数学建模题目及答案解析

合集下载

数学建模习题和答案解析课后习题

数学建模习题和答案解析课后习题

第一部分课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。

学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。

(2)2.1节中的Q值方法。

(3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

你能解释这种方法的道理吗。

如果委员会从10人增至15人,用以上3种方法再分配名额。

将3种方法两次分配的结果列表比较。

(4)你能提出其他的方法吗。

用你的方法分配上面的名额。

2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。

比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。

试用比例方法构造模型解释这个现象。

(1)分析商品价格C与商品重量w的关系。

价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。

(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。

解释实际意义是什么。

3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。

假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应多大(如图)。

若知道管道长度,需用多长布条(可考虑两端的影响)。

如果管道是其他形状呢。

5.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便、有效的排列方法,使加工出尽可能多的圆盘。

6.动物园里的成年热血动物靠饲养的食物维持体温基本不变,在一些合理、简化的假设下建立动物的饲养食物量与动物的某个尺寸之间的关系。

数学建模竞赛参考答案

数学建模竞赛参考答案

数学建模竞赛参考答案数学建模竞赛参考答案数学建模竞赛是一项旨在培养学生综合运用数学知识和解决实际问题能力的竞赛活动。

参赛者需要通过分析问题、建立数学模型、求解问题等环节,最终给出合理的答案和解决方案。

在这篇文章中,我们将为大家提供一些数学建模竞赛的参考答案,希望能够给参赛者们提供一些启示和帮助。

第一题:某公司的销售额预测问题描述:某公司希望通过过去几年的销售数据,预测未来一年的销售额。

请根据给定的销售数据,建立合适的数学模型,并给出未来一年的销售额预测值。

解答思路:根据问题描述,我们可以将销售额看作是时间的函数,即销售额随时间变化。

可以使用回归分析的方法来建立数学模型。

首先,我们将销售额作为因变量,时间作为自变量,通过拟合曲线来预测未来一年的销售额。

我们可以选择多项式回归模型来拟合曲线。

通过将时间作为自变量,销售额作为因变量,进行多项式回归分析,可以得到一个多项式函数,该函数可以描述销售额随时间变化的趋势。

然后,我们可以使用该多项式函数来预测未来一年的销售额。

将未来一年的时间代入多项式函数中,即可得到未来一年的销售额预测值。

第二题:城市交通流量优化问题描述:某城市的交通流量问题日益突出,如何优化交通流量成为了当地政府亟待解决的难题。

请根据给定的交通数据和道路拓扑结构,建立合适的数学模型,并给出交通流量优化的方案。

解答思路:根据问题描述,我们可以将城市的交通流量看作是网络中的流量分配问题。

可以使用网络流模型来建立数学模型。

首先,我们需要将城市的道路网络抽象成一个有向图,节点表示交叉口,边表示道路,边上的权值表示道路的容量。

然后,我们可以使用最小费用最大流算法来求解交通流量优化的方案。

该算法可以通过调整道路上的流量分配,使得整个网络中的流量达到最大,同时满足道路容量的限制。

通过计算最小费用最大流,可以得到交通流量优化的方案。

最后,我们可以根据最小费用最大流算法的结果,对交通流量进行合理调控。

例如,可以调整信号灯的时长,优化交通信号控制系统,减少交通拥堵现象,提高交通效率。

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。

A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。

当矩形的面积最大时,求矩形的长和宽。

A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。

求该直线的方程。

A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。

A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。

假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。

求两辆车首次相遇的时间。

A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。

答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。

答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。

2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。

3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。

二、模型求证题(共2小题,每小题10分,本大题共20分)1、某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为,到达目的时刻为,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t)是一天内时刻变量,则f(t)(t)在[]是连续函数。

作辅助函数F(t)(t)(t),它也是连续的,则由f(a)=0(b)>0和g(a)>0(b)=0,可知F (a )<0, F(b)>0, 由介值定理知存在t0属于()使F(t0)=0, 即f(t0)(t0) 。

2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分) 解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,1,2,........,k x ,k y =0,1,2,3。

将二维向量k s =(k x ,k y )定义为状态。

安全渡河条件下的状态集合称为允许状态集合,记做S 。

()}{2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x (3分)记第k 次渡船上的商人数为k u 随从数为k v 将二维向量k d =(k u ,k v )定义为决策。

数学建模试题(带答案)

