数学八年级上册 压轴题 期末复习试卷(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学八年级上册压轴题期末复习试卷(Word版含解析)

一、压轴题

1.已知ABC是等腰直角三角形,∠C=90°,点M是AC的中点,延长BM至点D,使DM =BM,连接AD.

(1)如图①,求证:DAM≌BCM;

(2)已知点N是BC的中点,连接AN.

①如图②,求证:ACN≌BCM;

②如图③,延长NA至点E,使AE=NA,连接,求证:BD⊥DE.

2.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上

一点,另一直线l2:y2=1

2

x+b过点P.

(1)求点P坐标和b的值;

(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.

①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;

②求出t为多少时,△APQ的面积小于3;

③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.

3.如图,直线

11 2

y x b

=-+分别与x轴、y轴交于A,B两点,与直线

26

y kx

=-交于点()

C4,2.

(1)b= ;k= ;点B坐标为;

(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;

(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P,Q,A,B四个点能构成一个菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.

4.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B 的另一条直线交x轴正半轴于点C,且OC=3.

图1 图2

(1)求直线BC的解析式;

(2)如图1,若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;

(3)如图2,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;5.在平面直角坐标系xOy中,若P,Q为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.图1为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,2).

(1)如图2,点B的坐标为(b,0).

①若b=﹣2,则点A,B的“相关矩形”的面积是;

②若点A,B的“相关矩形”的面积是8,则b的值为.

(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC的表达式;

(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.

6.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.

①请直接写出∠AEB的度数为_____;

②试猜想线段AD与线段BE有怎样的数量关系,并证明;

(2)拓展探究:图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E 在同-直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数线段CM、AE、BE之间的数量关系,并说明理由.

7.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.

(1)试判断直线AB与直线CD的位置关系,并说明理由;

(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;

(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分

∠EPK,求∠HPQ的度数.

8.ABC 是等边三角形,作直线AP ,点C 关于直线AP 的对称点为D ,连接AD ,直线BD 交直线AP 于点E ,连接CE .

(1)如图①,求证:CE AE BE +=;(提示:在BE 上截取BF DE =,连接AF .)

(2)如图②、图③,请直接写出线段CE ,AE ,BE 之间的数量关系,不需要证明; (3)在(1)、(2)的条件下,若26BD AE ==,则CE =__________. 9.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,

如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC =∠DAE ,AB =AC ,AD =AE ,则△ABD ≌△ACE . (材料理解)(1)在图1中证明小明的发现.

(深入探究)(2)如图2,△ABC 和△AED 是等边三角形,连接BD ,EC 交于点O ,连接AO ,下列结论:①BD =EC ;②∠BOC =60°;③∠AOE =60°;④EO =CO ,其中正确的有 .(将所有正确的序号填在横线上).

(延伸应用)(3)如图3,AB =BC ,∠ABC =∠BDC =60°,试探究∠A 与∠C 的数量关系.

10.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H .

(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点

E、F.

①求证:∠1=∠2

②如图2,若BF=2AF,连接CF,求证:BF⊥CF;

(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,

求ABF

ACF

S

S的值.

11.在Rt ABC中,90

ACB

∠=︒,30

A

∠=︒,BD是ABC的角平分线,DE AB

于点E.

(1)如图1,连接EC,求证:EBC

是等边三角形;

(2)如图2,点M是线段CD上的一点(不与点,C D重合),以BM为一边,在BM下方作60

BMG

∠=︒,MG交DE延长线于点G.求证:AD DG MD

=+;

(3)如图3,点N是线段AD上的点,以BN为一边,在BN的下方作60

BNG

∠=︒,NG交DE延长线于点G.直接写出ND,DG与AD数量之间的关系.

12.在等腰Rt△ABC中,AB=AC,∠BAC=90°

(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF

①求证:△AED≌△AFD;

相关文档
最新文档