一元二次不等式及其解法例题分类

合集下载

二次函数与一元二次方程不等式6种常见考法归类(原卷版)

二次函数与一元二次方程不等式6种常见考法归类(原卷版)

2.3 二次函数与一元二次方程、不等式6种常见考法归类1、一元二次不等式的概念2一般地,对于二次函数y =ax 2+bx +c ,我们把使ax 2+bx +c =0的实数x 叫做二次函数y =ax 2+bx +c 的零点.3、二次函数与一元二次方程、不等式的解的对应关系有两个相等的实数根y =ax 2+bx +c (a >0)的图象在x 轴上方的点的横坐标x 的集合;ax 2+bx +c <0(a >0)的解集就是一元二次函数y =ax 2+bx +c (a >0)的图象在x 轴下方的点的横坐标x 的集合. 4、简单的分式不等式的解法(1)ax +bcx +d>0(<0)∅(ax +b )(cx +d )>0(<0). (2)ax +bcx +d ≥0(≤0)∅⎩⎪⎨⎪⎧(ax +b )(cx +d )≥0(≤0),cx +d ≠0. 总之,简单的分式不等式可以转化为一元二次不等式求解. 图示如下: 思考 x -3x +2>0与(x -3)(x +2)>0等价吗?x -3x +2≥0与(x -3)(x +2)≥0等价吗? 答案x -3x +2>0与(x -3)(x +2)>0等价;x -3x +2≥0与(x -3)(x +2)≥0不等价,前者的解集中没有-2,后者的解集中有-2.5、一元二次不等式恒成立问题(1)转化为一元二次不等式解集为R 的情况,即 ax 2+bx +c >0(a ≠0)恒成立∅⎩⎪⎨⎪⎧ a >0,Δ<0;ax 2+bx +c <0(a ≠0)恒成立∅⎩⎪⎨⎪⎧a <0,Δ<0.(2)分离参数,将恒成立问题转化为求最值问题. 6、利用不等式解决实际问题的一般步骤 (1)选取合适的字母表示题目中的未知数.(2)由题目中给出的不等关系,列出关于未知数的不等式(组). (3)求解所列出的不等式(组). (4)结合题目的实际意义确定答案. 7、解一元二次不等式的一般步骤(1)将一元二次不等式化为一端为0的形式(习惯上二次项系数大于0). (2)求出相应一元二次方程的根,或判断出方程没有实根. (3)画出相应二次函数示意草图,方程有根的将根标在图中.(4)观察图象中位于x 轴上方或下方的部分,对比不等式中不等号的方向,写出解集.注:(1)若不等式对应的一元二次方程能够因式分解,即能够转化为几个代数式的乘积形式,则可以直接由一元二次方程的根及不等号方向得到不等式的解集.(2)若不等式对应的一元二次方程能够化为完全平方式,不论取何值,完全平方式始终大于或等于零,则不等式的解集易得.(3)若上述两种方法均不能解决,则应采用求一元二次不等式的解集的通法,即判别式法. 8、解含参数的一元二次不等式的步骤特别提醒:(1)对应方程的根优先考虑用因式分解确定,分解不开时再求判别式Δ,用求根公式计算. (2)在解含参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑:∅关于不等式类型的讨论:二次项系数a >0,a <0,a =0.∅关于不等式对应的方程根的讨论:两个不相等实数根(Δ>0),两个相等实数根(Δ=0),无实数根(Δ<0). ∅关于不等式对应的方程根的大小的讨论:x 1>x 2,x 1=x 2,x 1<x 2. 9、三个“二次”之间的关系(1)三个“二次”中,二次函数是主体,讨论二次函数主要是为了将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象及性质来解决问题,关系如下:10、根据一元二次不等式解集求参数已知以a ,b ,c 为参数的不等式(如ax 2+bx +c >0)的解集,求解其他不等式的解集时,一般遵循(1)根据解集来判断二次项系数的符号.(2)根据根与系数的关系把b ,c 用a 表示出来并代入所要解的不等式. (3)约去 a ,将不等式化为具体的一元二次不等式求解. 11、分式不等式的解法(1)对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意等价变形,保证分母不为零.(2)对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.注:解分式不等式的思路是转化为整式不等式求解.化分式不等式为标准形式的方法:移项,通分,不等式右边化为0,左边化为乘积的形式.特别地,形如y 1y 2>a (a ≠0)的分式不等式,可同解变形为12y 2>0,故可转化为解y 2(y 1-ay 2)>0.12、一元二次不等式恒成立问题的解法(1)转化为对应的二次函数图象与x 轴的交点问题,考虑两个方面:x 2的系数和对应方程的判别式的符号. (2)转化为二次函数的最值问题:分离参数后,求相应二次函数的最值,使参数大于(小于)这个最值. 注:(1)一般地,一元二次不等式ax 2+bx +c >0(≥0)对于x ∅R 恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0(≤0);一元二次不等式ax 2+bx +c <0(≤0)对于x ∅R 恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac <0(≤0).(2)在解关于x 的不等式ax 2+bx +c >0(≥0)对一切x 恒成立问题时,应注意对二次项的系数进行讨论,需研究二次项系数为0时是否满足题意. 13、解不等式应用题的步骤考点一 一元二次不等式的解法 考点二 含参数的一元二次不等式的解法 (一)对二项式系数的讨论 (二)对判别式的讨论 (三)对两根大小的讨论考点三 根据一元二次不等式的解集求参数 考点四 简单的分式不等式的解法 考点五 一元二次不等式的恒成立问题 考点六 一元二次不等式的实际应用考点一 一元二次不等式的解法1.(2023春·辽宁铁岭·高二校联考期末)已知集合{}|1M x x =>-,{}260N x x x =--<∣,则M N ⋂= .2.(2023秋·广东佛山·高一佛山市第二中学校考开学考试)解下列一元二次不等式: (1)23710x x -≤; (2)2104x x -+<; (3)2340x x -+>.3.(2023秋·高一校考课时练习)解下列不等式: (1)22320x x --> (2)2350x x -+> (3)2620x x --+≥ (4)2414x x -≥-4.(2023·上海·高一专题练习)二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,则y >0的解集为( ) A .{x |2<x <1} B .{x |1<x <2} C .{x |1<x ≤2}D .{x |x <0或x >3}5.(2023秋·上海黄浦·高一上海市光明中学校考期中)关于x 的不等式2230x x --<解集是 .考点二 含参数的一元二次不等式的解法(一)对二项式系数的讨论6.(2023秋·北京·高一北京市第五十中学校考阶段练习)解不等式()2110ax a x -++>.7.(2023秋·高一校考课时练习)解关于x 的不等式: ()22110ax a x a -+++<.8.(2023秋·北京西城·高一北京铁路二中校考期中)设a ∈R ,解关于x 的不等式:()2330ax a x -++≤.9.(2023秋·黑龙江鹤岗·高一鹤岗一中校考期中)已知222()(1)2(1)f x ax a x a =-+++,a ∈R ,求关于x 的不等式()0f x ≥的解集. (二)对判别式的讨论10.(2023·全国·高三专题练习)解下列关于x 的不等式210x ax ++<. 11.(2023·全国·高一假期作业)解关于x 的不等式2210x mx m -++>. (三)对两根大小的讨论12.(2023·全国·高一假期作业)若01a <<,解不等式()10a x x a ⎛-⎫ ⎪⎝⎭->.13.(2023·江苏·高一假期作业)解关于x 的不等式()()2231220x a x a --+->14.(2023秋·高一校考单元测试)已知函数2()(21)2f x ax a x =-++. (1)当2a =时,解关于x 的不等式()0f x ≤; (2)若0a >,解关于x 的不等式()0f x ≤..15.(2023·全国·高三对口高考)解关于x 的不等式: (1)22(1)40ax a x -++< (2)(1)(2)02a x a x -+->-考点三 根据一元二次不等式的解集求参数16.(2023秋·福建福州·高一福州三中校考阶段练习)已知不等式20x ax b ++<的解集是{}24x x -<<,则a b +=( )A .10B .6C .0D .217.(2023秋·陕西西安·高一统考期末)已知不等式250ax x b -+>的解集是{}32x x -<<-,则a b +的值为( )A .7-B .7C .17-D .1718.(2023秋·广西柳州·高一柳铁一中校联考阶段练习)已知关于x 的不等式mx n >的解集是{}<2x x ,则关于x 的不等式()()30mx n x +->的解集是( )A .{|2x x <或3}x >B .{}2<<3x xC .{|2x x <-或3}x >D .{}2<<3x x -19.(2023秋·福建泉州·高一校考阶段练习)若关于x 的不等式220x x a -+<的解集是{|2}x b x <<,则a b += ( )A .1-B .152-C .92-D .9-20.【多选】(2023秋·河南郑州·高一郑州市第四十七高级中学校考期末)已知关于x 的不等式20ax bx c ++>解集为{3xx <-∣或4}x >,则下列结论正确的有( ) A .0a >B .不等式0bx c +>的解集为{6}xx <-∣ C .0a b c ++>D .不等式20cx bx a -+<的解集为14xx ⎧<-⎨⎩∣或13x ⎫>⎬⎭ 21.(2023秋·内蒙古通辽·高一校考期中)已知不等式210ax bx +->的解集为1123x x ⎧⎫-<<-⎨⎬⎩⎭,则不等式20x bx a --≥的解集为( )A .{3|x x ≤-或2}x -≥B .{|32}x x --≤≤C .{|23}x x ≤≤D .{|2x x ≤或3}x ≥22.【多选】(2023秋·福建福州·高一福建省福州第一中学校考期中)已知关于x 的不等式23344a x xb ≤-+≤,下列结论正确的是( )A .当1a b <<时,不等式23344a x xb ≤-+≤的解集为∅ B .当2a =时,不等式23344a x xb ≤-+≤的解集可以为{}xc xd ≤≤∣的形式 C .不等式23344a x x b ≤-+≤的解集恰好为{}xa xb ≤≤∣,那么43b =或4b = D .不等式23344a x xb ≤-+≤的解集恰好为{}xa xb ≤≤∣,那么4b a -= 23.(2023秋·四川泸州·高一统考期末)已知函数()()2f x x a b x a =-++.(1)若关于x 的不等式()0f x <的解集为{}13x x -<<,求a ,b 的值; (2)当1b =时,解关于x 的不等式()0f x >.24.(2023·湖南长沙·高二长郡中学校考学业考试)若关于x 的不等式2242ax x ax -<-只有一个整数解,则实数a 的取值范围是( )A .112a <≤ B .12a << C .12a ≤< D .11a -<<25.【多选】(2023春·浙江温州·高二统考学业考试)关于x 的不等式22(12)20ax a x a +--<的解集中恰有3个正整数解,则a 的值可以为( )A .1-B .32C .74D .2考点四 简单的分式不等式的解法26.(2023·上海杨浦·同济大学第一附属中学校考三模)不等式11x<-的解集是27.(2023秋·云南曲靖·高一校考阶段练习)不等式302x x +>+的解集是 . 28.(2023秋·陕西渭南·高二统考期末)不等式102xx-≥+的解集为 . 29.(2023·全国·高三对口高考)已知集合3442x P xx ⎧⎫+=≥⎨⎬-⎩⎭,则P = . 30.(2023秋·陕西西安·高一校考期中)(1)解关于x 的不等式2340+->x x ; (2)解关于x 的不等式115xx -≥-. 考点五 一元二次不等式的恒成立问题31.(2023秋·黑龙江哈尔滨·高一哈尔滨三中校考阶段练习)已知函数()()()2124f x m x mx m m =+-+-∈R .(1)若不等式()0f x <的解集为R ,求m 的取值范围; (2)解关于x 的不等式()f x m ≥.32.(2023春·江苏南京·高二南京市中华中学校考阶段练习)设()()212f x ax a x a =+-+-. (1)若不等式()2f x ≥-对一切实数x 恒成立,求实数a 的取值范围; (2)解关于x 的不等式()()1R f x a a <-∈.33.(2023秋·四川遂宁·高一射洪中学校考阶段练习)设2(1)2y ax a x a =+-+-. (1)若不等式2y ≥-对一切实数x 恒成立,求实数a 的取值范围;(2)解关于x 的不等式()2(1)10R ax a x a +--<∈.34.(2023秋·高一单元测试)设()()212=--+-∈y x a x a a R .(1)若不等式()2122--+-≥-x a x a 对一切实数x 恒成立,求实数a 的取值范围;(2)解关于x 的不等式()2120--+-<x a x a .考点六 一元二次不等式的实际应用35.(2023秋·广西桂林·高一校考期中)将进货单价40元的商品按50元一个售出,能卖出500个;若此商品每涨价1元,其销售量减少10个.为了赚到最大利润,售价应定为 元.36.(2023秋·浙江温州·高一校联考期中)为了宣传第56届世乒赛,某体育用品商店购进一批乒乓球拍,每副进价200元,售价260元,每月可以卖出160副.由于疫情原因,商家决定降价促销,根据市场调查,每降价10元,每月可多卖出80副,降价后,商家要使每月的销售利润最大,应该将售价定为 元. 37.(2023春·北京密云·高二统考期末)一个车辆制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x (单位:辆)与创造的价值y (单位:元)之间的关系为:2202200y x x =-+.如果这家工厂希望在一个星期内利用这条流水线创收60000元以上,请你给出一个该工厂在这周内生成的摩托车数量的建议,使工厂能够达成这个周创收目标,那么你的建议是 .38.(2023春·河南安阳·高二林州一中校考阶段练习)某地每年消耗木材约20万立方米,每立方米售价480元,为了减少木材消耗,决定按%t 征收木材税,这样,每年的木材消耗量减少52t 万立方米,为了既减少木材消耗又保证税金收入每年不少于180万元,t 的取值范围是( )A .[]1,3B .[]2,4C .[]3,5D .[]4,639.(2023秋·四川绵阳·高一绵阳中学校考阶段练习)某种衬衫进货价为每件30元,若以40元一件出售,则每天能卖出40件;若每件提价1元,则每天卖出件数将减少一件,为使每天出售衬衫的净收入不低于525元,则每件衬衫的售价的取值范围是 .(假设每件衬衫的售价是m )。

