建筑结构抗震总复习第五章-地震作用和结构抗震设计要点

合集下载

建筑结构抗震复习重点

建筑结构抗震复习重点

1、地震的相关概念及分类震源:指地球内部断层错动并引起周围介质震动的部位。

震源深度:如果把震源看成一个点,那么这个点到地面的垂直距离就称为震源深度。

震中:指震源正上方的地面位置,即震源在地面上的投影。

震中距:指地面某处至震中的水平距离。

地震分类:1、按成因分为诱发地震和天然地震2、按震源深度可分为浅源地震,中源地震,深源地震3、按震级通常分为微震、有感地震、破坏性地震,强烈地震和特大地震4、按地震形式、地震序列可分为主震型、震群型、孤立型2、构造地震的成因:是指由地壳构造变动而引起的地震3、地震震级:是衡量地震本身强度大小的一种度量指标,通常是用地震时地面运动的振幅来确定的。

地震烈度:是指某一地区地面和各类建筑物遭受到一次地震影响的强弱程度。

4、三水准设防目标:小震不坏,中震可修、大震不倒1)当遭受低于本地区抗震设防烈度的多遇地震影响时,建筑物一般不受损坏或不需修理仍可继续使用2)当遭受相当于本地区抗震设防烈度的地震影响时,建筑物可能损坏,经一般修理或不需修理仍可继续使用3)当遭受高于本地区抗震设防烈度预估的罕遇地震影响时,建筑物不致倒塌或发生危机生命的严重破坏。

5、两阶段设计方法:第一阶段设计:按第一水准多遇地震烈度对应的地震作用效应和其他荷载效应的组合,验算结构构件的承载能力和结构的弹性变形第二阶段设计:按第三水准罕遇地震烈度对应的地震作用效应验算结构的弹塑性变形。

6、甲类建筑:应属于重大建筑工程和地震时可能发生严重次生灾害的建筑。

这类建筑的确定须经国家规定的批准权限批准。

乙类建筑:应属于地震时使用功能不能中断或需尽快恢复的建筑,如城市生命线工程(一般包括供水、供电、交通、通信、消防、医疗等系统)的核心建筑丙类建筑:应属于甲、乙、丁类以外的一般建筑,一般的工业与民用建筑等均属此类丁类建筑:应属于抗震次要建筑,如一般的仓库、人员较少的辅助建筑物等。

抗震措施:甲类:当抗震设防烈度为6~8度时,应符合本地区抗震设防烈度提高一度的要求,当为9度时,应符合比9度抗震设防更高的要求。

结构抗震考试重点

结构抗震考试重点
8.重力荷载代表值:进行结构抗震设计时,所考虑的重力荷载
9.抗震验算内容及目的:⑴多遇地震下结构允许弹性变形验算,以防止非结构构件破坏;⑵多遇地震下强度验算,以防止结构构件破坏;⑶罕遇地震下结构的弹塑性变形验算,以防止结构倒塌。“中震可修”抗震要求,通过构造措施加以保证。目的:满足 “小震不坏、中震可修、大震不倒”的抗震要求。
第五章 多高层Biblioteka 筑钢筋混凝土结构抗震设计 1.选型、结构布置和设计原则—— 通读
2.抗震等级依据:钢筋混凝土房屋应根据烈度、结构类型和房屋高度采用不同的抗震等级。
3.剪压比:
4.剪跨比:
5.截面设计和构造:地震作用效应的调整:通过内力组合得出设计内力,还需进行调整以保证梁端的破坏先于柱端的破坏(强柱弱梁原则)、弯曲破坏先于剪切破坏(强剪弱弯原则)、构件的破坏先于节点的破坏(强节点弱构件原则,节点须抗震验算)①根据“强柱弱梁”原则的调整:对同一节点,使其在地震作用组合下,柱端的弯矩设计值略大于梁端的弯矩设计值或抗弯能力。②根据“强剪弱弯”原则的调整:对同一杆件,使其在地震作用组合下,剪力设计值略大于按设计弯矩或实际抗弯承载力及梁上荷载反算出的剪力。
⒒多遇地震烈度:分析年限取50年,概率密度曲线的峰值烈度所对应的被超过概率为63.2%,将这一峰值烈度定义为小震烈度,又称多遇地震烈度。
⒓罕遇地震烈度:分析年限取50年,概率密度曲线的峰值烈度所对应的被超过概率为2%,将这一峰值烈度定义为大震烈度,又称罕遇地震烈度。
⒔两阶段设计方法:第一阶段设计:按多遇地震烈度对应的地震作用效应和其他荷载效应的组合验算结构构件的承载能力和结构的弹性变形。第二阶段设计:按罕遇地震烈度对应的地震作用效应验算结构的弹塑性变形。
5.竖向作用考虑条件:设防烈度为8度和9度区的大跨度屋盖结构、长悬臂结构、烟囱及类似高耸结构和设防烈度为9度区的高层建筑。

5建筑结构抗震知识

5建筑结构抗震知识

5建筑结构抗震知识建筑结构抗震是指在地震发生时,建筑物能够减少震害,保护人民生命财产安全的能力。

抗震结构设计是建筑学、土木工程学中的重要分支,它通过合理设计和采用抗震材料、技术手段,提高建筑物的抗震性能。

一、抗震结构设计的原则抗震结构设计的原则包括强度设计原则、刚度设计原则和能量耗散设计原则。

强度设计原则是指建筑物在地震发生时能够在一定限度内保持稳定;刚度设计原则是指建筑物应具备一定的刚性和屈服控制能力,以减小地震作用对建筑的影响;能量耗散设计原则是指建筑物能够有效消耗地震能量,减小地震响应。

