人教版八年级数学上册课件三角形

合集下载

人教版八年级数学上册《全等三角形》PPT优质课件

人教版八年级数学上册《全等三角形》PPT优质课件
【结论】全等三角形的对应边相等,全
等三角形的对应角相等。
知识梳理
知识点一:全等形
1.能够完全重合的两个图形叫做全等形。
2.全等形关注的是两个图形的形状和大小.一个图形经过平移
、翻折、旋转后,位置变化了,但形状、大小都没有改变,即
平移、翻折、旋转前后的图形全等。
知识梳理
例题 1:请观察图中的6组图案,其中是全等形的是 1、4、5、6
等时,对应的顶点放在对应的位置上.
知识梳理
例题 1:如图所示,△
≌△ ,指出所有的对应边和对应
角.,AC与DB,BC与CB是对应边;
AB与DC
∠ABC与∠DCB,∠A与∠D,∠ACB与∠DBC是对应角。
【解答】(1)已知△ABC≌△DCB,故公共边BC和CB
是对应边,它们所对的∠A和∠D是对应角,最短边
点E平分线段BC;
(3)DE ⊥ BC,
理由如下:因为△ BDE ≌△ CDE,所以BD = CD,
BABC中,点A的坐标为( − 1,1),点C的坐

标为 ( − 2,2) ,点 B 的坐标为 ( − 5,1) ,如果 △
ABD与 △ ABC全等,求点D的坐标。
10∠ ,则 =
.
【结论】本题考查全等三角形的性质,解题时应
注重识别全等三角形中的对应边,要根据对应角
去找对应边.
知识梳理
例题 2:如图所示,△ 沿直线 向右平移线段 长的距离后与△

重合,则△△

;相等的角有
∠ = ∠
,相等的边有
, =
边,写出其他对应边和对应角.
【解答】对应边:AN与AM,BN与CM;
对应角:∠BAN与∠CAM,∠ANB与∠AMC.

人教版八年级上册数学第十一章三角形全章课件

人教版八年级上册数学第十一章三角形全章课件

B
D
A DC
C
锐角三角形的三条高
每人画一个锐角三角形. (1) 你能画出这个三角形的三条高吗? (2) 这三条高之间有怎样的位置关系?
将你的结果与同伴进行交流.
锐角三角形的三条高是
B
在三角形的内部还是外部?
A
F
OE
C D
锐角三角形的三条高交于同一点. 锐角三角形的三条高都在三角形的内部.
直角三角形的三条高
(2)它们所在的直线交于一点吗? D
将你的结果与同伴进行交流.
钝角三角形的三条高不相交于 一点. 钝角三角形的三条高所在直线 交于一点.
O
F
B
C
E
从三角形中的一个顶点向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形这边的高.
三角形的三条高的特性:
•锐角三角形 •直角三角形 •钝角三角形
E,F为AB上一点,CF⊥AD于H,判断下列说法哪些是正确的,
哪些是错误的. A
①AD是△ABE的角平分线( × )
②BE是△ ABD边AD上的中线( × ) ③BE是△ ABC边AC上的中线( × ) F
12 E G
④CH是△ ACD边AD上的高( √ ) B
H
D
C
三角形的高、中线与角平分线都是线段.
3.(滨州中考)若某三角形的两边长分别为3和4,则下列
长度的线段能作为其第三边的是(
)
A.1
B.5
C.7
D.9
【解析】选B.设第三边为x,则1<x<7.
4.若△ABC的三边为a,b,c,则化简︱a+b-c︱+︱ba-c︱的结果是( ). A. 2a-2b B.2a+2b+2c C. 2a D. 2a-2c