一元二次不等式及其解法

一元二次不等式及其解法

一元二次不等式及其解法一、知识回顾一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x < 有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax{}21x x x x <<∅∅二、例题讲解⒈ 一元二次不等式与特殊的高次不等式解法 例1 解不等式0)1)(4(<-+x x .例2:解不等式:(x-1)(x+2)(x-3)>0;例3 解不等式:(x-2)2(x-3)3(x+1)<0.2.分式不等式的解法 例4 解不等式:073<+-x x .例5 解不等式:0322322≤--+-x x x x .例6. 解关于x 的不等式:(x-x 2+12)(x+a)<0. 三、练习【1】设关于x 的不等式x >ax+23的解集为{x 4<x<m},求实数a 和m 的值。

【2】已知关于x 的不等式ax 2+bx+c<0的解集是{x x<-2或x>21-},求ax 2-bx+c>0的解集。

【3】若对x ∈R 恒有n x x x x >++++122322,(n ∈N *),试求n 的值。

高考数学 一元二次不等式及其解法大全(含练习和答案)

高考数学 一元二次不等式及其解法大全(含练习和答案)

一元二次不等式及其解法1.一元二次不等式(20(0)ax bx c a ++>>)与相应的二次函数(2(0)y ax bx c a =++>)及一元二次方程(20(0)ax bx c a ++=>)的关系(简称三个二次之间的关系)判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根有两相异实根1212,()x x x x < 有两相等实根 122b x x a==-没有实数根 ax 2+bx +c >0 (a >0)的解集R ax 2+bx +c <0 (a >0)的解集∅ 注:(1)若0a <时,可以先将二次项系数化为正数,若对应方程有两实根,则可根据“大于取两边,小于取中间”求解集。

2.简单的分式不等式(1)()0()f x g x >⇔______________; (2)()0()f xg x <⇔____________ (3)()0()f x g x ≥⇔ ___________ (4)()0()f x g x ≤⇔_____________ 3.二次不等式恒成立的条件(1)ax 2+bx +c >0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________ (2)ax 2+bx +c <0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12} 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.(一)考向1 一元二次不等式的解法例1 求下列不等式的解集(1)22730x x ++> (2)3+2x -x 2≥0;(3)2830x x -+-> (4)213502x x -+-> (5)22320x x -+-< (6)2xx -1≤1解一元二次不等式的步骤: (1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 变式训练1 解下列不等式:(1)2310x x -+≤ (2)23520x x +-> (3)22530x x --+> (4)29610x x -+-<(5)3012x x+≤- (6)-1≤x 2+2x -1≤2;(二)考向2 三个二次的关系例2 已知关于x 的不等式x 2+ax +b <0的解集(-1,2),试求关于x 的不等式ax 2+x +b <0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根.(2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.变式训练2 若关于x的不等式axx-1<1的解集是{x|x<1或x>2},求实数a的取值范围.(三)考向3含参数的一元二次不等式的解法例3求不等式12x2-ax>a2(a∈R)的解集.【思路点拨】先求方程12x2-ax=a2的根,讨论根的大小,确定不等式的解集.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.变式训练3 解关于x的不等式x2-(a+1)x+a<0.(四)考向4 不等式恒成立问题例4 若不等式mx 2-mx -1<0对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解.1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.变式训练4 对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.课时训练1.设集合M={}2230x x x --<,N=12log 0,x x M N ⎧⎫<⋂⎨⎬⎩⎭则等于 ( )A .-(1,1) B.(1,3) C.(0,1) D.(-1,0)2.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则 ( )A 、11a -<<B 、02a <<C 、1322a -<<D 、3122a -<<3.“|x -1|<2成立”是“x (x -3)<0成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.定义02x x <>或运算a b ad bc c d ⎛⎫=- ⎪⎝⎭,则不等式1011x x ⎛⎫<< ⎪⎝⎭的解集为() A .(1,1)- B. (1,0)(0,1)-⋃C. (1)(1-⋃D.5.设A ={x ∈Z ||x -2|≤5},则A 中最小元素为( )A .2B .-3C .7D .06、不等式20x ax b --<的解集为{}223,10x x bx ax <<-->则的解集为( )A 、{}23x x <<B 、1132x x ⎧⎫<<⎨⎬⎩⎭C 、1123x x ⎧⎫-<<-⎨⎬⎩⎭D 、{}32x x -<<-7.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.不等式102xx-≥+的解集为 ( ) A.[]2,1- B. (]2,1- C. ()(),21,-∞-⋃+∞ D. (](),21,-∞-⋃+∞ 9. “关于x 的不等式x 2-2ax +a >0的解集为R ”是“0≤a ≤1”( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.不等式22530x x --≥成立的一个必要不充分条件是 ( )A .0x ≥ B. 02x x <>或 C. 12x <- D. 132x x ≤-≥或 11.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为 ( )A .[]1,4- B. [)(,2)5,-∞-⋃+∞ C. (][),14,-∞-⋃+∞ D. []2,5-12、若函数222,0(),0x x x f x x ax x ⎧-≥=⎨-+<⎩是奇函数,则满足()f x a x >的的取值范围是________13.若不等式2(1)0x a x a --+≤的解集是[-4,3]的子集,则a 的取值范围是________14.已知不等式|x -2|>1的解集与不等式x 2+ax +b >0的解集相等,则a +b 的值为________.15. 设命题p :2x 2-3x +1≤0; 命题q :x 2-(2a +1)x +a (a +1)≤0, 若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是________. 16.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.一元二次不等式及其解法答案1、D 【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0, ∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).2、A 【解析】 原不等式等价于(1)(21)0210x x x -+≤⎧⎨+≠⎩.∴原不等式的解集为(-12,1].3、(0,8) 【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8.4、-14 【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2, ∴a +b =-14.典例分析:例1:(1)原不等式可化为(3)(21)0x x ++> 故原不等式的解集为132x x x ⎧⎫<->-⎨⎬⎩⎭或(2)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0, 故原不等式的解集为{x |-1≤x ≤3}. (3)原不等式可化为2830x x -+<284(1)(3)520∆=-⨯-⨯-=>212830413413x x x x ∴-+-===方程有两个实根,故原不等式的解集为{}413413x x << (4)原不等式可化为26100x x -+≤ 26411040∆=-⨯⨯=-<∴原不等式的解集为∅(5)原不等式可化为22620x x -+> 2(6)42270∆=--⨯⨯=-<∴故原不等式的解集为R(6) ∵2x x -1≤1⇔2xx -1-1≤0 ⇔x +1x -1≤0 ⇔(1)(1)01110x x x x ≤⎧⇔-≤<⎨-≠⎩-+∴原不等式的解集为[-1,1).变式训练1 (1)9450∆=-=> 12353522x x ∴==对应的方程有两实数根 ∴原不等式的解集为35352x ⎧-+⎪≤≤⎨⎪⎪⎩⎭(2)原不等式可化为(31)(2)0x x -+> ∴原不等式的解集为123x x x ⎧⎫<->⎨⎬⎩⎭或(3)∵-2x 2-5x +3>0, ∴2x 2+5x -3<0,∴(2x -1)(x +3)<0, ∴原不等式的解集为{x |-3<x <12}.(4)原不等式可化为2(31)0x -> ∴原不等式的解集为13x x ⎧⎫≠⎨⎬⎩⎭(5)原不等式可化为(3)(12)0120x x x +-≤⎧⎨-≠⎩ (3)(21)0120x x x +-≥⎧⎨-≠⎩则 13212x x x ⎧≤-≥⎪⎪∴⎨⎪≠⎪⎩或∴原不等式的解集为132x x x ⎧⎫≤->⎨⎬⎩⎭或(6)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1. 故得所求不等式的解集为{x |-3≤x ≤-2或0≤x ≤1}.例2 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0∴不等式ax 2+x +b <0的解集为R .,变式训练2 解: axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x <1或x >2}, 知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}. 例3 ∵12x 2-ax >a 2, ∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-变式训练3 【解】 原不等式可化为(x -a )(x -1)<0.当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,例4 要使mx 2-mx -1<0对一切实数x 恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,变式训练4 【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0. 即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0. 解之,得x <1或x >3.课时训练1、B 解:由2230x x --<, 得13x -<<由12log 0x <,得1x > 所以{}13M N x x ⋂=<<2、C 解:()()1x a x a -⊗+<对任意实数x 成立, 即()(1)1x a x a ---<对任意实数x 成立2210x x a a ∴--++>恒成立 214(1)0a a ∴∆=--++< 1322a ∴-<< 3. B 【解析】 ∵|x -1|<2⇔-1<x <3,又x (x -3)<0⇔0<x <3.则(0,3)(-1,3). 4、C 解:由题意可知原不等式即为2011x <-< ,212x ∴<<1221x x ∴<<<-或5. B 【解析】 由|x -2|≤5,得-3≤x ≤7, 又x ∈Z ,∴A 中的最小元素为-36、C 解:由题意知2,3是方程20x ax b --=的解235,236a ab b +==⎧⎧∴∴⎨⎨⨯=-=-⎩⎩ 22106510bx ax x x ∴-->--->不等式为2116+5+1023x x x x ⎧⎫<∴-<<-⎨⎬⎩⎭即, 7、 A 【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1}, 故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12. 则“x >12”是“2x 2+x -1>0”的充分不必要条件. 8、B 解:由102x x -≥+,得(1)(2)020x x x -+≥⎧⎨+≠⎩ 则(1)(2)020x x x -+≤⎧⎨+≠⎩解得21x -<≤ (]2,1∴-原不等式的解集为9、A 【解析】 关于x 的不等式x 2-2ax +a >0的解集为R ,则Δ=4a 2-4a <0,解得0<a <1,由集合的包含关系可知选A.10、B 解:原不等式可化为(21)(3)0x x +-≥,解得132x x ≤-≥或 所以原不等式成立的一个必要不充分条件是02x x <>或11、A 解:由题意知,2225(1)4x x x -+=-+的最小值为4,所以22253x x a a -+≥- 对任意实数x 恒成立,只需234a a -≤,解得14a -≤≤12、(13,)-+∞ 解:()(1)(1)f x f f ∴-=-是奇函数, 即1(12)a --=--2()2a f x ∴=->-,则不等式等价于22002222x x x x x x ≥<⎧⎧⎨⎨->--->-⎩⎩,或,解得030x x ≥<<,或-1- 即(13,)x ∈--+∞13、43a -≤≤ 解:原不等式可化为()(1)0x a x --≤,当1a <时,不等式的解集为[],1a , 此时只要4a ≥-即可,即41a -≤<,当1a =时,不等式的解集为1x =,此时符合要求; 当1a >时,不等式的解集为[]1,a ,此时只要3a ≤即可,即13a <≤,综上可得43a -≤≤14. -1 【解析】 由|x -2|>1得x -2<-1或x -2>1,即x <1或x >3.依题意得知,不等式x 2+ax +b >0的解集是(-∞,1)∪(3,+∞)于是有⎩⎪⎨⎪⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 15、[0,12], 解:由2x 2-3x +1≤0,得12≤x ≤1, 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,由命题p 是命题q 的必要不充分条件知,p 是q 的充分不必要条件,即{x |12≤x ≤1}{x |a ≤x ≤a +1}, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,∴0≤a ≤12. 16、 (2,+∞) 【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2.。

