静止补偿器
静止无功补偿器TCR+TSC设计研究
感谢您的观看
汇报人:XX
控制系统软件设计
控制系统软件设计概述 控制系统软件设计流程 控制系统软件设计关键技术 控制系统软件设计实例分析
TCR+TSC的仿真 与实验验证
仿真模型的建立
仿真模型的构建方 法
仿真模型的参数设 置
仿真模型的验证过 程
仿真模型的结果分 析
仿真结果分析
仿真模型的建立 与验证
TCR+TSC控制策 略的仿真结果
控制系统的组成
控制系统硬件:包括主控制器、驱动电路、晶闸管阀组等 控制系统软件:用于实现控制算法和逻辑控制 通讯系统:实现控制系统与上级控制系统的数据交换和信息交互 保护系统:对系统进行过流、过压、欠压等保护
控制策略的选取
选取依据:系统稳定性、动态响应速度、无功补偿效果等 常见控制策略:PID控制、模糊控制、神经网络控制等 控制策略实现方式:通过控制器对TCR和TSC进行实时控制 控制策略的优化:根据实际运行情况对控制策略进行调整和优化
TCR+TSC的设计 原理
TCR的设计原理
静止无功补偿器 TCR+TSC的组成
TCR的工作原理
TCR的控制策略
TCR的应用场景
TSC的设计原理
TSC采用基于 磁通补偿原理 的无功补偿技
术
TSC通过控制 晶闸管的导通 角来调节无功 电流的大小和
方向
TSC具有响应 速度快、调节 范围广、运行
稳定等优点
实验结果与仿真 结果的对比分析
性能评估与优化 建议
实验验证方案
实验目的:验证 TCR+TSC在静 止无功补偿器中 的性能表现
实验设备: TCR+TSC装置、 可编程电源、测 量仪表等
静止无功补偿器((TCR+FC)SVC)
SVC-技术参数
项目 电网电压(kV) TCR 额定功率(Mvar) 晶闸管阀组结构 晶闸管冷却方式
晶闸管型式
触发方式 控制系统 控制方式 无功调节范围 调节方式 调节系统响应时间 噪声水平 辅助电网供电电压 使用期限
规格
6
10 27.5
35 66
6-300
组架开放式
热管自冷、水冷却
电触发晶闸管(ETT)或 光控晶闸管(LTT)
--------------------------------------------------------------------------◆ 轧机
轧机及其他工业对称负载在工作中所产生的无功冲击会对电网造成如下影响: ■引起电网电压降及电压波动,严重时使电气设备不能正常工作,降低了生产效率 ■使功率因数降低 ■负载的传动装置中会产生有害高次谐波,主要是以 5、7、11、13 次为代表的奇次谐波及旁频,会使电网 电压产生严重畸变
◆ 先进的全数字控制系统
系统响应时间小于 10 ms 分相调节 自诊断 远程监控 ---------------------------------------------------------------------------
◆ 国内唯一的高压全载检测试验成套技术
72 小时高压全载动态连续运行成套试验检测技术 SCR 阀组成套试验技术 满足 IEC61954 要求
◆ 高可靠的 SVC 可控硅阀技术
直挂于 6 KV,10KV,35KV 系统 标准组架式结构 SCR 合理冗余设计 高效热管冷却和全密闭纯水冷却 光电触发和光触发 ---------------------------------------------------------------------------
静止无功补偿器(SVC)简介10
主要性能及特点
友好的人机界面
运行人员监视控制主回路界面
主要性能及特点
友好的人机界面
TCR回路监视界面
主要性能及特点
友好的人机界面
控制方式选择及参数设置界面
主要性能及特点
友好的人机界面
水冷系统监监视界面
主要性能及特点
友好的人机界面
手动触发录波及主机监控界面
主要性能及特点
友好的人机界面
工程应用之一
安装SVC稳定供电电压的好处
提高系统的静稳定、动稳定和暂态稳定储备 过低的电压通常是重负荷或供电容量短缺造成的,低电压供电会使 负荷运行性能变坏,对于感应电机负荷,这种情况尤其明显。 过高的供电电压可能导致变压器激磁饱和,增加损耗。同时,对设 备绝缘也极为不利。 对于雷击等异常原因引起的暂态过电压,SVC具有瞬时吸收无功、抑 制该类暂态过电压的功能。 经系统仿真验证,在该站10kV I母上安装17Mvar的SVC。
不同触发角度下的TCR电流波形
工作原理
TCR 关断
TCR 开通 TCR 阀组电压以及电流随触发角变化的波形
主要构成
主要构成
降压变压器(根据需要) 开关柜 线性(空心)电抗器 电容器组/滤波器组
主要构成
晶闸管阀组 纯水冷却系统
晶闸管阀组 水风冷却系统
水水冷却系统
纯水冷却系统
目前被最广泛使用的SVC,主要是TCR+BSC(FC)形式。
概述
应用领域
电网
输电系统 配电网 风力发电
工业用户
冶金:电弧炉、精炼炉 钢铁:轧钢机 电气化铁路:牵引站 化工:工业研磨机、电解电源 采矿:矿石提升机械 港口:海港起重机 重型加工业:大型木材加工机械、大型焊接机械
静止无功补偿器
静止无功补偿器