人教版八年级数学上册第十一章三角形11.1.1三角形的边课件

人教版八年级数学上册第十一章三角形11.1.1三角形的边课件

三角形的概念
问题1:观察下面三角形的形成过程,说一说什么叫三角形?
定义:由不在同一条直线上的三条线段首尾顺次相接
所组成的图形叫做三角形.
A
B
C
问题2:三角形中有几条线段?有几个角?
有三条线段,三个角
边:线段AB,BC,CA是三角形的边. 顶点:点A,B,C是三角形的顶点, 角:∠A,∠B,∠C叫做三角形的内角,简称三角形的角.
2.在同一个三角形中,任意两边之差与第三边有什么大小关系?
3.三角形三边有怎样的不等关系?
通过动手实验同学们可以得到哪些结论?理由是什么?
归纳总结
三角形两边的和大于第三边. 三角形两边的差小于第三边.
典例精析
例1:判断下列长度的三条线段能否拼成三角形?为什么? (1)3cm、8cm、4cm; (2)5cm、6cm、11cm; (3)5cm、6cm、10cm.
B
C
4米
它只少走 4 步 (1米=2步)
其实我们离 文明很近
1.三角形是指( C) A.由三条线段所组成的封闭图形 B.由不在同一直线上的三条直线首尾顺次相接组成的图形 C.由不在同一直线上的三条线段首尾顺次相接组成的图形 D.由三条线段首尾顺次相接组成的图形 2.判断: (1)一个钝角三角形一定不是等腰三角形.( ×)
第十一章 三角形
11.1.1三角形的边
学习目标
1.认识三角形并会用几何语言表示三角形,了解三角形分类。 2.掌握三角形的三边关系。(难点) 3.运用三角形三边关系解决有关的问题。(重点)
生活中的三角形
生活中的三角形
埃及金字塔
飞机机翼
生活中的三角形
水 分 子 结 构 示 意 图
问题:

12.1 全等三角形 课件 人教版八年级数学上册(22张PPT)

12.1 全等三角形 课件 人教版八年级数学上册(22张PPT)

新课讲授
探究:请同学们把课前准备好的三角尺按在纸片上, 划下图形,照图形裁下来的纸片和三角尺的形状、 大小完全一样吗?把三角尺和裁得的纸片放在一起 能够完全重合吗?
归纳总结
全等形的定义: 能够完全重合的两个图形称为全等形. 全等形的性质: 形状相同,大小相等.
练一练 下面哪些图形是全等形?
看大小、形状 是否完全相同
课堂小结
定义
能够完全重合的两个三角形叫做全等三角形

对应边相等
等 三
基本性质
对应角相等

长对长,短对短,中对中

对应边 公共边一般是对应边
对应元素 确定方法
对应角
大角对大角,小角对小角 公共角一般是对应角 对顶角一般是对应角
作业布置
1.完成课本P33页1-4题; 2.复习整理本节课知识框架,预习全等三角 形的判定并尝试整理思维导图; 3.探究性作业:利用全等形设计美丽的图案, 比比看谁的设计最好。
“全等”用符号“≌”表示,读作“全等于”.
A
D
B
C
E
F
△ABC≌△DEF
注意:记两个三角形全等时,通常把表示对应顶点
的字母写在对应的位置上.
全等三角形的性质
A
D
B
C
E
F
∵△ABC≌△DEF,
∴ AB = DE,AC = DF,BC = EF (全等三角形的对应边 相等),
∠A =∠D,∠B =∠E,∠C =∠F(全等三角形对应角相等).
牛刀小试
如图,△ABC 与△ADC 全等,请用数学符号表示出
这两个三角形全等,并写出相等的边和角. D 解:△ABC≌△ADC.
A

人教版八年级上册第十二章 12.1全等三角形 课件(共18张PPT)

人教版八年级上册第十二章 12.1全等三角形 课件(共18张PPT)