数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。

试构造模型并求解。

答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。

f 和g 都是连续函数。

椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。

不妨设0)0(,0)0(g >=f 。

当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。

这样,改变椅子的位置使四只脚同时着地。

就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。

证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。

根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。

第二十讲 数学建模(含解答)-

第二十讲  数学建模(含解答)-

第二十讲 数学建模【趣题引路】某工厂生产某种产品,每件产品的出厂价为50元,其成本为25元.•因为在生产过程中,平均每生产一件产品有0.5m 3污水排出,为了净化环境,工厂设计两种方案对污水进行处理.方案1:工厂污水先净化处理后再排出,每处理1m 3•污水所有原材料费为2元,并且每月排污设备损耗费为30 000元;方案2:•工厂将污水排到污水厂统一处理,每处理1m 3污水需付14元排污费.问题:(1)设工厂每月生产x 件产品,每月利润为y 元,分别求出依方案1和方案2处理污水时y 与x 的函数关系式;(2)•设工厂每月生产量为6 000件产品时,你若作为厂长在不污染环境,又节约资金的前提下,•应选用哪种处理污水的方案?请通过计算加以说明. 解析 (1)设选用方案1,每月利润为y 1元,选用方案2,每月利润为y 2元,则: y 1=(50-25)x-2×0.5x-30 000=24x-30 000, y 2=(50-25)x-14×0.5x=18x. 故y 1=24x-30 000,y 2=18x;(2)当x=6000时,y 1=24×6000-30 000=114 000(元),y 2=18x=18×6000=108 •000(元). ∴y 1>y 2.答:我若作为厂长,应选方案1. 点评本例是生产经营决策问题,其难点在于建立相应的数学模型,构建函数关系式,•然后,通过问题中所给的条件判断,若不能判断,就要进行分类讨论.【知识延伸】例 某工厂有14m 长的旧墙一面,现在准备利用这面旧墙,建造平面图形为矩形,•面积为126m 2的厂房,工程条件为:①建1m 新墙的费用为a 元;②修1m 旧墙的费用为4a元;③拆去1m 旧墙,用所得材料建造1m 新墙的费用为2a元.经过讨论有两种方案:(Ⅰ)利用旧墙的一段xm(x<14)为矩形厂房一面的边长;(Ⅱ)•矩形厂房利用旧墙的一面边长为x(x ≥14).问:如何利用旧墙,即x 为多少米时,建墙费用最省?(Ⅰ)(Ⅱ)两种方案哪个更好?解析 设利用旧墙的一面矩形边长为xm,则矩形的另一边长为126xm . (Ⅰ)利用旧墙的一段xm(x<14)为矩形一面边长,则修旧墙费用为x ·4a元,•将剩余的旧墙拆得材料建新墙的费用为(14-x)·2a元,其余建新墙的费用为(2x+2126x -14)·a 元.故总费用为y=x ·4a +142x -·a+(2x+252x -14)·a=a(74x+252x-7)=7a(364x x +-1).(0<x<14)∴y ≥364x x -1]=35a.当且仅当364x x=,即x=12m 时,y min =35a(元); (Ⅱ)若利用旧墙的一面矩形边长为x ≥14,则修旧墙的费用为4a ·14=72a 元,建新墙的费用为(2x+252x-14)a 元. 故总费用为y=72a+(2x+252x-14)a=72a+2a(x+126x -7) (x ≥14).设14≤x 1<x 2,则x 1-x 2<0,x 1x 2>196. 则(x 1+1126x )-(x 2+2126x )=(x 1-x 2)(1-12126x x ) ∴函数y=x+126x在区间[14,+∞]上为增函数. 故当x=14时,y min =72a+2a(14+12614-7)=35.5a>35a.综上讨论可知,采用第(Ⅰ)方案,建墙总费用最省,为35a 元.点评解答选择方案应用题同处理其他应用题一样,重点要过好三关(1)事理关:•读懂题意,知道讲的是什么事情,要比较的对象是什么;(2)文理关:•把实际问题文字语言转化为数学的符号语言,然后用数学式子表达数学关系式;(3)数理关:在构建数学模型的过程中,要对数学知识有检索的能力,认定或构建相应的数学模型,•完成由实际问题向数学问题的转化.【好题妙解】佳题新题品味例 在一次人才招聘会上,有A 、B 两家公司分别开出他们的工资标准:A 公司允诺第一年月工资为1500元,以后每月工资比上一年工资增加230元;B 公司允诺第一个月工资为2000元,以后每月工资在上一年月工资基础上递增5%,设某人年初被A 、B 两家公司同时录取,试问 :(1)若该人打算在A 公司或B 公司连续工作n 年,则他第n 年的月工资收入各为多少? (2)如该人打算连续在一家公司工作10年,仅以工资收入来看,•该人去哪家公司较合算?解析 (1)此人在A、B公司第n年的月工资数分别为a n=1 500+230(n-1),b n=2 •000(1+5%)n-1.其中n为正整数;(2)若该人在A公司连续工作10年,则他的工资收入总量为12(a1+a2+…+a10)=•304 200(芜).若该人在B公司连续工作10年,则他的工资收入总量为12(b1+b2+•…b10)=301 869(元).故该人应选择在A公司工作.点评最佳方案的选择问题充分体现了数学在生活中的无穷乐趣,•同时也从数学角度诠释了“知识就是力量”,“知识就是财富”的道理.中考真题欣赏例 (2002年长沙市)某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价x元与日销售量y之间有如下关系:x 3 5 9 11y 18 14 6 2(1)在所给的直角坐标系中:①根据提供的数据描出实数对(x,y)对应点;②猜测并确定日销售量y件与日销售单价x元之间的函数关系式,并画出图象.(2)设经营此商品的日销售利润为P元,根据日销售规律:①试求出日销售利润p元与日销售单价x元之间的函数关系式,•并求出日销售单价x为多少元时,才能获得最大日销售利润?试问:日销售利润p是否存在最小值?若有,试求出,若无,试说明理由;②在给定的直角坐标系中,画出日销售利润p元与日销售单价x•元之间的函数图象,观察图象,写出x与p的取值范围.解析 (1)①准确描出四点位置.②猜测它是一次函数y=kx+b.由两点(3,18),(5,14)代入上式求得k=-2,b=24,则有y=-2x+24.(9,6),(11,2)代入同样满足,∴所求函数关系式为y=-2x+24.由实际意义知,所求函数关系式为y=-•2x+24(0≤x<12)和y=0(x≥12).(2)①p=xy-2y,即p=y(x-2)=(24-2x)(x-2)=-2x2+28x-48=-2(x-7)2+50.当x=7时,日销售利润最大值50元.当x>12时,此时无人购买,故此时利润p=0(x≥12).由实际意义知,当销售价x=0即亏完本卖出,此时利润p=-48,即为最小值;②据实际意义有:0≤x<2时,亏本卖出.当x=2或x=12时,利润p=0.当x>12时,即高价卖出,无人购买,p=0.故作出图象,图(20-2)由图象知,x≥0,-48≤p≤50.竞赛样题展示例 (1998年“祖冲之杯”初中数学邀请赛)某商店将进货价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理在市场上做了一番调查后发现,•若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销售量就增加10个,•为获得每日最大利润,此商品售价应定为多少元?解析设商品每个售价x元,每日利润为y元,则当x>18时,y=[60-5(x-18)](x-10)=-5(x-20)2+500,即在商品提价时,提到20元时,y max=500元;当x<18时,y=[60+10(18-x)](x-10)=-10(x-17)2+490.即在商品降价时,降到17元时,y max=490元 .综上可得,此商品售价定为20元时,才能获得每日最大利润.点评本题首先应搞清题目的意思,设未知数,转化为函数问题,•因为售价的上升或下降,利润的情况是不一样的,故应分情况讨论.全能训练A级1.某移动通讯公司开设了两种通讯业务,“全球通”:使用者先缴50元月租费,•然后每通话1min,再付话费0.4元;“快捷通”:不缴月租费,每通话1min,付话费0.•6元(本题通话均指市内话话).若一个月内通话xmin,两种方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式;(2)一个月内通话多少分钟,两种通讯费用相同?(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些?2.某旅行社有客房120间,每间房的日租金为50元,每天都客满.旅行社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则客房每天出租后会减少6间,不考虑其他因素,旅社将每间客房将日租金提高到多少元时,客房日租金的总收入最高?比装修前日租金总收入增加多少元?3.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,那么经销这种商品原来的利润率是多少?A级(答案)1.(1)y1=0.4x+50,y2=0.6x;(2)令y1=y2,0.4x+50=0.6x,则x=250;故每一个月内通话250min,通讯费用相同.(3)全球通合算些.2.设每间房的日租金提高x个5元,日租金总收入为y,则y=(50+5x)(120-6x)即y=-30(x-5)2+6 750当x=5时,y max=6 750.∴日租金总收入多6 750-120×50=750(元)3.17%.B级1.某环形道路上顺时针排列着4所中学:A1,A2,A3,A4,它们顺次有彩电15台,8台,5台,12台.为使各校的彩电数相同,允许一些中学向相邻中学调出彩电.问怎样调配才能使调出的彩电台数最小?并求调出彩电的最小总台数.2.某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器,彩电、冰箱共360台,且冰箱至少生产60台,•已知生产这些家电产品每问:,•最高产值是多少?B级(答案)1.设A1中学调给A2彩电x1台(若x1<0,则认为是A2,向A1调出│x1│台),A2中学调给A3彩电x2台,A3调给A4x3台,A4调给A1x4台.因为共有40台彩电,平均每校10台,•因此,15-x1+x4=10,8-x2+x1=10,5-x3+x2=10,12-x4+x3=10,得x4=x1-5,x1=x2+2,x2=x3+5,x3=x4-2,x3=(x1-5)-2=x1-7,x2=(x1-7)+5=x1-2.本题即求y=│x1│+│x2│+│x3│+│x4│=│x1│+│x1-2│+│x1-7│+│x1-5│的最小值,其中x1是满足-8≤x1≤15的整数.设x1=x,并考虑定义在-8≤x≤15•上的函数:y=│x│+│x-2│+│x-7│+│x-5│, 当2≤x≤5时,y取最小值10,即当x1=2,3,4,5时,│x1│+│x1-2│+│x1-7│+│x1-5│取到最小值10.从而调出彩电的最小台数为10,调配方案有如下4种:2.设3种家电数量分别为x,y,z台,则各自的工时数、产值数、工时总数、•产值总数如下表所示.家电名称空调彩电冰箱总数台数x y z x+y+z=360(z≥60)工时数12x13y14z12x+13y+14z=120产值(千元) 4x 3y 2z A=4x+3y+2z ∵工时总数=12x+13y+14z=112(6x+4y+3z)=14(x+y+z)+112(3x+y)=14×360+112(3x+y)=90+112(3x+y)总产值数A=4x+3y+2z=2(x+y+z)+(2x+y) =2×360+(2x+y)=720+(2x+y)由300,190(3)120,12720(2)720(3).x yx yA x y x y x+≤⎧⎫⎪⎪⎪⎪++=⎨⎬⎪⎪=++=++-⎪⎪⎩⎭⇒A=1 080-x≤1 050.当总产值A取到最大值1 050时, x=30,y=270,z=60.。