静止无功补偿器(Static Var Compensator,SVC)是一
种电力系统中用来补偿无功功率的装置。
它通过改变电流
的相位和大小来调整电力系统中的无功功率,以维持系统
的电压稳定。
静止无功补偿器主要由功率电子器件(比如可控硅和可控
开关等)、电力电容器以及控制系统组成。
当系统的无功
功率不平衡或者电压波动时,静止无功补偿器能够通过控
制电容器的电压和电流来实现电力系统的无功功率的调节。
静止无功补偿器在电力系统中的应用可以提高电力系统的
稳定性和可靠性,并且可以减少系统的无功损耗和电压波动。
它可以用于电力变电站、输电线路、大型工业用电系
统等场合。
静止无功补偿器是电力系统中的重要设备,它可以有效地改善电力系统的无功功率问题,提高电力系统的运行效率和稳定性。
并联静止补偿器SVC和STATCOM
可控并联补偿能有效支撑电压,提高输电能力,增强 暂态稳定性。 中点电压调节能显著提高暂态稳定裕度。 实际并联补偿器容量问题。
7
1 并联补偿目的4:阻尼功率振荡
电力系统欠阻尼,小扰动导 致整个机电系统乃至输电功 率振荡。 阻尼功率振荡:发电机加 速,需增大输电功率;发电 机减速,需减小输电功率。 容性无功为正,感性无功为 负,Bang-Bang工作模式与 连续可调工作模式。
15
V 4 sin cosn n cos sin n I Ln 2 n n 1 L
2 可控无功产生方法:变阻抗型(TCR、TSR)
方法1:m 个TCR并 联,其中 1个触发 延迟角控 制,其它 TSR开关 顺序控制
2 可控无功产生方法:变阻抗型(FC+TCR)
同步定时 电路: PLL; 把无功电 流(导纳) 变换为触 发角:模 拟和数字 方法; 计算所需 的基波电 抗电流; 24
产生SCR触发脉冲:磁耦合或光触发。
2 可控无功产生方法:变阻抗型(FC+TCR)
FC+TCR相当于提供可变的无功导纳,产生可变的无功补偿电流,其V -I工作区见上图,同样受电压、电流耐量的限制; 动态性能与TCR的触发角控制有关,存在传输延时Td; 单相TCR,平均传输延时Td=T/2,三相6脉冲TCR,平均传输延时Td= T/3,三相12脉冲TCR,平均传输延时Td=T/6 。 1 Td s 25 G s ke k 1 Td s
8
1 并联补偿目的:对补偿器的要求
在所有工况下,补偿器都必须与交流电力系统同步 运行,故障清除时,补偿器必须能立即再次捕获同 步运行; 补偿器必须能按照系统要求进行电压调节以支撑端 电压、提高暂态稳定性、阻尼功率振荡; 双机系统的最佳无功补偿位置是其中点,而单机系 统的最佳无功补偿位置是其负载端; 不同无功补偿方法的功能特性、响应时间、投资费 用、运行成本、安装要求和损耗各有不同。
4静止无功补偿技术_STATCOM
主要内容无功补偿技术的发展 静止无功补偿器(SVC )技术 静止同步补偿器(STATCOM )技术一、无功补偿技术的发展补偿方式——动态补偿/静态补偿:是从补偿原理上来讲的。
动态补偿是指补偿电流能自动跟随负荷无功电流的变化而连续变化;静态补偿是指补偿容量在相对比较长的一段时期内(譬如1min以上)是固定不变的。
补偿装置——静止补偿器/机械开关式补偿器:是从补偿装置的调节机构来讲的。
静止补偿器(装置)是指补偿装置的调节机构中没有机械运动部件,譬如SVC、SVG、STATCOM等。
一般而言,静止补偿器属于动态补偿。
两个基本概念⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧有源型无源型按原理划分串联型并联型按结构划分基本类型无功补偿装置的基本类型无功补偿技术的进展慢速无功设备快速无功设备第一代机械开关投切断路器延迟MSC/MSR晶闸管相控开关第二代2 -3 周波SVCPWM 调制开关GTO, IGBT, IGCT第三代1-2 周波STATCOM无关有关有关有关补偿性能与系统阻抗较小较高无负荷时较小无负荷时较高功率损耗小大无无谐波发生量平滑调节平滑调节有级投切有级投切补偿方式快较快快慢响应特性+Q LD ~ -Q LD+Q LD ~ -Q LD Q LD ~0Q LD ~0补偿范围Q VSI = Q LDQ C =Q L =Q LDQ C = Q LD Q C = Q LD 额定容量GTO、IGBT 晶闸管晶闸管接触器、断路器开关器件STATCOM TCR型SVC TSC型SVC FC 固定电容器项目无功补偿装置技术性能的比较DSTATCOM 的特点z响应时间快。
受电容器放电时间所限制,自动投切电容器组装置的响应时间需要几秒钟;SVC的响应时间约为20~100ms;STATCOM装置补偿响应时间可达5ms以内,真正实现动态补偿。
抑制电压闪变或跌落。
STATCOM装置可以有效的抑制电压闪变或跌落。
z 连续补偿,功率因数接近于1.0。
静止无功功率补偿器
(a) TCR
(b) TSC