二、抗震设计的重点1.结构形式选择抗震设计的第一步是选择合适的结构形式,常见的抗震结构形式包括框架结构、剪力墙结构、框剪结构、框架-剪力墙结构等。

不同结构形式的抗震性能有所差异,需要根据实际情况选择合适的结构形式。

2.地基处理地基是建筑物的承载体,其稳定性对抗震性能有重要影响。

进行地基处理,包括加固地基、减少土的液化等,可以提高地基的抗震性能。

3.结构材料选择选择结构材料也是抗震设计的重要环节。

常用的结构材料有混凝土、钢材、木材等。

不同材料具有不同的特性和抗震性能,需要根据实际情况选择合适的材料。

4.结构设计参数确定结构设计参数的确定包括建筑物的抗震设防烈度、结构设计荷载、设计地震动参数等。

合理确定这些参数可以保证建筑物的抗震性能符合要求。

5.构件连接方式设计建筑结构中各构件之间的连接方式对抗震性能也有重要影响。

合理设计构件之间的连接方式,可以提高建筑结构的整体刚度和耗能能力。

三、抗震结构设计措施1.设置合理布置纵、横向抗震构件,如加强墙柱节点构造,保证连接牢固。

2.合理设置剪力墙,增加结构的刚度和稳定性。

3.采用适当的钢筋混凝土框架结构,在结构上设置合理的水平和垂直抗震支撑。

4.增设减震墩或剪力墙,通过减震器等措施,减少地震能量对建筑物的影响。

5.提高建筑物的整体刚度和稳定性,增加抗震性能。

这些抗震结构设计措施是在减小地震对建筑物的影响、保护人员生命财产安全方面经过实践总结和理论研究得出的。

建筑结构抗震设计5

建筑结构抗震设计5

柱的局部震害: 下柱下部出现横向裂缝或折断,后者会造成倒塌等 严重后果 柱间支撑产生压屈
4、连接 厂房是装配式结构,连接很重要,屋 面板与屋架,天窗架与屋架、屋架与柱、 吊车梁与柱、支撑连接等。 5、 支撑系统 厂房的重要构件,天窗架支撑——屋 盖垂直支撑——柱间支撑 破坏形式:压曲,节点扭折、焊缝撕 开、锚件拉脱等。 6、 围护墙 开裂、外闪、脱落、倒塌。
• 总体较轻,主要是维护结构的破坏 • 维护墙:起承受和传递水平地震力的作用 • 刚度和质量分布对厂房的动力反应很大影响其布置不 合理是造成厂房危害的重要原因。
营口中板厂 墙体和柱拉结不良而在 地震时发生墙面大片倒 塌的现象。
对7度以上地震作用抵抗力不足。弱点:纵向抗震 能力差、构件连接单薄、支撑体系弱等。 1、屋盖体系 7度区,柱间支撑处屋面板支座酥裂。 8度区,屋面板错动、震落、倒塌。 9度区,屋面大面积倒塌。
8.1
概述
一、单层砖厂房 • 7度区:未经设防的单层砖结构厂房,多数只有轻 微破坏或基本完好,少数为中等破坏。 • 8度区:多数有破坏,部分受到中等破坏,个别倒 塌。 • 9度区:大多数有严重破坏或倒塌,只有个别在震 后保留下来。 抗震性能远不如钢筋混凝土厂房
• 屋盖的震害现象有: 屋面的瓦下滑和掉落;冷摊瓦屋面的木屋架沿厂房纵 向向一侧倾斜;木屋架及其气楼间的竖向交叉支撑或 结点拉脱,或木杆件被拉断;重屋盖的天窗两侧竖向 支撑或结点拉脱,或钢杆件被压屈。 • 砖柱的震害现象有: 内部独立砖柱在底部发生水平裂缝;柱顶混凝土垫块 底面出现水平裂缝,少数发生错位;高低跨砖柱上柱 水平折断,或是支承低跨屋架的柱肩产生竖向裂缝
•墙体的震害主要有: 山墙外倾,檩条由墙顶拔出,严重时山墙尖向外倾倒,端 开间屋面局部塌落;外纵墙在窗台高度处出现细微水平裂 缝,较严重时水平折断,并常伴有壁柱砖块局部压碎崩落, 更严重时整个厂房横向倾倒。

建筑结构抗震复习重点

建筑结构抗震复习重点

建筑结构抗震复习重点《建筑结构抗震设计》总复习第一章:绪论1.什么是地震动和近场地震动?P3答:由地震波传播所引发的地面振动,叫地震动。

其中,在震中区附近的地震动称为近场地震动。

2.什么是地震动的三要素?P3答:地震动的峰值(振幅)、频谱和持续时间称作地震动的三要素。

3.地震按其成因分为哪几类?其中影响最大的是哪一类?答:地震按其成因可分为构造地震、火山地震、陷落地震和诱发地震等几类,其中影响最大的是构造地震。

4.什么是构造地震、震源、震中、震中距、震源深度?P1答:由于地壳构造运动使深部岩石的应变超过容许值,岩层发生断裂、错动而引起的地面震动,这种地震称为构造地震,一般简称地震。

地壳深处发生岩层断裂、错动的地方称为震源。

震源至地面的距离称为震源深度。

一般震源深度小于60km的地震称为浅源地震;60~300km的称为中源地震;大于300km的称为深源地震;我国绝大部分发生的地震属于浅源地震,一般深度为5~40km。

震源正上方的地面称为震中,震中邻近地区称为震中区,地面上某点至震中的距离称为震中距。

5.地震波分哪几类?各引起地面什么方向的振动?P1-3答:地震波按其在地壳传播的位置不同可分为体波和面波。

在地球内部传播的波称为体波,体波又分为纵波(P波)和横波(S波)。

纵波引起地面垂直方向的震动,横波引起地面水平方向震动。

在地球表面传播的波称为面波。

地震曲线图中,纵波首先到达,横波次之,面波最后到达。

分析纵波和横波到达的时间差,可以确定震源的深度。

6.什么是震级和地震烈度?几级以上是破坏性地震?我国地震烈度表分多少度?答:震级:指一次地震释放能量大小的等级,是地震本身大小的尺度。

(1)m=2~4的地震为有感地震。

(2)m>5的地震,对建筑物有不同程度的破坏。

(3)m>7的地震,称为强烈地震或大地震。

地震烈度:是指某一区域内的地表和各类建筑物遭受一次地震影响的平均强弱程度。

M(地震震级)大于5的地震,对建筑物就要引起不同程度的破坏,统称为破坏性地震。

地震作用和结构抗震设计要点

地震作用和结构抗震设计要点

地震作用和结构抗震设计要点1. 地震作用简介地震是地球内部发生的一种自然现象,是地壳的震动。

地震作用对建筑结构会产生不可无视的影响,因此在建筑设计中必须考虑地震作用对结构的影响,合理进行抗震设计。

地震作用主要包括地震波的震动、振荡和地震引起的地表位移等。

地震波可以分为纵波和横波,纵波传播速度较快,而横波产生的水平位移对结构破坏更为严重。

地震波的传播会引起建筑结构的振动,如果结构的抗震能力缺乏,那么可能导致结构的破坏甚至倒塌。

2. 结构抗震设计要点为了确保建筑结构在地震中具备足够的抗震能力,需要在设计过程中注意以下要点:2.1 结构稳定性在进行抗震设计时,结构的稳定性是非常重要的考虑因素。