《数学建模》试卷及答案_高中数学选择性必修第三册_人教A版_2024-2025学年

《数学建模》试卷及答案_高中数学选择性必修第三册_人教A版_2024-2025学年

《数学建模》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、一个长方体的长、宽、高分别为3, 4, 5,求其体积。

A、60B、20C、12D、92、在建立数学模型时,以下哪种方法通常用于确定数学模型的形式?()A. 观察法B. 理论分析法C. 统计分析法D. 模拟法3、在建立数学模型的过程中,以下哪个步骤不是必须的?A、收集数据B、提出假设C、建立方程D、验证模型4、某中学数学建模小组对某一社区的家用车流量进行了模型分析。

若该社区每小)],其中(t)时通过的家用车流量(单位:辆/h)满足以下关系:[f(t)=100+5sin(πt12(单位:小时)是从12:00开始的时间,那么该社区15:00至16:00之间通过的家用车流量估计为多少辆?A、105B、103C、101D、995、在数学建模过程中,以下哪种方法被用于解决实际问题中的系统优化问题?A. 逻辑推理法B. 据统计法C. 线性规划法D. 递归分析法6、某工厂生产某种产品,已知每生产x件产品,需要原材料费1000元,生产成本每件30元。

若工厂以每件50元售出,问工厂至少要生产多少件产品才能保证不亏损?A)25件B)30件C)35件D)40件7、(2019·江苏卷)某校学生在校参加社团活动的频率与每周用于社团活动的平均时间如下表所示:次数1次2次3次4次5次及5次以上时间(小时) 5.5810.51317根据上述数据,若该生下周参加1次社团活动,则其下周用于社团活动的平均时间为 ______ 小时。