②晶闸管投切电容器(Thyristor Switched Capacitor, TSC),分相调 节、直接补偿、装置本身不产生谐波, 损耗小。在运行时,根据所需补偿电 流的大小,决定投入电容的组数。由 于电容是分组投切的,所以会在电网 中产生冲击电流。为了实现无功电流 尽可能的平滑调节,一是增加电容的 组数,组数越多,级差就越小,但这 又会增加运行成本;二是把握电容器 的投切时间,最佳投切时间是晶闸管 两端电压为零时,一般TSC都是采取过 零投切。
1.静止无功补偿器的简介 2.静止无功补偿器的结构 3.静止无功补偿器的基本应用
目 5.结语 录
4.静止无功补偿器的发展
静止无功补偿器简介
• 静止无功补偿器(Static Var Compensator),是将电容器(及电抗器 支路)与输电线路并接,通常接于开关站或变电所母线,通过晶闸管 控制的无功功率动态补偿,调节母线电压和线路无功功率在所需水平 上,从而提高电力系统稳定性,扩大线路输送容量。 • 静止同步无功补偿器是目前技术最为先进的无功补偿装置。它不再采 用大容量的电容器,电感器来产生所需无功功率,而是通过电力电子 器件的高频开关实现对无功补偿技术质的飞跃,特别适用于中高压电 力系统中的动态无功补偿。
④晶闸管控制高阻抗变压器 (Thyristor Controlled Transformer, TCT),优点与TCR 差不多,但高阻抗变压器制造复 杂,谐波分量也略大一些,由于 有油,要求一级防火,只宜于布 置在一层平面或户外,容量在 30MVar以上时价格较贵,而不能 得到广泛采用。
静止无功补偿发生器
静止无功补偿发生器静止无功发生器,英文描述为:Static V ar Generator,简称为SVG。
又称高压动态无功补偿发生装置,或静止同步补偿器。
是指由自换相的电力半导体桥式变流器来进行动态无功补偿的装置。
SVG是目前无功功率控制领域内的最佳方案。
相对于传统的调相机、电容器电抗器、以晶闸管控制电抗器TCR为主要代表的传统SVC等方式,SVG有着无可比拟的优势。
一、SVG无功补偿装置的应用场合凡是安装有低压变压器地方及大型用电设备旁边都应该配备无功补偿装置(这是国家电力部门的规定),特别是那些功率因数较低的工矿、企业、居民区必须安装。
大型异步电机、变压器、电焊机、冲床、车床群、空压机、压力机、吊车、冶炼、轧钢、轧铝、大型交换机、电灌设备、电气机车等尤其需要。
居民区除白炽灯照明外,空调、冷冻机等也都是无功功率不可忽视的耗用对象。
农村用电状况比较恶劣,多数地区供电不足,电压波动很大,功率因数尤其低,加装补偿设备是改善供电状况、提高电能利用率的有效措施。
二、SVG无功补偿装置与目前国内其他产品相比的优势1、补偿方式:国内的无功补偿装置基本上是采用电容器进行无功补偿,补偿后的功率因素一般在0.8-0.9左右。
SVG采用的是电源模块进行无功补偿,补偿后的功率因素一般在0.98以上,这是目前国际上最先进的电力技术,国内掌握这项技术的目前就我们一家;2、补偿时间:国内的无功补偿装置完成一次补偿最快也要200毫秒的时间,SVG在5-20毫秒的时间就可以完成一次补偿。
无功补偿需要在瞬时完成,如果补偿的时间过长会造成该要无功的时候没有,不该要无功的时候反而来了的不良状况;3、有级无极:国内的无功补偿装置基本上采用的是3—10级的有级补偿,每增减一级就是几十千法,不能实现精确的补偿。
SVG可以从0.1千法开始进行无极补偿,完全实现了精确补偿;4、谐波滤除:国内的无功补偿装置因为采用的是电容式,电容本身会放大谐波,所以根本不能滤除谐波,SVG不产生谐波更不会放大谐波,并且可以滤除50%以上的谐波;5、使用寿命:国内的无功补偿装置一般采用接触器或可控硅控制,造成使用寿命较短,一般在三年左右,自身损耗大而且要经常进行维护。
静止型动态无功补偿器SVC基础知识讲解
7、下列情况补偿装置的投退 (1) 正常情况下,补偿不退出运行。 (2) 当35kV母线电压超过电容器额定电压的1.1倍或者电流超 过额定电流的1.3倍以及电容的环境温度超过55℃时,均应将 其退出运行。 (3) 35kV母线失压后,必须将补偿装置退出运行。 (4)电容器的投退必须使用断路器,电容器退出后需放电 10min,方可重新投入(放电线圈正常)。
8、当补偿装置发生下列情况之一时,应立即退出运行 (1)电容器外壳明显膨胀,喷油,起火或爆炸; (2)电容器套管发生破裂或有闪络放电; (3)电容器内部或放电设备严重异常响声; (4)联接头严重过热或熔化
9、 TCR阀组维护 (1)、除尘 虽然TCR阀组安装在室内,但由于其本身带有高压电,会吸附 空气中的灰尘,所以阀组运行两个月要进行一次清理灰尘,采 用电吹风机除去散热器、电阻、电容,触发机箱、框架等部位 的灰尘。具体步骤如下: a)确认断路器断开。 b)确认TCR阀组停止运行。 c)确认阀组主回路挂接地线。 d)清除灰尘。 e)拆除全部接地线。 f)恢复运行。
(2)、紧固件检查 检查支撑绝缘子安装螺栓的紧固情况。 检查主电路电缆的连接情况,护线软管有无破裂。 检查控制插头的连接情况,插头、插座有无损坏,光纤有无损 坏。 检查阀组框架有无明显裂纹和变形,检视表面的油漆剥落和腐 蚀情况。