今日任务—— 课堂作业:课本P31-32习题1、2 家庭作业:3、4
寻找对应边对应角的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)最大边与最大边(最小边与最小边) 为
对应边;最大角与最大角(最小角与最小角)为对 应角;
(5)对应角所对的边为对应边;对应边所对 的角为对应角;
(6)根据书写规范,按照对应顶点找对应边 或对应角.
△ABC≌△BAD的对应边和
角∴
AB∠-BAACE= ∠=AEBFD-EA AF∠=ABEB=C_=_6_-2∠_=_B4AD
对应角
角 ∠C= ∠D
等式的性质1
谈谈你这节课的收获
全等三角形
(1)能够完全重合的两个三角形叫做全等三角形; (2)全等三角形的性质:对应边相等、对应角相等; (3)全等三角形用符号“≌”表示,且一般对应顶点写在对应位置上.
人教版八年级数学上册
12.1全等三角形
教学目标
知识与能力
1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.
观察 (1)
(2)
(3)
每组的两个图形有什么特点? 重合
思 考 能够完全重合的两个图形叫做 全等形
2021年8月12日星期四
F
如图:∵△ABC≌△DEF ∴AB=DE,BC=EF,AC=DF ( 全等三角形的对应边相等 )
∠A=∠D,∠B=∠E,∠C=∠F ( 全等三角形的对应角相等 )
A

随堂练习:
B
CE

第二题图
1、若△ ABC≌ △ DEF,则∠B= ∠E , ∠BAC= ∠EDF ,

人教版数学八年级上册-第11章-三角形-复习(共38张PPT)省公开课获奖课件市赛课比赛一等奖课件

人教版数学八年级上册-第11章-三角形-复习(共38张PPT)省公开课获奖课件市赛课比赛一等奖课件

形旳外角中必有两个角是钝角;
D、锐角三角形中两锐角旳和必然不不小于
60O;
随堂检测
• 1.一种三角形旳三边长是整数,周1 长为5,则最
小边为

• 2三.木角形工具师有稳傅定做性 完门框后,为预防变形,通常在 角上钉一斜条,根据3是60

90O

• 3.小明绕五边形各边走一圈,他共转了 度

(1)、(2)、(4)
可表达为:五边形ABCDE 或五边形AEDCB
B
内角
E
外角
C
对角线:连接多边形不相邻旳两个 顶点旳线段。
1
D
对角线
10、多边形旳分类
请分别画出下列两个图形各边所在旳直线,你能得到什么结论?
D
E
A
G C
B
(1)
H F
(2)
如图(1)这么,画出多边形旳任何一条边所在旳直线,整个多边形都在这 条直线旳同一侧,那么这个多边形就是凸多边形。本节我们只讨论凸多边形。
那么(C )
A、只有一种截法 B、只有两种截法 C、有三种截法 D、有四种截法
3、等腰三角形旳腰长为a,底为X,则X旳取值范围是( A )
A、0<X<2a B、0<X<a C、0<X<a/2 D、0<X≤2a
随堂检测
4、一种正多边形每一种内角都是120o,这个多边形是( C )
A、正四边形
B、正五边形
随堂检测
101试卷库 三角形旳复习 随堂测试
同学们要仔细答题哦!
随堂检测
1、三角形三个内角旳度数分别是(x+y)o, (x-y)o,xo,且x>y>0,则该三角形有一种
内角为 ( C )

人教版八年级数学(上)课件:13_3_2 等边三角形(第1课时)

人教版八年级数学(上)课件:13_3_2 等边三角形(第1课时)

探究新知 知识点 1 等边三角形的性质
小明想制作一个三角形的相框,他有四根木条,长度分 别为10cm,10cm,10cm,6cm,你能帮他设计出几种形状 的三角形?
10cm
10cm
10cm
10cm
6cm
10cm
探究新知 在等腰三角形中,有一种特殊的情况,就是底与腰相
等,即三角形的三边相等,我们把三条边都相等的三角形 叫做等边三角形.
巩固练习 根据条件判断下列三角形是否为等边三角形.
不 是
(1) 不 一 定 是
(4)