高考复习 第7篇 第2讲 一元二次不等式及其解法知识点+例题+练习 含答案

高考复习 第7篇 第2讲 一元二次不等式及其解法知识点+例题+练习 含答案

第2讲 一元二次不等式及其解法 考点一 一元二次不等式的解法【例1】 (2014·大连模拟)已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是________.解析 由f (x )>0,得ax 2+(ab -1)x -b >0,又其解集是(-1,3),∴a <0.且⎩⎪⎨⎪⎧1-ab a =2,-ba =-3,解得a =-1或13,∴a =-1,b =-3.∴f (x )=-x 2+2x +3, ∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,得4x 2+4x -3>0, 解得x >12或x <-32.答案 ⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫12,+∞规律方法 解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.【训练1】 (2013·江西卷改编)使不等式x <1x <x 2成立的x 的取值范围是________. 解析 当x >0时,原不等式可化为x 2<1<x 3,解得x ∈∅,当x <0时,原不等式可化为⎩⎨⎧x 2>1,x 3<1,解得x <-1.答案 (-∞,-1)考点二 含参数的一元二次不等式的解法【例2】 (2013·烟台期末)解关于x 的不等式:ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1.②当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a 或x ≤-1.③当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即a >-2,解得2a ≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥2a ,或x ≤-1;当-2<a <0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a ≤x ≤-1;当a =-2时,不等式的解集为{x |x =-1};当a <-2时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤2a . 【训练2】 (1)(2013·重庆卷改编)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a 等于________. (2)解关于x 的不等式(1-ax )2<1.(1)解析 法一 ∵不等式x 2-2ax -8a 2<0的解集为(x 1,x 2),∴x 1,x 2是方程x 2-2ax -8a 2=0的两根.由根与系数的关系知⎩⎨⎧x 1+x 2=2a ,x 1x 2=-8a 2, ∴x 2-x 1=(x 1+x 2)2-4x 1x 2=(2a )2-4(-8a 2)=15,又∵a >0,∴a =52.法二 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0, ∵a >0,∴不等式x 2-2ax -8a 2<0的解集为(-2a,4a ), 又∵不等式x 2-2ax -8a 2<0的解集为(x 1,x 2), ∴x 1=-2a ,x 2=4a .∵x 2-x 1=15, ∴4a -(-2a )=15,解得a =52. 答案 52(2)解 由(1-ax )2<1,得a 2x 2-2ax <0, 即ax (ax -2)<0,当a =0时,x ∈∅.当a >0时,由ax (ax -2)<0,得a 2x ⎝ ⎛⎭⎪⎫x -2a <0,即0<x <2a .当a <0时,2a <x <0.综上所述:当a =0时,不等式解集为空集;当a >0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <2a ;当a <0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a<x <0.考点三 一元二次不等式恒成立问题【例3】 已知函数f (x )=mx 2-mx -1.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围.解 (1)由题意可得m =0或⎩⎨⎧m <0,Δ=m 2+4m <0⇔m =0或-4<m <0⇔-4<m ≤0.故m 的取值范围是(-4,0].(2)法一 要使f (x )<-m +5在[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,则0<m <67; 当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)⇒m -6<0, 所以m <6,所以m <0. 综上所述:m的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67. 法二 ∵f (x )<-m +5⇔m (x 2-x +1)<6, ∵x 2-x +1>0,∴m <6x 2-x +1对于x ∈[1,3]恒成立,只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈[1,3]上为增函数.则g (x )在[1,3]上为减函数, ∴[g (x )]min =g (3)=67,∴m <67. 所以m 的取值范围是⎝ ⎛⎭⎪⎫-∞,67.【训练3】 (1)若关于x 的不等式ax 2+2x +2>0在R 上恒成立,则实数a 的取值范围是________.(2)(2014·淄博模拟)若不等式(a -a 2)(x 2+1)+x ≤0对一切x ∈(0,2]恒成立,则a 的取值范围是________.解析 (1)当a =0时,原不等式可化为2x +2>0,其解集不为R ,故a =0不满足题意,舍去;当a ≠0时,要使原不等式的解集为R , 只需⎩⎨⎧a >0,Δ=22-4×2a <0,解得a >12.综上,所求实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.(2)∵x ∈(0,2], ∴a 2-a ≥x x 2+1=1x +1x.要使a 2-a ≥1x +1x 在x ∈(0,2]时恒成立,则a 2-a ≥⎝ ⎛⎭⎪⎪⎫1x +1x max ,由基本不等式得x +1x ≥2,当且仅当x =1时,等号成立,即⎝ ⎛⎭⎪⎪⎫1x +1x max =12. 故a 2-a ≥12,解得a ≤1-32或a ≥1+32.答案 (1)⎝ ⎛⎭⎪⎫12,+∞ (2)⎝⎛⎦⎥⎤-∞,1-32∪⎣⎢⎡⎭⎪⎫1+32,+∞1.解不等式的基本思路是等价转化,分式不等式整式化,使要求解的不等式转化为一元一次不等式或一元二次不等式,进而获得解决.2.当判别式Δ<0时,ax 2+bx +c >0(a >0)解集为R ;ax 2+bx +c <0(a >0)解集为∅.二者不要混为一谈.3.含参数的不等式的求解,注意选好分类标准,避免盲目讨论. 4.对于恒成立问题,常用到以下两个结论: (1)a ≥f (x )恒成立⇔a ≥f (x )max ;(2)a ≤f (x )恒成立⇔a ≤f (x )min .思想方法6——数形结合思想在“三个二次”间关系的应用【典例】 (2012·福建卷)对于实数a 和b ,定义运算“*”;a *b =⎩⎨⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.解析 由定义可知:f (x )=(2x -1)*(x -1)=⎩⎨⎧(2x -1)2-(2x -1)(x -1),x ≤0,(x -1)2-(2x -1)(x -1),x >0,∴f (x )=⎩⎨⎧(2x -1)x ,x ≤0,-(x -1)x ,x >0.作出函数f (x )的图象,如图所示.由图可知,当0<m <14时,f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3. 不妨设x 1<x 2<x 3,易知x 2>0,且x 2+x 3=2×12=1, ∴0<x 2x 3<⎝⎛⎭⎪⎫x 2+x 322,即0<x 2x 3<14. 令⎩⎪⎨⎪⎧(2x -1)x =14,x <0,解得x =1-34或1+34(舍去).∴1-34>x 1>0,∴3-14>-x 1>0, ∴0<-x 1x 2x 3<3-116, ∴1-316<x 1x 2x 3<0. 答案 ⎝ ⎛⎭⎪⎫1-316,0【自主体验】1.已知函数f (x )=⎩⎨⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析 由函数f (x )的图象可知(如下图),满足f (1-x 2)>f (2x )分两种情况:①⎩⎨⎧1-x 2≥0,x ≥0,1-x 2>2x⇒0≤x <2-1;②⎩⎨⎧1-x 2>0,x <0⇒-1<x <0. 综上可知:-1<x <2-1.答案 (-1,2-1)2.已知函数f (x )=⎩⎨⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.解析 画出f (x )=⎩⎨⎧2x -1,x >0-x 2-2x ,x ≤0的图象,如图.由函数g (x )=f (x )-m 有3个零点,结合图象得:0<m <1,即m ∈(0,1). 答案 (0,1)基础巩固题组 (建议用时:40分钟)一、填空题1.(2014·长春调研)已知集合P ={x |x 2-x -2≤0},Q ={x |log 2(x -1)≤1},则(∁R P )∩Q =________.解析 依题意,得P ={x |-1≤x ≤2},Q ={x |1<x ≤3},则(∁R P )∩Q =(2,3]. 答案 (2,3]2.(2014·沈阳质检)不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________.解析 不等式x 2+ax +4<0的解集不是空集,只需Δ=a 2-16>0,∴a <-4或a >4.答案 (-∞,-4)∪(4,+∞)3.(2013·南通二模)已知f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2+3x ,x <0,则不等式f (x )<f (4)的解集为________.解析 f (4)=42=2,不等式即为f (x )<2.当x ≥0时,由x2<2,得0≤x <4;当x <0时,由-x 2+3x <2,得x <1或x >2,因此x <0. 综上,f (x )<f (4)的解集为{x |x <4}. 答案 {x |x <4}4.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是________.解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝ ⎛⎭⎪⎫-13=b a ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a .解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3). 答案 (2,3)5.(2014·南京二模)在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为________.解析 根据给出的定义得x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1),又x ⊙(x -2)<0,则(x +2)·(x -1)<0,故这个不等式的解集是(-2,1). 答案 (-2,1)6.已知关于x 的不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,则a =________. 解析 由于不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,故-12应是ax-1=0的根,∴a =-2. 答案 -27.(2013·重庆卷)设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则a 的取值范围是________.解析 不等式8x 2-(8sin α)x +cos 2α≥0恒成立,所以Δ≤0,即Δ=(8sin α)2-4×8×cos 2α≤0,整理得2sin 2 α-cos 2α≤0,即4sin 2 α≤1,所以sin 2 α≤14,即-12≤sin α≤12,因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π,即α的取值范围是⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤5π6,π. 答案 ⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤5π6,π 8.(2014·福州期末)若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是________.解析 原不等式即(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3. 答案 [-4,3] 二、解答题9.求不等式12x 2-ax >a 2(a ∈R )的解集. 解 ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3; ②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4. 综上所述,当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4. 10.(2014·长沙质检)已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.解 法一 f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1)时,f (x )在[-1,+∞)上单调递增, f (x )min =f (-1)=2a +3.要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1; ②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2, 由2-a 2≥a ,解得-1≤a ≤1.综上所述,所求a 的取值范围是[-3,1]. 法二 令g (x )=x 2-2ax +2-a ,由已知, 得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立, 即Δ=4a 2-4(2-a )≤0或⎩⎨⎧Δ>0,a <-1,g (-1)≥0.解得-3≤a ≤1.所求a 的取值范围是[-3,1].能力提升题组 (建议用时:25分钟)一、填空题1.(2013·新课标全国Ⅱ卷改编)若存在正数x 使2x (x -a )<1成立,则a 的取值范围是________.解析 不等式2x(x -a )<1可变形为x -a <⎝ ⎛⎭⎪⎫12x,在同一平面直角坐标系内作出直线y =x -a 与y =⎝ ⎛⎭⎪⎫12x 的图象,由题意,在(0,+∞)上,直线有一部分在曲线的下方.观察可知,有-a <1,所以a >-1. 答案 (-1,+∞)2.(2013·西安二模)在R 上定义运算:⎣⎢⎡⎦⎥⎤ab cd =ad -bc .若不等式⎣⎢⎡⎦⎥⎤x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________.解析 原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,-12≤a ≤32.答案 323.(2014·铜陵一模)已知二次函数f (x )的二次项系数为a ,且不等式f (x )>0的解集为(1,2),若f (x )的最大值小于1,则a 的取值范围是________.解析 由题意知a <0,可设f (x )=a (x -1)(x -2)=ax 2-3ax +2a ,∴f (x )max =f ⎝ ⎛⎭⎪⎫32=-a 4<1,∴a >-4,故-4<a <0.答案 (-4,0)二、解答题4.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).(1)若方程f (x )+6a =0有两个相等的根,求f (x )的解析式;(2)若f (x )的最大值为正数,求a 的取值范围.解 (1)∵f (x )+2x >0的解集为(1,3),f (x )+2x =a (x -1)(x -3),且a <0,因而f (x )=a (x -1)(x -3)-2x =ax 2-(2+4a )x +3a .①由方程f (x )+6a =0,得ax 2-(2+4a )x +9a =0.②因为方程②有两个相等的根,所以Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15.由于a <0,舍去a =1,将a =-15代入①,得f (x )=-15x 2-65x -35.(2)由f (x )=ax 2-2(1+2a )x +3a =a ⎝ ⎛⎭⎪⎫x -1+2a a 2-a 2+4a +1a 及a <0,可得f (x )的最大值为-a 2+4a +1a. 由⎩⎪⎨⎪⎧ -a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0.故当f(x)的最大值为正数时,实数a的取值范围是(-∞,-2-3)∪(-2+3,0).。