结构的稳定性包括整体稳定性和局部稳定性两个方面。

整体稳定性主要涉及结构整体的抗倾覆能力和整体的撤除能力。

局部稳定性那么考虑不同构件的局部抗倾覆能力和连接点的抗震性能。

2.2 结构的均匀性和对称性在抗震设计中,结构的均匀性和对称性是确保结构在地震中保持良好性能的关键因素之一。

结构的均匀性和对称性可以有效降低结构的谐振现象,减少结构受到的地震作用的影响。

2.3 结构的刚度和强度结构的刚度和强度是抗震设计中必须考虑的重要因素。

结构的刚度决定了结构在地震中的受力分布和位移响应情况,而结构的强度那么决定了结构的抵抗能力。

通过合理的结构刚度设计和强度设计,可以减小结构在地震中的变形和破坏。

2.4 结构的耗能能力耗能是指结构在地震中吸收和分散能量的能力。

结构的耗能能力直接决定了结构在地震中的破坏程度,合理的耗能设计可以减少地震作用对结构的破坏。

常见的结构耗能方式包括粘滞阻尼和阻尼器等。

2.5 结构的连接设计结构连接的设计是确保结构整体性能的重要环节。

连接的设计要考虑连接部位的刚度和强度,并确保连接部位的可靠性和耐久性。

在地震中,连接部位往往易发生破坏,因此合理的连接设计可以提高结构的整体抗震能力。

2.6 结构的预制和施工工艺结构的预制和施工工艺也会对结构的抗震能力产生影响。

建筑抗震设计基本知识

建筑抗震设计基本知识
..
| xg |max
Sa g
《规范》根据烈度、场地类别、结构自振周期及阻尼 比等绘出了地震影响系数曲线(下图)
建筑结构 西南科技大学
第十四章
地震作用和结构的抗震验算
建筑结构
西南科技大学
第十四章
地震作用和结构的抗震验算
FEK GEK
单质点水平地震作用标准值为;
(二)自振周期的计算 单质点自振周期:
等效剪切波速vse
vse d0
建筑结构
(d / v
i 1 i
n
si
)
西南科技大学
第十四章
地震作用和结构的抗震验算
建筑场地的划分:
2.场地的选择 选择建筑场地时,应对抗震有利、不利和危险地段作 出综合评价。
建筑结构
西南科技大学
第十四章
地震作用和结构的抗震验算
建筑场地的划分:
2.场地的选择 选择建筑场地时,应对抗震有利、不利和危险地段作 出综合评价。
建筑结构
西南科技大学
第十四章
地震作用和结构的抗震验算
建筑结构
西南科技大学
第十四章
地震作用和结构的抗震验算
14.4结构的自振周期 一、能量法 能量守恒定律:Tmax U max
1 2 n Tmax 1 mi xi2 2 i 1 1 n U max mi gxi 2 i 1
建筑结构 西南科技大学
第十四章
地震作用和结构的抗震验算
地点地面和建筑物受破坏的程度,也反映该地地面运动速 度和加速度峰值的大小。 2.地震烈度的统计分布
建筑结构
西南科技大学
第十四章
地震作用和结构的抗震验算
众值烈度比基本烈度低1.55度;罕遇烈度比基本烈度 高1度左右。 3.设计地震分组 《规范》附录A列出了我国抗震设防区各县级及县级 以上城镇中心地区的分组。 4.抗震设防烈度 是指按国家规定的权限批准作为一个地区抗震设防依 据的地震烈度。一般情况下,它与地震基本烈度相同。 14.2抗震设计的基本要求 一、建筑抗震设防分类和设防标准

建筑结构抗震设计原则及设计要点分析

建筑结构抗震设计原则及设计要点分析

建筑结构抗震设计原则及设计要点分析摘要:近年来建筑施工技术日新月异,促进了建筑行业的快速成长,为城市化进程提供了动力。

建筑功能不断优化改良,已经成为衡量建筑建设效果的重要指标。

我国建筑抗震设计理念正处于快速更新的阶段,抗震设计趋于科学合理。

就建筑抗震设计原则展开讨论,并提出可行地实施措施。

关键词:建筑工程;抗震设计;原则1建筑抗震结构设计地特点首先,建筑抗震结构设计必须要针对结构受力情况进行检测分析。

由于建筑结构无论从整体柔韧性上还是整体承载力方面,都需要综合考量受力的稳定与均衡,而这对建筑在较大震动情况下是否可以保持稳定造成了一些影响。

因此,在实际结构设计期间,必须要对建筑受力状态进行综合考量分析,对结构与连接点的连接情况进行有效监督检测,这样才能够保证一旦发生地震,也不会对建筑造成较大的能量冲击。

这样一来,就可以保证建筑在地震当中始终维持受力平衡,避免主体结构因此而受损。

其次,建筑抗震结构设计必须要考虑到轴向变形问题,高层建筑工程承担的竖向荷载量比较大,不仅存在一些轴向变形问题,还可能会对连续梁的弯矩造成一些影响,进而导致在负弯矩值变小的同时增大正弯矩值。

因此,在抗震结构设计的过程中,必须要对轴向变形情况进行准确计算,从而准确调整下料长度,避免剪力与位移造成较大影响。

最后,建筑抗震结构设计还需要考虑到结构的延展性,结构延展属于建筑设计期间的一项重要指标,一些中低层建筑延展性比较小,而高层建筑延展性比较大,这导致在地震发生之后,高层建筑出现变形的概率也更大。