A. 9B. 10C. 11D. 128、某城市出租车计费规则如下:起步价为10元,包含前3公里;超过3公里后,每增加1公里加收2元,不足1公里按1公里计算。

若乘客乘坐出租车行驶了x公里(x > 3),则乘客应付的车费y(元)与行驶距离x(公里)之间的函数关系式为:A. y = 10 + 2(x - 3)B. y = 10 + 2xC. y = 2x - 6D. y = 12 + 2(x - 3)二、多选题(本大题有3小题,每小题6分,共18分)1、(5分)以下关于数学建模的说法中,正确的是:A. 数学建模是一种将实际问题转化为数学问题的过程B. 数学建模只适用于数学专业,其他专业无需涉及C. 数学建模需要运用数学知识、计算机技术以及实际应用背景D. 数学建模的目的是为了找到问题的最优解2、某市计划在城市中心建立一个大型公园,以提高市民的生活质量。

(完整版)数学建模模拟试题及答案

(完整版)数学建模模拟试题及答案

数学建模模拟试题及答案一、填空题(每题 5 分,共 20 分)1.一个连通图能够一笔画出的充分必要条件是.2. 设银行的年利率为 0.2,则五年后的一百万元相当于现在的万元.3. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:(1) 参加展览会的人数n; (2)气温T 超过10o C;(3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为 .4. 如图一是一个邮路,邮递员从邮局 A 出发走遍所有 A长方形街路后再返回邮局 .若每个小长方形街路的边长横向均为 1km,纵向均为 2km,则他至少要走 km .二、分析判断题(每题 10 分,共 20 分)1. 有一大堆油腻的盘子和一盆热的洗涤剂水。

为尽量图一多洗干净盘子,有哪些因素应予以考虑?试至少列出四种。

2. 某种疾病每年新发生 1000 例,患者中有一半当年可治愈 .若 2000 年底时有1200 个病人,到 2005 年将会出现什么结果?有人说,无论多少年过去,患者人数只是趋向 2000 人,但不会达到 2000 人,试判断这个说法的正确性 .三、计算题(每题 20 分,共 40 分)1. 某工厂计划用两种原材料A, B 生产甲、乙两种产品,两种原材料的最高供应量依次为 22 和 20 个单位;每单位产品甲需用两种原材料依次为 1 、1 个单位,产值为 3 (百元);乙的需要量依次为 3、1 个单位,产值为 9 (百元);又根据市场预测,产品乙的市场需求量最多为 6 个单位,而甲、乙两种产品的需求比不超过 5: 2,试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由 .(2) 原材料的利用情况 .2. 两个水厂A1 , A2将自来水供应三个小区B1 , B2 , B3 , 每天各水厂的供应量与各小区的需求量以及各水厂调运到各小区的供水单价见下表 .试安排供水方案,使总供水费最小?四、 综合应用题(本题 20 分)某水库建有 10 个泄洪闸,现在水库的水位已经超过安全线,上游河水还在不断地流入 水库.为了防洪,须调节泄洪速度 .经测算,若打开一个泄洪闸, 30 个小时水位降至安全线, 若打开两个泄洪闸, 10 个小时水位降落至安全线 .现在,抗洪指挥部要求在 3 个小时内将水 位降至安全线以下,问至少要同时打开几个闸门?试组建数学模型给予解决 .注:本题要求按照五步建模法给出全过程 .小区 单价/元水厂A1A供应量 / t170B34B11 07 1B26数学建模 06 春试题模拟试题参考解答一、填空题(每题 5 分,共 20 分)1. 奇数顶点个数是 0 或 2;2. 约 40.1876 ;3. N = Kn(T10) / p, (T > 10 0 C), K 是比例常数; 4. 42.二、分析判断题(每题 10 分,共 20 分)1. 解: 问题与盘子、水和温度等因素直接相关,故有相关因素:盘子的油腻程度,盘子的温度,盘子的尺寸大小;洗涤剂水的温度、浓度; 刷洗地点 的温度等.注:列出的因素不足四个,每缺一个扣 2.5 分。

数学建模答案与解析

数学建模答案与解析

数学建模答案与解析第一章第四题1.4.1 问题分析该题是一个销售问题,目标是求最大利润。

因此该题的关键是做出合理假设并设出未知参数并写出利润表达式。

然后根据限制条件,列出约束方程。

再利用Matlab 软件,解出该题最优解即可。

1.4.2 问题假设① 在设备有效台时范围内,满负载费用平均分配给时间数,记为平均小时费用;② 每个设备在生产过程中不会出错,不产生维修;③ 生产出的所有产品都会全部卖出去; 1.4.3 符号规定①z 表示该厂的利润;②ij x 表示第i 种设备生产第j 种产品的产品数;③i f 表示第i 种设备的平均小时费用;④i m 表示第i 、k 种设备有效台时;⑤ij t 表示第i 种设备生产j 种单位产品所需时间;⑥ j p 表示生产第种产品,除去原料费之后的单位毛盈利。

1.4.4 模型的建立每种产品要求必须通过A 、B 两道工序,得5141311211x x x x x ++=+ 322212x x x =+ 4323x x =每种设备不能超过其有效台时,因此得i j ij ijm t x≤∑=3*( i =1、2、3、4、5)由于每个产品必须由A 、B 两道工序才能完成,因此经过任一工序的所有产品数与总的产品数相同。

因此,在计算总收入时,就用某一工序加工产品总数即可。

这里选用A 工序。

故所得的最大利润为max j i j ijp xz *2131∑∑===-ii i j ij ijf t x∑∑==5131**因此,模型的简化如下:5143413231232221121165.00696.15526.015.1625.09148.13611.17753.0 15.175.0max x x x x x x x x x x z +++++++++=5141311211x x x x x ++=+ 322212x x x =+ 4323x x =i j ij ijm t x≤∑=31* ( i =1 2 3 4 5)0≥ij x1.4.5 利用Matlab 解得结果如下,源程序见附件一..t s 51732458850003245002300120051434132312322211211=== =======x x x x x x x x x x总的利润为1147元 1.4.6 问题改进在该题做的过程中,超负荷费用安排的不合理。