含参数的一元二次不等式的解法

含参数的一元二次不等式的解法

含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122>+++x a ax分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项系数进行分类讨论。

解:∵()044222>+=-+=∆a a a解得方程 ()0122=+++x a ax 两根,24221a a a x +---=aa a x 24222++--=∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式()00652≠>+-a a ax ax分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。

解 ()()032)65(2>--=+-x x a x x a∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x变式:解关于x 的不等式1、0)2)(2(>--ax x ;2、(1-ax )2<1. }2,2|{,1)5(}2|{,1)4(}2,2|{,10)3(}2|{,0)2(}22|{,0)1(><>≠=><<<<=<<<x ax x a x x a ax x x a x x a x ax a 或时当时当或时当时当时当【解】由(1-ax )2<1得a 2x 2-2ax +1<1.即ax (ax -2)<0.(1)当a =0时,不等式转化为0<0,故原不等式无解.(2)当a <0时,不等式转化为x (ax -2)>0,即x (x -2a )<0.∵2<0,∴不等式的解集为{x |2}11|{1)5(1)4(}11|{10)3(}1|{0)2(}1,1|{0)1(<<>Φ=<<<<>=><<x a x a a ax x a x x a x ax x a 时,当时,当时,当时,当或时,当 3、ax 2-(a +1)x +1<0(a ∈R)二、按判别式∆的符号分类,即0,0,0<∆=∆>∆;例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。

二次函数与一元二次方程不等式5题型分类(原卷版)

二次函数与一元二次方程不等式5题型分类(原卷版)

2.3 二次函数与一元二次方程、不等式5题型分类一、一元二次不等式1.一元二次不等式的概念只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2.一元二次不等式的一般形式(1)ax2+bx+c>0(a≠0).(2)ax2+bx+c≥0(a≠0).(3)ax2+bx+c<0(a≠0).(4)ax2+bx+c≤0(a≠0).3.一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.二、二次函数图象、方程及不等式的关系{x|x<x_或x>x} {x|x<x<x}R三、常用数集及表示符号x2-y2>0是一元二次不等式吗?此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式.2.类比“方程x2=1的解集是{1,-1},解集中的每一个元素均可使等式成立”.不等式x2>1的解集及其含义是什么?不等式x2>1的解集为{x|x<-1或x>1},该集合中每一个元素都是不等式的解,即不等式的每一个解均使不等式成立.ax2+x-1>0的解集为R,则实数a应满足什么条件?结合二次函数图象可知,若一元二次不等式ax2+x-1>0的解集为R,则0,140,aa>⎧⎨+<⎩解得a∈∅,所以不存在a使不等式ax2+x-1>0的解集为R.四、不等式解法1.分式不等式的解法主导思想:化分式不等式为整式不等式(一)一元二次不等式的解法1、一元二次不等式的求解可以通过函数图象,方程的解等结合求解.通过开口向上,大于零取两边,小于零取中间;开口向下,大于零取中间,小于零取两边.2、解不含参数的一元二次不等式的一般步骤(1)化标准.通过对不等式的变形,使不等式右侧为0,使二次项系数为正.(2)判别式.对不等式左侧因式分解,若不易分解,则计算对应方程的判别式.(3)求实根.求出相应的一元二次方程的根或根据判别式说明方程有无实根. (4)画草图.根据一元二次方程根的情况画出对应的二次函数的草图. (5)写解集.根据图象写出不等式的解集. 3、解含参数的一元二次不等式的一般步骤(1)讨论二次项系数:二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程根的个数:讨论判别式△与0的关系.(3)写出解集:确定无根时可直接写出解集;确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.题型1:解不含参数的一元二次不等式11.(2023秋·安徽合肥·高二校考学业考试)不等式(1)(2)0x x -+>的解集为( )A .{2x x <-或1}x >B .{21}x x -<<C .{12}x x <<D .{1x x <或2}x >12.(2023秋·湖南长沙·高二长沙一中校联考阶段练习)已知集合{}()()1,0,1,2,3,4,{140}A B xx x =-=+-<∣,则A B =( )A .{}1,0,1,2,3,4-B .{}0,1,2,3C .()1,4-D .()0,313.(2023秋·山东德州·高三统考期末)设集合{}2|560,{|20}A x x x B x x =-++=-<,则A B =( )A .[1,2)-B .[3,2)-C .[2,2)-D .(2,6]14.【多选】(2023·全国·高一专题练习)下列不等式的解集是空集的是( )A .210x x -+>B .2210x x -++>C .225x x ->D .22x x +<-15.(2023·全国·高一专题练习)求下列不等式的解集: (1)(2)(3)0x x +->; (2)23710x x -≤; (3)2440x x -+-<; (4)2104x x -+≤; (5)223x x -+≤-; (6)2340x x -+>.16.(2023秋·江苏无锡·高一江苏省南菁高级中学校考开学考试)解下列不等式: (1)2450x x -++< (2)20252x x ≤-+ (3)2690x x -+≤ (4)290x -≤题型2:解含有参数的一元二次不等式21.(2023·全国·高一专题练习)不等式()()22200ax a x a -++≥<的解集为( )A .2{|1}x x a ≤≤ B .1{|1}x x a ≤≤C .2{|1}x x x a≤≥或 D .2{|1}x x x a≤≥或22.(2023秋·高一校考课时练习)解关于x 的不等式: ()22110ax a x a -+++<.23.(2023秋·高一课时练习)解关于x 的不等式:2(1)10(R)ax a x a ---<∈.24.(2023秋·北京西城·高一北京铁路二中校考期中)设a ∈R ,解关于x 的不等式:()2330ax a x -++≤. 25.(2023·江苏·高一假期作业)解关于x 的不等式()()2231220x a x a --+->26.(2023秋·黑龙江鹤岗·高一鹤岗一中校考期中)已知222()(1)2(1)f x ax a x a =-+++,a ∈R ,求关于x的不等式()0f x ≥的解集.27.(2023春·陕西宝鸡·高二统考期末)设集合{}25A x x =-≤≤,22{3210}B x x mx m m =-+--<.(1)当x N ∈时,求A 的非空真子集的个数; (2)若A B B =,求实数m 的取值范围.(二)三个“二次”之间的关系及应用三个“二次”之间的关系(1)三个“二次”中,二次函数是主体,讨论二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象及性质来解决问题,关系如下:特别提醒:由于忽视二次项系数的符号和不等号的开口易写错不等式的解集形式.(3)解决三个“二次”之间的关系这类问题的关键是善于从题目条件中捕捉到根的信息,然后利用一元二次不等式与方程根的关系解决.不等式解集的端点值是对应方程的根,往往要用根与系数的关系.(三)分式不等式的解法(1)解分式不等式的策略:对于形如()()()00f x g x ><的不等式可等价转化为()()()00f x g x ><来解决;对于形如:()()()00f x g x ≥≤的不等式可等价转化为()()()00f x g x ≥≤来解决.(2)对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.(四)不等式恒成立问题1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是:当a =0时,b =0,c >0;当a ≠0时,0,0,a >⎧⎨∆<⎩一、单选题1.(2023秋·高一课时练习)不等式201x x -≥-的解集是( ) A .{}2x x ≥B .{1x x ≤或}2x >C .{}1x x <D .{1x x <或}2x ≥2.(2023秋·高一课时练习)若01t <<,则不等式()10x t x t ⎛⎫--< ⎪⎝⎭的解集为( )A .1|x x t t ⎧⎫<<⎨⎬⎩⎭B .1|x x x t t ⎧⎫><⎨⎬⎩⎭或C .1|x x x t t ⎧⎫<>⎨⎬⎩⎭或D .1|x t x t ⎧⎫<<⎨⎬⎩⎭3.(2023秋·江苏盐城·高一统考期中)已知关于x 的不等式20x ax b -+<的解集为{}12x x <<,则a b +=( ) A .3B .5C .1-D .3-4.(2023·全国·高一专题练习)关于x 的不等式2(2)10x a x a 的解集中,恰有2个整数,则a 的取值范围是( ) A .{}|23a a <≤B .{}|34a a <≤C .{|32a a -≤<-或23}a <≤D .{|32a a -≤<-或34}a <≤5.(2023·全国·高一专题练习)已知一元二次不等式()20,,R ax bx c a b c ++>∈的解集为{13}xx -<<∣,则1b c a-+的最大值为( ) A .2B .1C .1D .26.(2023秋·高一单元测试)已知函数2()f x x tx t =+-(0t <),若集合{|()0,}A x f x x =<∈Z 有且只有一个元素,则实数t 的取值范围是( ) A .(,4]-∞-B .[9,4]--C .9[,4)2--D .9(,4]2--7.(2023秋·吉林长春·高一校考期中)如图是函数2y ax bx c =++的图象,则不等式20ax bx c ++>的解集为( ) A .{}2x x >B .{}2x x >-C .{|2x x <-或}2x >D .{}22x x -<<8.(2023春·山西朔州·高一校考阶段练习)若关于x 的不等式240x x m --≥对任意的x ∈R 恒成立,则m 的最大值为( ) A .2B .2-C .4-D .49.(2023·全国·高一专题练习)若命题“R x ∃∈,使得2210x ax ++<”是假命题,则实数a 的取值范围是( ) A .11a -<< B .1a ≤-或1a ≥ C .11a -≤≤ D .1a <-或1a >二、多选题10.(2023秋·高一单元测试)若两个正实数x ,y 满足141x y +=,且不等式234y x m m +<-有解,则实数m 的值可以是( )A .2B .1C .3D .511.(2023·全国·高一专题练习)已知不等式20ax bx c ++<的解集为{|1x x <-或3}x >,则下列结论正确的是( )A .0a <B .0a b c ++>C .0c >D .20cx bx a -+<的解集为1{|3x x <-或1}x >12.(2023秋·福建泉州·高一统考期中)若关于x 的不等式()240x a x a +-+<的解集中恰有两个整数,则a的值可能为( )A .0B .34C .1D .4313.(2023秋·江苏镇江·高一扬中市第二高级中学校考开学考试)下列结论正确的是( )A .不等式(2)03x x x +<-的解集为<2x -或03x << B .不等式(2)03x x x +<-的解集为20x -<<或3x > C .不等式1611x x <--的解集为3x <-或15x << D .不等式1611x x <--的解集为31x -<<或5x > 14.(2023秋·云南曲靖·高一校考阶段练习)不等式230ax ax -+<的解集为∅,则实数a 可能是( )A .0B .2C .9D .13三、填空题15.(2024秋·吉林通化·高三校考阶段练习)不等式282x x ->的解集是 .16.(2023·全国·高一专题练习)已知不等式()200ax bx c a ++<≠的解是{2x x <或}3x >, 不等式20bx ax c ++>的解集为 .17.(2023·全国·高一专题练习)对于任意实数x ,不等式()()222240a x a x ----<恒成立,则实数a 的取值范围是 .18.(2023·全国·高一课堂例题)当1x >时,不等式290x ax ++>恒成立,则实数a 的取值范围为 . 19.(2023秋·新疆伊犁·高三奎屯市第一高级中学校考阶段练习)不等式212x x ≤-的解集为 . 20.(2023秋·全国·高一专题练习)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为 .四、解答题21.(2023秋·广东深圳·高三深圳市建文外国语学校校考阶段练习)解下列不等式:(1)260x x --+> (2)512x ≤- 22.(2023春·黑龙江大庆·高一大庆中学校考开学考试)解下列不等式:(1)22320x x -->(2)2350x x -+>(3)2620x x --+≥(4)2414x x -≥-23.(2023·全国·高一专题练习)解下列不等式:(1)22530x x +-<;(2)2362x x -+≤; (3)5132x x +≤-; (4)()()()12253x x x x --<-+(5)2230x x +->(6)24410x x -+-≥(7)2440x x -+>;(8)23520x x +-->;(9)22730x x ++>;(10)221x x <-.24.(2023·全国·高一专题练习)解下列关于x 的不等式:20x x a ++<(R a ∈);25.(2023秋·山东枣庄·高一校考阶段练习)解关于x 的不等式: 2(21)20ax a x -++<.26.(2023秋·广东东莞·高一校联考期中)设()()212f x x a x a =--+-.(1)若不等式()2f x ≥-对一切实数x 恒成立,求实数a 的取值范围;(2)解关于x 的不等式()()0R f x a <∈.。