为了降低在地震当中高层建筑出现较大变形导致构件损坏,就需要在结构设计上采取一定措施来改善建筑结构延展性,提升建筑结构使用效果。

2建筑抗震结构设计的基本原则2.1建筑场地选择的基本原则首先,需要结合地质条件选择合适地区域,对于大多数建筑物,选择一个稳定的地基非常重要。

设计师应该优先选择地壳稳定和不存在潜在地质灾害的区域建造建筑物,并且需要根据当地的地形、地貌和地质条件等因素设计相关抗震技术方案。

建筑结构抗震设计与实例第5章

建筑结构抗震设计与实例第5章
2) 有斜交抗侧力构件的结构,当相交角度大于15度时, 应分别考虑各抗侧力构件方向的水平地震作用;
3) 质量和刚度明显不对称的结构,应考虑双向水平 地震作用下的扭转影响。其他情况,可以采用调 整地震作用效应的方法计入扭转影响;
4) 不同方向抗侧力结构的共同构件,应考虑双向水 平地震作用的影响。
5) 8度和9度的大跨度结构、长悬臂结构及9度时的 高层建筑,应考虑竖向地震作用。
8度Ⅲ、Ⅳ场地
>80
9度
>60
表5.2 地震9度
多遇地震
18
35
70
(55) (110) 140
罕遇地震

220 400 (310) (510) 620
三、重力荷载代表值的计算
❖ 进行结构抗震设计时考虑的重力荷载称为重力荷载 代表值。重力荷载包括恒载和活载。由于地震发生 时,活载往往达不到其标准值,因此,在计算质点 的重力荷载可对活载进行折减按P98表5.3采用。
输入加速度调整
当结构采用三维空间模型等需要双向(2个水平 方向)或3向(2个水平方向和1个竖向)地震波输入 时,其加速度最大值通常按下列比例调整: 1(水平1):0.85(水平2):0.65(竖向)
表5.1 采用时程分析的房屋高度范围
烈度、场地类型 房屋高度范围(米)
7度及8度Ⅰ、Ⅱ类场地
>100
2. 乙类建筑:地震作用应符合本地区抗震设防烈度
要求。一般情况6~8度时,提高1度进行抗震设防, 9度时应比9度设防更高的要求。
3. 丙类建筑:地震作用和抗震措施均应符合本地区
抗震设防烈度要求。
4. 丁类建筑:一般情况下(具体规定除外),地震
作用应符合本地区抗震设防烈度要求,抗震措施可 适当降低,但6度抗震时不降低。 5. 抗震设防烈度为6度时,除特殊要求外,一般情况 下对乙类、丙类和丁类建筑可不进行地震作用计算。

建筑结构工程抗震设计的作用及其要点

建筑结构工程抗震设计的作用及其要点

建筑结构工程抗震设计的作用及其要点发布时间:2021-12-17T02:59:09.042Z 来源:《建筑学研究前沿》2021年19期作者:苏鹏[导读] 建筑工程抗震设计是当前我国建筑业发展下建筑设计的要点所在,抗震设计能够在很大程度上提高结构稳定性。

文章对建筑结构工程抗震设计的作用进行分析,探讨建筑结构工程抗震设计的要点措施。

广州宝贤华瀚建筑设计有限公司广东广州 510000摘要:建筑工程抗震设计是当前我国建筑业发展下建筑设计的要点所在,抗震设计能够在很大程度上提高结构稳定性。

文章对建筑结构工程抗震设计的作用进行分析,探讨建筑结构工程抗震设计的要点措施。

关键字:建筑结构;工程抗震;抗震设计;结构设计引言建筑结构抗震设计中,建筑结构设计人员需要正确认识抗震设计的意义和价值,并且加大了对建筑抗震设计要点的控制力度,从而优化和完善建筑结构的抗震性能,保障群众的生命财产安全。

为此,研究抗震设计在建筑房屋结构设计中的应用具有积极的现实意义。

1建筑工程设计的总体要求在进行建筑工程设计的过程中,首先确定项目的施工场地,对于中小型的工程,应该首先明确其抗震的设防烈度,如果符合要求,则进一步进行抗震设计,对于重要的建设项目而言,需要通过地震部门进行烈度鉴定,根据建筑的重要性差异进行等级划分,不同的建筑应用差异性的抗震措施,以确保实际的抗震性能效果,在明确建筑的平面形状、结构体系以及材料的基础上,做好一系列的分析计算,确定抗震设计的可行措施,同时也需要对建筑的结构、设备以及细节构造优化设计。

在地震的作用下,建筑受到破坏会产生严重的破坏力,深入分析研究抗震理论可知,在工程设计的过程中,充分利用客观规律,能够强化建筑的抗震效果。

一般地震发生时,破坏力以及抵抗力之间会产生相互抵消作用,一旦发生地震,就会引发地面运动,从而产生场地的土地变形、坍塌以及液化,建筑作用力会衍生出次生灾害,作为承受地震作用的另一方建筑,其选址的位置、布局、构造以及结构类型、动力特征等各种因素也会对最终的抗震效果产生影响,因而在进行选址时,需要把握好各项影响因素,在综合统筹的基础上创新设计。

建筑抗震设计第5章钢筋混凝土框架结构房屋抗震设计

建筑抗震设计第5章钢筋混凝土框架结构房屋抗震设计


2. 框架-抗震墙结构布置 框架-抗震墙结构是由框架和抗震墙结合而共同工作的结构 体系,兼有框架和抗震墙两种结构体系的优点。既具有较大的空 间,又具有较大的抗侧刚度。多用于10~20层的房屋。
框架-抗震墙结构布置的关键问题是 抗震墙的布置,其基本原则是: ① 抗震墙在结构平面的布置应对称均匀, 避免结构刚心与质心有较大的偏移。 ②抗震墙应沿结构的纵横向设置,且纵横 向抗震墙宜相互联合组成 T 形、L 形、 框架一抗震墙结构 平面布置示意 十字形等刚度较大的截面,以提高抗震墙 的利用效率。 ③ 抗震墙宜贯通全高,沿竖向截面不宜有较大突变,以保证结构 竖向的刚度基本均匀。
常见框架柱网 (a)方格式柱网 (b)内廊式柱网 地震区的框架结构,应设计成延性框架,遵守“强柱弱梁”、 “强剪弱弯”、强节点、强锚固等设计原则。 在确定框架结构结构方案的同时,应初步确定框架梁柱的截 面尺寸和材料强度等级。 框架结构中,非承重墙体的材料、选型和布置,应根据烈度、 房屋高度、建筑体型、结构层间变形、墙体抗侧力性能的利用等因 素,经综合分析后确定。应优先采用轻质墙体材料,刚性非承重墙 体的布置,在平面和竖向的布置宜均匀对称,避免形成薄弱层或短 柱。