(3)、一般故障的处理 一般故障包括电阻故障、电容故障等。 处理步骤如下: 1)确认断路器断开。 2)确认TCR阀组停止运行。 3)确认阀组主回路挂接地线。 4)找到故障的零件进行维修或更换即可。
■空心 ■铝绕组 ■环氧树脂固封 ■空气绝缘 ■自然冷却
3.维护使用以及故障处理
• 1、设备投运 • 确认设备正常及补偿装置断路器处于分闸位; • 依次合上隔离刀闸; • 关好滤波补偿装置门锁; • 确认各种指示和监控正常; • 断路器合闸送电。
静止补偿器——精选推荐
静止补偿器
静止补偿器是近年来发展起来的一种动态无功功率补偿装置。
它是将电力电容器与电抗器并联起来,电容器可发出无功功率,电抗器可吸收无功功率,两者结合起来使用。
通常由电容器、饱和电抗器或线性电抗器、滤波器、晶闸管和专用调节器等静止设备组成,利用可控硅开关来分别控制电容器组与电抗器的投切,这样它的性能完全和同步调相机一样,即可以发出感性无功,又可以发出容性无功,并能依靠自动装置实现快速调节对稳定电压,提高系统的暂态稳定性以及减弱动态过程等均起着较大的作用,因此日益受到重视,不在不断发展与完善之中。
静止补偿器的主要优点是无功调整范围大、投入迅速,动态响应速度快等。
缺点是价格昂贵,上要适用于较大冲击负荷用户的就地补偿和用于电力系统和实现对系统的无功补偿等。
直接电流控制的静止同步补偿器研究的开题报告
直接电流控制的静止同步补偿器研究的开题报告一、选题背景与意义电力系统中,感性负载和非线性负载的广泛存在会导致电力质量问题,如电压波动、谐波和功率因数低等。
静止同步补偿器(Static Synchronous Compensator, SSC)作为常见的智能补偿设备,已被广泛应用于解决这些问题。
然而,传统的SSC补偿控制方法仍存在调试困难、响应速度较慢等问题。
因此,直接电流控制的静止同步补偿器技术研究显得更加迫切。
直接电流控制的静止同步补偿器技术是一种新的补偿控制方法,其主要特点是将控制重心从电压转移到电流,进一步提高了SSC的响应速度和控制精度,实现了更好的电力质量控制效果。
因此,研究直接电流控制的静止同步补偿器技术具有重要的理论和应用价值。
二、研究内容和目标本课题旨在研究直接电流控制的静止同步补偿器技术,并探究其在改善电力质量、提升电力系统稳定性等方面的应用前景。
本研究的具体内容包括:1. 建立直接电流控制的静止同步补偿器的数学模型,分析直接电流控制对SSC的控制精度和响应速度的影响。
2. 设计直接电流控制的静止同步补偿器的控制算法,研究控制策略对SSC的性能提升效果。
3. 利用Matlab/Simulink软件进行仿真实验,验证直接电流控制的静止同步补偿器技术的有效性和可行性,并与传统控制方法进行比较分析。
4. 综合实验结果,分析直接电流控制的静止同步补偿器技术在电力系统中的应用前景。
坚持理论研究与实践相结合,以实现直接电流控制的静止同步补偿器技术应用为最终目标。
三、研究方法与步骤1. 文献调研:对静止同步补偿器技术、控制算法等相关领域的文献、专利和标准等进行系统综述和分析。
2. 建立数学模型:在对目前静止同步补偿器控制方法的研究基础上,建立直流电流控制的静止同步补偿器数学模型。
3. 算法设计:根据建立的数学模型,设计适用于直接电流控制的静止同步补偿器的控制算法,并进行电力质量控制仿真实验。
静止无功补偿器工作原理
静止无功补偿器(STATCOM)是一种用于电力系统中的电力质量控制设备,它可以实时响应电力系统中的无功功率需求变化,通过调节电流的相位和幅值,提供无功功率的动态补偿。
本文将详细解释与静止无功补偿器工作原理相关的基本原理。
1. 无功功率的产生和补偿在电力系统中,无功功率是由电感和电容元件引起的。
电感元件(如电感线圈、变压器等)会产生感性无功功率,而电容元件(如电容器、电缆等)会产生容性无功功率。
这些无功功率会导致电压的波动和不稳定,影响电力系统的运行和电力质量。
静止无功补偿器可以通过控制电流的相位和幅值,实时地调节电力系统中的无功功率,使其与有功功率保持平衡,从而提高电力系统的稳定性和可靠性。
2. 静止无功补偿器的基本原理静止无功补偿器主要由一个直流电压源、一个逆变器以及一个电流控制系统组成。
2.1 直流电压源静止无功补偿器的直流电压源通常由一个直流电压源和一个电容滤波器组成。
直流电压源通过电容滤波器提供稳定的直流电压,用于逆变器的工作。
2.2 逆变器逆变器是静止无功补偿器的核心部件,它将直流电压转换为交流电压,并通过控制电流的相位和幅值来实现无功功率的补偿。
逆变器通常采用可控硅器件(如GTO、IGBT等)作为开关元件,通过不断开关和导通这些器件,可以产生可控的交流电压。
逆变器的工作原理如下:1.通过控制开关器件的导通和开断,逆变器可以产生可控的脉冲宽度调制(PWM)波形。
2.逆变器通过PWM波形控制开关器件的导通时间,从而控制输出电压的幅值。
3.逆变器还通过改变PWM波形的相位,控制输出电压的相位。