专科数学建模竞赛试题及答案

专科数学建模竞赛试题及答案

专科数学建模竞赛试题及答案试题:某工厂生产一种产品,该产品由三个不同的生产阶段组成,每个阶段的生产效率和成本不同。

第一阶段的生产效率为每小时生产10个单位,成本为每个单位5元;第二阶段的生产效率为每小时生产8个单位,成本为每个单位6元;第三阶段的生产效率为每小时生产6个单位,成本为每个单位7元。

假设工厂每天工作8小时,并且每个阶段的生产能力是独立的。

问题一:如果工厂希望每天生产至少100个单位的产品,那么每个阶段每天至少需要生产多少单位?问题二:在满足问题一的条件下,工厂每天的生产成本是多少?问题三:如果工厂希望降低生产成本,但每天至少需要生产100个单位的产品,那么每个阶段的生产效率需要提高多少?答案:问题一解答:为了满足每天至少生产100个单位的产品,我们可以设第一阶段每天生产x个单位,第二阶段生产y个单位,第三阶段生产z个单位。

根据题目条件,我们有以下方程组:\[ x + y + z \geq 100 \]\[ \frac{x}{10} + \frac{y}{8} + \frac{z}{6} \leq 8 \]解这个方程组,我们可以得到第一阶段至少需要生产40个单位(因为40是10的倍数且满足总生产量至少100的条件),第二阶段至少需要生产24个单位(因为24是8的倍数且满足总生产量至少100的条件),第三阶段至少需要生产33个单位(因为33是6的倍数且满足总生产量至少100的条件)。

问题二解答:在问题一的基础上,我们可以计算每天的生产成本。

第一阶段的成本为40单位 * 5元/单位 = 200元,第二阶段的成本为24单位 * 6元/单位 = 144元,第三阶段的成本为33单位 * 7元/单位 = 231元。

因此,每天的总生产成本为200元 + 144元 + 231元 = 575元。

问题三解答:为了降低生产成本,我们需要提高每个阶段的生产效率。

假设第一阶段的生产效率提高到每小时生产a个单位,第二阶段提高到每小时生产b个单位,第三阶段提高到每小时生产c个单位。

数学建模题目及答案解析

数学建模题目及答案解析

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。

试作合理的假设并建立数学模型说明这个现象。

(15分) 解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。

当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。

由假设(1),()f θ,()g θ均为θ的连续函数。

又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。

不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。

作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。

数学建模期末试题及答案

数学建模期末试题及答案

数学建模期末试题及答案1. 题目描述这是一份数学建模期末试题,包含多个问题,旨在考察学生对数学建模的理解和应用能力。

以下是试题的具体描述及答案解析。

2. 问题一某城市的交通流量与时间呈周期性变化,根据历史数据,可以得到一个交通流量函数,如下所示:\[f(t) = 100 + 50\sin(\frac{2\pi}{24}t)\]其中,t表示时间(小时),f(t)表示交通流量。