(2) 是
(3) 是
(5)
(6)
探究新知
素养考点 等边三角形的判定的应用
例1 如图,在等边三角形ABC中,DE∥BC,求证:△ADE是
等边三角形.
证明:∵ △ABC是等边三角形,
∴ ∠A= ∠B= ∠C. ∵ DE//BC, ∴ ∠ADE= ∠B, ∠ AED= ∠C. ∴ ∠A= ∠ADE= ∠ AED. ∴ △ADE是等边三角形.
解:∵△ABC是等边三角形, ∴∠ABC=∠ACB=60°. ∵∠ABE=40°, ∴∠EBC=∠ABC–∠ABE=60°– 40°=20°. ∵BE=DE, ∴∠D=∠EBC=20°, ∴∠CED=∠ACB–∠D=40°.
探究新知 方法点拨
解决与等边三角形有关的计算问题,关键是注意 “每个内角都是60°”这一隐含条件,一般需结合 “等边对等角”、三角形的内角和与外角的性质解答.
(1)证明:∵△ABC为等边三角形, ∴∠BAC=∠C=60°,AB=CA,即∠BAE=∠C=60°, 在△ABE和△CAD中, ∴△ABE≌△CAD(SAS). (2)解:∵∠BFD=∠ABE+∠BAD, 又∵△ABE≌△CAD, ∴∠ABE=∠CAD. ∴∠BFD=∠CAD+∠BAD=∠BAC=60°.

人教版八年级数学上册11.1.2三角形的高、中线与角平分线 教学课件(共68张PPT)

人教版八年级数学上册11.1.2三角形的高、中线与角平分线  教学课件(共68张PPT)
,,
如图,△ 的三边分别为____________,


顶点 的对边是___;∠
的对边是___.



,,
如图,△ 的三边分别为____________,


顶点 的对边是___;∠
的对边是___.



,,
如图,△ 的三边分别为____________,
边的高线是在△ 的外部,还是内部呢?






画一画
你能画出此三角形 边上的高线吗?
发现: 边上的高 在△ 的外部.
边的高线是在△ 的外部,还是内部呢?




画一画
你能画出此三角形 边上的高线吗?
发现: 边上的高 在△ 的外部.
三角形的高线定义
(________________)



画一画
你能画出此三角形 边上的高线吗?




画一画
你能画出此三角形 边上的高线吗?




画一画
你能画出此三角形 边上的高线吗?





画一画
你能画出此三角形 边上的高线吗?
发现: 边上的高 在△ 的外部.
三角形的高.




三角形的高
定义
垂线 ,
从三角形的一个顶点向它的对边所在直线作_____
顶点 垂足
线段
_____和_____之间的_____叫做三角形的高线,简称
三角形的高
符号语言
∵ 是△ 的高,(已知)
三角形的高线定义

人教八年级数学上册《等边三角形》课件

人教八年级数学上册《等边三角形》课件
等边三角形在现实生活中的应用
除了在数学领域中的应用外,等边三角形在现实生活中也有许多应用实例。例如,在建筑设计中,等边三角形可以作 为一种稳定的结构形式被采用;在物理学中,等边三角形可以用来描述某些力学系统的平衡状态等。
示例与解析
通过具体实例,展示等边三角形在几何图形和现实生活中的应用,并对相关计算过程进行详细解析。
通过具体数值示例,展示如何利用相似性质计算等边三角形的面积,并对计算过程进行详 细解析。
等边三角形面积拓展应用举例
等边三角形在几何图形中的应用
等边三角形作为一种特殊的三角形,在几何图形中有着广泛的应用。例如,在等腰梯形、正多边形等图形中,都可以 找到等边三角形的存在。通过计算这些图形中的等边三角形面积,可以进一步求解整个图形的面积或其他相关量。
相似三角形具有对应角相等、对应边成比例的性质。利用这些性质,可以通过已知的一个 等边三角形来求解另一个与之相似的等边三角形的面积。
相似性质在等边三角形中的应用
通过构造相似三角形,利用已知等边三角形的面积和相似比,可以计算出未知等边三角形 的面积。具体步骤包括确定相似比和代入相似性质进行计算。
示例与解析
内角和性质
等边三角形的内角和为180°。
推论
由于等边三角形的三个内角相等,因此每个内角的度数为180°/3=60°。
等边三角形外角性质
外角性质
等边三角形的一个外角等于与它不相邻的两个内角之和。
推论
由于等边三角形的每个内角都是60°,因此一个外角的度数为 180°-60°=120°。同时,由于等边三角形的三个外角也相等 ,因此每个外角的度数也是120°。
06
练习题与课堂互动环节
Chapter
练习题类型及难度设置