2.3 电流控制系统电流控制系统是静止无功补偿器的核心控制部分,它通过检测电力系统中的电流和电压,实时计算出无功功率的补偿需求,并控制逆变器的工作,实现无功功率的动态补偿。
电流控制系统的工作原理如下:1.电流控制系统通过电流传感器和电压传感器实时检测电力系统中的电流和电压。
2.电流控制系统根据检测到的电流和电压信号,计算出电力系统中的无功功率需求。
第五章静止并联补偿器SVC和STATCOM-文档资料
2a
)
实际应用中,电抗器和晶 闸管开关阀承受的最高外 加电压幅值和对应的最大
IL1(a)[p.u] 1 1.0
0.9
0.8
1 1 sin 2a p
0.7
0.6
0.5 IL1(a) 0.4 0.3
1 2 a p
0.2
0.1 0 0 10 20 30 40 50 60 70 80 90a(deg)
故障切除后,发电 pmax
机输出功率大于发电 机的机械输入功率P1, pm 送电端发电机开始减 速,增加的速度在负 转矩的作用下逐渐减 小。
A2 A1
a(故障前) c(故障后) Amarg
b(故障中)
d1 d2 p/2 d3 dcrit
pd
返回 上页 下页
第五章 静止并联补偿器SVC和STATCOM
0.7
0.6
0.5 IL1(a) 0.4
1 2 a p
0.3
0.2
0.1 0 0 10 20 30 40 50 60 70 80 90 a(deg)
返回 上页 下页
第五章 静止并联补偿器SVC和STATCOM
无功导纳BL(a) 随控制角 的变化关系为:
BL
(a
)
1
wL
(1
2
p
a
1
p
sin
0.5
0
0.9超前
0.97超前 单位PF
0.95滞后 0.8滞后
0.5 1.0 1.5 (p.u)
负载端增加无功补偿装置,若采用U-Ur=0的控制
策略,则这个无功补偿可有效增加负载端电压的稳
定性,维持负载端电压的恒定。
返回 上页 下页
静止无功补偿器$静止无功补偿发生器介绍
静止无功补偿器$静止无功补偿发生器介绍SVC & SVG产品简介SVC静止无功补偿器(Static Var Compensator),是一种无功补偿比较科学的方式,能提高电网的功率因数、滤除负荷的谐波、消除三相不平衡电流、改善电网运行电能质量。
基于DSP的全数字控制系统,具有运算速度快、处理数据量大,实现实时控制量计算。
该装置应用于电网,作用为:能实现调相调压功能,提高线路的输送能力,提高稳定运行水平,改善电能质量,提高供电设备的利用率,提高输电效率,改善供电质量,提高输电安全性。
应用于电气化铁路、冶金、炼钢等工业用户,可进行动态无功功率补偿,电压控制,谐波和负序治理,提高用户的生产工效,提高产品质量和降低能耗。
原理:静止无功补偿器是一种没有旋转部件,快速、平滑可控的动态无功功率补偿装置。
它是将可控的电抗器和电力电容器(固定或分组投切)并联使用。
电容器可发出无功功率(容性的),可控电抗器可吸收无功功率(感性的)。
通过对电抗器进行调节,可以使整个装置平滑地从发出无功功率改变到吸收无功功率(或反向进行),并且响应快速。
作用:静止无功补偿器在低压供配电系统中广泛应用于电压调整、改善电压水平、减少电压波动、改善功率因数、抑制电压闪变、平衡不对称负荷,静止无功补偿器配套的滤波器能吸收谐波和减小谐波干扰等。
在超高压输电系统中,静止无功补偿器的作用是提供无功补偿、调整电压,改善系统电压水平,改善电力系统的动态和暂态稳定性,抑制工频过电压等。
SVC目前广泛应用于输电系统和负载无功补偿,其典型代表是晶闸管控制电抗器+固定电容器(TCR+FC)、晶闸管投切电容器(TSC)、以及磁控电抗器+固定电容器(MCR+FC)等。
TCR晶闸管控制电抗器(Thyristor Controlled Reactor),由电抗器及晶闸管等构成,与系统并联并从系统吸收无功功率的静止无功装置。
通过控制晶闸管阀的导通角使其等效感抗连续变化。
配电网静止同步补偿器的理论与技术研究
配电网静止同步补偿器的理论与技术研究一、概述随着电力系统的快速发展和可再生能源的大规模接入,配电网的稳定性和电能质量成为了研究的重点。
配电网的无功功率平衡和电压控制问题尤为突出。
为了有效解决这些问题,配电网静止同步补偿器(DSTATCOM)作为一种先进的无功补偿设备,受到了广泛关注。
DSTATCOM以其快速响应、精确控制和无功功率连续可调等优点,为配电网的电压稳定和电能质量提升提供了有效手段。
本文旨在深入研究和探讨配电网静止同步补偿器的理论与技术。
文章将介绍DSTATCOM的基本原理和结构,包括其主电路拓扑、控制系统以及核心算法等。
文章将重点分析DSTATCOM在配电网中的应用及其所带来的优势,如提高电压稳定性、改善功率因数、减少线路损耗等。
接着,文章将探讨DSTATCOM的控制策略,包括传统的控制方法和现代控制算法,如模糊控制、神经网络控制等,并分析它们在实际应用中的效果。
文章还将关注DSTATCOM的动态性能分析和优化,以提高其响应速度和补偿精度。
文章将总结配电网静止同步补偿器的理论与技术研究现状,并展望未来的发展趋势。