二、框架填充墙的震害 砌体填充墙刚度大而承载力低, 首先承受地震作用而遭破坏。一般 7度即出现裂缝,8度和8度以上地 震作用下,裂缝明显增加,甚至部 分倒塌,一般是上轻下重,空心砌 体墙重于实心砌体墙,砌块墙重于 砖墙。

框架-剪力墙结构上部较严 重,框架结构下部震害严重。
填充墙破坏的主要原因是:墙体受剪承载力低,变形能力小, 墙体与框架缺乏有效的拉结,在往复变形时墙体易发生剪切破坏和 散落。


三、 抗震等级 地震作用下,钢筋混凝土结构的地震反应有下列特点: 1、地震作用越大,房屋的抗震要求越高; 地震作用与烈度、场地等有关,从经济角度考虑,对不同 烈度、场地结构的抗震要求不同。 2、结构的抗震能力主要取决于主要抗侧力构件的性能; 3、房屋越高,地震反应越大,抗震要求越高。

5-地震作用和结构抗震验算课间

5-地震作用和结构抗震验算课间

4
符合《构筑物抗震设计规范》第5.5.1条规定的构筑
物,除应按《构筑物抗震设计规范》第5.4节的规定进行截
面抗震验算外,尚应进行抗震变形验算。
水平地震作用
采用底部剪力法时,结构水平地震作用计算简图可按图 5.2.1 采用;水平地震作用和作用效应应符合下列规定:
水平地震作用
水平地震作用
水平地震作用
• 2 有斜交抗侧力构件的结构,当相交角度大于15° 时,应分别计算各抗侧力构件方向的水平地震作用。
• 3 质量或刚度分布明显不对称的结构,应计入双向 水平地震作用下的扭转影响;其它情况,应允许采用调 整地震作用效应的方法计入扭转影响。
• 4 8度和9度时的大跨度结构、长悬臂结构及双曲线 冷却塔、电视塔、石油化工塔型设备基础、高炉和索道, 以及9度时的井架、井塔、锅炉钢结构等高耸构筑物, 应计算竖向地震作用。
水平地震作用
突出构筑物顶面的小型结构,采用底部剪力法计算时,除 《构筑物抗震设计规范》另有规定外,其地震作用效应宜 乘以增大系数3,增大部分可不往下传递,但与该突出部分 相连的构件设计时应予以计入。 抗震验算时,任意结构层的水平地震剪力应符合下式要求:
水平地震作用
竖向地震作用
竖向地震作用
井架、井塔、电视塔以及质量、刚度分布与其类似的筒式 或塔式结构,竖向地震作用标准值(图5.3.1),可按下列公式 确定。结构层的竖向地震作用效应,可按各构件承受的重 力荷载代表值的比例进行分配;当按多遇地震计算时,尚 宜乘以增大系数1.5~2.5。
地震作用和结构抗震验算
结构的抗震验算,应符合下列规定:
1
6度时和《构筑物抗震设计规范》规定不作地震作用
计算的结构,可不进行截面抗震验算,但应符合有关的抗

建筑结构抗震设计复习重点

建筑结构抗震设计复习重点

名词解释:1、地震波:地震引起的振动以波的形式从震源向各个方向传播并释放能量;2、地震震级:表示地震本身大小的度量;3、地震烈度:指某一区域内的地表和各类建筑物遭受一次地震影响的平均强弱程度;4、塹:震源正上方的地面位置;5、震中距:地面某处至震中的水平距离;6、翹:地球内部断层错动并引起周围介质震动的部位为震源;7、震源深度:震源至地面的垂直距离;8、极震区:震中附近的地面振动最剧烈,也是破坏最严重的地区;9、翹线「地面上破坏程度相同或相近的点连成的曲线;10、建筑场地:建造建筑物的地方,大体相当于一个厂区、居民小区或自然村;11、沙土液化:处于地下水位以下的饱和砂土和粉土在地震时有变密的趋势,使孔隙水的压力急剧上升,造成土颗粒局部或全部将处于悬浮状态,形成了犹如“液化”的现彖,即称为场地土达到液化状态;12、结构的地震反应:由地震动引起的结构内力变形位移及结构运动速度与加速度的统称。

13、结构的地震作用效应:由地震动引起的结构瞬时内力、应力应变、位移变形及运动加速度、速度等;14、地震系数:地面运动最大加速度与重力加速度的比值;15、动力系数:单质点体系最大绝对加速度与地面运动最大加速度的比值;16、地震影响系数:地震系数与动力系数的乘积;17、扼型分鏗二以结构的各阶振型为广义坐标分别求出对应的结构地震反应,然后将对应于各阶振型的结构反应相组合,以确定结构地震内力和变形的方法,又称振型叠加法;18、基本烈度:在设计基准期(我国取50年)内在一般场地条件下,可能遭遇超越概率(10%)的最大地震烈度。

19、设防烈度:按国家规定权限批准的作为一个地区抗震设防依据的地震烈度。

20、罕遇烈度:50年期限内相应的超越概率2%~3%,即大震烈度的地震。

21、多道抗震防线:一个抗震结构体系,有若干个延性较好的分体系组成,并由延性较好的结构构件连接起来协同作用;22、鞭梢效应:当结构上部刚度较小时,变形在结构顶部集中的现象;23、楼层屈服强度系数;楼房等建筑的各层按构件实际配筋和材料强度设计标准值计算的楼层受剪承载力和按罕遇地震作用标准值计算的楼层弹性地震剪力的比值;24、重力荷载代表值:建筑抗震设计用的重力性质的荷载,为结构构件的永久荷载(包括•自重)标准值和各种竖向可变荷载组合值之和;25、等效总重力荷载代表值:单质点时为总重力荷载代表值,多质点时为总重力荷载代表值的85%;26、轴压比:名义轴向应力与混凝土抗压强度之比;27、强柱弱梁:使框架结构塑性校出现在梁端的设计要求;28、非结构部件:指在结构分析中不考虑承受重力荷载以及风、地震等侧向力的部件29、地震动:由地震波传播引起的地面震动。