人教版(部编)八年级数学上册-直角三角形的性质和判定

人教版(部编)八年级数学上册-直角三角形的性质和判定

总结归纳
思考:通过前面的例题,你能画出这些题型的基本 图形吗?
基本图形
AB o
A
B
o D
C
D
∠A=∠D
C
∠A=∠C
二 有两个角互余的三角形是直角三角形
问题:有两个角互余的三角形是直角三角形吗? 如图,在△ABC中, ∠A +∠B=90° , 那么△ABC 是直角三角形吗?
在△ABC中,因为 ∠A +∠B +∠C=180°, 又∠A +∠B=90°,所以∠C=90°. 于是 △ABC是直角三角形.
C.∠BCD和∠A
D.∠BCD
7.如图,在直角三角形ABC中,∠ACB=90°,D是 AB上一点,且∠ACD=∠B.求证:△ACD是直角 三角形.
证明:∵∠ACB=90°, ∴∠A+∠B=90°, ∵∠ACD=∠B, ∴∠A+∠ACD=90°, ∴△ACD是直角三角形.
课堂小结
直角三角 形的性质 与判定
八年级数学上(RJ) 教学课件
第十一章 三角形
11.2 与三角形有关的角
11.2.1 三角形的内角
第2课时 直角三角形的性质和判定
导入新课
情境引入
内角三兄弟之争
在一个直角三角形里住着三个内角,平时,它们三兄弟 非常团结.可是有一天,老二突然不高兴,发起脾气来,它 指着老大说:“你凭什么度数最大,我也要和你一样 大!”“不行啊!”老大说:“这是不可能的,否则,我们 这个家就再也围不起来了……”“为什么?” 老二很纳闷. 你知道其中的道理吗?
B.50°
C.60°
D.70° 5.具备下列条件的△ABC中,不是直角三角形的是
( D) A.∠A+∠B=∠C B.∠A-∠B=∠C C.∠A:∠B:∠C=1:2:3 D.∠A=∠B=3∠C

人教版数学八年级上册第十一章三角形教学课件

人教版数学八年级上册第十一章三角形教学课件
第三根木棒的长度可以是:12cm,14cm, 16cm, 18cm, 20cm ,22cm, 24cm ,26cm
练习3 3.张老师想制作一个三角形木架,现有两根 长度为19cm和9cm的木棒,如果要求第三 根木棒的长度是奇数,我有几种选法?第 三根的长度可以是多少?
有8种选法。
第三根木棒的长度可以是:11cm,13cm, 15cm ,17cm 19cm ,21cm, 23cm ,25cm
解:三角形像框第三边的取值范围是: ∵两边之差<第三边<两边之和
即10-3 < x < 10+3(7 < x < 13)
符合条件的数是12 ∴第三根木条应取12cm
小结 三角形:由不在同一直线上的三条线段首尾
顺次相接所组成的图形. A
c
b
B
a
三角形有基本要素
边 (AB、BC、CA)
基本要素 角 (∠A、∠B、∠C)
三角形中线的特点 ①任何三角形有三条中线,并且都在三角 形的内部,交与一点。
②三角形的中线是一条线段。
③三角形的任意一条中线把这个三角形分 成了两个面积相等的三角形。
三角形的表示法
A 我的姓是“△” 我的名字是:三个顶点 字母“A、B、C”
B
记法
C 三角形符号“△”,
如:上图的三角形记作:△ABC (或△BCA或 △CBA 等)
注意:表示三角形时,字母没有先后顺序,但通 常按逆时针来排列.
练习一 1.图中共有 5 个三角形,它们分别 是 :△_A_B_E_, _△_A_B_C_,_△_B_C_E_,_△__B_C_D__,△_C__D_E_ D A
重点:三角形的高、中线和角平分线的定义。