通过深入研究DSTATCOM的理论与技术,有望为配电网的稳定运行和电能质量提升提供有力支持,推动电力系统的可持续发展。
1. 配电网静止同步补偿器(DSTATCOM)的概述配电网静止同步补偿器(DSTATCOM)是一种先进的电力电子设备,主要用于改善配电网的电能质量,提升电网的供电能力和稳定性。
DSTATCOM以其独特的静止同步特性,实现了对配电网无功功率的快速、精确补偿,从而有效解决了配电网中普遍存在的电压波动、功率因数低等问题。
DSTATCOM的核心部件包括大功率绝缘栅双极晶体管(IGBT)构成的电压源型逆变器、直流侧储能元件(如电容器或电池)以及控制系统等。
其工作原理是通过控制系统对逆变器开关状态的控制,实现对配电网无功功率的实时跟踪和补偿。
当配电网中出现无功功率缺额时,DSTATCOM能够迅速提供所需的无功支持,维持电压稳定而当配电网中无功功率过剩时,DSTATCOM则能吸收多余的无功,防止电压过高。
静止同步补偿器的最优控制策略
静止同步补偿器的最优控制策略
静止同步补偿器(STATCOM)的最优控制策略主要包括以下方面:
1.控制对象:应选择合适的控制对象,如电流、电压、无功等。
不同
的控制对象对于实现不同的功率因数调节、电压控制等目标都具有一定的
优势和不足。
2.控制方法:常用的控制方法包括PI控制、模型预测控制(MPC)、
自适应控制等。
应依据具体情况选择合适的控制方法,以最大限度地实现
控制策略的效果。
3.控制策略:不同的控制策略包括电流控制、电压控制、功率因数调
节等,其中电流控制是最常用的策略。
控制策略的选择应根据具体情况,
如静止同步补偿器的用途、电网运行情况、电力系统的特点等,进行综合
考虑。
4.控制变量:静止同步补偿器的控制变量包括输出电流、输出电压、
输出无功等。
应根据不同的控制策略选择合适的控制变量。
5.稳定性分析:在设计控制策略的同时,要考虑到静止同步补偿器的
稳定性问题。
主要包括静止同步补偿器的转子震荡、控制系统的阈值选择、参数的调节等方面。
6.对系统的影响:静止同步补偿器对电力系统的影响是复杂和深远的。
因此,在制定最优控制策略时,还应考虑到它对输电线路、发电机和负荷
等元素的影响。
综上所述,静止同步补偿器的最优控制策略应综合考虑多方面因素。
在确保稳定性的前提下,应选择合适的控制方法和控制策略,通过调节控
制变量实现定、调电压等目标,以实现静止同步补偿器在电力系统中的优化运行。
STATCOM静止无功补偿器
STATCOM静止同步补偿器关键词:静止同步补偿器晶闸管逆变器无功补偿 STATCOM静止同步补偿器(STATCOM)是目前用于电力系统中性能最好的无功补偿装置 ,是柔性交流输电系统的核心。
静止同步补偿器对输电系统的作用,分析了静止同步补偿器的基本工作原理、瞬时无功信号检测方法、以及建了STSTCOM的模型和其仿真图,阐述了静止同步补偿器补偿效果,并提出今后静止同步补偿器技术的发展趋势。
什么是静止同步补偿器静止同步补偿器(Static Synchronous Compensator,STATCOM)应用了新一代的电力电子器件(如门极可关断晶闸管(GateTurn-off Thyristor,GTO)、绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)、集成门极换相型晶闸管(IntegratedGate Commutated Thyristor,IGCT)和现代控制技术(如逆系统、直接反馈线性化等), 具有补偿系统感性和容性无功、提高系统功率因数、改善电能质量、提高电力系统稳定性等多重功能。
STATCOM自问世以来, 就引起各国电力科研和工业界的广泛重视, 得到了迅速发展和应用, 它是目前用于电力系统中性能最好的无功补偿装置,是柔性交流输电系统的核心。
STATCOM在电力系统中的作用是进行无功补偿,维持连接点的电压为给定值,提高系统电压的稳定性,改善系统的稳态性能和动态性能。
STATCOM是基于瞬时无功功率的概念和补偿原理,采用全控型开关器件组成自换相逆变器,辅之以小容量储能元件构成无功补偿装置。
与现有的静止无功补偿装置(SVC)相比,具有调节速度更快、运行范围更宽、吸收无功连续、谐波电流小、损耗低、所用电抗器和电容器容量及安装面积大为降低等优点。
STATCOM对输电系统的作用输电系统是一个互联的弱阻尼系统,系统的负荷和运行状态处于不断变化中,即系统不断地发生扰动,因此很容易出现振荡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 概述静止同步补偿器(Static Synchronous Compensator,STATCOM)是柔性交流输电系统(Flexible AC Transmission System,FACTS)的核心装置和核心技术之一。
在此之前,又称ASVG、SVG、STATCON、ASVC,直至1995 年国际高压大电网会议与电力、电子工程师学会建议采用静止同步补偿器(STATCOM)。