建筑结构抗震设计原则及设计要点分析

建筑结构抗震设计原则及设计要点分析

建筑结构抗震设计原则及设计要点分析摘要:众所周知,我国幅员辽阔,很多地区都处于地震带上,地震带来的损伤与影响非常严重,因此建筑工程在建设设计的过程中都融入了抗震结构理念。

经汶川、玉树等地震考验后,我国建筑工程抗震结构设计要求逐步高。

建筑工程抗震设计变得更加专业与复杂,因此必须对设计特点进行详细分析考量,才能够达到较高的设计质量。

然而从当下实际情况上来说,我国建筑抗震结构设计还有很多需要完善的内容与方面,这严重影响了建筑工程的抗震能力及水平。

此状况必须要得到改进才能更好的提升建筑工程抗震能力。

关键词:建筑结构抗震;设计原则;设计要点分析引言随着施工高度的不断提高,建筑面临着新的挑战。

其中,消防安全、抗震性能和抗风能力是目前需要优先考虑的问题之一。

许多地区位于地震带和地震影响最为严重的地区。

因此,长期以来,提高建筑结构的地震活动性一直是一个非常有价值的问题。

特别是在新时代,由于施工的复杂性和结构的复杂性不断增加,对抗震性能的要求也越来越高。

因此,高层结构的抗震设计显得尤为重要,它必须减少地震对建筑物的影响,确保人员和财产的安全。

此外,抗震设计还应该兼顾建筑的美观性、安全性和实用性,以减少损失和风险。

1建筑结构抗震设计原则抗震设计的整体性原则是指在抗震设计过程中,将建筑结构作为一个整体进行考虑和设计,以确保其整体的稳定性和抗震性能。

(1)将整个建筑结构作为一个系统来考虑,而不是把它看作是由独立部件组成的集合。

这意味着在抗震设计中,需要综合考虑建筑结构的各个部分之间的相互作用和协同工作,而不是单独对每个部分进行设计。

通过在整体考虑的基础上进行设计,可以提高建筑结构的整体刚度和强度,从而增强其抵抗地震力的能力。

(2)抗震设计中注重结构的韧性和能量耗散能力。

地震作用通常会引起结构内部的应力和变形集中,如果结构不能承受这些应力和变形而发生破坏,将导致建筑整体倒塌。

为了增强结构的韧性,可以采用一些措施,如提高材料的延性和减震器的安装等。

建筑结构抗震设计课件第5章第5节

建筑结构抗震设计课件第5章第5节

f yv Asvj
hb0 as s
9度一级时
Vj
1
RE
0.9
j
ftbjhj
f yv Asvj
hb0 as s
f t ---混凝土抗拉强度设计值;
N ---对应与组合剪力设计值的上柱组合轴向压力较小值;
f yv ---箍筋抗拉强度设计值; Asvj ---核心区有效验算宽度范围内同一截面验算方向箍筋的总截面面积;
2.梁、柱截面的剪压比不宜过大(6.2.9条)
剪压比:截面内平均剪应力与混凝土抗压强度设计值之
比,即:
Vb / bh0 fc
剪压比过大,混凝土会过早发生斜压破坏,箍筋不能充分
发挥作用,它对构件的变形能力也有显著影响。因此应控制。
跨高比大于2.5时: 跨高比等于或小于2.5时:
VbΒιβλιοθήκη 1RE(0.2
fcbh0 )
截面中配置受压钢筋可以改善构件的弯曲延性。
2、受剪构件的剪跨比及破坏特征
构件在弯矩和剪力共同作用下,受剪破坏与剪跨比有关.
剪跨比:
M / Vh0
h0为截面有效高度。
当 1 ~ 1.5或构件为超配箍时,发生斜压型破坏; 当 2 ~ 3 且构件为低配箍时,发生斜拉型破坏;
脆性破坏
当 1 ~ 1.5 2 ~ 3且配筋箍适量时,发生剪压破坏; 延性破坏
高构件的延性、防止混凝土过早地压溃及防止纵向钢筋的压 曲失稳。
加密位置、箍筋直径、箍筋间距等应符合规范规定。
四、框架的节点设计
框架节点破坏的主要形式是节点核心区剪切破坏和钢 筋锚固破坏。
节点主要受剪力和压力的组合作用,节点核心区未开 裂前,箍筋应力很小,基本上是混凝土承受剪力。约当剪 力达到核心区极限抗剪能力60~70%时,混凝土突然发生 对角贯通裂缝,节点刚度明显降低,箍筋应力也突然增大, 个别甚至屈服,此后斜裂缝增多赠宽,箍筋陆续达到屈服。

地震作用和结构抗震设计要点3

地震作用和结构抗震设计要点3

地基与结构相互作用的考虑
《抗震规范》规定 1)结构抗震计算,一般情况下,可不考虑地基与结构相
互作用的影响; 2)8度和9度时建造在Ⅲ,Ⅳ类场地土上,采用箱基、刚
性较好的筏基和桩箱联合基础的钢筋混凝土高层建筑, 当结构基本周期处于特征周期的1.2倍至5倍范围时, 若计入地基与结构动力相互作用的影响,对刚性地基 假定计算的水平地震剪力可按下列规定折减,其层间 变形可按折减后的楼层剪力计算。
mg(
xg max )( g
Sa ) xg max
Gk
G
为地震影响系数, 质点所受水平地震力与该质点重力之比。
我国《建筑抗震设计规范》(GB 50011-2010) 将地震影响系数曲线分为4个部分,覆盖的房屋 自振周期从0至6S。
加速度影响曲线,无量刚化,弹性反应谱
GB 50011-2010, Fig. 5.1.5
FXji j tj X jiGi FYji j tjYjiGi Ftji j tj ri2 jiGi
单向地震作用下
SEk
mm
jk S j Sk
j 1 k 1
双向地震作用下
SEk SEk
S
2 x
(0.85S y )2
S
2 y
(0.85S x )2
时程反应法
适用情况:
特别不规则的建筑,甲类建筑和表中所列的高层建筑
2max
When:Tg Ti 5Tg
( Tg T
) 2 m ax
加速度影响曲线
When : 5Tg Ti 6.0s [2 0.2 1 (T 5T g)]max
Geq 结构等效总重量
For SDOM,
For MDOM,
Geq =G1