人教版八年级数学上册课件第十二章-全等三角形

人教版八年级数学上册课件第十二章-全等三角形
证明: 在△ABD和△ACD中, AB=AC (已知), BD=CD (已知), AD=AD (公共边),
∴△ABD≌△ACD(SSS).
∴ ∠BAD=∠CAD,
变式2
已知:如图,AB=AC, BD=CD,E为AD上一点, 求证: BE=CE.
证明: 在△ABD和△ACD中, AB=AC (已知), BD=CD(已知), AD=AD(公共边),
已知:如图, AB=DB,CB=EB,∠1=∠2,求证:∠A=∠D.
证明:∵ ∠1=∠2(已知),
∴∠1+∠DBC= ∠2+ ∠DBC(等式的性质),
即∠ABC=∠DBE. 在△ABC和△DBE中,
AB=DB(已知), ∠ABC=∠DBE(已证), CB=EB(已知),
A
D
1
B2
C
∴△ABC≌△DBE(SAS).
A
D
∠ABC=∠DCB(已知),
BC=CB(公共边),
∠ACB=∠DBC(已知)B,
C
∴△ABC≌△DCB(ASA ).
判定方法:两角和它们的夹边对应相等两个三角形全等.
例2 如图,点D在AB上,点E在AC上,AB=AC,
∠B=∠C,求证:AD=AE.
分析:证明△ACD≌△ABE,就可以得出AD=AE.
分析: △ ABD ≌△ CBD.
A
(SAS)
边:AB=CB(已知),
B
角:∠ABD= ∠CBD(已知),
边: BD=BD(公共边). ?
D C
证明:在△ABD 和△ CBD中,
AB=CB(已知),
∠ABD= ∠CBD(已知),∴ △ ABD≌△CBD ( SAS)
BD=BD(公共边),

人教版八年级数学上册全等三角形精品课件PPT

人教版八年级数学上册全等三角形精品课件PPT


2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。

3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。

4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。

5、人们都期望自我的生活中能够多 一些快 乐和顺 利,少 一些痛 苦和挫 折。可 是命运 却似乎 总给人 以更多 的失落 、痛苦 和挫折 。我就 经历过 许多大 大小小 的挫折 。
A组: B组: C组:
第十二章 全等三角形 12.1 全等三角形
人教版八年级数学上册 12.1 全等三角形 课件
1、理解图形全等的概念和特征, 能识别全等形; 2、掌握全等三角形的性质,并能 进行简单的推理和计算。
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
找出下面的全等形。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
解:(1)和(9)、(2)和(8)、 (3)和(6)
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6. 三角形的内角和:三角形的三个内角和为 1800
直角三角形的两个锐角互余。 7. 三角形的外角:三角形一边与另一边的延长线组成的角,叫做 三角形的外角。
8. 三角形的外角和:三角形的三个外角和为3600
9. 三角形的一个外角等于与它不相邻的两个内角的和。 10. 三角形的一个外角大于与它不相邻的任何一个内角。
A
解:设A X 0
Q A ABD,ABD X 0
BDC A ABD 2 X 0
D
又Q C ABC BDC
C ABC 2 X 0
DBC ABC ABD
B
C 2X 0 X 0 X 0
又Q C DBC BDC 1800
2 X X 2 X 1800
5X 1800
知识应用
1、已知两条线段的长分别是3cm、8cm , 要想拼成一个三角形,且第三条线段a的 长为奇数,问第三条线段应取多少长?
解: 由三角形两边之和大于第三边,
两边之差小于第三边得:
8-3<a<8+3,
∴ 5 <a<11
又∵第三边长为奇数,
∴ 第三条边长为 7、9。
2、等腰三角形一边的长是 5 cm,另一边的长是8cm,求 它解的:当周腰长长为5cm时,它的周长为:
D
C
1
A
解:Q A B 1 1800 (三角形内角和等于1800 ) 又Q B 420, 1 A 100 B A 420 A 100 1800 (等量代换) 2A=1280,A 640 又Q ACD 640 A ACD AB // CD(内错角相等,两直线平行)
6.已知.1 2, 3 4, A 1000,求X的值。
三角形内角和
高线 中线 角平分线
三角形的外角
1. 三角形的三边关系: (1)三角形的任何两边之和大于第三边: (2)三角形的任何两边之差小于第三边 (3)判断三条已知线段a、b、c能否组成三角形; 当a最长,且有b+c>a时,就可构成三角形。 (4)确定三角形第三边的取值范围: 两边之差<第三边<两边之和。
三. 解答题。 1. 如图3,在直角三角形ABC中,∠ACB=90°, CD是AB边上的高,AB=13cm,BC=12cm, AC=5cm,求△ABC的面积;CD的长。(10分)
C
A
D
B
2. 一个多边形的内角和是外角和的2倍,它是几边形?
3. 一个三角形的两条边相等,周长为18cm,三角形一 边长4cm,求其它两边长?(5分)
2.一个多边形每增加一条边,它的内角和就增加(