请回答以下问题:a) 请解释一下该函数的含义。

b) 根据该函数,该城市的最大交通流量是多少?c) 在哪个时间段,该城市的交通流量较低?【解析】a) 该函数表示交通流量f(t)随时间t的变化规律。

通过观察函数,可以发现交通流量与时间的关系是周期性变化,每24小时一个周期。

函数中的sin函数表示交通流量在周期内的变化,振幅为50,即交通流量的最大值与最小值之差为50。

基准流量为100,表示在交通最不繁忙的时刻,流量为100辆。

b) 最大交通流量为基准流量100辆与振幅50辆之和,即150辆。

c) 交通流量较低的时间段为振幅为负值的时刻,即最小值出现的时间段。

3. 问题二某学校的图书馆借书规则如下:- 学生每次最多可以借5本书,每本书的借阅期限为30天。

- 学生可以在借阅期限结束后进行续借,每次续借可以延长借阅期限30天。

请回答以下问题:a) 一个学生在10天内连续借了3次书,分别是2本、3本和4本,请写出该学生在每次借书后的总借书数。

b) 如果一个学生借了5本书,每本都是在借阅期限后进行续借,借了10年,最后一次续借后,该学生一共续借了几次书?【解析】a) 总的借书数为每次借书的累加和。

学生第一次借2本,总共借书数为2本;第二次借3本,总共借书数为2 + 3 = 5本;第三次借4本,总共借书数为5 + 4 = 9本。

b) 学生每本书借阅期限为30天,10年为3650天,每次借书续借可以延长借阅期限30天。

因此,学生续借次数为10年÷30天= 121次。

数学模型试题及答案解析

数学模型试题及答案解析

数学模型试题及答案解析一、单项选择题(每题3分,共30分)1. 以下哪个不是数学模型的特征?A. 抽象性B. 精确性C. 可验证性D. 复杂性答案:D2. 数学模型的建立通常不包括以下哪个步骤?A. 定义问题B. 收集数据C. 建立假设D. 验证结果答案:D3. 在数学建模中,以下哪个不是模型分析的方法?A. 定性分析B. 数值分析C. 图形分析D. 统计分析答案:D4. 数学模型的验证不包括以下哪项?A. 内部一致性检验B. 与已知结果比较C. 与实验数据比较D. 模型的优化答案:D5. 在数学建模中,以下哪个不是模型的类型?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:D6. 以下哪个是数学模型的典型应用领域?A. 经济学B. 物理学C. 生物学D. 所有以上答案:D7. 数学模型的建立过程中,以下哪个步骤是不必要的?A. 问题定义B. 假设建立C. 模型求解D. 模型展示答案:D8. 数学模型的分析中,以下哪个不是常用的工具?A. 微分方程B. 线性代数C. 概率论D. 量子力学答案:D9. 在数学建模中,以下哪个不是模型的评估标准?A. 准确性B. 可解释性C. 简洁性D. 复杂性答案:D10. 数学模型的建立过程中,以下哪个步骤是至关重要的?A. 问题定义B. 数据收集C. 模型求解D. 模型验证答案:A二、多项选择题(每题5分,共20分)11. 数学模型的建立过程中,以下哪些步骤是必要的?A. 问题定义B. 数据收集C. 模型求解D. 模型验证答案:ABCD12. 数学模型的类型包括以下哪些?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:ABCD13. 数学模型的分析方法包括以下哪些?A. 定性分析B. 数值分析C. 图形分析D. 统计分析答案:ABCD14. 数学模型的验证包括以下哪些?A. 内部一致性检验B. 与已知结果比较C. 与实验数据比较D. 模型的优化答案:ABC三、填空题(每题4分,共20分)15. 数学模型的建立通常包括定义问题、______、建立假设和模型求解四个步骤。

数学建模例题及解析

数学建模例题及解析

例1差分方程——资金的时间价值问题1:抵押贷款买房——从一则广告谈起每家人家都希望有一套(甚至一栋)属于自己的住房,但又没有足够的资金一次买下,这就产生了贷款买房的问题。

先看一下下面的广告(这是1991年1月1日某大城市晚报上登的一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心的是:如果一次付款买这栋房要多少钱呢?银行贷款的利息是多少呢?为什么每个月要付1200元呢?是怎样算出来的?因为人们都知道,若知道了房价(一次付款买房的价格),如果自己只能支付一部分款,那就要把其余的款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说的房子作出决策了。

现在我们来进行数学建模。

由于本问题比较简单无需太多的抽象和简化。

a.明确变量、参数,显然下面的量是要考虑的:需要借多少钱,用记;月利率(贷款通常按复利计)用R记;每月还多少钱用x记;借期记为N个月。

b.建立变量之间的明确的数学关系。

若用记第k个月时尚欠的款数,则一个月后(加上利息后)欠款,不过我们又还了x元所以总的欠款为k=0,1,2,3,而一开始的借款为。

所以我们的数学模型可表述如下(1)c. (1)的求解。

由(2)这就是之间的显式关系。

d.针对广告中的情形我们来看(1)和(2)中哪些量是已知的。

N=5年=60个月,已知;每月还款x=1200元,已知A。

即一次性付款购买价减去70000元后剩下的要另外去借的款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策的困难。

然而,由(2)可知60个月后还清,即,从而得(3)A和x之间的关系式,如果我们已经知道银行(3)表示N=60,x=1200给定时0A。

例如,若R =0.01,则由(3)可算得的贷款利息R,就可以算出053946元。

如果该房地产公司说一次性付款的房价大于70000十53946=123946元的话,你就应自己去银行借款。

数学建模试题(带答案)大全

数学建模试题(带答案)大全

(14 分)
得分
四、(满分 10 分) 雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘
滞系数的量纲[ ]= L1MT 1 1,用量纲分析方法给出速度 v 的表达式.
解:设 v , , , g 的关系为 f ( v , , , g ) =0.其量纲表达式为
[ v ]=LM0T-1,
学分 5 4 4
4
数据结构
3
5
应用统计
4
6
计算机模拟 3
7
计算机编程 2
8
预测理论
2
9
数学实验
3
所属类别 数学 数学 数学;运筹学
数学;计算机 数学;运筹学
计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
微积分;线性代 数 计算机编程 微积分;线性代 数 计算机编程
应用统计 微积分;线性代 数
由 U 0, U 0 可得到最优价格:
p1
p2
1
T
1
3T
p1 2b [a b(q0
)] 4
P2 2b [a b(q0 4 )]
前期销售量
T、(2 a
0

bp1
)dt
后期销售量
T
T /2 (a p2 )dt
总销售量
Q0
=
aT
bT 2
(
p1
p2 )
在销售量约束条件下 U 的最大值点为
~p1
a b
Q0 bT
T 8
,
P~2
a b
Q0 bT
T 8
7. (1)雨水淋遍全身, s 2(ab bc ac) 2*(1.5*0.5 0.5*0.2 1.5*0.2) 2.2m2