第五章-地震作用和结构抗震设计要点

第五章-地震作用和结构抗震设计要点

Geq——结构等效总重力荷载,单质点应取总重力荷载代 表值,多质点可取总重力荷载代表值的85%; Fi ——质点 i 的水平地震作用标准值 Gi ,Gj ——分别为集中于质点i 、j 的重力荷载代表值; Hi ,Hj ——分别为质点 i 、j
η
的计算高度;
ζ
δn——顶 部 附 加 地震作用 系数 ,多层 钢筋混凝土 和钢结 构房屋可按表6采用,多层内框架砖房可采用0.2,其 他房屋可采用0.0; ∆Fn ——顶部附加水平地震作用。
i =1 i =1 n n 2
式中 Fji——j 振型 i 质点的水平地震作用标准值; aj——相应于 j 振型自振周期的地震影响系数; Xji——j 振型 i 质点的水平相对位移; γj ——j 振型的参与系数。 水平地震作用效应(弯矩、剪力、轴向 力和变形),应按 下式确定:
S Ek = ∑ S j
有斜交抗侧力构件的结构,当相交角度大于15 度时, 应分别考虑各侧力构件方向的水平地震作用; 质量和刚度明显不对称的结构,应考虑双向水平地震 作用下的扭转影 响。其他情况,可以采用调整 地震作 用效应的方法计入扭转影响; 8度和9度的大跨度结构、长悬臂结构及9度时的高层建 筑,应考虑竖向地震作用。
1.1.2 地震作用计算方法
现行《抗震规范》的抗震设计计算采用以下三种方法: 适用于多自由度体系的振型分解反应谱法; 将多自由度体系看作等效单自由度体系的底部剪力法; 直接输入地震波求解运动方程及结构地震反应的时程分 析法 。
《抗震规范》对上述三种方法的使用范围作了如下规定: 高度不超过40m,以剪切变形为主且质量和刚度沿高 度分布比较均匀的结构,以及近似于单质点体系的结 构,可采用底部剪力法等简化方法 ; 除上述以外的建筑结构,宜采用振型分解反应谱法; 特别不规则的建筑,甲类建筑和表1所列的高层建 筑,应采用时程分析法进行多遇地震作用下的补充计 算,并取多条时程曲线计算结果的平均值与振型分解 反应谱法计算结果的较大值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6度时的建筑(建造于IV类场地上较高的高层建筑除外),以 及生土房屋和木结构房屋,可以不进行截面抗震验算,但应符 合有关的抗震措施要求;
6度时建造于IV类场地上较高的高层建筑(高于40米的钢筋混 凝土框架,高于60米的其他钢筋混凝土民用房屋和类似的工业 厂房,以及高层钢结构房屋),7度和7度以上的建筑结构(生 土房屋和木结构房屋等除外),应进行多遇地震作用下的截面 抗震验算。
FEk——结构总水平地震作用标准值; a1 ——相应于结构基本自振周期的水平地震影响
系数值,多层砌体房屋、底部框架和多层
内框架砖房,宜取水平地震影响系数最大
Hale Waihona Puke 值;第五章 地震作用和结构抗震设计要点
Geq——结构等效总重力荷载,单质点应取总重力荷载代 表值,多质点可取总重力荷载代表值的85%;
Fi ——质点 i 的水平地震作用标准值 Gi ,Gj ——分别为集中于质点i 、j 的重力荷载代表值; Hi ,Hj ——分别为质点 i 、j 的计算高度;
改变了地基运动的频谱组成,使接近结构自振频率的分量获 得加强; 改变了地基振动加速度峰值,使其小于邻近自由场地的加速 度幅值; 由于地基的柔性,使结构的基本周期延长; 由于地基的柔性,有相当一部分振动能量将通过地基土的滞 回作用和波的辐射作用逸散至地基,使得结构振动衰减,地 基愈柔,衰减愈大;
第五章 地震作用和结构抗震设计要点
第五章 地震作用和结构抗震设计要点
1. 建筑的分类与抗震设防 1.1 建筑抗震设防类别:
(1) 特殊设防类:指使用上有特殊设施,涉及国家公共 安全的重大建筑工程和地震时可能发生严重次生灾害等特 别重大灾害后果,需要进行特殊设防的建筑。简称甲类。 (2)重点设防类:指地震时使用功能不能中断或需尽快恢 复的生命线相关建筑,以及地震时可能导致大量人员伤亡 等重大灾害后果,需要提高设防标准的建筑。简称乙类。 (3)标准设防类:指大量的除1、2、4款以外按标准要求 进行设防的建筑。简称丙类。 (4)适度设防类:指使用上人员稀少且震损不致产生次生 灾害,允许在一定条件下适度降低要求的建筑。简称丁类。
(3)特殊设防类,应按高于本地区抗震设防烈度提高一度的要求加强其 抗震措施;但抗震设防烈度为9度时应按比9度更高的要求采取抗震措施。 同时,应按批准的地震安全性评价的结果且高于本地区抗震设防烈度的要 求确定其地震作用。
(4)适度设防类,允许比本地区抗震设防烈度的要求适当降低其抗震措 施,但抗震设防烈度为6度时不应降低。一般情况下,仍应按本地区抗震 设防烈度确定其地震作用。
结构 j 振型 i 质点的水平地震作用标准值,应按 下列公式确定:
F ji j j X jiGi (i 1,2, , n, j 1, 2, , m )
n
n
j X jiGi
X
G2
ji i
i 1
i 1
式中 Fji——j 振型 i 质点的水平地震作用标准值; aj——相应于 j 振型自振周期的地震影响系数; Xji——j 振型 i 质点的水平相对位移;
第五章 地震作用和结构抗震设计要点
2.1 地震作用计算方法 现行《抗震规范》的抗震设计计算采用以下三种方法: 适用于多自由度体系的振型分解反应谱法; 将多自由度体系看作等效单自由度体系的底部剪力法; 直接输入地震波求解运动方程及结构地震反应的时程分
析法。
第五章 地震作用和结构抗震设计要点
《抗震规范》对上述三种方法的使用范围作了如下规定:
第五章 地震作用和结构抗震设计要点
2.2.4 突出屋面小房间的地震作用