度,每减少一条边,内角和将减少(
)度,如果一个
多边形减少一条边后内角和为2160°,那么原来多边形
的边数为(
).
多边形的内角和
n边形的内角和为(n-2) 例 ×118:00求15边形内角和的度数。
解:(n-2)×1800 =(15-2)×1800 = 23400
4. 如图4,AB∥CD,∠BAE=∠DCE=45°,求∠E。
A
B
E
C
D
图4
已知:如图5,四边形ABCD 求证:∠A+∠B+∠C+∠D=360°
B A
C D
图5
1、如果三角形两边长分别是7和2,且它的周长为偶数,
那么第三边的长为(
C)
A、5 B、6
C、7
D、8
2、为了减少对河流的污染,要在河流旁建一个污水处 理公司,使两个工业开发区A和B的工业污水经过处理 后才排入河流。
6. 三角形的内角和:三角形的三个内角和为 1800
直角三角形的两个锐角互余。 7. 三角形的外角:三角形一边与另一边的延长线组成的角,叫做 三角形的外角。
8. 三角形的外角和:三角形的三个外角和为3600
9. 三角形的一个外角等于与它不相邻的两个内角的和。 10. 三角形的一个外角大于与它不相邻的任何一个内角。
2X 1800 400 1400
400
(2)
X0 X0
X 700
(3).Q ( X 0 700 ) ( X 0 100 ) X 0
(三角形的一个外角等于与它不相邻的两个内角和)
(3)
X 0 X 600
( X 100 )
( X 700 )
5.已知B 420, A 100 1, ACD 640,说明AB // CD。
5+5+8=18(cm)
当腰长为8cm时,它的周长为:
8+8+5=21(cm)
∴这个三角形的周长为18cm或21cm
3.如图,已知:AD是△ABC 的中线,△ABC的面积为 60cm2 ,求
△ABD的面积
A
解:作AE BC,垂足为E, Q AD是VABC的中线,
BD CD,
B
DE
C
又Q SVABC 60cm2
下列正多边形(1)正三角形(2)正方形(3) 正五边形(4)正六边形,其中用一种正多 边形能镶嵌成平面图案的是 (1;)、(2)、(4)
有一六边形,截去一三角形,内角和会发生 怎样变化?请画图说明。
内角和减少180O 内角和不变 内角和增加180O
`1.一个多边形截去一个角后,形成的一个多边形的内角和 是2520°,求原来多边形的边数.

