍射部 部分。

晶体X射线衍射的核心,是对晶体中各个晶面的研 究,如果能把晶面作为一个点来研究,何乐不为!5倒易点阵晶体XRD衍射图谱 晶体电子衍射花样我们所观察到的衍射花样(或者衍射图谱)实际上是满 足衍射条件的倒易阵点的投影。

61.倒易点阵的定义倒易点阵是在晶体点阵的基础上按照一定的对应关系 建立起来的空间几何图形。

每种空间点阵都存在着与其相对应的倒易空间点阵, 它是晶体点阵的另一种表达方式。

用倒易点阵处理衍射问题时,能使几何概念更清楚, 数学推演简化。

晶体点阵空间称为正空间,结点为阵点。

倒易空间中 的结点称为倒易点。

71.倒易点阵的定义简单点阵001 101简单点阵的倒易点阵011 111010 100 110点阵: 原点、基矢量、 阵点、晶向、晶面倒易点阵: 原点、倒易基矢量、 8 倒易点、倒易矢量、倒易面1.倒易点阵的定义1)倒易矢量倒易矢量的定义 从倒易点阵原点向任一倒易阵点 所连接的矢量叫倒易矢量,表示 为: r* = ha* + kb* + lc*2)倒易矢量的两个基本性质1)倒易矢量的方向垂直于正点阵中的(hkl)晶面。

2)倒易矢量的长度等于(hkl)晶面的晶面间距dhkl的倒数。

倒易阵点用它所代表的晶面的面指数(干涉指数)标定。

91.倒易点阵的定义晶面族所对应的倒易点a/2 上图画出了(100)、(200)晶面 (100) 族所对应的倒易阵点,因为 (200)的晶面间距d200 是d100 的一 半,所以(200)晶面的倒易矢量 长度为(100)的倒易矢量长度的 000 C* 二倍。

1-4倒易点阵

1-4倒易点阵
• 用倒易点阵处理衍射问题时,能使几何概念更清楚, 数学推理简化。能够简朴地想象,每一幅单晶旳衍射 把戏就是倒易点阵在该把戏平面上旳投影。
四、倒易点阵
2 怎样拟定倒易点阵
2.1 什么是倒易基矢 我们将正点阵中晶胞中旳a、b、c、、、六个点阵
常数用三个基矢 a、b、c 来替代,那么 a、b、c 就能
四、倒易点阵
4 实际晶体中旳倒易点阵
倒易点阵中出现节点旳条件: 正点阵中相互平行旳(hkl)面旳全体包括(经过)全部旳正点阵节 点。 例如:BCC和FCC旳(002)平行晶面族包括了全部原子
(001)平行晶面族只包括了二分之一原子 所以:在BCC和FCC旳倒易点阵中只出现(0,0,2)节点,而不 出现(0,0,1)节点。
四、倒易点阵
1 什么是倒易点阵
• 为了从几何学上形象旳拟定衍射条件, 人们就找到一个新旳点阵(倒易点阵),使 其与正点阵(实际点阵)相相应。

相应旳条件:新点阵中旳每一个结点都 相应着正点阵旳一定晶面,该结点既反O映P 该
晶面旳取向也反映该晶面旳面间距。

具体条件:OP 1/d(hkl)
• a. 新点阵中原点O到任意结点P(hkl) (倒易 点)旳矢量 正好沿正点阵中{hkl}面旳法 线方向。
(100)
四、倒易点阵
2.2 怎样拟定倒易基矢 2经过怎正样点拟阵定,倒能易够点得阵到:
d(100) =a
b b
c c
(2)
将(2)式代入(1)式得到:
a*= bc bc abc V
一样:b*
=
c
a V
c*
ab V
V 为正点阵晶胞旳体积。
(100)
四、倒易点阵
2 怎样拟定倒易点阵

倒易点阵介绍综述

倒易点阵介绍综述

(2) 波长连续, 使Ewald球的数 量增加,即球壁 增厚(Laue法)
S / 1/
A
S 0 /
O
Δλ
增大晶体产生衍射几率的方法
( 3 ) Ewald 球 不 动 , 增 加随机分 布的晶体 数量 , 相当于围绕O点转动倒易
S / 1/ hkl
晶格,使每个倒易点均
形成一个 球 (倒易 球 )。 (粉晶法的基础)

OA pa qb rc
ha k b l c*
现在不明确h、k、l一定是整数。由:
2
( S S0 )
可见,只有当φ =2π n时,才能发生衍射,此时n应 为整数。 由于p、q、r是整数,因此满足衍射条件时h、k、l 一定是整数。于是得到结论:

OA 2 (ha* k b* l c* ) ( pa qb r c) 2 (hp kq lr )
5
倒易点阵的性质
1. 正倒点阵异名基矢点乘为0; a*·b= a*·c=b*·a=b*·c=c*·b=0 同名基矢点乘为1。 a*·a=b*·b=c*·c=1. 2. 在倒易点阵中,由原点O*指向任意坐标为hkl的阵点的矢量 ghkl(倒易矢量)为:ghkl=h a*+k b*+lc* 式中hkl为正点阵中 的晶面指数 3. 倒易矢量的长度等于正点阵中相应晶面间距的倒数,即 ghkl=1/dhkl 4. 对正交点阵,有 a*∥a,b*∥b,c*∥c, a*=1/a,b*=1/b,c*=1/c, 5. 只有在立方点阵中,晶面法线和同指数的晶向是重合(平行) 的。即倒易矢量ghkl是与相应指数的晶向[hkl] 平行的。
O
观地看出那些面网的衍射状
况。

第1章倒易点阵及电子衍射基础ppt课件

第1章倒易点阵及电子衍射基础ppt课件

单晶C-ZrO2
多晶Au
非晶
准晶(quasicrystals)
FIGURE 2.13. Several kinds of DPs obtained from a range of materials in a conventional 100-kV TEM: (A) amorphous carbon, (B) an Al single crystal, (C) polycrystalline Au, (D) Si illuminated with a convergent beam of electrons. In all cases the direct beam of electrons is responsible for the bright intensity at the center of the pattern and the scattered beams account for the spots or rings that appear around the direct beam.
1.1.2 晶体学点群 对称要素 晶体的宏观对称性是按宏观点对称操作所构成的点群来进
行分类的。 群,是代数理论中的抽象概念,满足一定条件的一些元素
的集合。
晶体的独立宏观对称要素共有8种,即
1,2,3,4,6,i,m,4
对称中心的国际符号 形象法表示
等效位置,+、—号表示正反面, ,左右手的变化
对称的极图表示
2) 电子衍射产生斑点大致分布在一个二维倒易截面内,晶体 产生的衍射花样能比较直观地反映晶体内各晶面的位向。 因为电子波长短,用Ewald图解时,反射球半径很大,在衍 射角很小时的范围内,反射球的球面可近似为平面。

倒易点阵介绍

倒易点阵介绍

❖ 晶带定理:因为各倒易矢量都和
其晶带轴r=[uvw]垂直,固有
ghkl•r=0 ,即 hu+kv+lw=0, 这就
7
是晶带定理。
衍射条件
设:入射线波长为λ,入
射线方向为单位矢量S0,
衍射线方向为单位矢量S,
那么在S方向有衍射线的
条件是:在与S方向相垂
1
直的波阵面上,晶体中各
原子散射线的位向相同。
5. 只有在立方点阵中,晶面法线和同指数的晶向是重合(平行) 的。即倒易矢量ghkl是与相应指数的晶向[hkl] 平行的。
5
ghkl=h a*+k b*+lc* 表明:
❖ 1平.倒行易于矢它量的法gh向kl垂N直hkl于正点阵中相应的 [hkl]晶面,或 ❖ 2.倒易点阵中的一个点代表的是正点阵中的一组晶面
a*=b×c/V, b*=c×a /V, c*=a×b/V. 式中,V为正 点阵中单胞的体积: V=a·(b×c) =b·(c×a) =c·(a×b)
表明某一倒易基矢垂直于 正点阵中和自己异名的二基矢 所成平面
4
倒易点阵的性质
1. 正倒点阵异名基矢点乘为0; a*·b= a*·c=b*·a=b*·c=c*·b=0
先计算原点O和任一原子 A的散射线在与S方向的 位向差。
ghkl
m
θ
A
θ
θ
n O
光程差 On Am OA S OA S0
OA (S S0 )
S2 (S-S0) (HKL)
S0
❖ 相应的位向差为 2 2 (S S0 ) OA
OA pa qb rc 其中p、q、r是整数
由于p、q、r是整数,因此满足衍射条件时h、k、l 一定是整数。于是得到结论:

倒易点阵

倒易点阵
r r G h1 k1l1 = h1 a ′ + k 1b ′ + l1 c ′ r r r r G h2 k 2 l 2 = h2 a ′ + k 2 b ′ + l 2 c ′ r r r r G h1 k1l1 ⋅ G h 2 k 2 l 2 = G h1 k1l1 G h 2 k 2 l 2 cos ϕ r r G h1 k1l1 G h 2 k 2 l 2 cos ϕ = r ⋅ r G h1 k1l1 G h 2 k 2 l 2
d hkl 1 = r G hkl
2)
一族晶面用倒易点阵中一个阵点来表示,就 是以正点阵中面指数为指数的倒易矢量。
r c
C
(hkl)
c l
d hkl
r G hkl
O
a h
b k
B
r b
A
1 r 1 r 证明1):BA = a − b h k r r r r ⎛ 1 r 1 r⎞ BA ⋅ G hkl = ⎜ a − b ⎟ ⋅ h a ′ + k b ′ + l c ′ k ⎠ ⎝h r r r r r r b ×c c×a = a⋅ r r r −b⋅ r r r = 0 a ⋅ (b × c ) a ⋅ (b × c )
r a r b
课堂练习:作出下图所示2D点阵的倒易矢量 G100、G010、G110示意图:
r b r a
G100 G110 G010
(110)
(100) (010)
第三章:倒易点阵 § 3.2 倒到易点阵的定义及应用 正交归一性(本质): r
r r a ′ ⋅ a = 1, r r b ′ ⋅ b = 1, r r c ′ ⋅ c = 1, r a ′ ⋅ b = 0, r r b ′ ⋅ c = 0, r r c ′ ⋅ a = 0,

二维晶体的衍射及其倒易点阵的物理内容

二维晶体的衍射及其倒易点阵的物理内容

二维晶体的衍射及其倒易点阵的物理内容
二维晶体的衍射是指晶体中的波在结构的空间限制下的散射现象。

它是晶体中电磁波的一种特殊形式,可以用来描述物体在不同方向上的折射、反射和衍射现象。

倒易点阵是指在晶体表面上形成的一种特殊的点阵,它由二维晶体衍射出来的小点组成,这些小点按照一定的规律排列,形成一个点阵。

在倒易点阵中,每个点都是由衍射出来的波,这些波在晶体表面上形成一个小的空间,也就是倒易点阵。

在这种空间中,波的传播方向受到晶体结构的影响,从而形成了一个倒易点阵。

固体物理(第4课)倒易空间

固体物理(第4课)倒易空间
b2,-b2.
-b1+b2
-b1-b2
b1+b2 b1-b2
离原点再远的倒格点有4个:
2b1,-2b1,2b2,-2b2.
2b2
-2b1
2b1 -2b2
二维正方晶格的布里渊区
二维长方晶格的布里渊区
二维六方晶格的十个布里渊区
(3) 三维晶格a. 简来自方晶格 倒易空间示意图aaa321
ai aj ak
图5 闪锌矿结构的本征GaN材料的能带结构图,导带最小和价带最大。