一元二次不等式解法

一元二次不等式解法

一元二次不等式解法一.基础知识一元二次不等式解法:1.二次项系数化为正2.求根(先因式分解再求根公式)3.结合不等号方向写出解集二.典型例题例1.解下列不等式:()1260x x --< ()223100x x -++< (3)-x 2+2x -23>0(4)01272>+-x x (5)0122<+-x x (6) 0222<+-x x(7) 0322≥+--x x例2.解关于x 的不等式:x 2+(m -m 2)x -m 3>0.例3.解关于x 的不等式ax 2-2(a +1)x +4>0.例4.①二次不等式220ax bx ++>的解集是{}1123x x -<<,则a b +的值是.A 10 .B 10- .C 14 .D 14-②已知不等式20ax bx c ++>的解集为{|24}x x <<,则不等式20cx bx a ++<的解集为例5.已知2()2(2)4f x x a x =+-+, ()1如果对一切x R ∈,()0f x >恒成立,求实数a 的取值范围; ()2如果对[3,1]x ∈-,()0f x >恒成立,求实数a 的取值范围.三.课堂练习1. 不等式x 2>2x 的解集是( )A. (-∞,0)B. (0,2)C. (2,+∞)D. (-∞,0)∪(2,+∞)2. 已知集合M ={x|x 2<4},N ={x|x 2-2x -3<0},则集合M ∩N 为( )A. {x|x <2}B. {x|x >3}C. {x|-1<x <2}D. {x|2<x <3}3、当a 0<时,关于x 的不等式22x 4ax 5a 0-->的解集是 ( )(A ){}a x a x x -<>或5| (B ){}a x a x x -><或5|(C ){}a x a x 5|<<- (D ){}a x a x -<<5|4、若关于x 的不等式22(m 3)x 5x 20-+->的解集是1x |x 22⎧⎫<<⎨⎬⎩⎭,则实数m 的取值是 ( ) (A )1 (B )1- (C )1或1- (D )05.若不等式a x 2+5x+b >0的解集为{x|31<x <21},则a 、b 的值分别是__________.6、关于x 的不等式012>++ax ax 恒成立,则a 的取值范围是__________.7.若不等式2(2)2(2)40a x a x -+--<对一切x R ∈成立,则a 的范围是__________.8.若关于x 的方程2210x ax a ++-=有一正根和一负根,则a 的范围是__________.9. 解下列不等式x x x 25)3)(11-<--)(( 2)1(3)11()2(+≥+x x x )2(3)3)(12)32+>-+x x x ((22231334x x x ->+-)())(1(31152->+-x x x x10.解关于x 的不等式:22ax -≥2x ax -()a R ∈11.解不等式:02)12(2<++-x a ax。

一元二次不等式的解法

一元二次不等式的解法

考题五 在给定区间上的恒成立问题 【例 5】 (一题多解)设函数 f(x)=mx2-mx-1.若对于 x∈[1,3],f(x)<-m+5 恒成立,求 m 的取值范围.
考题六 给定参数范围的恒成立问题 【例 6】 对任意 m∈[-1,1],函数 f(x)=x2+(m-4)x+4-2m 的值恒大于零,求 x 的取值范围.
(4)不等式 ax2+bx+c≤0 在 R 上恒成立的条件是 a<0 且 Δ=b2-4ac≤0.( ) (5)若二次函数 y=ax2+bx+c 的图象开口向下,则不等式 ax2+bx+c<0 的解集一定不是空集.( )
答案:(1)√ (2)√ (3)× (4)× (5)√
二、易错纠偏
常见误区|K(1)解不等式时,变形必须等价;
2x+1
2.不等式
x-5
≥-1
A
的解集为________.
E
3.求不等式 12x2-ax>a2(a∈R)的解集.
考题四 在 R 上的恒成立问题
【例 4】 若不等式 2kx2+kx-38<0 对一切实数 x 都成立,则 k 的取值范围为(
)
A.(-3,0) B.[-3,0) C.[-3,0] D.(-3,0]
角度二 含参数的一元二次不等式
解关于 x 的不等式 ax2-(a+1)x+1<0.
【解】 若 a=0,原不等式等价于-x+1<0,解得 x>1.
若 a<0,原不等式等价于 x-a1(x-1)>0,
解得 x<1a或 x>1.
若 a>0,原不等式等价于 x-a1(x-1)<0.
①当 a=1 时,1a=1,x-1a(x-1)<0 无解;

(完整版)一元二次不等式的经典例题及详解

(完整版)一元二次不等式的经典例题及详解

一元二次不等式专题练习例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .例2 解下列分式不等式:(1)22123+-≤-x x (2)12731422<+-+-x x x x例3 解不等式242+<-x x例4 解不等式04125622<-++-x x x x . 例5 解不等式x x x x x <-+-+222322. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m .例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x .例9 解关于x 的不等式0)(322>++-a x a a x .例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集. 例11 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.例1解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或(2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法",但注意“奇穿偶不穿”,其法如下图.分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

一元二次不等式的解法

一元二次不等式的解法

一元二次不等式的解法一、学习目标1.掌握一元二次不等式的解法步骤,能熟练地求出一元二次不等式的解集。

2.掌握一元二次不等式、一元二次方程和二次函数的联系。

二、例题第一阶梯例1什么是一元二次不等式的一般式?【解】一元二次不等式的一般式是:ax2+bx+c(a>0)或ax2+bx+c<0(a>0)【评注】1.一元二次不等式的一般式中,严格要求a>0,这与一元二次方程、二次函数只要求a≠0不同。

<0 2.任何一元二次不等式经过变形都可以化成两种“一般式”之一,当a1时,将不等式乘-1就化成了“a>0”。

例2、一元二次不等式、一元二次方程和二次函数的联系是什么?【点拨】用函数的观点来回答。

【解】二次不等式、二次方程和二次函数的联系是:设二次函数y=ax2+bx+c (a≠0)的图象是抛物线L,则不等式ax2+bx+c>0,ax2+bx+c<0的解集分别是抛物线L在x轴上方,在x轴下方的点的横坐标x的集合;二次方程ax2+bx+c=0的根就是抛物线L与x轴的公共点的横坐标。

【评注】二次不等式、二次方程和二次函数的联系,通常称为“三个二次问题”,我们要深刻理解、牢牢掌握,并灵活地应用它。

它是函数与方程思想的应用范例。

应用这“三个二次”的关系,不但能直接得到“二次不等式的解集表”,而且还能解决“二次问题”的难题。

例3请你自己设计一张好用的“一元二次不等式的解集表”。

【解】一元二次不等式的解集表:【评注】1.不要死记书上的解集表,要抓住对应的二次方程的“根”来活记活用。

2.二次方程的解集求法属于“根序法”(数轴标根)。

例4、写出一元二次不等式的解法步骤。

【解】一元二次不等式的解法步骤是:1.化为一般式ax2+bx+c>0 (a>0)或ax2+bx+c<0 (a>0)。

这步可简记为“使a>0”。

2.计算△=b2-4ac,判别与求根:解对应的二次方程ax2+bx+c=0,判别根的三种情况,△≥0时求出根。

3.写出解集:用区间或用大括号表示解集。

一元二次不等式的解法

一元二次不等式的解法
利用二次函数图+c(a>0)与x轴 的交点情况有哪几种?
Δ>0 Δ=0 Δ<0
∆=b2-4ac 二次函数
∆>0 y
∆=0 y
∆<0 y
y=ax2+bx+c 的图像 (a>0)
o ●x1
● x2 x
o

xo
x
ax2+bx+c=0
x1,2

b 2a

记忆口诀:
大于0取两边,小于0取中间 .
首先,我们可以把任何一个一元二次 不等式转化为下列四种形式中的一种:
(1)ax2 bx c 0(a 0) (2)ax2 bx c 0(a 0) (3)ax2 bx c 0(a 0) (4)ax2 bx c 0(a 0)
o ●x1
● x2 x
o●
x
的图像 ax2+bx+c=0 x1,2 =
b± 2a
Δ
x1
=
x2
b =-
2a
的根 {x | x < x1 {x | x ∈ R,
φ ax2+bx+c>0 的解集
或x > x2}
{x | x1 <
x
≠-
b 2a
}
ax2+bx+c<0 x < x2 }
o
x
φ
R
φ
∆=b2-4ac
(3)根据图象写出解集(可记忆为:大于零取 两边,小于零取中间)
解法步骤总结:一化正→二算Δ→ 三求根→四写解集
例2.解不等式: -3x2+6x>2
解:∵ -3x2+6x>2