静止同步补偿器采用新一代的电力电子器件,如:门极可关断晶闸管(GTO),绝缘栅双极型晶体管(IGBT),集成门极换向晶闸管(IGCT),并且采用现代控制技术,其在电力系统中的作用是补偿无功,提高系统电压稳定性,改善系统性能。
与传统的无功补偿装置相比,STATCOM 具有调节连续,谐波小,损耗低,运行范围宽,可靠性高,调节速度快等优点,自问世以来,便得到了广泛关注和飞速发展。
我国电力工业发展迅速,其需求将保持持续、快速的增长态势而且需求规模在增大,当前我国电力事业可靠性要求高、实用性强;经济效益突出;节能,环保、高效成为主要趋势。
STATCOM的广泛应用使得电力系统更加稳定高效,符合当今社会电力工程发展趋势。
2 STATCOM 的工作原理2.1 基本工作原理STATCOM大体上分为电压源型和电流源型,在实际应用中大多使用电压源型(采用电压型变换器Voltage-sourced inverter,VSI)。
图1 用以简单说明基于VSI的STATCOM的工作原理。
如图1 所示,STATCOM的主电路结构由直流侧大电容和基于电力电子器件的VSI组成,通过连接电抗接入电力系统。
图中,U1 是在理想情况下(即忽略线路及STATCOM 的损耗)将STATCOM的输出等效为一个可控电压源,US 是系统侧等效成的理想电压源,且两者相位一致。
当U1跃US时,从系统流向STATCOM 的电流相位超前系统电压90°,输出容性无功;同样当U1约US 时,从系统流向STATCOM 的电流滞后系统电压90°,输出感性无功。
当U1 =US 时,系统与STATCOM 之间的电流为零,两者之间没有无功的交换。
这是在理想情况下的工作状态,事实上,US 和U1 一般具有一个角度差,通过控制US和UI就可以调节STATCOM发出或吸收无功的大小。
2.2 STATCOM的分类从理论上可以将STATCOM 分为电压源型和电流源型。
就其电路结构来说,电压源型STATCOM 直流侧并联有大电容,保证在持续充放电或器件换向过程电压不会发生很大的变化,桥侧串联电感,而电流源型STATCOM 则是直流侧串联大电感,保证在器件换向或充放电器件电流不会有大的波动,桥侧并联电感。
如图2所示。
在实际应用中,常用的大容量STATCOM 采用的基本都是电压源型结构。
但是可以将SVG控制为电流源来进行无功补偿[2-3]。
文献[4]提出了一种新的STATCOM 控制策略即采用电压控制电流源(VCCS)的策略和改进的电压控制电压源(VCVS)的策略来补偿电力系统公共连接点(Pointof Common Coupling,PCC)电压不平衡,特别是在较小容量时采用VCCS 方式将能达到最好的补偿效果。
按构成基本单元逆变器模块,可以将STATCOM 分为单相桥二电平,三相桥二电平,三相桥多电平。
在大容量高电压等级的应用场合中,往往需要将多个低压小容量变换器通过变压器耦合(即多重化)[5] 或采用变压器在交流输入输出侧进行升压或降压,这样会产生耗能、谐波含量大、系统效率低等缺点。
而多电平变换器开关器件所承受的电压应力小(如三电平变换器每个开关器件所承受的电压应力是二电平的一半[6]),谐波含量少,损耗降低,因此在大容量场合得到广泛应用和发展。
按构成元器件,可以将STATCOM 分为GTO型,IGBT 型,IGCT 型,SCR 型,GTR 型,MOSFET型。
基于功率变换的FACTS 设备一般都采用全控型器件,主要是在GTO、改进型GTO(IGBT、MTO、ETO 等)和(HV)IGBT等器件中选择。
国际上第一个采用GTO 作为逆变器功率器件的STATCOM,是由美国EPRI 与西屋电气公司研制的,容量依1Mvar。
我国依20Mvar STATCOM和日本关西电力系统Inuyama 开关站依80Mvar STATCOM 均是采用GTO 作为功率器件的。
IGBT 适用于小容量场合,由ABB公司研制的配电STATCOM(Distribution STATCOM,D-STATCOM),开关器件采用多个IGBT串联[7]。
按电压等级,可以将STATCOM 分为高压输电网补偿和低压配电网补偿。
在高压输电网中STATCOM需要通过变压器连接到电网中。
在低压配电网中,通过电抗器并联或直接并联电网,即D-STATCOM。
D-STATCOM的基本工作原理就是将桥式电路通过电抗器或直接并联在电网上,适当调节电路交流侧输出电压的幅值或相位,或者直接控制其交流侧电流就可以使该电路系统收获发出满足要求的无功电流,从而实现动态补偿无功的目的。
另外可以通过脉宽调制采用特定谐波消除的方法来消除特定谐波[8]。
3 控制方式根据控制物理量,可以分为直接电流控制和间接电流控制。
直接电流控制技术就是采用跟踪性PWM 控制技术对电流波形的瞬时值进行反馈控制,直接指令电流的发生,结构简单,电流调节响应快,对扰动的鲁棒性好,但是只适用于中小容量场合,对于大容量场合具有很大的局限性。
间接电流控制,是通过STATCOM 逆变器交流电压极薄的幅值和相位,来间接控制交流侧电流,简单易实现,但动态性能欠佳,适用于大容量STATCOM。