数学建模3D试题及答案

数学建模3D试题及答案

数学建模3D试题及答案
试题:
1. 假设一个立方体的体积为27立方厘米,求其边长。

2. 一个球体的半径为3厘米,求其表面积。

3. 已知一个圆柱体的底面半径为2厘米,高为5厘米,求其体积。

4. 一个长方体的长、宽、高分别为4厘米、3厘米、2厘米,求其对
角线的长度。

5. 一个正四面体的边长为a,求其体积。

答案:
1. 立方体的体积公式为V=a³,其中a为边长。

已知体积V=27立方厘米,所以a³=27,解得a=3厘米。

2. 球体的表面积公式为S=4πr²,其中r为半径。

已知半径r=3厘米,所以S=4π×3²=36π平方厘米。

3. 圆柱体的体积公式为V=πr²h,其中r为底面半径,h为高。

已知
底面半径r=2厘米,高h=5厘米,所以V=π×2²×5=20π立方厘米。

4. 长方体对角线的长度公式为d=√(l²+w²+h²),其中l、w、h分
别为长、宽、高。

已知长l=4厘米,宽w=3厘米,高h=2厘米,所以
d=√(4²+3²+2²)=√(16+9+4)=√29厘米。

5. 正四面体的体积公式为V=(a³√2)/12,其中a为边长。

所以体积V=(a³√2)/12。

建模数学试题及答案

建模数学试题及答案

建模数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是线性方程的标准形式?A. \( ax + by = c \)B. \( ax^2 + by^2 = c \)C. \( ax^3 + by^3 = c \)D. \( ax + by + cz = d \)答案:A2. 函数 \( f(x) = x^2 \) 的导数是什么?A. \( 2x \)B. \( x^2 \)C. \( x \)D. \( 1 \)答案:A3. 以下哪个是二阶微分方程?A. \( y' = 2x \)B. \( y'' = 2x \)C. \( y = 2x \)D. \( y' + y = 2x \)答案:B4. 积分 \( \int x^2 dx \) 的结果是?A. \( \frac{x^3}{3} + C \)B. \( x^3 + C \)C. \( 2x^2 + C \)D. \( 3x^2 + C \)答案:A5. 以下哪个是矩阵?A. \( [a] \)B. \( (a, b) \)C. \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)D. \( \{a, b\} \)答案:C6. 以下哪个是概率论中的随机变量?A. 一个固定的数字B. 一个确定的函数C. 一个可能取不同值的变量D. 一个常数答案:C7. 以下哪个是线性代数中的基本概念?A. 函数B. 微分C. 向量空间D. 积分答案:C8. 函数 \( f(x) = \sin(x) \) 的不定积分是什么?A. \( -\cos(x) + C \)B. \( \cos(x) + C \)C. \( \sin(x) + C \)D. \( \tan(x) + C \)答案:B9. 以下哪个是微分方程?A. \( y = 2x \)B. \( y' = 2x \)C. \( y'' = 2x \)D. \( y''' = 2x \)答案:B10. 以下哪个是统计学中的基本概念?A. 函数B. 微分C. 样本D. 积分答案:C二、填空题(每题2分,共20分)1. 线性方程 \( ax + by = c \) 的斜率是 _______。

原题目:数学建模竞赛题目与解答

原题目:数学建模竞赛题目与解答

原题目:数学建模竞赛题目与解答
数学建模竞赛是一个经典的竞赛形式,旨在测试参赛者对数学
问题的理解和解决能力。

本文将介绍一些常见的数学建模竞赛题目
及其解答。

1. 题目:某公司需要根据过去的销售数据预测未来一年的销售额。

已知过去5年销售额的数据如下:(省略数据)
解答:为了预测未来一年的销售额,可以使用回归分析的方法。

首先,将过去的销售额数据作为自变量,时间作为因变量,建立回
归模型。

然后,利用该模型来预测未来一年的销售额。

2. 题目:某城市的交通拥堵问题日益严重,如何合理规划道路
网以减轻交通压力?
解答:为了合理规划道路网以减轻交通压力,可以使用网络优
化的方法。

首先,建立该城市的交通网络模型,包括各个道路的长度、拥堵情况等参数。

然后,通过优化算法,确定最佳的道路规划
方案,以减轻交通压力。

3. 题目:某餐厅需要确定每个菜品的最佳售价,以最大化利润。

已知每个菜品的成本和销售量如下:(省略数据)
解答:为了确定每个菜品的最佳售价,可以使用价格优化的方法。

首先,将每个菜品的成本和销售量作为参数,建立利润模型。

然后,利用优化算法,确定最佳的售价,以最大化利润。

以上是一些常见的数学建模竞赛题目及其解答。

通过深入理解
和灵活运用数学方法,可以有效解决各种实际问题,提高数学建模
能力。

(完整版)数学建模试卷(附答案)

(完整版)数学建模试卷(附答案)

2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。

二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。

(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。

(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。

2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。

随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。

后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。

谁料,DDT 同样杀死澳洲瓢虫。

结果,介壳虫增加起来,澳洲瓢虫反倒减少了。

试建立数学模型解释这个现象。

3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。

试作合理的假设并建立数学模型说明这个现象。

(15分) 解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设 : (1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D 的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。

当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。

由假设(1),()f θ,()g θ均为θ的连续函数。

又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。

不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为: 已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。

作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。

又由于00()()0f g θθ=,故必有00()()0f g θθ==,证毕。

2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。

学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。

(15分)解:按各宿舍人数占总人数的比列分配各宿舍的委员数。

设:A 宿舍的委员数为x 人,B 宿舍的委员数为y 人,C 宿舍的委员数为z 人。

计算出人数小数点后面的小数部分最大的整数进1,其余取整数部分。

则x+y+z=10; x/10=235/1000;y/10=333/1000;z/10=432/1000;0x100y10,x,y,z为正整数;0z10解得:x=3y=3z=43.一饲养场每天投入5元资金用于饲料、设备、人力,估计可使一头80公斤重的生猪每天增加2公斤。

目前生猪出售的市场价格为每公斤8元,但是预测每天会降低0.1元,问该场应该什么时候出售这样的生猪可以获得最大利润。

(15分)解:设在第t天出售这样的生猪(初始重80公斤的猪)可以获得的利润为z元。

每头猪投入:5t元产出:(8-0.1t)(80+2t)元利润:Z = 5t +(8-0.1t)(80+2t)=-0.2 t^2 + 13t +640=-0.2(t^2-65t+4225/4)+3405/4当t=32或t=33时,Zmax=851.25(元)因此,应该在第32天过后卖出这样的生猪,可以获得最大利润。

4. 一奶制品加工厂用牛奶生产A1,A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2。

根据市场需求,生产的A1,A2全部能售出,且每公斤A1获利24元,每公斤A2获利16元。

现在加工厂每天能得到50桶牛奶的供应,每天工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤A1,设备乙的加工能力没有限制。

(1)试为该厂制订一个生产计划,使每天获利最大。

(2)33元可买到1桶牛奶,买吗?(3)若买,每天最多买多少?(4)可聘用临时工人,付出的工资最多是每小时几元? (5)A1的获利增加到30元/公斤,应否改变生产计划?(15分)解:设:每天生产将x桶牛奶加工成A1,y桶牛奶加工成A2,所获得的收益为Z元。