1 试证简单立方晶格的倒易点阵仍为简单立方晶格,体 心立方和面心立方互为倒易点阵。分别计算其第一 布里渊区的体积(假设其晶胞晶格常数为a)。
2 有一二维晶格,其原胞基矢分别为
a1
2
i
,a2
4j
(a1、a2的长度均以
A为单位),
布里渊区示意图2-2
:坐标原点0,0,0 : 100 H: 2 1,0,0
a
: 110 N: 2 1 , 1 ,0
a 2 2
: 111 P: 2 1 , 1 , 1
a 2 2 2
简约布里渊区:正十二面体
V
2
2
a
3
V倒易原胞
返回
布里渊区示意图3-1
倒易
面心立方的倒 易点阵是体心 立方
结论: 若两矢量点积为2的整数倍, 且其中一个矢量
为正点阵位矢, 则另一个矢量必为倒易点阵的位矢。
为什么在倒易关系中存在2π 因子,这是因为如此定 义的互为倒易的两个矢量G与T之间满足下面简洁的
恒等式:
eiGT 1
(3) 两个点阵原胞体积之间的关系:
V* b1 (b2 b3 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁学与磁性材料
Xi’an Jiaotong University
几点讨论 (6)当X射线以固定的方向照射不动的单晶体时,有 可能倒易点与反射球不相交。这时可采用连续X射 线谱,此时将有一整套半径连续变化的反射球, 故倒易结点有机会与球面相交,这就是劳埃法。 (7)当用单色X射线照射单晶体时,常使X射线与晶 体某主轴垂直,并使晶体围绕此晶轴旋转或回 摆,此时,晶体的倒易点阵亦将围绕过原点并与 反射球相切的一根轴旋转或摆动,于是某些结点 将瞬时地与静止的反射球相交,这就是周转晶体 法,或回摆晶体衍射法。
z
z
磁学与磁性材料
Xi’an Jiaotong University
倒易矢量的数学定义
z
z
a*·a=c*·c=b*·b=1 同文字的倒易矢量与正矢量的 数量积为1的图形解释见图2. 从图2可知,c cosδ是(001) 面的面间距d001,因此: c*·c=c* c cosδ=c*d001=1 c*=1/d001
d P Hhk θ t 2 θ l A θ O t b
图6.在倒易空间中反射的几何条件 a—入射线;b—反射球; C—反射线;d—反射线方向。
c
R
a B
θ 1
磁学与磁性材料
Xi’an Jiaotong University
几点讨论
(1)反射球是立体 的,所以真实图像 时不同的倒易点阵 与不同的球面相 交,空间衍射点分 布在不同半径的圆 上。但实际记录往 往是二维的。 如图反射球与 倒易点阵结点相交 的投影。
Z
Y N
z
H
Phkl
(hkl)
O
X
图1.晶体点阵中的晶面与倒易点 阵中倒易矢量的关系
磁学与磁性材料
Xi’an Jiaotong University
倒易矢量的数学定义
z
设真点阵的基本平移矢量为 a b c
z
设倒易点阵的基本平移矢量为 a* b* c* a*·b=a*·c=b*·a=b*·c=c*·a=c*·b=0 不同文字的倒易矢量与正矢量的数量积为零,其涵义为 a*⊥b及c; c* ⊥a及b; b*⊥a及c。 a*·a=c*·c=b*·b=1 同文字的倒易矢量与正矢量的数量积为1.
z
若两个矢量互相垂直,则其数量积必为零,故 (u a+v b+w c)·(h a*+k b*+l c*)=0 简化可得: h u+k v+l w=0 这就是判别晶面是否平行于某晶向的条件。
磁学与磁性材料
Xi’an Jiaotong University
二、衍射方程
z
倒易点阵不仅可使晶体几何 学问题的解决简化,更为重 要的是同衍射问题相联系。 设入射光波长为λ,其方向 由单位质量 S0 表示;衍射光 方向由单位矢量 S 表示。 设晶体沿三个轴方向的的那 位矢量为 a, b, c. 若希望 在 S 方向上的散射加强,则 在与此相垂直的波阵面上, 晶体中各原子的散射线的位 相必须相同。
磁学与磁性材料
Xi’an Jiaotong University
几点讨论
(4)理想晶体的倒易点阵是规则排列阵点。但当晶体为薄 片状时,由于在某个方向上的原子数目过少,其倒易点阵 将演化成细圆棒;而针状晶体的倒易点阵将由一组平行的 平面组成。如果晶体在三维方向上原子数目都很少,其倒 易结点将变成漫散的体积。于是,这时的衍射线条会宽化。 (5)如果一个相当大的晶体中出现了一些针状或片状的不 均匀区域,且二者具有共格关系(如铝合金中的沉淀GP 区),这时将在高密度的倒易结点处出现一些薄片状或细 圆棒状的异常散射区,在X射线衍射花样上将可看到通过 某些衍射斑点的强度较低的条痕。有时反射球面和倒易点 虽不相遇,但却通过这些异常散射区域,则微弱的条痕将 单独出现在衍射花样中。
δ=On-Am=OA·S-OA·SO=OA·(S-SO)
1
Hhkl
2
t
O
θ
m
A θ
θ n
s t s - s0 s0
z
z
相应的位相差为:
图5、衍射关系说明图 1-入射线; 2-衍射线
Φ=2πδ/λ=2π((S-SO)/ λ) · OA
磁学与磁性材料
Xi’an Jiaotong University
二、衍射方程