2. 若等腰三角形的两边长分别为3cm和8cm,
则它的周长是 19cm

A
3. 要使六边形木架不变形,至少要再钉上
3根 根木条。
12
5. 如图2,在△ABC中,AD⊥BC于点D,
B。E=ED=DC, ∠1=∠2,则
B
△ ABD
E 图2
DC
1、AD是△ABC的边 BC 上的高,也是 的
边BD上的高,还是△ABE的边 BE 上的高;
3. 从n边形的一个顶点作对角线,把这个n边形分成 三角形的个数是( D)
A. n个 B. (n-1)个 C. (n-2)个 D. (n-3)个
4. n边形所有对角线的条数有( C )
A. nn 1 条
2
B. nn 2 条
2
C. nn 3 条

D. nn 4 条
2
5. 装饰大世界出售下列形状的地砖:1正方形;2长
2、AD既是△ ACE 的边 CE 上的中线,又是
边 CE 上的高,还是 ∠ EAC的角平分线。
6. 若三角形的两条边长分别为6cm和8cm,
且第三边的边长为偶数,则第三边长为

4cm.6cm,8cm,10cm,12cm.
7. 若正n边形的每个内角都等于150°,则 n= 12 ,其内角和为 1080° 。 8. 一个多边形截去一个角后,所形成的一个 新多边形的内角和为2520°,则原多边形有 条边。13边形、14边形、15边形
B 1 2 A X
34
C
解 :
Q
A
1
2
3
4
1800
又Q A 1000, 1 2, 3 4
1000 22 24 1800
2(2 4) 800
2 4 400
又Q 2 4 X 1800
X 1800 400 1400
7.如图, △ABC中, ∠A= ∠ABD,
∠C= ∠BDC= ∠ABC,求∠DBC的度数
方形;3正五边形;4正六边形。若只选购其中某一
种地砖镶嵌地面,可供选用的地砖共有( C )
A. 1种 B. 2种 C. 3种 D. 4种
6. 下列图形中有稳定性的是(C ) A. 正方形 B. 长方形 C. 直角三角形 D.
平行四边形
7. 如图1,点O是△ABC内一点,∠A=80°,∠1=15°, ∠2=40°,则∠BOC等于( C ) A. 95° B. 120° C. 135° D. 无法确定
2. 三角形的三条高线(或高线所在的直线)交于一点, 锐角三角形三条高线交于三角形内部一点, 直角三角形三条高线交于直角顶点, 钝角三角形三条高线所在的直线交于三角形外部一点。
3. 三角形的三条中线交于三角形内部一点。
4. 三角形的三条角平分线交于三角形内部一点。
5. 三角形木架的形状不会改变,而四边形木架的形状会改变.这就 是说,三角形具有稳定性的图形,而四边形没有稳定性。
A
8. 若一个三角形的三边长是三个连续的
自然数,其周长m满足 10 p m p 22
O
,则这样的三角形有( C )
1 B
2 C
A. 2个 B. 3个 C. 4个 D. 5个 图1
二. 填空题。(每空2分,共38分)
锐角三角形的三条高都在 内部

钝角三角形有 两 条高在三角形外
,直角三角形有两条高恰是它的 直角顶点
3600
3600 3600
结论2:形状大小相同的任意四边形可 镶嵌成一个平面
21 34
镶嵌条件:同一顶点处的各角和为360°
结论1:形状大小相同的任意三角形可镶嵌 成一 个平面 .
原因:交点处角度之和为360°
知识应用
1、已知两条线段的长分别是3cm、8cm , 要想拼成一个三角形,且第三条线段a的 长为奇数,问第三条线段应取多少长?
三角形知识结构图
三角形的边
与三角形有
关的线段



三角形内角和
高线 中线 角平分线
三角形的外角
1. 三角形的三边关系: (1)三角形的任何两边之和大于第三边: (2)三角形的任何两边之差小于第三边 (3)判断三条已知线段a、b、c能否组成三角形; 当a最长,且有b+c>a时,就可构成三角形。 (4)确定三角形第三边的取值范围: 两边之差<第三边<两边之和。
相关文档
最新文档