一元二次不等式的解法

一元二次不等式的解法

含参一元二次不等式的解法及推广一:一元二次不等式的解法(含参)思路①数性结合---利用二次函数图像读出解集(最常用的方法可同理写出开口向下的) 思路②利用不等式性质求解集(可推广到指对数等两根的不等式)类型一:二次不等式含参数问题(利用图像法,只需利用开口,判别式,两根大小画图草图即可,不需要y 轴,对称轴,所以二次不等式含参数问题主要围绕上述三个方面讨论)例题1 解关于x 的不等式ax 2-(a +1)x +1<0.解:(1)当a =0时,原不等式可化为-x +1<0,∴x>1.(2)当a ≠0时,原不等式可化为(ax -1)(x -1)<0,①当a<0时,不等式可化为(x -1a)(x -1)>0, ∵1a <1,∴x<1a或x>1. ②当a>0时,不等式可化为(x -1a)(x -1)<0, 若1a <1,即a>1,则1a<x<1; 若1a=1,即a =1,则x ∈∅; 若1a >1,即0<a<1,则1<x<1a. 综上所述,当a<0时,原不等式的解集为{x|x<1a或x>1}; 当a =0时,原不等式的解集为{x|x>1};当0<a<1时,原不等式的解集为{x|1<x<1a}; 当a =1时,原不等式的解集为∅;当a>1时,原不等式的解集为{x|1a<x<1}. 例2.解关于x 的不等式:()2220mx m x +-->.解:当0m =时,不等式化为220x -->,解得1x <-;当0m >时,不等式化为()()210mx x -+>,解得1x <-,或2x m >; 当20m -<<时,21m <-,不等式化为2(1)0x x m ⎛⎫-+< ⎪⎝⎭, 解得21x m <<-;当2m =-时,不等式化为()210x +<,此时无解;当2m <-时,21m >-,不等式化为2(1)0x x m ⎛⎫-+< ⎪⎝⎭, 解得21x m-<<; 综上,0m =时,不等式的解集是{}1x x <-;0m >时,不等式的解集是{|1x x <-或2x m ⎫>⎬⎭; 20m -<<时,不等式的解集是21x x m ⎧⎫<<-⎨⎬⎩⎭; 2m =-时,不等式无解;2m <-时,不等式的解集是21x x m ⎧⎫-<<⎨⎬⎩⎭. 例3.已知不等式()20ax a b x b -++>(1)若不等式的解集为{|1x x <或}x b >,求实数a 的值;(2)若2b =,解该不等式.解:(1)因为不等式()20ax a b x b -++>的解集为{|1x x <或}x b >,所以1x =和x b =是方程()20ax a b x b -++=的两个根, 由根与系数关系得11a b b a b b a +⎧+=⎪⎪⎨⎪⨯=⎪⎩,解得1a =; (2)当2b =时,不等式为()2220ax a x -++>,当0a =时,不等式为220x -+>,可得:1x <;当0a ≠时,不等式可化为()()210ax x -->,方程()2220ax a x -++=的两根为11x =,22x a=, 当0a <时,可得:21x a <<; 当0a >时, ①当21a <时,即2a >时,可得:1x >或2x a <; ②当21a 即2a =时,可得:1x ≠;③当21>a,即02a <<时,可得1x <或2x a >; 综上:当0a <时,不等式解集为21x x a ⎧⎫<<⎨⎬⎩⎭; 当0a =时,不等式解集为{}1x x <;当02a <<时,不等式解集为{|1x x <或2x a ⎫>⎬⎭; 当2a =时,不等式解集为{}1x x ≠;当2a >时,不等式解集为{1x x 或2x a ⎫<⎬⎭. 例4.(1)当5a =-时,求不等式2320ax x ++>的解集;(2)求关于x 的不等式2321ax x ax ++>--(其中0a >)的解集.解(1)由题意,当5a =-时,不等式2320ax x ++>,即为25320x x -++>,可得()()1520x x -+<,所以原不等式的解集为2,15⎛⎫- ⎪⎝⎭. (2)不等式2321ax x ax ++>--可化为()2330ax a x +++>,即()()310ax x ++>,即()310x x a ⎛⎫++> ⎪⎝⎭, 当0<<3a 时,31a -<-,不等式的解集为()3,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭; 当3a =时,31a-=-,不等式的解集为()(),11,-∞--+∞; 当3a >时,31a ->-,不等式的解集为()3,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭, 综上所述,原不等式解集为①当0<<3a 时,()3,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭; ②当3a =时,()(),11,-∞--+∞;③当3a >时,()3,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭. 例5.解关于x 的不等式x 2-(a +a 2)x +a 3>0.解: 原不等式可化为(x -a)(x -a 2)>0.则方程x 2-(a +a 2)x +a 3=0的两根为x 1=a ,x 2=a 2,由a 2-a =a(a -1)可知,(1)当a<0或a>1时,a 2>a.∴原不等式的解为x>a 2或x<a.(2)当0<a<1时,a 2<a ,∴原不等的解为x>a 或x<a 2.(3)当a =0时,原不等式为x 2>0,∴x ≠0.(4)当a =1时,原不等式为(x -1)2>0,∴x ≠1.综上可知:当a<0或a>1时,原不等式的解集为{x|x<a 或x>a 2};当0<a<1时,原不等式的解集为{x|x<a 2或x>a};当a =0时,原不等式的解集为{x|x ≠0};当a =1时,原不等式的解集为{x|x ≠1}.类型二:二次不等式恒成立求参数范围问题二次不等式ax 2+bx +c>0(a ≠0)恒成立两种解法①最小值大于0②图像始终位于x 轴上方常见题目又分为R 上恒成立和在给定区间上恒成立解题思路分三类①最值②图像③分离参数后重复1和2(前提参数好分离)例1:函数f(x)=x 2+ax +3,当x ∈R 时,f(x)≥a 恒成立,求实数a 的取值范围;解法1:设g(x)=f(x)-a =x 2+ax +3-a ,当x ∈R 时,f(x)≥a 恒成立,即g(x)=x 2+ax +3-a ≥0恒成立,需且只需Δ=a 2-4(3-a)≤0,即a 2+4a -12≤0, 解得-6≤a ≤2,即a 的范围是[-6,2].解法2:设g(x)=f(x)-a =x 2+ax +3-a ,当x ∈R 时,f(x)≥a 恒成立即g(x)=x 2+ax +3-a ≥0恒成立, 只需g(x)的最小值2244(3)044ac b a a a ---=≥, 解得-6≤a ≤2,即a 的范围是[-6,2]解法3:分离出a ,2(1)(3)a x x -≥-+当1x =时,易得恒成立;当1x >时, 22(3)(1)2(1)44(12)(1)(1)1x x x a x x x x +-+-+≥-=-=--++---由均值不等式得-6≤a ,同理当1x <时,22(3)(1)2(1)4412(1)(1)1x x x a x x x x +-+-+≤-=-=-+----由均值不等式得a ≤2小结:二次恒成立定义域R 用图像(法一),定义域非R 用最值(法二)分参数容易就用法3变式练习一、解答题例2.已知2(1)1y m x mx =+-+.(1)当5m =时,求不等式0y >的解集;(2)若不等式0y >的解集为R ,求实数m 的取值范围.解:(1)当5m =时,2651y x x =-+,不等式0y >即26510x x -+>,即()()31210x x -->, 故不等式的解集为13x x ⎧<⎨⎩或12x ⎫>⎬⎭; (2)由题意得2(1)10m x mx +-+>的解集为R ,当10m +=时,该不等式的解集为{}1x x >-,不符合题意,舍去;当10m +≠时,根据二次函数图象特征知,开口向上且∆<0,即()210410m m m +>⎧⎨-+<⎩,解得22m -<+综上所述,实数m 的取值范围是{22m m -<+.例3.设a 为实数,若关于x 的不等式220x ax a -->恒成立,求a 的取值范围.因为关于x 的不等式220x ax a -->恒成立,故二次函数22y x ax a =--的判别式即280a a +<,解得()8,0a ∈-.例4.已知二次函数()()21f x kx k x k =--+.若关于x 的不等式()0f x <的解集为R ,求实数k 的取值范围.解:因为()0f x <的解集为R ,所以()210kx k x k --+<,对x ∈R 恒成立,由二次函数知识得00k <⎧⎨∆<⎩,即()220140k k k <⎧⎪⎨--<⎪⎩, 解得1k <-.例5.已知不等式2364ax x -+>的解集为{1x x <或}x b >.(1)求a 、b 的值;(2)m 为何值时,230ax mx ++≥的解集为R ?(3)解不等式()20ax ac b x bc -++<.解:(1)由题意知,1和b 是方程2320ax x -+=的两根,则320a -+=,得1a =,方程为2320x x -+=,由韦达定理可得12b ⨯=,解得2b =;(2)由题意可知,关于x 的不等式230x mx ++≥的解集为R ,所以,2120m ∆=-≤,解得m -≤(3)不等式()20ax ac b x bc -++<,即为()2220x c x c -++<,即()()20x x c --<.①当2>c 时,原不等式的解集为{}2x x c <<;②当2c <时,原不等式的解集为{}2x c x <<;③当2c =时,原不等式无解.综上知,当2>c 时,原不等式的解集为{}2x x c <<;当2c <时,原不等式的解集为{}2x c x <<;当2c =时,原不等式的解集为∅.例6.已知y =x 2+ax +3-a ,若-2≤x ≤2,x 2+ax +3-a ≥0恒成立,求a 的取值范围. 解:设函数y =x 2+ax +3-a 在-2≤x ≤2时的最小值为关于a 的一次函数,设为g(a),则当对称轴x =-2a <-2,即a>4时,g(a)=(-2)2+(-2)a +3-a =7-3a ≥0,解得a ≤73,与a>4矛盾,不符合题意.当-2≤-2a ≤2,即-4≤a ≤4时,g(a)=3-a -24a ≥0,解得-6≤a ≤2,此时-4≤a ≤2. 当-2a >2,即a<-4时,g(a)=22+2a +3-a =7+a ≥0,解得a ≥-7,此时-7≤a<-4. 综上,a 的取值范围为-7≤a ≤2.例7.(1)解关于x 的不等式()()22442x a x a a R -++≤-∈.(2)若14x <≤时,不等式()2241x a x a -++≥--恒成立,求实数a 的取值范围.解解:(1)因为2(2)442x a x a -++-,即2(2)20x a x a -++,所以()(2)0x a x --,当2a <时,2a x ,当2a =时,2x =,当2a >时,2x a .综上所述,当2a <时,不等式的解为{|2}x a x ,当2a =时,不等式的解为{|2}x x =,当2a >时,不等式的解为{|2}x x a .(2)对于任意的14x <≤,()2241x a x a -++≥--恒成立,即2(2)50x a x a -+++恒成立,对任意的14x <≤,2(1)25a x x x --+恒成立,当14x <时,2254(1)11x x a x x x -+=-+--恒成立, 因为14x <时,所以013x <-,所以4(1)2(1)41x x x -+--,当且仅当411x x -=-,即3x =时等号成立, 所以4a ≤,所以实数a 的取值范围为(],4-∞.例8.已知函数2()(1)f x x a x a =-++.(1)当2a =时,求关于x 的不等式()0f x >的解集;(2)求关于x 的不等式()0f x <的解集;(3)若()20f x x +≥在区间(1,)+∞上恒成立,求实数a 的取值范围.解析:(1)当2a =时,则2()32f x x x =-+,由()0f x >,得2320x x -+>,令2320x x -+=,解得1x =,或2x =∴原不等式的解集为(-∞,1)(2⋃,)+∞(2)由()0f x <得1(0)()x a x --<,令()(1)0x a x --=,得1x a =,21x = ;当1a >时,原不等式的解集为(1,)a ;当1a =时,原不等式的解集为∅;当1a <时,原不等式的解集为(,1)a ;(2)由()20f x x +即20x ax x a -++在(1,)+∞上恒成立,得21x x a x +≤-令1(0)t x t =->, 则22(1)1232231x x t t t x t t++++==+++-, ∴223a +故实数a 的取值范围是(,3-∞⎤⎦例9.已知关于x 的不等式210ax x a -+-≤.(1)当a ∈R 时,解关于x 的不等式;(2)当[]2,3a ∈时,不等式210ax x a -+-≤恒成立,求x 的取值范围.解:(1)不等式210ax x a -+-≤可化为()()110x ax a -+-≤,当0a =时,不等式化为10x -≥,解得1≥x ,当0a <时,不等式化为()110a x x a -⎛⎫--≥ ⎪⎝⎭, 解得1a x a-≤,或1≥x ; 当0a >时,不等式化为()110a x x a -⎛⎫--≤ ⎪⎝⎭; ①102a <<时,11a a ->,解不等式得11a x a -≤≤, ②12a =时,11a a -=,解不等式得1x =, ③12a >时,11a a -<,解不等式得11a x a-≤≤. 综上,当0a =时,不等式的解集为{|1}x x ≥, 当0a <时,不等式的解集为{1|a x x a -≤或1}x ≥, 102a <<时,不等式的解集为1{|1}a x x a-≤≤, 12a =时,不等式的解集为{}|1x x =, 12a >时,不等式的解集为1{|}1a ax x ≤≤-. (2)由题意不等式210ax x a -+-≤对[]2,3a ∈恒成立,可设()()()211f a x a x =-+-+,[]2,3a ∈,则()f a 是关于a 的一次函数,要使题意成立只需:()()222021030320f x x f x x ⎧≤⎧--≤⎪⇒⎨⎨≤--≤⎪⎩⎩, 解得:112x -≤≤, 所以x 的取值范围是1,12⎡⎤-⎢⎥⎣⎦. 例10.(1)当1≤x ≤2时,不等式x 2+mx +4<0恒成立,求实数m 的取值范围.(2)对任意-1≤x ≤1,函数y =x 2+(a -4)x +4-2a 的值恒大于0,求a 的取值范围. 解:(1)令y =x 2+mx +4.∵y<0在1≤x ≤2上恒成立.∴y =0的根一个小于1,另一个大于2.如图所示:可得504240m m +<⎧⎨++<⎩,∴m 的取值范围是{m|m<-5}. (2)∵x 2+(a -4)x +4-2a>0恒成立,即x 2+ax -4x +4-2a>0恒成立.∴(x -2)·a>-x 2+4x -4.∵-1≤x ≤1,∴x -2<0.∴()22244222x x x a x x x --+-<=-=---. 令y =2-x ,则当-1≤x ≤1时,y 的最小值为1,∴a<1.故a 的取值范围为{a|a<1}. 类型三:分式,高次不等式的解法分式不等式:此类不等式求解,要先移项通分化为f x g x >0(或f x g x<0)的形式,再等价转化为整式不等式,特别的如果分母的正负容易判断,则可两边同乘以分母化正式例题1 解下列不等式:(1)3x -22x +1>0; (2)x +12-x≥3. .[解析] (1)3x -22x +1>0⇔(3x -2)(2x +1)>0⇔{x|x>23或x<-12}.(2)x +12-x ≥3⇔x +12-x -3≥0⇔4x -52-x ≥0⇔4x -5x -2≤0, ⇔⎩⎪⎨⎪⎧ 4x -5x -2≤0x -2≠0⇔{x|54≤x<2}. ∴原不等式的解集为{x|54≤x<2}. 例2解下列不等式:(1)x +1x -3≥0;(2)5x +1x +1<3. [解析] (1)不等式x +1x -3≥0可化为⎩⎪⎨⎪⎧ x +1x -3≥0x -3≠0,∴x ≤-1或x>3.∴原不等式的解集为{x|x ≤-1或x>3}.(2)不等式5x +1x +1<3可化为5x +1x +1-3<0, 即2x -1x +1<0,∴2(x -1)(x +1)<0, ∴-1<x<1.∴原不等式的解集为{x|-1<x<1}.简单高次不等式解法:把分式不等式转化为高次整式不等式,然后用“穿根法”求解 例题3:解下列不等式:(1)x 2+2x 3-x ≥0; (2)2x 2-5x +13x 2-7x +2≤1. -[解析] (1)原不等式⇔⎩⎪⎨⎪⎧ x 2+2x 3-x ≥03-x ≠0⇔⎩⎪⎨⎪⎧ x x +2x -3≤0,①x -3≠0.②将①式的三个根-2,0,3在数轴上标出来,然后用一条曲线穿根(从最大的根右上方穿起),如图所示,①式的解为x ≤-2,或0≤x ≤3.由②式知x ≠3,∴原不等式的解为{x|x ≤-2,或0≤x<3}.(2)2x 2-5x +13x 2-7x +2≤1⇔2x 2-5x +1-3x 2+7x -23x 2-7x +2≤0⇔-x 2+2x -13x 2-7x +2≤0⇔x 2-2x +13x 2-7x +2≥0⇔ ⎩⎪⎨⎪⎧ x -123x -1x -2≥0,①3x -1x -2≠0.②①式中三个根为13,1,2,其中1为二重根.由图知,①式的解为x ≤13,或x ≥2,或x =1.由②式知x ≠13,且x ≠2, ∴原不等式的解为{x|x<13,或x>2,或x =1}. 『规律总结』 穿根法求高次不等式的解集:(1)求解过程概括为:化正⇒求根⇒标根⇒穿根⇒写集(注意端点值能否取到). (2)“化正”指不等式中未知数最高项的系数为正值.(3)奇(奇次根)过,偶(偶次根)返回.例4:不等式:x(x -1)2(x +1)3(x -2)>0的解集为__{x|-1<x<0,或x>2}__.[解析] 原不等式可化为⎩⎪⎨⎪⎧ x x +1x -2>0x -1≠0 ⇔⎩⎪⎨⎪⎧ -1<x<0,或x>2x ≠1⇔-1<x<0,或x>2.∴原不等式的解集为{x|-1<x<0,或x>2}.例5:已知集合631x M x x +⎧⎫=≥⎨⎬+⎩⎭,2324850221x x N x x x x ⎧⎫--=≤⎨⎬-+-⎩⎭,求M N ⋃,(∁R M )∩N . 解:由631x x +≥+得,2301x x -≤+,则312x -≤<,即312M x x ⎧⎫=-≤⎨⎬⎩⎭<; 由2324850221x x x x x --≤-+-得,()()()()22125011x x x x x +-≤--+,则12x ≤-或512x <≤, 即15122N x x x ⎧⎫=≤-≤⎨⎬⎩⎭或<; ∴52M N x x ⎧⎫⋃=≤⎨⎬⎩⎭,312R C M x x x ⎧⎫=≤-⎨⎬⎩⎭或>,()35122R C M N x x x ⎧⎫⋂=≤-≤⎨⎬⎩⎭或<. 例6:解关于x 的不等式11ax a x +≤+. 21(1)110ax a x ax a x x-+++≤+⇔≤ 即(1)(1)0ax x x--≤等价于(1)(1)00ax x x x --≤⎧⎨≠⎩1.0a =时,即()[)(1)0,01,0x x x x -≥⎧⇒∈-∞⋃+∞⎨≠⎩2.0a ≠时,三次不等式对应的方程的三个根分别为0,1和1a ; ⑴0a <时,利用数轴标根法,大致图像为:[)1,01,x a ⎡⎫∴∈+∞⎪⎢⎣⎭;⑵0a >时,草图为:需要判断1a 和1的大小①01a <<时,解集为()1,01,a ⎡⎤-∞⎢⎥⎣⎦; ②1a =时,解集为(){},01-∞;③1a >时,解集为()1,0,1a ⎡⎤-∞⎢⎥⎣⎦. 综上:①0a <时,解集为[)1,01,a ⎡⎫+∞⎪⎢⎣⎭; ②0a =时,解集为()[),01,-∞+∞;③01a <<时,解集为()1,01,a ⎡⎤-∞⎢⎥⎣⎦; ④1a =时,解集为(){},01-∞;⑤1a >时,解集为()1,0,1a ⎡⎤-∞⎢⎥⎣⎦.例7.解关于x 的不等式()2201x x a R ax -->∈-. 由原不等式可得()()1201x x ax +->-,所以 ()()()1120ax x x -+-> 当0a =时,不等式的解集为:12x -<<;当0a ≠时,方程()()()1120ax x x -+-=解为:1x a=,1-,2; 当0a <时:()()1120x x x a ⎛⎫-+-< ⎪⎝⎭ ①11a <-,10a -<<时,其解集为:()1,1,2a ⎛⎫-∞⋃- ⎪⎝⎭ ②11a=-,1a =-时,其解集为:()(),11,2-∞-⋃- ③110a -<<,1a <-时,其解集为()1,1,2a ⎛⎫-∞-⋃ ⎪⎝⎭当0a >时:()()1120x x x a ⎛⎫-+-> ⎪⎝⎭ ①12a >,102a <<时,其解集为:()11,2,a ⎛⎫-⋃+∞ ⎪⎝⎭②12a=,12a =时,其解集为:()()1,22,-+∞ ③102a <<,12a >时,其解集为()11,2,a ⎛⎫-⋃+∞ ⎪⎝⎭。