z
对其他晶系,把参数带入公式中,可求出晶面间距。
磁学与磁性材料
Xi’an Jiaotong University
倒易点阵的应用举例
3、晶带与晶带轴 z 若干个晶面族同时平行于某一轴向时,则这些晶面族属于 同一晶带,而这个轴向就称为晶带轴。 设晶带轴矢量= u a+v b+w c 晶面族的任一个晶面的倒易矢量= h a*+k b*+l c*
理解亦可更加深入。 对于复杂的衍射效应, 它可以提供必要的门径。
磁学与磁性材料
Xi’an Jiaotong University
一、倒易点阵基础 晶体由质点按一定的规律排列而成,如果将这种 周期排列规律抽象出来,就是空间点阵。 将空间点阵(真实点阵或实点阵)经过倒易变 换,就得到倒易点阵。 倒易点阵的外形也很像点阵,但其上的结点并不 代表质点,而是对应着真点阵的一组晶面。
c*
δ c b γ (001)
b*
可得
O
a
a*
图2.晶体点阵基矢与倒易 点阵基矢的关系
磁学与磁性材料
Xi’an Jiaotong University
倒易矢量的数学定义
z
从以上定义可知: (1)如果正点阵晶轴相互垂直,则 倒易轴亦相互垂直且平行于晶轴。 (2)倒易矢量可以表征真点阵(hkl) 晶面的方位,而H(hkl)的长度可以 表示(hkl)的晶面间距dhkl.
(hkl)
O
X
图1.晶体点阵中的晶面与倒易点 阵中倒易矢量的关系
磁学与磁性材料
Xi’an Jiaotong University
一、倒易点阵基础
z
从原点到Phkl点的 矢量称为倒易矢 量,其大小为: Hhkl=k/dhkl
式中k位比例系数,在多 数场合下取作1,但很多 时候亦可令之等于X射线 的波长。
O
t
θ
m
A θ
θ n
s t s - s0 s0
图5、衍射关系说明图 1-入射线; 2-衍射线
磁学与磁性材料
Xi’an Jiaotong University
二、衍射方程
(S-SO)/ λ=ha*+kb*+lc*=Hhkl
劳埃方程的推导。
z
对衍射矢量方程的两边分别 点乘a,b,c 则可得:
劳埃衍射方程
=(a×b)· c =(b×c)· a =(c×a)· b
b*
δ c b γ (001) a
a*
图2.晶体点阵基矢与倒易 点阵基矢的关系
磁学与磁性材料
Xi’an Jiaotong University
倒易点阵的应用举例
2、晶面间距 z Hhkl=1/dhkl,两边平方得: z H2=1/d2=H · H=(ha*+kb*+lc*)·(ha*+kb*+lc*)= =h2a*2+k2b*2+l2c*2+2hk(a* · b*)+2kl(b* ·c*)+2kl(b* ·c*) 对立方晶系 a*2=b*2=c*2 ,(a* · b*)=(b* ·c*)=(b* ·c*)=0 代入上式得: 1/d2=h2a*2+k2a*2+l2a*2=(h2+k2+l2)a*2= =(h2+k2+l2) / a2 故: d= a / √ h2+k2+l2
磁学与磁性材料
Xi’an Jiaotong University
倒易点阵的图形表示
z
z
z
图3是用平面图像表明立方 系晶体与其倒易点阵的关 系 可以看出,H矢量的长度 等于其对应晶面的间距的 倒数,且与晶面相垂直。 必须指出,像nh,nk,nl(n 为整数)这样的倒易阵点, 对应着与(hkl)平行且间 距为其1/n的点阵面。如图 3中的H220平行于H110,且 是H110的两倍。
d P a B θ 1 2θ A t Hhkl O b
图6.在倒易空间中反射的几何条件 a—入射线;b—反射球; C—反射线;d—反射线方向。
c θ θ
R t
磁学与磁性材料
Xi’an Jiaotong University
三、厄瓦尔(Ewald)图解
z
z
将倒易点阵置于反射球中, 就可将衍射和倒易点阵联系 起来。 如图6,以O点作为倒易点阵 原点,而入射线的方向BO与 倒易点阵的基本平移矢量一 致。在这种情况下,所有落 到球面上的结点均处于射线 束的反射位置。例如有一个 倒易结点落到球面的P点 处,则反射线的方向将与反 射球的中心A到P点的连线相 平行。
4埃
0.25埃-1
b
(010)
020
120 110
220
(110) (210)
(100) 010
210
b*
000
H110
H210
c
a
c* a*
100
200
图3. a=4埃 的立方晶体及其倒易点阵
磁学与磁性材料
Xi’an Jiaotong University
倒易点阵的应用举例
z z z z
1、单胞体积 c* 单胞体积等于底面积乘高。 底面积为 a b sin γ=a×b 高是(001)面的面间 距,为 c cosδ 故体积: O V= a b sin γ c cosδ
厄瓦尔(Ewald)图解是衍射条件的几何表达法。 布拉格方程为2dsin θ=λ,并令Hhkl=k/dhkl中的比例 系数为λ,则Hhkl=λ/dhkl,代入布拉格方程得: sin θhkl=Hhkl/2 上式表明,某族反射面(hkl)所对应的布拉格角 的正弦等于其倒易矢量长度之半。可以用两维简图 来表示上述关系。
相关文档
最新文档