为了减少谐波,在间接电流控制中可以采用多重化、多电平或者PWM技术来改善波形。
STATCOM 装置主电路设计的多重化和链式结构是提高容量的常用技术。
多重化结构就是用几个单相或三相逆变器产生相位相差若干度的方波电压,用变压器将不同相位的方波电压串联在一起,可以有效的提高容量与电压,减少谐波[5,9],但同时也会带来很多问题,诸如价格昂贵,增加了装置损耗和占地面积,并且变压器的铁磁非线性特性也给设计带来了困难。
由ALSTOM公司为英国国家电网公司研制的依75Mvar STATCOM 采用了新型链式结构,摒弃了笨重的多重化变压器。
链式STATCOM 各逆变桥直流电容器是相互独立的,存在电容电压不平衡问题,混合型损耗差异、并联型损耗差异以及输入脉冲延时的不同是造成电容电压不平衡的主要原因[10]。
通过调节逆变桥与系统间的相位差,通过调节各逆变桥调制比都可以实现电容电压平衡[11]。
图3 和图4 分别是链式和多重化结构的原理图。
从控制策略上讲可以分为开环控制,闭环控制,以及这两种的混合控制。
通常从控制上讲是电压环以及电流环。
文献[12]中STATCOM的控制是基于SVPWM 的电压电流双环控制,利用锁相环(PLL)和低通滤波器(LPF)检测负载电流中无功电流的大小,通过dq 变换实现STATCOM 无功电流和有功电流在dq 平面的解耦控制。
同时,直流电压外环控制器输出耦合到有功电流控制环路实现直流电压稳压控制。
从控制技术角度来说有PI 控制方法,PI 逆控制方法,鲁棒自适应控制,递归神经网络自适应,滑模变结构,模糊控制方法[13]。
其中鲁棒自适应控制方法,模糊控制系数选择困难;神经网络自适应方法不依赖于系统模型的建立,但实时性不好;滑模变结构线性化困难。
在实际应用中还是以传统的PI 控制居多。
文献[14]提出了一种无源性控制(PBC)方法,建立了STATCOM 的欧拉—拉格朗日系统模型,引入非线性规划的变尺度法进行优化。
为了达到更好的补偿效果,可以将传统的无功补偿装置与STATCOM 联合运行控制,从而避免STATCOM 为了获得理想的输出电流波形,致使开关器件随着补偿电流增大,开关损耗增加,效率降低的问题。
混合静止同步无功补偿器(HSTATCOM),基于无差拍控制(根据其状态方程和输出无功电流的预期值计算出下一个开关周期的脉冲宽度),利用有源与无源补偿相结合的方法,无源部分使用TSC 作为主要补偿手段,不产生谐波,损耗小;利用有源补偿实现了补偿电流的连续调节,可以双向连续调节无功[15]。
文献[16]提出了一种新型SVC 与STATCOM构成的混杂装置以及基于模糊预测的联合运行方案,即利用小容量STATCOM 抑制闪变配合大容量SVC 补偿无功,避免了STATCOM采用不对称控制时出现的算法复杂等问题。
联合控制运行方式算法简便,控制目的明确,但其结构可能复杂,所以在特定领域将会得到发展。
4 应用及现状STATCOM 概念于20 世纪80 年代提出,实际应用主要集中在90 年代,主要应用的有日本的依80 Mvar(1991 年),美国的100 Mvar(1995年),丹麦基于4 500/3 000A GTO的依8 Mvar(1997年)的STATCOM。
由于STATCOM技术含量较高,掌握并应用这一技术的主要有日本、美国、德国、英国、中国等国家。
我国首台依20 Mvar 的STATCOM 是由清华大学与河南省电力局在1994—1999 年共同研制,已于1999年3 月在河南省洛阳市朝阳变电站投入运行[7]。
对于这一技术,在2007年由湖南大学的罗安等人就基于STATCOM 与SVC 的电能质量调节器协调控制方法、由郭育华等人就STATCOM 的控制方法申请了国家专利。
STATCOM的应用工程通常具有:在电力半导体器件选用上,绝大多数是基于GTO 和IGBT 的;在主电路上,大容量高压STATCOM 主要采用变压器耦合多重化技术,中低容量和电压的DSATCOM较多采用三电平和/或PWM 变换器;基本采用VSC;系统控制目标多样化;大容量STATCOM多采用水冷方式等特点。
据不完全统计,自第一台大容量STATCOM装置问世以来,全世界已经投入运营的大容量(10 MVar 及以上)STATCOM 工程超过20 个,总的可控容量超过3 000 Mvar。
它们有的安装在输电网络中用于潮流控制、无功补偿和提高系统稳定性等,属于FACTS范畴;有的安装在配电和用电网络,用于改善电能质量和提高供电可靠性,属于用户电力范畴,即用户电力控制器的D-STATCOM。
表1给出了部分工程应用的基本情况,说明了自STATCOM 问世以来的发展情况,这只是一少部分,可以看到,STATCOM 主电路从最初的开关器件耦合,逐步发展为多个开关器件串联使用,结合VSI,采用NPC 结构,并且用PWM 进行控制,从而使STATCOM 装置具有更加稳定与优良的性能。
5 结语静止同步补偿器(STATCOM)技术自问世以来得到了飞速的发展,多重化和链式结构应用于大容量STATCOM 是国际上广泛关注的技术,但是要解决好器件的均压和不平衡控制等问题。