2.2一元二次不等式的解法

2.2一元二次不等式的解法
80 1 r%
8-0.62r
即3.1r2-41r+100≤0
=>100/31≤r≤10
因此,所求的r取值范围是[100/31,10]
练习1
某旅店有200张床位,若每床一晚上租金27元, 则可全部出租;若将出租收费标准每晚提高10 的整数倍,则出租的床位会将减少10的相应倍 数张。若要是该旅店某晚的收入超过10000元, 则每个床位的出租价格应定在什么范围内?


△>0
x1=
不等式解集为 {x|x<x1 或x>x2}
不等式解集为 {x|x1<x< x2}

△=0 x 0=
b 2a

不等式解集 {x|x≠x0, x∈R}
解集为

△<0
方程无解
不等式解集为 R(一切实数)
解集为
a<0的情况自己完成
二、典型习题——逆用解不等式
1. 已知不等式ax2+bx+c>0的解集为 (-2,3),求不等式cx2+ax-b<0的解集。 2. 求a,b满足的条件,使得ax2+2x+b>0 的解集为 (1)(-1,2) (2) (-∞,+∞)
不等式怎么解? ax2+bx+c=0
三、解法
例1、解一元二次不等式:x² -x-2>0
(x-2)(x+1)>0
x 2 0 x 2 0 或 x 1 0 x 1 0
代数解法
x , 1 2,
y=(x-2)(x+1)
几何解法
2

2.2一元二次不等式 的解法
(2)
解 不 等 式 x ( a 2) x 2 a 0

一元二次不等式(含答案)

一元二次不等式(含答案)

一元二次不等式1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式. 当a >0时,解集为 ;当a <0时,解集为 . 2.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x 的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)一元二次不等式的解:函数与不等式 Δ>0Δ=0Δ<0二次函数 y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根 有两相异实根 x 1,x 2(x 1<x 2)有两相等实根 x 1=x 2=-b2a无实根ax 2+bx +c >0 (a >0)的解集 ① ② Rax 2+bx +c <0 (a >0)的解集{x |x 1<x <x 2}∅③3.分式不等式解法(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f (x )g (x )的形式.(2)将分式不等式转化为整式不等式求解,如:f (x )g (x )>0 ⇔ f (x )g (x )>0; f (x )g (x )<0 ⇔ f (x )g (x )<0; f (x )g (x )≥0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0; f (x )g (x )≤0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≤0,g (x )≠0.已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( ) A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A . 设f (x )=x 2+bx +1且f (-1)=f (3),则f (x )>0的解集为( )A.{x |x ∈R }B.{x |x ≠1,x ∈R }C.{x |x ≥1}D.{x |x ≤1}解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b ,由f (-1)=f (3),得2-b =10+3b , 解出b =-2,代入原函数,f (x )>0即x 2-2x +1>0,x 的取值范围是x ≠1.故选B.已知-12<1x <2,则x 的取值范围是( )A.-2<x <0或0<x <12B.-12<x <2C.x <-12或x >2D.x <-2或x >12解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,故选D.不等式1-2xx +1>0的解集是 .解:不等式1-2x x +1>0等价于(1-2x )(x +1)>0,也就是⎝⎛⎭⎫x -12(x +1)<0,所以-1<x <12. 故填⎩⎨⎧⎭⎬⎫x |-1<x <12,x ∈R .若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈∅;若k <0,则只须38k <(2x 2+x )min ,解得k ∈(-3,0).故k 的取值范围是(-3,0).故填(-3,0).类型一 一元一次不等式的解法已知关于x 的不等式(a +b )x +2a -3b <0的解集为⎝⎛⎭⎫-∞,-13,求关于x 的不等式(a -3b )x +b -2a >0的解集.解:由(a +b )x <3b -2a 的解集为⎝⎛⎭⎫-∞,-13,得a +b >0,且3b -2a a +b =-13, 从而a =2b ,则a +b =3b >0,即b >0,将a =2b 代入(a -3b )x +b -2a >0, 得-bx -3b >0,x <-3,故所求解集为(-∞,-3).点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2a a +b =-13是解本题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时,①当m =-2时,原不等式的解集为∅,不符合 ②当m =2时,原不等式的解集为R ,符合(2)当m 2-4>0即m <-2或m >2时,x <1m -2.(3)当m 2-4<0即-2<m <2时,x >1m -2.类型二 一元二次不等式的解法解下列不等式:(1)x 2-7x +12>0; (2)-x 2-2x +3≥0;(3)x 2-2x +1<0; (4)x 2-2x +2>0.解:(1){x |x <3或x >4}.(2){x |-3≤x ≤1}.(3)∅.(4)因为Δ<0,可得原不等式的解集为R .已知函数f (x )=⎩⎪⎨⎪⎧-x +1,x <0,x -1,x ≥0, 则不等式x +(x +1)f (x +1)≤1的解集是( )A.{x |-1≤x ≤2-1}B.{x |x ≤1}C.{x |x ≤2-1}D.{x |-2-1≤x ≤2-1} 解:由题意得不等式x +(x +1)f (x +1)≤1等价于①⎩⎪⎨⎪⎧x +1<0,x +(x +1)[-(x +1)+1]≤1 或②⎩⎪⎨⎪⎧x +1≥0,x +(x +1)[(x +1)-1]≤1,解不等式组①得x <-1;解不等式组②得-1≤x ≤2-1.故原不等式的解集是{x |x ≤2-1}.故选C.类型三 二次不等式、二次函数及二次方程的关系已知关于x 的不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},求实数b ,c 的值.解:∵不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},∴x 1=-5,x 2=1是x 2-bx +c =0的两个实数根,∴由韦达定理知⎩⎪⎨⎪⎧-5+1=b ,-5×1=c ,∴⎩⎪⎨⎪⎧b =-4,c =-5. 已知不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式cx 2-bx +a >0的解集.解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得⎩⎪⎨⎪⎧-ba =2+3,c a =2×3,a <0.即⎩⎪⎨⎪⎧b =-5a ,c =6a ,a <0.代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0).即6x 2+5x +1<0,∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <-13.类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1}; (2)当m ≠0时,不等式为m ⎝⎛⎭⎫x -1m (x -1)<0.①当m <0,不等式为⎝⎛⎭⎫x -1m (x -1)>0, ∵1m <1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1m 或x >1. ②当m >0,不等式为⎝⎛⎭⎫x -1m (x -1)<0. (Ⅰ)若1m <1即m >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <1;(Ⅱ)若1m >1即0<m <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1m ;(Ⅲ)若1m=1即m =1时,不等式的解集为∅.点拨:当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m与1大小的不确定性,对m <1、m >1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0,当a =0时,解集为(-∞,-1].当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a ,所以当a >0时,解集为(-∞,-1]∪⎣⎡⎭⎫2a ,+∞; 当-2<a <0时,解集为⎣⎡⎦⎤2a ,-1;当a =-2时,解集为{x |x =-1};当a <-2时,解集为⎣⎡⎦⎤-1,2a . 类型五 分式不等式的解法(1)解不等式x -12x +1≤1.解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0 ⇔ x +22x +1≥0.x +22x +1≥0 ⇔ ⎩⎪⎨⎪⎧(x +2)(2x +1)≥0,2x +1≠0.得{xx >-12或x ≤-2}.※(2)不等式x -2x 2+3x +2>0的解集是 .解:x -2x 2+3x +2>0⇔x -2(x +2)(x +1)>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2},故填{x|-2<x <-1或x >2}.点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,则要注意分式的分母不能为零.※用“数轴标根法”解不等式的步骤:(1)移项:使得右端为0(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根..(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根”的右上方向左下方画线,穿过此根,再往左上方穿过“次右根”,一上一下依次穿过各根,“奇穿偶不穿”来记忆.(5)写出不等式的解集:若不等号为“>”,则取数轴上方穿根线以内的范围;若不等号为“<”,则取数轴下方穿根线以内的范围;若不等式中含有“=”号,写解集时要考虑分母不能为零.(1)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( )A.{x |-1≤x <0}B.{x |0<x ≤1}C.{x |0≤x ≤2}D.{x |0≤x ≤1}解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x (x -2)≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B={x |0<x ≤1}.故选B.(2)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1B.⎣⎡⎦⎤-12,1C.⎝⎛⎭⎫-∞,-12∪[1,+∞)D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0得-12<x ≤1.故选A.类型六 和一元二次不等式有关的恒成立问题(1)若不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,则a 的最小值为( ) A.0 B.-2 C.-52D.-3解:不等式可化为ax ≥-x 2-1,由于x ∈⎝⎛⎦⎤0,12,∴a ≥-⎝⎛⎭⎫x +1x .∵f (x )=x +1x 在⎝⎛⎦⎤0,12上是减函数, ∴⎝⎛⎭⎫-x -1x max=-52.∴a ≥-52.(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( ) A.1<x <3B.x <1或x >3C.1<x <2D.x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],只须⎩⎪⎨⎪⎧g (1)>0,g (-1)>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B.点拨:对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.对于满足|a |≤2的所有实数a ,求使不等式x 2+ax +1>2x +a 成立的x 的取值范围.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1.∴x <-1或x >3. 类型七 二次方程根的讨论若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a 的取值范围是( ) A.a <-1B.a >1C.-1<a <1D.0≤a <1解法一:令f(x)=2ax2-x-1,则f(0)·f(1)<0,即-1×(2a-2)<0,解得a>1.解法二:当a=0时,x=-1,不合题意,故排除C,D;当a=-2时,方程可化为4x2+x+1=0,而Δ=1-16<0,无实根,故a=-2不适合,排除A.故选B.。