加工每桶牛奶的信息表:(1)x+y<=5012x8y48003x100y0Z=24*3x + 16*4y=72x+64y解得,当 x=20,y=30时, Zmax=3360元则此时,生产生产计划为20桶牛奶生产A1,30桶牛奶生产A2。

(2)设:纯利润为W元。

W=Z-33*(x+y)=39x+31y=3360-33*50=1710(元)>0则,牛奶33元/桶可以买。

(3)若不限定牛奶的供应量,则其优化条件变为:12x8y48003x100y0W=39x+31y解得,当x=0,y=60时, Wmax=1860元则最多购买60桶牛奶。

(4) 若将全部的利润用来支付工人工资,设工资最高为n元。

n=Wmax/480=3.875(元)(5)若A1的获利为30元,则其优化条件不变。

Z1=90x+64y解得,当x=0,y=60时,Z1max=3840(元)因此,不必改变生产计划。

5. 在冷却过程中,物体的温度在任何时刻变化的速率大致正比于它的温度与周围介质温度之差,这一结论称为牛顿冷却定律,该定律同样用于加热过程。

一个煮硬了的鸡蛋有98℃,将它放在18℃的水池里,5分钟后,鸡蛋的温度为38℃,假定没有感到水变热,问鸡蛋达到20℃,还需多长时间?(15分)解:题意没有感到水变热,即池水中水温不变。

设:鸡蛋的温度为T,温度变化率就是 dT/dt 其中t为时间,水的温度为T1,则鸡蛋与水温差为 T-T1 由题意有:T- T1=kdT/dt (其中k为比例常数) (1)方程(1)化为: dt=kdT/(T- T1)(2)对(2)两边同时积分之后并整理一下就得到:t=k*ln(T- T1)+C则 k*ln(98-18)+ C=05=k*ln(38-18)+ck5ln20ln80t1=k*ln(20-18)+c-[k*ln(38-18)+c]=8.3(min)所以,还需8.3(min)。

6. 报童每天清晨从报社购进报纸零售,晚上将没有卖完的报纸退回。

设每份报纸的购进价为,零售价为,退回价为,应该自然地假设。

这就是说,报童售出一份报纸赚,退回一份报纸赔。

报童如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。

请你为报童筹划一下,他应该如何确定每天购进报纸的数量,以获得最大的收入。

(15分)解:设:报纸具有时效性每份报纸进价b元,卖出价a元,卖不完退回份报纸c元。

设每日的订购量为n,如果订购的多了,报纸剩下会造成浪费,甚至陪钱。

订的少了,报纸不够卖,又会少赚钱。

为了获得最大效益,现在要确定最优订购量n。

n的意义。

n是每天购进报纸的数量,确定n一方面可以使报童长期以内拥有一个稳定的收入,另一方面也可以让报社确定每日的印刷量,避免纸张浪费。

所以,笔者认为n的意义是双重的。

本题就是让我们根据a、b、c及r来确定每日进购数n。

基本假设1、假设报童现在要与报社签定一个长期的订购合同,所以要确定每日的订购量n。

2、假设报纸每日的需求量是r,但报童是一个初次涉足卖报行业的菜鸟,毫无经验,无法掌握需求量r的分布函数,只知道每份报纸的进价b、售价a及退回价c。

3、假设每日的定购量是n。

4、报童的目的是尽可能的多赚钱。

建立模型应该根据需求量r确定需求量n,而需求量r是随机的,所以这是一个风险决策问题。

而报童却因为自身的局限,无法掌握每日需求量的分布规律,已确定优化模型的目标函数。

但是要得到n值,我们可以从卖报纸的结果入手,结合r与n的量化关系,从实际出发最终确定n值。

由常识可以知道卖报纸只有赚钱、不赚钱不赔钱、赔钱会有三种结果。

现在用简单的数学式表示这三种结果。

1、赚钱。

赚钱又可分为两种情况:①r>n,则最终收益为(a-b)n (1)②r<n,则最终收益为(a-b)r-(b-c)(n-r)>0整理得:r/n>(b-c)/(a-c) (2)2、由(2)式容易得出不赚钱不赔钱。

r/n=(b-c)/(a-c) (3)3、赔钱。

r/n<(b-c)/(a-c) (4)模型的求解首先由(1)式可以看出n与最终的收益呈正相关。

收益越多,n的取值越大。

但同时订购量n又由需求量r约束,不可能无限的增大。

所以求n问题就转化成研究r与n的之间的约束关系。

然后分析(3)、(4)两式。

因为(3)、(4)分别代表不赚钱不赔钱及赔钱两种情况,而我们确定n值是为了获得最大收益,所以可以预见由(3)、(4)两式确立出的n值不是我们需要的结果,所以在这里可以排除,不予以讨论。

最后重点分析(2)式。

显然式中r表需求量,n表订购量,(b-c)表示退回一份儿报纸赔的钱。

因为(a-c)无法表示一个显而易见的意义,所以现在把它放入不等式中做研究。

由a>b>c,可得a-c>a-b,而(a-b)恰好是卖一份报纸赚得的钱。

然后采用放缩法,把(2)式中的(a-c)换成(a-b),得到r/n<(b-c)/(a-b) (5)不等式依然成立。

由(5)式再结合(1)式可知收益与n正相关,所以要想使订购数n的份数越多,报童每份报纸赔钱(b-c)与赚钱(a-b)的比值就应越小。

当报社与报童签订的合同使报童每份报纸赔钱与赚钱之比越小,订购数就应越多。

7. 谈谈你对数学建模的认识,你认为数学建模过程中哪些步骤是关键的。

(10分)简单地说:数学模型就是对实际问题的一种数学表述。

具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。

更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。

数学结构可以是数学公式,算法、表格、图示等。

数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。

数学建模的几个过程1 模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。

用数学语言来描述问题。

2 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

相关文档
最新文档