带有突出屋面小房间的房屋结构,由于小房间(包括电梯机 房、水箱间、女儿墙、烟囱等)的质量和刚度突然变小,地震时 产生鞭端效应而使其地震反应急剧增大。因此,严格地说,对带 有突出屋面小房间的房屋结构,底部剪力法已不再适用,应采用 振型分解反应谱法计算其水平地震作用。
结构的地震作用将减少; 结构的位移和由P-Δ效应引起的附加内力将增加。
硬质地基对柔性结构影响极小,对刚性结构有一定的影 响;软土地基对刚性结构影响显著,而对柔性结构则有一定 的影响。
第五章 地震作用和结构抗震设计要点
2.3 竖向地震作用的计算
高层建筑和高耸结构的竖向地震应力和重力荷载应力的 比值沿建筑物高度向上逐渐增大。结构上部可能产生拉应力。 《抗震规范》规定: 8度和9度时的大跨度结构,长悬臂结构,9度时的高层建
第五章 地震作用和结构抗震设计要点
1.2 抗震设防标准:
(1)标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用, 达到在遭遇高于当地抗震设防烈度的预估罕遇地震影响时不致倒塌或发生 危及生命安全的严重破坏的抗震设防目标。
(2)重点设防类,应按高于本地区抗震设防烈度一度的要求加强其抗震 措施;但抗震设防烈度为9度时应按比9度更高的要求采取抗震措施;地基 基础的抗震措施,应符合有关规定。同时,应按本地区抗震设防烈度确定 其地震作用。
第五章 地震作用和结构抗震设计要点
2.2.3 考虑扭转影响的计算方法
在地震作用下结构除发生平移振动外,还会发生或多 或少的扭转振动。这主要有两方面原因,一是地面运动存 在转动分量,或地震时地面各点的运动存在相位差;另一 个原因是结构本身存在偏心,即结构的刚度中心和质量中 心不重合。震害调查分析表明,扭转作用会加重结构破坏, 有时还会成为结构破坏的主要原因。目前对地面运动转动 分量引起的扭转效应难以定量分析,这里主要讨论结构由 于偏心引起的地震扭转效应。
m
n
不含地震作用: Sd Gj SG j k Q1 SL1 Q1k S Qi Li ci Qik
j1
i2
第五章 地震作用和结构抗震设计要点
γG ——重力荷载分项系数,一般情况取 1.2。当重力荷载效应 对构件承载力有利时,可取1.0;
γw ——风荷载分项系数,取1.4; SGE——重力荷载代表值的效应,当有吊车时尚应包括悬吊物
第五章 地震作用和结构抗震设计要点
3.1 截面强度抗震验算
结构构件的地震作用效应和其它荷载效应组合,可按 下式计算:
含地震作用:S GSGE SEh Ehk SEv Evk w wSwk
式中 S——结构构件内力组合的设计值,包括组合的弯
矩、轴向力和剪力设计值;
γEh ,γEv——分别为水平和竖向地震作用分项系数,按表10 采用;
j ——j 振型的参与系数。
第五章 地震作用和结构抗震设计要点
水平地震作用效应(弯矩、剪力、轴向 力和变形),应按 下式确定:
SEk
S
2 j
式中 SEk——水平地震作用标准值的效应; Sj——j振型水平地震作用标准值的效应,可只取 前2~3个振型,当基本自振周期大于1.5s或
房屋高宽比大于5时,振型个数适当增加。
重力荷载标准值产生的效应; SEhk——水平地震作用标准值的效应,尚应按有关规定乘以相应
的增大系数或调整系数; SEvk——竖向地震作用标准值的效应,尚应按有关规定乘以相应
的增大系数或调整系数; Swk——风荷载标准值的效应; ψw——风荷载组合系数,一般结构取0.0,风荷载起控制作用的
高层建筑可采用0.2。
高度不超过40m,以剪切变形为主且质量和刚度沿高 度分布比较均匀的结构,以及近似于单质点体系的结 构,可采用底部剪力法等简化方法;
除上述以外的建筑结构,宜采用振型分解反应谱法; 特别不规则的建筑,甲类建筑和一些高层建筑,应采
用时程分析法进行多遇地震作用下的补充计算,并取 多条时程曲线计算结果的平均值与振型分解反应谱法 计算结果的较大值。
Gj
Hj Hi
采用底部剪力法时,各楼层 可仅取一个自由度,结构的水平 地震作用标准值,应按下列公式 确定(图2):
FEk
图2 结构水平地震作用
第五章 地震作用和结构抗震设计要点
FEk 1Geq
Fi
Gi H i
n
F (1 n )
GjH j
j 1
(i 1, 2,,n)
Fn n FEk
式中
考虑到工程实践中带有突出屋面小房间的房屋结构数量极大, 为了简化计算,《抗震规范》规定,对于这类结构,仍可采用底 部剪力法计算其水平地震作用,在计算时,将突出屋面的小房间 也作为一个质点,并将计算所得的该质点的水平地震作用乘以增 大系数3予以调整,此增大部分不往下传递,但与该突出部分相 连的构件在设计时应考虑这种增大影响。
第五章 地震作用和结构抗震设计要点
表10. 地震作用分项系数
地震作用
γEh
仅考虑水平地震作用
1.3
仅考虑竖向地震作用
0.0
同时考虑水平与竖向地震作用 1.3
γEv 0.0 1.3 0.5
返回
第五章 地震作用和结构抗震设计要点
结构构件截面抗震验算应按下式进行: S R
RE
式中γRE——承载力抗震调整系数,除另有规定外,可按表11 采用,当仅计算竖向地震作用时,各类结构构件 承载力抗震调整系数均可取1.0;
R——结构构件承载力设计值,按现行有关规范规定计 算。
第五章 地震作用和结构抗震设计要点
表11. 承载力抗震调整系数γRE
材料
结构构件
受力状态 γRE
柱,梁
0.75

支撑
γRE>1 or 0.80
节点板件,连接螺栓 γRE<1?
筑,应考虑竖向地震作用; 烟囱和类似的高耸结构,以及高层建筑其竖向地震作用的
标准值可按反应谱法计算; 平板网架和大跨度结构等则采用静力法。
第五章 地震作用和结构抗震设计要点
3. 结构抗震验算
《抗震规范》二阶段设计法的第一阶段设计应按多遇地震 作用效应和其它荷载效应的基本组合,验算构件截面抗震承载 力以及在多遇地震作用下验算结构的弹性变形;第二阶段设计 按罕遇地震作用验算结构的弹塑性变形。验算时应符合下列规 定:
相关文档
最新文档