一元二次不等式解法专题知识梳理及典型练习题(含答案)

一元二次不等式解法专题知识梳理及典型练习题(含答案)

一元二次不等式解法专题一.一元二次不等式与相应的二次函数及一元二次方程的关系判别式Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0 (a >0)的根有两相异实根x 1,x 2(x 1<x 2) 有两相等实根x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集{x |x >x 2或x <x 1} ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集 {x |x 1<x <x 2}Φ Φ二.穿针引线法例 1 解下列不等式:(1)x x ≥-2414 (2)0822≥+--x x (3)0)3)(2(>-+x x例2 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =_____.例3(穿针引线法) 解不等式:(x-1)2(x+1)(x-2)(x+4)<0例4 不等式xx ->+111的解集为( ) A .{x|x >0}B .{x|x≥1}C.{x|x >1} D .{x|x >1或x =0}解不等式化为+->,通分得>,即>,1x 000111122----xx x x x∵x 2>0,∴x-1>0,即x >1.选C . 例5 与不等式023≥--xx 同解得不等式是( ) A .(x -3)(2-x)≥0B.0<x -2≤1C .≥230--xx D .(x -3)(2-x)≤0 练习1:1.不等式x 2-3x +2<0的解集为( ). A .(-∞,-2)∪(-1,+∞) B .(-2,-1) C .(-∞,1)∪(2,+∞) D .(1,2)答案 D2.(2011·XX)不等式2x 2-x -1>0的解集是( ). A.⎝ ⎛⎭⎪⎫-12,1B .(1,+∞) C .(-∞,1)∪(2,+∞) D.⎝⎛⎭⎪⎫-∞,-12∪(1,+∞) 故原不等式的解集为⎝⎛⎭⎪⎫-∞,-12∪(1,+∞). 答案 D3.不等式9x 2+6x +1≤0的解集是( ).A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-13B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-13C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-13≤x ≤13D .R答案 B4.若不等式ax 2+bx -2<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-2<x <14,则ab =( ).A .-28B .-26C .28D .26 答案 C5.函数f (x )=2x 2+x -3+log 3(3+2x -x 2)的定义域为________.解析 依题意知⎩⎨⎧2x 2+x -3≥0,3+2x -x 2>0,解得⎩⎨⎧x ≤-32或x ≥1,-1<x <3.∴1≤x <3.故函数f (x )的定义域为[1,3).答案 [1,3)6.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3.[审题视点] 对x 分x ≥0、x <0进行讨论从而把f (x )>3变成两个不等式组. 解 由题意知⎩⎨⎧x ≥0,x 2+2x >3或⎩⎨⎧x <0,-x 2+2x >3,解得:x >1.故原不等式的解集为{x |x >1}.例不等式<的解为<或>,则的值为7 1{x|x 1x 2}a axx -1A aB aC aD a .<.>.=.=-12121212分析可以先将不等式整理为<,转化为 0()a x x -+-111[(a -1)x +1](x -1)<0,根据其解集为{x|x <1或x >2}可知-<,即<,且-=,∴=.a 10a 12a 1112a - 选C .例解不等式≥.8 237232x x x -+-解 先将原不等式转化为3723202x x x -+--≥即≥,所以≤.由于++=++>,---+-+++-2123212314782222x x x x x x x x 002x x 12(x )022∴不等式进一步转化为同解不等式x 2+2x -3<0,即(x +3)(x -1)<0,解之得-3<x <1.解集为{x|-3<x <1}. 说明:解不等式就是逐步转化,将陌生问题化归为熟悉问题. 练习21.(x+4)(x+5)2(2-x)3<0.2.解下列不等式(1);22123+-≤-x x 127314)2(22<+-+-x x x x3.解下列不等式1x 5x 2)2(;3x 1x 1+>+-≤-)(4.解下列不等式()()12log 6log 1log )2(;08254)1(21212121≥-++≥+⋅-+x x x x5解不等式1)123(log 2122<-+-x x x .。

一元二次不等式及其解法新

一元二次不等式及其解法新
2
有两个相等实根
Hale Waihona Puke b x1 = x2 = − 2a
b x | x ≠ − 2a
ax2 + bx+ c > 0(a > 0)
的解集
{x | x < x1或x > x2}
R
Φ
ax2 +bx+c < 0(a > 0)
的解集
{ x | x1 < x < x2}
Φ
例题选讲
题型二.不含参数的一元二次不等式的解 题型二 不含参数的一元二次不等式的解
的两个根,且 的两个根 且a<0.
1 1 b − + =− 2 3 a 1 1 2 − = 2 3 a
1 1 {x | − < x < }, 求 2 3
a, b.
解得: 解得
a = −12, b = −2.
变式:已知关于 的不等式 变式 已知关于x的不等式 ax + bx + c < 0 已知关于
例题选讲
题型三.含参数的一元二次不等式的解 分类讨论 题型三 含参数的一元二次不等式的解(分类讨论 含参数的一元二次不等式的解 分类讨论)
解关于x的不等式 例3. 解关于 的不等式
x − ax − 6a < 0
2 2
小结:解含有参数的不等式时, 小结:解含有参数的不等式时,要利用分类讨 论的思想,确定分类的标准, 论的思想,确定分类的标准,对参数进行分类 讨论。 讨论。
例2.解下列不等式 解下列不等式
(1)2 x − 5 x − 3 > 0
2
(2) − 3 x + 15 x > 12 2 (3) − 3 x + 6 x > 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一对一个性化辅导教案
一元二次不等式及其解法
【要点梳理】
要点一、一元二次不等式及一元二次不等式的解集
只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.比如:
250x x -<.一元二次不等式的一般形式:20ax bx c ++>(0)a ≠或20ax bx c ++<(0)a ≠.
设一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x <,则不等式20ax bx c ++>的解集为
{}2
1
x x x x x ><或,不等式2
0ax
bx c ++<的解集为{}21x x x x <<
要点诠释:讨论一元二次不等式或其解法时要保证(0)a ≠成立. 要点二、一元二次不等式与相应函数、方程之间的联系
对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=∆,它的解按照
0>∆,0=∆,0<∆可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或
20ax bx c ++<(0)a >的解集.
二次函数
c
bx ax y ++=2(0>a )的图象
20(0)ax bx c a ++=>的根
有两相异实

)(,2121x x x x <
有两相等实根
a
b x x 221-
== 无实根
的解集
)0(02>>++a c bx ax
{}
2
1
x x x x x ><或⎭⎬⎫⎩
⎨⎧-≠a b x x 2
R
的解集
)0(02><++a c bx ax
{}21
x x x
x <<
∅ ∅
要点诠释:
(1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线=y c bx ax ++2与x 轴的交点的横坐标;
(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;
(3)解集分0,0,0∆>∆=∆<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集.
要点三、解一元二次不等式的步骤
(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20ax bx c ++=(0)a >,计算判别式∆:
①0∆>时,求出两根12x x 、,且12x x <②0∆=时,求根a
b
x x 221-
==;
③0
∆<时,方程无解
(3)根据不等式,写出解集.
用程序框图表示求解一元二次不等式ax2+bx+c>0(a>0)的过程
要点诠释:
1.解一元二次不等式首先要看二次项系数a是否为正;若为负,则将其变为正数;
2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法;
3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论;
4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系;
5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数. 【典型例题】
类型一:一元二次不等式的解法 例1. 解下列一元二次不等式
(1)250x x -<; (2)2440x x -+>; (3)2450x x -+->
举一反三:
【变式1】已知函数222,0,
()2,0
x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩ 解不等式f (x )>3.
类型二:含字母系数的一元二次不等式的解法 例2.解关于x 的不等式:ax 2-x+1>0
【总结升华】对含字母的二元一次不等式,一般有这样几步:
①定号:对二次项系数大于零和小于零分类,确定了二次曲线的开口方向;
②求根:求相应方程的根.当无法判断判别式与0的关系时,要引入讨论,分类求解; ③定解:根据根的情况写出不等式的解集;当无法判断两根的大小时,引入讨论. 举一反三:
【变式1】解关于x 的不等式:)0(01)1
(2≠<++-a x a
a x
【变式2】求不等式12x 2-ax >a 2(a ∈R )的解集. .
例3.解关于x 的不等式:ax 2-(a+1)x+1<0.
举一反三:
【变式1】解关于x的不等式:(ax-1)(x-2)≥0;
【变式2】解关于x 的不等式:ax 2+2x-1<0;
类型三:一元二次不等式的逆向运用
例4. 不等式20x mx n +-<的解集为(4,5)x ∈,求关于x 的不等式210nx mx +->的解集.
举一反三:
【变式1】不等式ax 2+bx+12>0的解集为{x|-3<x<2},则a=_______, b=________.
【变式2】已知220ax x c ++>的解为11
32x -<<,试求a 、c ,并解不等式220cx x a -+->.
【变式3】已知关于x 的不等式20x ax b ++<的解集为(1,2),求关于x 的不等式210bx ax ++>的解集.
类型四:不等式的恒成立问题
例5.已知关于x 的不等式(m 2+4m-5)x 2-4(m-1)x+3>0对一切实数x 恒成立,数m 的取值围.
举一反三:
【变式1】 若关于x 的不等式2(21)10mx m x m -++-≥的解集为空集,求m 的取值围.
【变式2】已知不等式ax 2+4x +a >1-2x 2对一切实数x 恒成立, 数a 的取值围.。

相关文档
最新文档